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Introduction 

This thesis consists of one essay in industrial organization and two essays in non­

cooperative game theory. The first essay (Chapter I) concerns credibility in multi­

market competition. The analysis focuses on the incumbent's possibilities to exploit 

first-mover advantages with investments in capacity as it competes with potential 

entrants in several markets. The other two essays (Chapter II and III) both examine 

coordination problems. The former studies the effects of uncertainty, while the lat­

ter investigates the effects of communication. The analysis in Chapter II indicates 

that uncertainty in a coordination game influences the problem of equilibrium selec­

tion. It is shown that a unique equilibrium is robust to perturbations of the players' 

strategies. Moreover, the noise-proof equilibrium is inefficient. The results in Chap­

ter III suggest that structured and costly pre-play communication allow players to 

select among multiple strict Nash equilibria. The expected outcome has a short 

description in the language constructed by players. Moreover, the equilibrium is 

likely to be inefficient with respect to Pareto optimality in the underlying game. In 

the remaining parts of this introduction we shall give a brief outline of the problems 

analysed and the main results in each paper. 

1. The role of investment in multi-market deterrence 

Investment in capacity allows first-movers to make credible commitments. More 

precisely, the incumbent can install capacity to restrict competition from potential 

entrants. Investment in capacity shifts the incumbent's incentives and makes the 

firm more aggressive. Thus, as Dixit [2] and Spence [3] have argued, investment is 

a potential entry deterrent. 

Intertemporal commitments with investments are possible because the capacity 

cost is sunk. The firm restricts its own future freedom of action by making irre­

versible decisions. However, if companies compete in several markets the effect of 

an investment is less clear. 

A general issue in the literature on multi-market competition is whether pres­

ence in many markets facilitate or obstruct the incumbents possibilities to prevent 

competition. In the former case, when multi-market competition facilitate entry de­

terrence, we can expect integrated markets to be more concentrated than segmented 



markets. In the latter case the opposite holds. Therefore the question of market 

linkages should be at the heart of any theory of market concentration. 

The framework of multi-market competition opens up perspectives which are rel­

evant for decision making by multinational, diversified or integrated companies. An 

international firm can choose either concentrated production in a single plant, and 

supply foreign markets through exports, or to establish local plants in each market. 

In the first case the firm is free to redistribute its total capacity between different 

markets as the local market conditions change. In the latter case, a reasonable as­

sumption is that production of goods will be adopted to local preferences and the 

firm can only use its local capacity in other markets if it incurs additional costs. 

Chapter I deals with the issue of how much capacity is needed to successfully deter 

entry from potential competitors in the two cases. We analyse whether an inter­

national firm that competes in several markets needs more total capacity to deter 

entry if capacity can be redistributed between markets without cost. Furthermore, 

we examine if there are less costly strategies to deter potential competitors in local 

markets. 

The results in Chapter I suggest that a multi-market incumbent has to install 

more capacity to deter entry from potential competitors when capacity can be dis­

tributed globally and divided on local markets without additional costs. The result 

highlights the difficulties associated with credible strategies. A threat is only credi­

ble to the extent that the incumbent has incentives to carry it out if he faces local 

competition. If capacity can be redistributed without cost and the incumbent meets 

local competition, an emergency exit remains open and his original threat is less 

credible. 

If the firm chooses dispersed production less total capacity is needed to deter 

entry. A condition for the local capacity to be an efficient market commitment is 

that the additional cost the firm has to incur in order to use the capacity in other 

local markets is sufficiently high. If this is true the future freedom of action for the 

incumbent is restricted and the commitment is credible. 

Thus, the results in Chapter I indicate that strategic motives may induce a 

multi-market firm to choose dispersed production in several local plants rather than 

concentrated production, even if the production technology exhibits increasing re­

turns to scale at the plant level. 

2. Strategic uncertainty and equilibrium selection 

The second essay in this thesis deals with the problem of equilibrium selection in 

coordination games. 
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The Stag Hunt Game in the figure below is a variant of such a game: 

H L 

H 2, 2 0, 1 

L 1,0 1,1 

In the case of the two-player Stag Hunt, player 1 selects a row (H or L) and player 

2 a column (Hor L). Payoffs are defined as the intersection of a row and a column, 

with player l's payoff specified first. This game is interesting because it has two 

strict equilibria, (H,H) and (L,L), where the former is Pareto efficient. Both players 

would prefer the outcome in (H,H). However, the H strategy involves a risk since 

coordination failure would result in 0, while the L strategy guarantees the player a 

payoff of 1, even if coordination failure occurs. 

In the second essay of this thesis we are concerned with the effects of uncertainty 

in a more general version of this coordination game. The game studied in Chapter 

II is due to Bryant [l]. In Bryant's game a group of players choose efforts from a 

compact interval and each player's payoff is determined by the minimum effort in 

the group minus the cost of his own effort. This game exhibits a continuum of Nash 

equilibria that can be ranked with respect to efficiency. All equilibria in the original 

game are strict. Therefore traditional refinements fail to select a unique equilibrium. 

In a tacit version of the game players face a hard prediction problem if they 

wish to correctly forecast which equilibrium will occur. This intuition is supported 

by experimental findings which suggest that players beliefs are widely dispersed 

in Bryant's coordination game. In chapter II we investigate how this uncertainty 

influences the problem of equilibrium selection. What strategies can we expect 

rational players to choose in the coordination game if there is uncertainty about 

how strategies are translated into efforts? 

The results in Chapter II indicate that if the utility functions are strictly concave, 

there is a unique equilibrium which is robust to perturbations of players' strategies. 

This point is called a noise-proof equilibrium. This is an interesting result because 

we are able to select a unique equilibrium in a model based on a non-cooperative 

game while traditional refinements fail to solve the equilibrium selection problem. 

Moreover, we can make precise predictions about how the uncertainty influences the 

outcome of the game. 

If the utility function is sufficiently concave the noise-proof equilibrium is an 

interior point or the lowest effort in the continuum of equilibria in the original 

game. Hence, the Pareto efficient point cannot be obtained as an equilibrium in the 
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uncertain version of the game. The inefficiency in the unique noise-proof equilibrium 

increases as the number of players increases. This result agrees with the findings in 

experiments based on variants of Bryant's game. 

3. Structured communication and equilibrium selection 

In a coordination game there are many equilibrium outcomes in which all players 

choose a mutual best response. While intuition might suggest that players should 

always be able to reach the Pareto efficient equilibrium, formal analysis does not 

support this conclusion. Even the strongest refinements often fail to select a unique 

equilibrium. 

The problem of equilibrium selection has stimulated some recent research efforts 

among game theorists. It is argued that communication will never persuade rational 

agents to act contrary to their own interests, but, if agents have mutual interests, it 

may help them to coordinate their efforts. 

One research approach assumes that an equilibrium in a coordination game is 

the result of pre-play discussion. It is argued that if equilibrium arises as the result 

of costless negotiations between the players, they would never settle down in a Nash 

equilibrium which is Pareto dominated by another equilibrium outcome. Dominated 

equilibria are never renegotiation proof. 

A consequence of this argument would be that if players are allowed to meet 

and costlessly discuss their strategies without restrictions they will reach an efficient 

outcome in any coordination game, even if the environment and the most efficient 

behaviour is very complex. Why then, are most rules of behaviour simple? 

A fact which may influence the outcome in a coordination game, and motivate 

players to choose simple rather than efficient strategies, is that pre-play communi­

cation is usually neither costless nor unrestricted. In chapter III we study how the 

structural conditions for costly pre-play communication influences the equilibrium 

selection problem in a game with multiple strict Nash equilibria. 

We consider a set-up with asymmetric information. Both players know that 

any pure strategy is a best reply to itself, but only one player knows the revenue­

maximizing equilibrium. The informed player can send a costly message to his 

uninformed counterpart through a channel that admits binary code only. The same 

code is used in a variety of situations, with few as well as many strict Nash equilibria. 

Does this mean that pre-play communication favours efficient Nash equilibria? Could 

an outside observer who knows the structural conditions for communication, i.e. the 

cost of communication and the qualities of the channel for transmission, make a 

prediction of the outcome? 

Our results show that players would choose a code with short code-strings for 
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strategies that occurs in problems with few equilibrium strategies, i.e. choice prob­

lems that appear more simple to the players. Moreover, when the cost of communi­

cation is high and the efficiency gains are small, the informed player has a motive to 

choose a short code-string as a message. The corresponding strategy is highly reg­

ular, and the equilibrium is most likely inefficient with respect to Pareto optimality 

in the underlying game. 

However, when the cost of communication is lower, or the potential efficiency 

gains are larger, it is no longer true that players will always choose the shortest code 

string and a uniform sequence of actions. Nevertheless, players choose sequences of 

actions with relatively short descriptions if they are approximately as good as the 

revenue-maximizing strategy. In this case the equilibrium selection is a trade-off 

between efficiency and ease of describability. 

References 

[1] Bryant, J. (1983), A Simple Rational Expectations Keynes-type Model, Quar­

terly Journal of Economics, 525-528 

[2] Dixit (1980), The Role of investment in entry-deterrence, Economic Journal 

90:95-106 

[3] Spence (1977), Entry, Capacity, Investment and Oligopolistic Pricing. Bell Jour­

nal of Economics 8:534-544 
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I. Multi-Market Competition and 

Market Commitments 

1. Introduction 

First-mover advantages allow established firms to restrict or prevent competition. 

Established firms can invest in capacity to the extent that entry by other firms is 

deterred. The crucial condition is that the incumbent can make early decisions in 

order to restrict its future freedom of action. However, when firms compete in many 

markets, e.g. multinational enterprises, this condition may change. Even if the cost 

of capacity is sunk, the multi-market incumbent can redistribute some of its capacity 

from markets with tough, to markets without competition. Thus, the firm maintains 

some degrees of freedom when it is present in more than one market. Consequently, 

the multi-market firm's threat to fight potential entrants is less credible. 

This paper is therefore motivated by two sets of questions. How is the incum­

bent's possibility to exploit first mover advantages influenced by the fact that it 

competes in many markets? Can a foreign direct investment be regarded as a com­

mitment to a specific market in order to restrict or prevent competition in that 

market? 

If multi-market competition facilitates entry-deterrence we should expect inte­

grated markets to be more concentrated than segmented markets. On the other 

hand, if the opposite holds and multi-market competition obstructs the incumbent's 

possibilities to restrict competition we should expect integrated markets to be less 

concentrated. Hence, the issue of market-linkages is important for any theory of 

market concentration. 

It is often assumed that firms are allowed to take decisions exclusively at the 

multi-market level, referred to as the integrated market hypothesis, or at the local 

level, referred to as the segmented market hypothesis. One exception is Venables [12]. 

In his model firms take capacity decisions on an integrated basis and other decisions, 

e.g. price and sales decisions, on a national basis. Our model is close to Venables' 

in the attempt to analyse the importance of investment on entry-deterrence when 

capacity can be used on a multi-market level, while sales decisions are taken on a 

local basis. Unlike Venables, we focus on the role of local as well as global capacity 



in entry-deterrence. 

This paper consider a market situation described as a stage game in which the 

incumbent first selects local and global capacities, then meets potential competition 

from local entrants in n markets. 

In our model, the possibility to redistribute global capacity from a market with 

entry to a market without entry makes entry deterrence more difficult and more 

costly. Therefore, the multi-market incumbent has an incentive to induce market 

segmentation. If it is possible, the incumbent may choose to assign parts of its 

multi-market capacity to specific markets in order to facilitate entry-deterrence. 

In particular the incumbent may induce market segmentation through bundling 

of products and services. Firms can bundle their tradable products with locally 

produced and consumed nontradables. If the product cannot be used without local 

services then the capacity is assigned to the local market when the marginal cost 

of expanding the local capacity of services in other markets is sufficiently high. In 

this respect our results relate to Horn and Shy [8] where market segmentation is 

endogenously determined through bundling of tradables with nontradables. 

The paper is also related to many previous contributions in the literature. Spence 

[10] and Dixit [4] made the original Stackelberg story consistent by interpreting 

Stackelberg's output quantities as irreversible capacities. 1 In a seminal article Dixit 

[4] shows that a generalized Stackelberg outcome can be derived in a two-firm, two­

stage model in which one firm makes an irreversible investment in the first stage 

and compete with another firm in quantities in the second stage.2 In Dixit's model 

entry can be deterred if the setup cost is sufficiently high. With a simple Leontief 

technology no idle capacity will be installed to deter entry. 3 

We extend the Spence-Dixit analysis to the multi-market setting. Like Spence 

and Dixit, we consider a model with constant marginal cost of capital. Furthermore, 

demand is considered to be independent between markets. However, the firm is free 

to redistribute its global capacity between different markets. Hence, there is a 

1 In Spence [10] it is assumed that the threat by the established firm of producing at a level equal 

to established capacity is believed by the prospective entrant. Dixit [4] basically shows that if the 

post-entry game is restricted in such a way that only Nash-equilibria may be considered the sub­

game perfect equilibrium never exhibit idle capacity (with linear demand and Leontief technology). 
2Eaton and Lipsey [5], Eaton and Ware [6], Gilbert [7] and Spulber [11] specify similar models 

with related results. 
:;It should be noted that these results does not hold in general. In a similar two-firm, two-stage 

game with iso-elastic demand the incumbent will hold excess capacity which is idle and would be 

utilized only in the event of entry .. This result is easily shown in a simple model originally due to 

Bulow, Geanakopolos and Klemperer [2]. Similar results are shown with multiple incumbent firms 

by Barham and Ware [1]. 
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strategic link between different markets. 4 

Bulow, Geanakopolos and Klemperer (henceforth BGK) [3] present a multi­

market model which relates to our analysis. They study a multi-market game in 

which two firms compete in one market but one of the firms is a monopoly in a 

second market. Technology exhibits decreasing returns to scale. A positive shock 

in the firm's home market turns out to be a strategic disadvantage since increasing 

production in one market increases marginal cost in both markets. More gener­

ally, BGK show that strategic substitutes and decreasing returns to scale makes 

the incumbent appear less aggressive in the multi-market setting. Strategic comple­

ments and increasing returns make the incumbent firm more aggressive. If the two 

markets exhibit joint economies then the positive effect in one market is positive on 

entry deterrence in the other market if products are strategic substitutes or strategic 

complements. 

In our model the technology exhibit a constant marginal cost. Hence, BGK's 

analysis does not apply. We show that if firms compete in strategic substitutes and 

the incumbent is free to redistribute capacity between local markets, the firm is less 

aggressive. 

The rest of this paper is organised as follows. Section 2 introduce four versions 

of the multi-market game. Section 3 is devoted to the first version of multi-market 

game, which is similar to Selten's [9] chain store game. In this version a multina­

tional firm competes sequentially with n potential entrants in n markets. In the 

second version of the multi-market game, in section 4, the incumbent competes with 

n firms simultaneously after the capacity choice has been made. In the third version 

of the multi-market game, in section 5, the multinational competes with a second 

large player that is potential entrant in all n markets. Section 6 introduces market 

commitments and analyse what circumstances lead the incumbent to serve mar­

kets from a single multi-market plant versus many local plants. Finally, section 7 

concludes the paper. 

2. Multi-market entry deterrence 

We consider four versions of a multi-market game. In the first three versions it is 

assumed that production capacity is used at the multi-market level. The incum­

bent is not allowed to assign parts of its total capacity to local markets. Instead, 

1 Other contributions to the literature have considered other market-linkages. Production can 

exhibit increasing or decreasing returns to scale which makes production in different markets depen­

dent. A second possibility is that demand in different markets is related. This interdependence can 

change the marginal incentives to produce. For an extensive summary on multi-market competition 

models in which potential entrants are existing firms, see Witteloostuijn and Wegberg [13]. 
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capacity can be redistributed between different markets without additional costs as 

the market conditions change. The first three cases differ with respect to potential 

competition and timing. 

In the first version of the multi-market game an incumbent meets sequential 

competition from local entrants. The sequential structure is plausible when firms 

independently try to specify the product. They consider entry as soon as the product 

specification is correct and they have raised enough money for local production. 

This happens first to firm one, then to firm two etc. In this first version of the game 

we assume that potential entrants only consider local entry. One rational for this 

assumption is that before it can raise money for international expansion the firm 

has to succeed in its domestic market. 

In the second version of the multi-market game the incumbent faces simultane­

ous competition from local entrants. The simultaneous structure arises when the 

incumbent owns a global patent which expires simultaneously in all local markets. 

In this case local competitors already have a correct specification of the product. 

As soon as the patent expires they immediately consider entry in the domestic mar­

ket. In the second version of the game we maintain the assumption that potential 

competitors only consider local entry. 

In the third version of the multi-market game the incumbent meets simultaneous 

competition in all markets from a single multi-market competitor. This market 

structure is plausible if the first competitor that finishes the process of product 

specification immediately consider a global strategy, or a global patent expires in all 

markets simultaneously and the potential entrant is able to raise enough money for 

multi-market entry. 

After the analysis of the first three versions of the multi-market game we change 

the assumptions about the incumbent's possibilities to restrict competition. In the 

fourth version of the game we allow the incumbent to assign parts of its multi-market 

capacity to local markets. In order to assign local capacity to the domestic market 

the incumbent must install a local plant. The choice of a production organization 

is a trade-off between ease of entry-deterrence and scale economies in production at 

the plant level. 

Generally, there is some asymmetry present when the incumbent is able to choose 

between large scale production and market commitments. The asymmetry can be 

geographical, due to product properties or consumers' preferences. A necessary 

condition is that goods produced in a single plant can be accepted by all consumers 

but local products can only be accepted by consumers in the domestic market. 

As an extreme case, with very high transportation costs, local production may 

be necessary in order to sell the product with positive profit in local markets. Under 
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such circumstances the local markets are segmented with respect to production and 

local capacity is assigned to distinct markets. In this case there is no alternative 

for the incumbent but to choose dispersed production. However, under less strict 

conditions the incumbent may choose to produce in a single plant, i.e. having a 

multi-market capacity, or produce in many local plants, i.e. assigning parts of the 

total capacity to local markets. These circumstances can arise in various situations: 

First, firms can bundle their tradable products with locally produced and con­

sumed nontradables, e.g. services. If the product cannot be used without local 

services the capacity is assigned to the local market if the marginal cost to expand 

the service capacity is sufficiently high. 

Secondly, market commitments can be possible due to a horizontally differen­

tiated product space. If local markets exhibit unique preferences, such as cultural 

habits or a unique language, capacities can be assigned to the domestic market as 

consumers in other countries are unable to use locally customized products. Cor­

respondingly, market commitment can be possible due to network lock-ins. If the 

producer induces local network lock-ins by introducing local standards it can assign 

capacities to a specific market. 

Thirdly, market commitment can be induced by asymmetric trade regulations. 

Products from one market can be sold to a second and third market, respectively. 

However, products from the second market cannot be sold without additional tariffs 

and quotas to the third market and vice versa. In much the same way transportation 

costs can allow market commitments as intermediate locations enable positive sales 

in both markets but local production in one market exhibit transportation costs that 

prevents consumption in the other market. 

Finally, licensing can be regarded as market commitment. If market commit­

ments are not possible in any other way, licensing production to independent local 

producers may commit capacities to local markets. Whether this strategy is more 

profitable than single-plant production depends on the relative bargaining positions 

of the multi-market firm and the licence-taking firms. 

Thus, our model of endogenously determined multi-market production poten­

tially applies in many different cases of international competition. After this pre­

sentation of the general features of the model we analyse each version in detail. 

3. Sequential competition from local entrants 

A multinational firm, also called player 0, has advertised and meet demand for its 

product inn markets, numbered 1 ton. In each market there is a potential entrant, 

player t, who might raise enough funding from creditors to establish a firm in market 

t selling the same product as the multinational enterprise. 
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Entry in market t is associated with a fixed, sunk cost A, which can be thought 

of as an advertising cost that makes consumers in market t aware of the entrant. 

Advertising makes all consumers in market t aware of the firm and its products 

but does not affect aggregate demand for the goods. There is no personal arbitrage 

since consumers are only aware of firms that make advertising in their home mar­

ket. Therefore prices need not be internationally equalized. In the first version of 

the multi-market game we focus on a situation in which each potential competitor 

considers advertising in a single market only and, consequently, remaining local. 

At the start of the game none of the potential entrants has specified the product 

correctly in order to start production. But as time goes on one after the other 

finish the process of specification and raise enough credit to (possibly) enter the 

local market. This will happen first to player 1, then to player 2, etc. As soon as 

player t has specified the product correctly he must decide to enter or stay out of the 

market. If he decides to stay out, he stops being a potential competitor. If a second 

firm enters market t, player 0 and player t choose outputs simultaneously and the 

market clears as a duopoly. If the potential entrant stays out monopoly will prevail. 

After this description of the market situation in the first version of the multi­

market game we turn to a formal specification of the model: 

The game, r;,,, has n + 1 players, player 0 and player 1, ... , n (n ~ 1). The game 

is played over a sequence of periods t = 0, ... , n. In period 0 the incumbent, player 0, 

must choose a pre-entry capacity k which is immediately made known to all players. 

At the beginning of period t = 1, ... , n, player t decides to enter or stay out. Player 

t's decision is made known to all players. If player t decides to enter, player 0 

and player t will choose x~ and xt simultaneously. If player t decides to stay out 

monopoly prevails. The output decision is immediately made known to all players, 

too. At the end of period t, market t clears and payoffs are distributed to player 0 

and player t. Next, fort= 1, ... , n -1 period t + 1 begins and is played according to 

the same rules. The game ends after period n. 

Player 0's payoff is the sum of n partial payoffs fort= 1, ... , n. Player 0's revenue 

in market t is 1r ( x~, xt). Cost of capital is additive and marginal capital cost is r > 0. 

The objective of player 0 is to maximize his total payoff: 

v0 (k,x~,--,x~,x1, .. ,xn) L 1r(x~,xt)-rks.t. L x~~k (3.1) 
t=l, .. ,n t=l, .. ,n 

Setting up a firm, i.e. enter market t, is associated with a fixed cost A > 0 for 

player t. Player t's revenue is 7T (xt,x~)- Marginal capital cost is r > 0 and additive. 

The objective of player t = 1, ... , n is to maximize her payoff: 
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rxt - A if enter 

if stay out 
(3.2) 

Next, we introduce some notation before we proceed with our analysis. We 

define strategic substitutes, introduce a necessary and sufficient condition on entry­

deterrence and define the deterrence level. 

We shall call xi a strategic substitute for xJ if 0:/:Xj < 0. Strategic substitutes 

imply that when a firm plays a more aggressive strategy, the optimal response by 

the other firm is less aggressive play. The condition that xi is a strategic substitute 

for xJ is referred to as S: 

(S) 

Secondly, we introduce a best reply function with a non-binding capacity restric­

tion of player 0, denoted ,8° (x1), in the one-period game, rl, implicitly defined by 

g~ (11° (x1) , x 1) = 0. In the same fashion let the best reply function of player 1, 

/11 (x~), be defined /j;:1 ( x~, /11 (x~)) r = 0. If potential competitor decides to en­

ter in period 1 we have the following Nash equilibrium when the capacity constraint 

is non-binding for the incumbent: {x~,x1 }, where x~ = (3° (x1), x1 = (31 (x~)- If 

k ::; x~ the incumbent will use all capacity, but with k > x~ some capacity will be 

left idle. The unique Nash equilibrium in the subgame with entry is { x~ ( k) , £1 } 

where x~ (k) min { k, x~} and £1 = (31 (x~ (k)). 
In the second subgame in the second stage, with no entry, we obtain the following 

Nash equilibrium when the capacity constraint is non-binding for the incumbent: 

{x~,O }, where x~ = 11° (0). Thus, x~ is the monopoly level the incumbent would 

choose if the capacity does not restrict output. 

When the firms compete in strategic substitutes the potential entrants profit is 

decreasing in the incumbent's output. However, the incumbent does not choose an 

output above the limit x~ if the potential competitor enters the local market. Thus, 

under condition (S) a necessary condition on entry deterrence is that profit of the 

potential entrant is non-positive in a Nash equilibrium with entry and a non-binding 

capacity restriction for the incumbent. This condition will be denoted D: 

(D) (-t -o) -t A< o 1r x ,xt - rx - _ 

If the necessary deterrence condition D is satisfied, condition S is a sufficient 

condition on entry deterrence. However, it can easily be shown that S is not a 

necessary condition for the result. In particular, the result can hold even if the 

strategic variables are strategic complements. 
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If D is satisfied and player t would earn a positive profit as monopoly it follows 

from the Theorem of Intermediate Values that at some positive level of output by 

the incumbent the profit of the entrant must be equal to zero. This deterrence level 

will be denoted x and defined 

Thus, if the established firm successfully commit to an output x he would deter 

entry. 

Now, we will show three results from the first version of the multi-market game, 

f;. First, D is a sufficient condition on entry deterrence in the multi-market game. 

Second, if firms compete in strategic substitutes then D is not only a sufficient, but 

a necessary condition on entry deterrence. Third, if both conditions S and D are 

satisfied the incumbent installs strictly more than n · x to deter entry in r;. 
If D is satisfied the local entrant would not earn a positive profit in { x?, xt}, 

and thus stay out of the local market. To see that D is a sufficient condition on 

entry deterrence assume that the incumbent has installed more capacity in period O 

than he would ever use. Thus, every market can be treated independently and the 

unique Nash equilibrium in every market t is { x?, xt} and therefore entry deterrence 

is possible. 

Proposition 1. Entry deterrence is possible in I'; if D is satisfied. 

Proof. (D =* possible entry-deterrence). Let the pre-commitment capacity in­

stalled in period 0, k, be very large. The capacity constraint is not binding in 

any subgame. The objective of the incumbent is to maximize Lt=l, ... ,n 7f (xf, xt) 

with respect to x2 for all t, a=aavo = a1r~?,/) = 0 Vt. Hence, this problem is additively 
xt xt 

independent and each market can be considered as a separate one-market game fy. 
If the capacity constraint is not binding the unique Nash equilibrium with entry is 

{ x2, } where x? = (3° (xt), xt = (3t (x?). Since 1r (xt, x2) - rxt - A :'S O player t 

would choose to stay out and monopoly prevails. • 

If firms compete in strategic substitutes we can say even more. In that case the 

deterrence condition (D) is not only sufficient but also a necessary condition on entry 

deterrence. Strategic substitutes (S) imply that the profit of a potential entrant is 

monotonically decreasing in the incumbent output. If k does not restrict output, 

then { x7, xt} is the unique Nash equilibrium with entry in market t. Furthermore, 

x2 is the highest output the incumbent selects with any capacity k. Hence, if the 

potential competitor earns a positive profit in { x?, } the same would be true in 

any Nash equilibrium. Thus he enters market t and entry deterrence is not possible. 
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Proposition 2. If condition S is satisfied and condition D is violated then entry 

deterrence is not possible in r ;1 • 

Proof. (Sand D =}-, entry-deterrence). First note that x?, is the highest out­

put level of player 0 in a subgame with entry in market t. From (S) 1r (xt, x?,) is 

monotonically decreasing in x?, and hence 1r (xt, x?,) reach its minimum at x?,. If 

_, D, i.e. 1r (xt, x?,) - rxt - A > 0, player t could ensure himself a positive profit if 

he enters market t. • 

After these two qualitative results we can state a more precise result that char­

acterize the disadvantage of multi-market competition on entry-deterrence. If firms 

compete in strategic substitutes and the necessary deterrence condition is satisfied, 

the incumbent must install k > 2x to deter entry in the two-market game f§. 
We illustrate the basic intuition by means of an example. Why is not twice the 

deterrence level, x, enough to deter entry in two markets? The main reason is that 

if one potential competitor enters and the other stays out, the incumbent has an 

incentive to redistribute capacity to the monopoly market. 

In the last period the remaining capacity is k x~. If condition D is satisfied 

k-x~ 2: x would deter entry. Working backward to period 1 there are two subgames. 

If player 1 stays out the incumbent will split the capacity equally in both markets. 

If the potential competitor enters, the marginal incentive to use capacity in market 

1 and 2 must be equal: 

x~, 0) 

It follows from strategic substitutes that k - x~ > x~. Thus, if k = 2x then x~ < x 
and entry is not deterred in the first market. 

Proposition 3. If D and Sare satisfied in the first version of the two-market game, 

rt then the multi-market incumbent installs capacity I/ E ( 2x, x + x0
] to deter 

entry. 

Proof. Appendix A • 

4. Simultaneous competition from local entrants 

Consider a market situation similar to the first version of the multi-market game. 

Again a multinational firm, called player 0, has advertised and meet demand for its 

product inn markets, numbered 1 ton. In each market there is a potential entrant, 

player t, who might raise enough funding from creditors to establish a firm in market 

t selling the same product as the multinational enterprise. 
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In this version the incumbent owns a global patent that expires at the same time 

in all markets and potential competitors can enter the local markets simultaneously. 

If a potential competitor challenges the established firm in a local market, the in­

cumbent and the entrant choose outputs simultaneously and the market will clear 

as duopoly. If the potential entrant stays out monopoly will prevail. 

The rules of the second version of the multi-market game are defined as follows. 

The game,r;, has n + l players, player O and player 1, ... , n (n 2: 1). The game is 

played over a sequence of two periods m = 0, 1. In period O the incumbent must 

choose a pre-entry capacity k. At the beginning of period 1, player t 1, ... ,n 

must decide to enter or stay out of market t simultaneously. Player t's decision is 

immediately made known to all other players. If player t decides to enter market t 

then the incumbent and the entrant choose x~ and xt simultaneously. At the end of 

period 1, all markets clear and payoffs are distributed to the incumbent and players 

1, ... , n. Player O's payoff is given by eq. (3.1) and player t's payoff by eq. (3.2). 

The analysis in the second version of the multi-market game is similar to the 

analysis in the first version. If players compete in strategic substitutes and the 

necessary deterrence condition is satisfied the entry can be deterred also in the 

second version of the game. To deter entry the established firm must install k > 2x 
in the two-market game, r~. In the second version of the two-market game there 

are four subgames in the last stage. In two of the four subgames one potential 

competitor enters, while the other stays out. To see why twice the single market 

deterrence capacity does not suffice, consider the profit maximizing conditions when 

k = 2x: 
81r ( o 1 ( 0) ) 01f ( - o ) 
f;'i, 0 x 1 ,{3 x1 =>1 0 2x-x1,0 
ux1 ux2 

Strategic substitutes imply that the output in the duopoly market is strictly lower 

than the deterrence level, i.e. x~ < x. Thus, entry would not be deterred. 

Proposition 4. If D and S are satisfied in the second version of the two-market 

game, r~, then the incumbent installs capacity k2 
E ( 2x, x + x0

] to deter entry. 

Proof. Appendix B • 

The first and second version of the multi-market game differ in one important 

respect. If the incumbent installed enough capacity to deter simultaneous entry by 

all potential competitors but not enough to deter unilateral entry by one potential 

competitor, e.g. k = 2 · x, then the potential entrants face a coordination problem 

in the second version of the game. This coordination problem does not occur in the 

first version of the game. In the first version player 1 enters and player 2 stays out. 
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In the second version both potential competitors wish to enter if they are the only 

entrant, but not otherwise. 5 

The coordination problem in the second version of the game remains unsolved 

since both Nash equilibria are strict. However, we will not deal with this problem 

further since we are mainly interested in the conditions on entry deterrence but in 

a real market situation the coordination problem may affect the decisions by the 

entrants and possibly facilitate entry-deterrence. 

5. Simultaneous competition from a multi-market entrant 

Again a multinational firm has advertised and meet demand for its product in n 

markets. Now, in the third version of the multi-market game a single potential 

competitor, another multinational company, considers entry in all local markets 

selling the same product as the established firm. The incumbent's global patent 

expires at the same time in all markets and the potential competitor may enter all 

local markets at the same time. Entry in each market is associated with a fixed 

sunk cost, which can be thought of as an advertising cost making consumers in the 

domestic market aware of the entrant. The entrant remains unknown in all markets 

where it is not advertising. If the second multinational firm enters the local market, 

the incumbent and the entrant choose outputs simultaneously and the market will 

clear as a duopoly. 

Now, the rules of the third version of the game are defined as follows. The 

game,r~, has 2 players, called player 0 and player I. The game is played over a 

sequence of two periods m 0, I. In period 0 the established firm must choose a 

pre-entry capacity k. At the beginning of period 1, the potential competitor must 

decide to enter or stay out in n separate markets called t = 1, ... , n. Player l's 

decision is immediately made known to player 0. If player 1 decides to enter market 

t, players will choose x~ and xt simultaneously. If player 1 decides to stay out, 

monopoly prevails in that market. At the end of period 1, all markets clear and 

payoffs are distributed to player 0 and player I. 

The incumbent's payoff is given by eq. (3.1). Entry in market t, is associated 

with a firm-specific fixed cost A > 0 for player I. Let E be the set of all markets that 

player 1 enters and O where it stays out. Player l's partial revenue, in a market 

where it enters, is 1r (xt, x~). Marginal capital cost is r > 0 and additive. The 

objective of player 1 is to maximize her total payoff: 

(5.1) 

'' This is a version of the "chicken" game. 
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Next we will show that inequality D is a sufficient condition on entry deterrence 

in the third version of the multi-market game, too. If the incumbent invests in a 

sufficiently large capacity which makes the capacity constraint non-binding in every 

subgame, the optimal output in every market can be determined independently. The 

potential competitor chooses her optimal strategy in each market separately and the 

best reply functions in all market are identical. The unique Nash-equilibrium output 

in every market is { x~, xt}. Thus player 1 's partial revenue does not cover the fixed 

and variable costs in any market and the total payoff is negative. 

Proposition 5. Entry deterrence is possible in r~ if Dis satisned. 

Proof. (D =?-entry-deterrence). Let the pre-commitment capacity installed in pe­

riod 0, k, be very large. The capacity constraint is not binding in any subgame. 

The objective of player O is to maximize Lt=l, ... ,n 7f (x?,xt) with respect to x? 

for all t, ~ = Ehr~~(t) = 0 \:ft. If the capacity constraint is not binding the 

unique Nash equilibrium with entry is {x?,xt} where x? = /3° (xt), xt = f]t (x?). 
Without loss of generality assume that player 1 enters t E E = {1, .. , m }. Since 

LtEE (7r (xt,x?) - rx} -A) = m · (7r (/3t (x~) ,x~) r/3t (x~) -A) < 0 for m = 

1, .. , n player t would choose to stay out and monopoly prevails. • 

In fact the strategic interaction in the second and third versions of the multi­

market game is identical, except for the coordination problem present in the second 

version of the game. Two factors make the strategic decisions in the two games 

identical with respect to entry deterrence. First, to the entrant in the third version 

of the multi-market game the strategic variables x 1 , ... , xn are independent and she 

will choose her optimal strategy in each market separately. Thus, the best reply 

function of player 1 in market t is identical to player t's best reply function in the 

second version of the multi-market game. 

Secondly, since the fixed cost A is the same in all markets, the revenue in each 

market that the potential competitor enters must cover the variable and fixed costs. 

Player 1 would only enter a market in which the expected payoff is positive. This is 

exactly the condition on entry to a local competitor in r;;. The analysis from the 

second version of the game therefore applies to the third version, too. Player O must 

install k > 2x to deter entry in the two-market game rr 
Proposition 6. If D and Sare satisned in the third version of the two-market game, 

r~, then the incumbent installs capacity k3 
E ( 2x,x + x0

] to deter entry. 

Proof. Appendix B • 
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In the previous sections we have characterized the difficulties of entry deterrence 

in the first, second and third versions of the multi-market game. To deter entry 

of many potential competitors in a sequential or simultaneous market structure in 

the post-investment phase, or a single multi-market competitor, takes more capacity 

than n times the deterrence level. In fact we can say something even more precise. 

The established firm install exactly the same capacity to deter entry in I'§, I'§ and rr 
Thus, the unique optimal deterring capacity is independent of the market situation 

as described in the first, second and third versions of the multi-market game. 

Proposition 7. If conditions D and S are satisfied the global capacity needed to 

deter entry in the two-market game is independent of the timing of the game, i.e. 

sequential or simultaneous entry of the potential competitors, and independent of 

the number of markets considered by the potential entrant(s). More precisely, T/ = 
7:::2 - k3 

in r1 r 2 and r 3 
- 2, 2 2· 

Proof. k1
, k2

, k3 
are implicitly defined by ~ ( x, /3 1 (x)) - ~ (ki - x, 0) 0, for 

i 1,2,3. • 

6. Market commitments 

In this section we extend the analysis and let the incumbent first decide on an 

organization of its production, either in a single plant at the multi-market level or 

in many plants at the local level. We will show that if the multinational enterprise 

chooses a multi-plant strategy with local production then plant-capacities will be 

assigned to local markets. 

We study a three stage game similar to the two-stage game in the previous 

section. Now, in the first stage the multi-market firm can decide to set-up local 

plants in both markets or produce in a single multi-market plant. Setting up two 

plants incurs an extra fixed cost compared to the single plant strategy. Stage two 

and three correspond to stage one and two in the two-stage game in the previous 

section. 

We can now describe the rules of the fourth version of the game. The game, r;,,, 
has two players, player O and player 1. The game is played over a sequence of two 

periods. In the first stage the incumbent must first choose to build d E { 1, n} plants 

(where D = (1, ... , d) is the set of plants), and secondly k which is a multi-market 

capacity and kt, for all t E D, which are plant-specific capacities for every plant 

installed. All decisions of the established firm is immediately made known to the 

potential competitor. At the beginning of the third stage, player 1 must decide to 

enter or stay out in n separate markets called t = 1, ... , n. Player l's decision is 
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made known to the incumbent. If player 1 decides to enter market t player 0 and 

player 1 will choose x?, and xt simultaneously. Finally, all markets clear and payoffs 

are distributed to player O and player 1. 

The the cost of local capacity is r1 > 0, the cost of multi-market capacity is 

r2 > 0 and I::t=l, .. ,n x?, ::; k. For simplicity we assume that r r1 + r2. Each plant 

is associated with a fixed cost G > 0. 

The incumbent's payoff is given by: 

if d=l 
v kxx = '' o ( o t) { I::t=l .. n 7r (x?,,xt) rk- G 

' t' I::t=l, .. ,n (1r (x?,,xt) - r1 (max { x?,, kt})) + r2k - nG if d=n 

To the potential competitor entry in market t, is associated with a firm-specific 

fixed cost A > 0. Let E be the set of all markets that player 1 enters and O the 

set of markets where he stays out. Player I's revenue is 7r (xt,x?,). Marginal capital 

cost is r > 0 and additive. The objective of player 1 is to maximize her payoff given 

by eq. (5.1). 

We call kt a market commitment if this part of the total capacity k in a multi­

market firm is assigned to market t and cannot profitably be used for production of 

goods sold in other local markets. A sufficient condition on market commitments is 

that the marginal cost to increase local capacity is larger than the marginal incentive 

to increase the output in a monopoly market at the deterring level x0 . We refer to 

this condition as (C). 

(C) 07r (-0 ) r1 > ~ O X , 0 
UXt 

Condition C simply guarantees that it is not profitable for player 0 to redistribute 

capacity to a monopoly market if entry occurs in other markets. To deter entry in 

market t if condition C is satisfied and condition D is satisfied with equality it is 

sufficient for player 0 to install a local capacity equal to the deterrence level kt = x0 

and a multi-market capacity k = nx0 . 

Proposition 8. If conditions C, D and S are satisEed in the fourth version of the 

two-market game, r:L capacity k = I::t kt = 2x is sufficient to deter entry. 

Proof. Entry deterrence is possible in r~ due to (D).Player 0 will choose a two-plant 

strategy and installs capacity k = 2x and kt = x fort I, 2. If player 1 enters both 

markets, symmetric incentives imply that x~ = xg = x and D that the profit of player 

1 is not positive. If player 1 enters market 1 and stays out of market 2 then to deter 

entry the following inequality must hold g~ ( x0
, ,61 (x0

)) + (r1 - ~ (2x x0
, 0)) 2: 

0. The first part of the LHS is equal to zero and from (C) the second part is positive 

and thus the inequality holds. Equal parts of the total capacity should be assigned 
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to both markets, i.e. k/2. x deters entry in market t, hence 2x0 is enough to deter 

entry in both markets. • 

The incumbent installs strictly less capacity with market commitments compared 

to the capacity needed to deter entry if the capacity is not assigned to specific 

markets, i.e. 2x0 < k3 = x0 + x0
. The difference in the established firm's profit, 

if C is satisfied in r~, between the two-plant and one-plant strategy is called the 

commitment premium. We define the commitment premium as 

Working backward the multi-market firm will choose a multi-plant strategy if the 

commitment premium is positive. 

Proposition 9. If C is satisfied in I'i then the multi-market firm will choose a two­

plant strategy to deter entry i.f.f. (2 · JT (x0 ,o) - 2x0r)-(2 · JT (I3 /2,0) - rk3
) > G. 

Proof. The profit of a one-plant strategy is less than a two-plant strategy if 2 · 

JT (k3/2,o) - rk/ - G < 2 · 7T (x0 ,o) 2rx0 - 2G. Rewrite (2 · JT (x0 ,o) - r2x0) -

(2 · 7T (k3 /2, O) - rk
3

) >G.• 

It follows from this proposition that a two-plant strategy is more likely the lower 

the plant-specific setup cost. The organization of production within the multi­

national firm is primarily determined by the relationship between economies of scale 

at plant level and the commitment premium and not the fixed cost A. If mar­

ket commitments are not possible, multi-plant production never takes place in this 

model. 

7. Conclusion 

Multi-market competition without market commitment makes the incumbent's pos­

sibilities to exploit first mover advantages more difficult. A firm's opportunity in 

one market influences its possibility to successfully commit to its optimal strategy 

in a second market. The incumbent has to install a higher level of global capacity 

to successfully deter entry in all markets. If exogenous or endogenous factors allow 

the incumbent to assign parts of its capacity to local markets, multi-plant produc­

tion can be profitable even under increasing returns to scale at the plant level. The 

results suggest that local investments can be regarded as market commitments in 

order to restrict or prevent competition in distinct markets. 
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Appendix A 

Proof. Step 1. Start in period 2. Let the remaining capacity be k2 = k - x?. There 

are two subgames; either player 2 has entered or stayed out of market 2. In the 

subgame with entry the unique Nash equilibrium is {x8 (k2) ,i2} where x8 (k2) 

min { k2, x0} and i 2 = 132 ( x8 ( k2)). If player 2 decides to stay out in period 2 we have 

the following limit Nash equilibrium { x0
, 0} where g;:g (x0

, 0) = 0. The unique Nash 

equilibrium in the subgame with no entry is { x8 ( k) , 0} where x8 ( k2) = min { k2, x0
}. 

From S it follows that x0 > x0 . 

Step 2. Player 2 would enter if k2 < x and stay out if k2 2: x. To deter entry player 

0 would need k2 2: x. Now, assume that enough unused capacity remains to deter 

entry. Now, rewrite the equilibrium output by player 0 in period 2 as a function of 

k d O · 0 (k 0) · {k O =0} an x 1 , 1.e. x 2 ,x1 mm -x1,x . 

Step 3. Working backwards to period 1 we have two subgames; either player 1 

enters or stays out of market l. First, capacity k would ensure a successful commit­

ment by player 0 in market 1 to an output x? if and only if: g;:~ ( x?, 131 (x?)) + 
~ax~ (k,x?) 

8
8 ~ (x8 (k,x?), 0) 2: 0. Now, ~a· x~ (k,x?) = -1 if k :::; x0 + x? and 

xl Xz x1 

~:~ ( k, x?) 0 if k > x0 + x?. To deter entry player 0 has to commit to x in 
l 

the subgame with entry. The following inequality must be satisfied: 

Ehr (k x,O) 2: 0 
ox8 

(7.1) 

If x 1 > 0 it follows from (S) that k - x > x k > 2x. If (D) holds with equality, 

1.e. x x0 , then the first part of the LHS of inequality [7 .1] is equal to zero and the 

inequality is satisfied if and only if k - .T =;,- k = x + . Let k1 
be implicitly 

defined by g~ ( x, ,61 (x)) g;;g (I x, 0) = 0. Secondly, in the subgame without 

entry µ8 1r (x?, 0) + ~8 x
0 

(k, x?) 8
8~ (k x?, 0) = 0 =;,- x? = k/2. 

x1 xl Xz 

-1 -1 
Step 4. Player 1 would stay out if k 2: k and enter if k < k . 

Step 5. Working backward to period 0, the incumbent would install k1 
to deter 

entry in both markets. • 
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Appendix B 

This proof is valid for the main result in the second and third versions of the multi­

market game. 

Proof. Step 1. Start in stage two. The objective of player O in the second stage is 

to solve the following program: 

max 7f (.T?, x 1
) + 7f (x8, x 2

) 

s.t. x? +xg :s; k 

If x? +xg < k then 01r (x?, x1
) / ox? = 0 and 01r (x8, x2

) / oxg = 0. If x? +xg = k 

then 01r (x?, x1
) / ox? 01r (k - x?, x2

) / oxg. 
Step 2. In the last stage there are four subgames. First, player 1 and player 2 

enter market 1 and 2, respectively. If k > 2x0 then 01r (x?, x 1) / ox? 0 and 

07r ( x8' .T2
) I ox8 0 =} x? xg x0

. If k :s; 2x0 then 07f ( x?' x1
) / ox? 

01f (k - x?,x2) /oxg =} x? xg ½-

Step 3. Second, player 1 enters market 1 and player 2 stays out of market 2. If k > 
x0 + x0 

then 07f (x?' x1
) / ox? 0 and 07f (x8, 0) I oxg = 0 =} x? = x0 and xg = 

If k :s; x0 + then from (S) 1r (x?, x1
) / ox? = 01r (k - x?, 0) / oxg =} x? < ~ and 

xg > ~. The symmetric solution applies if player 2 enters market 2 and player 1 

stays out of market 1. 

Step 4. Finally, both players stay 

01r (xg, 0) /oxg = 0 and x? = xg 
01r ( k - x?, 0) / oxg and x? = xg = ~. 

out. If k > 2x0 
then 07f (x?, 0) / ox? = 0, 

x0
. If k :s; 2x0 then 01r (x?,0) /ox? 

Step 5. Player O chooses an output min { ~, x0 } in a market with entry except in 

a subgame with entry in one market but not the other and a binding capacity re­

striction. In that case the optimal output will be determined by 01r (x?, x 1) / ox? = 
01r (k - x?, 0) / oxg. Player O wants to commit to x to deter entry: 01r (x, x1 ) / ox? = 
01f (k - x, 0) /oxg and k > 2x. If (D) holds with equality, 1.e. x = x0 , then 

01f (x,x 1) /ox? = 01r (k - x, 0) /oxg and k = xo + x0
. 

Step 6. Working backward to the first stage. Denote the monopoly level xM; im­

plicitly given by 01r ( xM, 0) / ox? - r = 0. Now, the incumbent capacity per market 

is larger than the monopoly level (the proposition refer to entry deterrence, not 

blocked entry). Hence ~v: = ½01r (k/2, 0) /ox?+ ½01r (k/2, 0) /ox? - r < 0 =} 7? E 

( 2x, x0 + x0
] where 7? is determined by 07f (x, x1

) / ox? 01f (li? - x, 0) I ox8. • 
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II. Noisy Equilibrium Selection in 

Coordination Games1 

1. Introduction 

We study a Keynesian model, originally due to Bryant [1], with a continuum strict 

Nash equilibria. It has been suggested that this model capture some important 

features of the provision of public goods, tacit coordination in teams or the problem 

of coordination among input suppliers to a shared production process. Bryant's 

model, and variants, have been studied frequently in the literature (see for instance 

Cooper and John [2], Van Huyck, Battalio and Beil [10], Crawford [3], [4], Monderer 

and Shapley [9]). 

In Bryant's game the players face two coordination problems. First, players 

may fail to correctly forecast which equilibrium will occur and thus regret their 

individual choice. Such coordination failure results in disequilibrium. Secondly, a 

common coordination problem arises when equilibria can be ranked with respect 

to Pareto-optimality. Players may give a mutual best response but nevertheless 

implement a Pareto-dominated equilibrium. In that case each player is satisfied with 

his individual choice but he regrets the level implemented by their joint actions. 

The multiplicity of equilibria causes a great deal of uncertainty. Unfortunately, 

there is no consensus among game theorists how to characterize the uncertainty in 

Bryant's game. We propose a model in which play.ers cannot choose efforts directly. 

Instead players choose strategies which are translated into efforts by the addition of 

noise terms. Introducing noise in the game has important implications for the equi­

librium selection problem. We show that in the noisy variant of the original game the 

continuum of equilibria shrinks to a unique point. Moreover, the unique equilibrium 

is inefficient and inefficiency increases as the number of players becomes large. We 

also show that the outcome in the noisy game accurately predicts the experimental 

results obtained in Van Huyck, Battalio and Beil [10] (henceforth VHBB). 

Our results differ from the results obtained in the traditional refinement litera­

ture. All strict equilibria survive even the strongest refinements. One reason for this 

difference is that traditional equilibrium analysis does not address the uncertainty 

1 co-authored with Hans Carlsson 



in Bryant's coordination game. 

Recently, other approaches to the problem of equilibrium selection have been 

suggested. The effects of strategic uncertainty is embodied in a modified version of 

the "general theory of equilibrium selection" proposed by Harsanyi and Selten [5]. 

According to Harsanyi and Selten's theory, payoff-dominance should have absolute 

precedence over risk-dominance in games of mutual interest. However, as we disre­

gard payoff-dominance and solve for the risk-dominant equilibrium the theory would 

capture some effects of strategic uncertainty. Indeed, Bryant's game has a unique 

risk dominant equilibrium. 

The risk dominant equilibrium is different from the noise-proof equilibrium. Un­

fortunately, VHBB's experiment cannot discriminate between the different theories. 

However, a slightly modified experimental design may give further insights to the 

benefits of the different concepts. 

Yet another approach to the equilibrium selection problem is suggested in Craw­

ford [4]. He combines the structure of evolutionary games with a model in which 

players learn from experience. A learning model is estimated ( treating the belief 

variables as exogenous) and hence it is possible to explain the patterns observed 

in the Van Huyck, Battalio and Beil's experiments. Although Crawford is able to 

characterize the dynamics of beliefs formation, we show that a prediction of the 

outcome can be obtained without invoking exogenous variables. 

The remainder of this paper is organized as follows. Section 2 describes a coordi­

nation game with continuous strategy spaces and introduces a noisy variant that we 

will study. This section contains the paper's main result (Proposition 1). In section 

3 the predicted outcome is evaluated in the context of Bryant's [1] discussion on co­

ordination failure, while section 4 is devoted to the experimental findings in VHBB 

[10]. The approaches to equilibrium selection that have been proposed in Harsanyi 

and Selten [5], Crawford [4] and Monderer and Shapley [9] are outlined in section 

5. Finally, section 6 concludes the paper with a general discussion on equilibrium 

selection in coordination games. 

2. A model with noisy coordination 

Consider the following tacit coordination gamer, which is a variant of Bryant's [1] 

Keynesian coordination game. 

n players simultaneously choose strategies e1 , ... , en, which may be interpreted 

as efforts, from an interval [O, M]. The lowest effort min { e1, ... , en} determines the 

output of a public good ( or equivalently, a private good which is divided equally 

among the players). For a vector of real numbers r = (r1 , ... , rrn) we let r. denote 

min {r1, ... , rn}-
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The payoff to player i under strategy profile e = ( e1, ... , en) may be written 

'Lli ( e) = g c~) - ei (2.1) 

where g : [O, A:f] JR. expresses the value of the public good when utility is measured 

in effort units. We assume that g is concave and that there is a unique point e1 , 

0 < e1 :=::; M, such that g' ( e1) = 1. It is clear that all pure strategy equilibria 

are symmetric. Conversely, for each t in [O, e1], there exists a Nash equilibrium 

with ei = t for all i. Hence there is a continuum of Nash equilibria. The equilibria 

are ranked by the common effort with respect to Pareto efficiency so the model 

has the double coordination problem. The first problem is individual. Each player 

must choose a strategy from a continuum of equilibrium strategies. If he fails to 

forecast the other players' actions disequilibrium results. Each player will regret 

his individual choice. The second coordination problem is common. Even if all 

players have identical beliefs that a strategy profile will be played, and therefore 

able to coordinate in a Nash equilibrium, the players' joint efforts may implement 

an outcome which is inefficient. 

The first problem will influence each agent's decision. Even the most rational 

agent is uncertain which equilibrium strategy other players will use. One possible 

way to treat this uncertainty is to assume that individuals can make errors in their 

actions. This may reflect the fact that a subject may not have settled down on any 

particular approach about how to play the game. Alternatively, individuals can be 

uncertain about the common production process and thus unable to translate their 

strategies into efforts without additional noise. 

More precisely, we consider a noisy variant f" of the above model. In this variant, 

players cannot choose efforts directly. Instead each player i chooses a strategy si 

which is translated into effort by the addition of a noise term. Thus 

(2.2) 

where c is a scale parameter and Xi is a random variable. vVe assume that the 

random variables have independent and continuous distributions with zero mean 

and take values on [-1, l]. They need not be identical. 

We let Af denote the set of pure strategies for player i which survive iterated 

elimination of strictly dominated strategies in fe. Moreover A" = A1 x ... x A~ and 

inf Af 
supAf 
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We assume there is at most one point en, 0 ::; e1 ::; 1\11, such that g' (en) n. 

If no such point exists, we set en = 0. We can now state our main result that the 

rationalizable sets shrink to the point en for each player as the noise vanishes: 

Proposition 1. For all ·i limc:-.0 ai = limc:-.o bi = en. 

The Proposition is proved by means of the following four Lemmas. Define Pt ( s) 

as the probability that player i's realized effort will be strictly lower than any other 

player's effort when the strategy profile s is used in fE. Let f.c: ( s) denote the expected 

lowest effort under s. The result of the first Lemma are more or less immediate from 

our assumptions about the noise. Note, in particular, that the probability that the 

efforts of two different players will be exactly the same is zero under any strategy 

profile. 

Lemma 1. For all i and s (a) P{ (s) is continuous in Si, (b) "I:, Pt (s) = 1 and (c) 

= Pt (s). 

Lemma 2 follows immediately from the fact that 8 P{ ( s) / 8 s j 2: 0 for all s and .7 i- i. 

Lemma 3 provides useful upper and lower bounds on Pt (ac:) and Pt (bc:), respec­

tively. 

Lemma 3. For all'i (a) Pt (ac:) g' (ai + s) :S 1 orai = NI and (b) Pt (be:) g' (bi s) 2: 
1 or bi 0. 

Proof. (a) Obviously, ai E Ai so there does not exist si E Si which is better 

against all s_i E A:_i for player i. In particular, unless ai = l\11, the net gain from 

an increase in ai should be nonpositive for some s_i E A:_i, i.e. 

8Eu (aL s_i) < 
0 

OSi -
(2.3) 

where E denotes expectation. Noting that g' (f.) cannot be smaller than g' (ai + s) 

when i plays ai it is easily seen that 

0f.c:(aLs_i) '( c: ) 8Eu(ai,s_i) 
-----g a + s - 1 < --~--

8~ I - QSi 

Hence, combining the above inequalities with Lemma 1 (c), we get that 

(2.4) 

(2.5) 

for some s_i E A:_i and the result follows from Lemma 2. (b) 1s shown in an 

analogous way. • 
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Lemma 4. For all i, limc:--o a; = a and limc:_,o b; = (3 where a and (3 are indepen­

dent of i. 

Proof. It suffices to show that a; - aJ ~ 2c and b; - u1 ~ 2c for any i and j. 

Assume a,; - aj > 2c. Then P{ ( s) = 0 for any strategy profile where s,; = a; - c and 

s_i a=_i. Hence, Si = a; c is a strictly better response than any Si E A; to some 

Li E A=_i, a contradiction. The second inequality is shown in a similar way. • 

\Ve can now state the proof of our main result. 

Proof. ( of the Proposition) For any c, let m denote the player i which is associated 

with the largest P{ ( ac:). As, by Lemma 1 (b), P:/n ( ac:) 2: t, we get g' ( a~ + c) ~ n 

or a~ = M from Lemma 3. Thus using Lemma 2, lime:--o g' ( a;) = g' (a) ~ n or 

a = NI. In a similar way one can show that g' ((3) 2: n or /3 = 0. Combining these 

two results with the obvious fact that a ~ j3 we obtain the Proposition. • 

3. Coordination failure 

The previous section was devoted to that in a noisy model, based on Bryant's game, 

the players' actions converge to a profile of efforts which corresponds to a vector 

of mutual best responses in the original game. However, the common coordination 

problem is not solved. On the contrary, the common problem is emphasized. Players 

fail to coordinate in the original Pareto-optimal equilibrium. The unique equilibrium 

in {re: t 10 is determined by g' (en) = n with ei = en for all i. In this equilibrium the 

effort is decreasing in the number of players and whenever g is strictly concave the 

inefficiency increases as the number of players becomes large. Thus, Bryant's [1] ar­

gument that a rational expectations model may exhibit underemployment equilibria 

is strengthened. If the efficient outcome can be obtained as a Nash equilibrium in 

r, one may ask why this is not an equilibrium in the noisy variant of the game? 

Cooper and John [2] show that if a game exhibit (strictly) positive spillovers all 

equilibria are inefficient. Positive spillovers arise if an increase in one player's effort 

increases the payoffs of the other players. The original game, r, does not exhibit 

(strictly) positive spillovers and the most efficient outcome ei e1 for all i can be 

obtained as an equilibrium. However, players may fail to coordinate in the most 

efficient equilibrium due to imperfect information. 

In a noisy game the situation is quite different. In re: uncertainty is a source 

of positive spillovers. At the limit {re:} dO the unique equilibrium is ei = en for all 

i. In a symmetric strategy profile we define Pf ( s) as the probability that player 

j's realized effort will be strictly lower than any other player's effort in re:. The 

partial derivative of player i's payoff function with respect to an increase in player 
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j's strategy is i~; ( s) = Pf ( s) · g' (~) > 0 for some player j. Thus I'" exhibit positive 

spillovers and the implemented equilibrium is inefficient. 

Our result has an interesting connection to the literature on moral hazard in 

teams. Holmstrom [6] studies a model in which agents' action determines a joint 

outcome which must be allocated among the agents. It is shown that if the joint out­

come is differentiable in players actions the efficient outcome will not be a Nash equi­

librium. Holmstrom argues that as long as there are externalities present (budget­

balancing) one cannot achieve an efficient outcome. Holmstrom shows that the prin­

cipal can introduce penalties that are sufficient to police all agents' behaviour. In 

technical terms the incentive scheme will make the joint outcome non-differentiable 

in players' actions. 

In Bryant's game there is no need for a residual claimant as long as strategies are 

translated into efforts without noise. Deviations from the Pareto-efficient strategy 

profile will be penalized. The joint outcome is non-differentiable in players actions 

and therefore the Pareto efficient outcome is sustainable as a Nash equilibrium. 

However, if there is uncertainty who was at fault, some player has incentive to 

free-ride on the other players' efforts. In technical terms the uncertainty in the 

noisy model makes the joint outcome differentiable in players actions and, therefore, 

Holmstrom's result applies. 

4. Experimental evidence 

In this section we summarize and discuss VHBB's [10] experiment. In the exper­

iments, VHBB study coordination games with discrete strategy sets {l, ... , 7} and 

linear payoff functions 

( 4.1) 

where a> b ~ 0. Groups of 2 to 16 subjects played series of one-stage simultaneous 

move games. No communication was allowed before or during play. VHBB's ex­

periments minimum experiments comprise essentially three different games, called 

A, B and C. Games A and B used groups of 14-16 subjects. Game C used small 

groups of 2 subjects, randomly selected from the entire set of subjects. In game A 

and C payoff parameters were set at a= 0.20 and b = 0.10. In game B parameter 

b = 0, thus making ei = 7 a weakly dominant strategy. After each period game, 

the minimum action was publicly announced. The treatments in VHBB [10] are 

summarized in table l. 

It is easy to verify that any symmetric profile is a Nash equilibrium and, if 

b > 0, a strict one. Using a simple renormalization and applying Proposition 1 to 
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Treatment Payoff function No. of subjects 

A 0.20 · f - 0.10 · ei 14-16 

B 0.20 · f 14-16 

C 0.20-f-0.10-ei 2 

Table 1: VHBB (1990) experimental treatments 

continuous versions with strategy sets [l, 7], of these games, one sees that (1, ... , 1) is 

the unique noise-proof equilibrium if a < bn while (7, ... , 7) is the unique noise-proof 

equilibrium if a> bn. If a= bn, any symmetric pure strategy profile is a noise-proof 

equilibrium. 

Hence, (1, ... , 1) is the unique noise-proof equilibrium in (the continuous version 

of) game A, (7, ... , 7) is the unique noise-proof equilibrium in game B, while any 

symmetric pure strategy profile is a noise-proof equilibrium in Game C.2 

In game A subjects' initial efforts were widely dispersed and then approached 

the lowest effort ei l. By period ten 72 percent adopt the minimum effort, and the 

minimum in all seven experiments was 1. VHBB also conducted a slightly modified 

version of game A. In treatment A' game A was played, and after each period the 

distribution of actions was revealed. In treatment A' the convergence of efforts to 

the lowest effort ei = 1 was even more rapid than in treatment A. By period five 84 

percent adopt the minimum effort. In game B the initial efforts were not as widely 

dispersed as in game A. In game B the payoff dominant effort ei 7 was chosen 

by 84 percent of the subjects and 96 percent reached the maximum effort by the 

5th period. Finally, in game C subjects' efforts varied substantially in all periods. 

23 percent of the initial efforts were ei = 1 and 37 percent were ei = 7. Subjects' 

choices drifted but with no discernible trend.3 

In the large group experiments subjects' efforts mainly converged to a level pre­

dicted by the unique noise proof equilibrium. In game A uncertainty vanishes 

slowly, and mutual best-response outcomes are rare. The results from the small 

2 Harsanyi and Selten's (1988) theory of equilibrium selection gives precedence to payoff domi­

nance, and therefore predicts e; = 7 in all treatments. This predicted play is far from the observed 

behaviour in VHBB 's experiments. The theory without payoff dominance would predict a common 

effort e; = 1 in game A, e; = 7 in game B (elimination of weakly dominated strategies), and e; = 4 

in game C (applying a uniform prior over undominated strategies). 
:;Further experimental findings can be found in Isaac et al (1989). In one expertiment, Isaac et 

al study a minimum game as in VHBB with n = 4, payoff parameters set at a = 1.2 and b = 1.0, 

and discrete strategy sets {0, 62}. The game has two strict Nash equilibria. The unique noise proof 

equilibrium (in a continuous version) is (0, ... , 0). Initial efforts were widely dispersed and subjects' 

efforts converged rapidly to the level predicted by the noise proof equilibrium. By period ten 79 

percent of the efforts were e; = 0. 
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group experiment are very different from the large group treatments. In game C 

the experimental behaviour do not discriminate between equilibria. Thus, VHBB's 

experimental results from game C does not contradict the prediction by the noise 

proof equilibrium. In VHBB the wide dispersion of initial efforts and different paths 

of convergence suggest that uncertainty has important implications for equilibrium 

selection. Moreover, the level of efforts is decreasing in the number of players as 

predicted by the noise proof equilibrium. 

The large strategy space in the VHBB's experiments allows for rich dynamics. 

However, with linear payoff functions as in VHBB the marginal incentives and the 

effects of strategic uncertainty at the margin are identical in every equilibrium point 

in the interior of the continuum of equilibria. Accordingly, the suggested equilibrium 

selection concepts all predict boundary solutions and the dynamics tend to converge 

to a point at the boundary of the set of strategies. It would also be interesting to 

study the behaviour of subjects when the marginal incentive varies in the interior of 

the strategy set. With strictly concave payoff functions it would be possible to test 

the interior solution predicted by the noise proof equilibrium. Moreover, VHBB's 

experiments cannot discriminate between the noisy model proposed in section 2 and 

risk dominance. In the next section we propose an experimental design which allows 

to compare the predictions by the different theories. 

5. Alternative approaches to equilibrium selection 

In section 2 it is shown that adding noise to the minimum game shrinks the contin­

uum of equilibria to a single point. The result is surprising because all equilibria in 

the continuum are strict and immune against traditional refinements. In this section 

we discuss some principles of equilibrium selection that are based on comparisons of 

the relative riskiness of equilibria. 

Harsanyi and Selten's [5] "general theory of equilibrium" selection discriminate 

between strict equilibria. In HS's theory payoff-dominance should have absolute 

precedence and players should have no trouble coordinating their expectations at 

the commonly preferred equilibrium point. In the minimum game this is a unique 

point with highest effort by all players, i.e. ei = e1 for all i. It turns out that this 

prediction is far from the play observed in the experiments conducted by VHBB 

[10]. More promising is a variant of the theory that eliminates the precedence they 

give to payoff-dominance. 

The risk dominance concept selects a unique equilibrium in the minimum game.4 

'
1 Harsanyi and Selten's theory is based on finite choice sets, However, in the minimum game we 

can take the limit as the distance between two compared equilibrium points go to zero to obtain an 

approximation with continuous strategy spaces. 
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The definition is based on comparison between equilibrium points two by two. In 

a game with more than two equilibrium points the risk dominant equilibrium is a 

point that is not risk dominated by any other point. A hypothetical process starts 

from an initial situation where it is common knowledge that either of two points will 

be the solution. 

According to Harsanyi and Selten, players reason in the following way. Player 

i attach subjective probability Zi to the event that all opponents choose the first 

equilibrium and (1 - zi) to the second. Beliefs are independent and uniformly dis­

tributed. Player i choose a best reply to his beliefs. Adaption is achieved by using 

the tracing procedure. In this particular game the tracing procedure is simple. The 

iteration comes to an end at the first iteration since the situation is symmetric and 

all players have a unique best reply to his prior. We assume there is at most one 

point v (n) E [0, M] with g' (ev(n)) = v (n), for n 2:: 2. In appendix A we show how 

to derive the risk dominant equilibrium. Thus, we obtain a characterization of the 

risk dominant equilibrium in the minimum game: 

(g' (e) - 1r-l g' (e)n-2 0 (5.1) 

where ev(n) solves the equation. The risk dominant equilibrium is ei ev(n) for all i. 

Risk dominance and the approach proposed in section 2 yield the same result if the 

number of players is equal to two. However, with more than two players the selected 

equilibrium is different with risk dominance and our approach. More precisely, the 

efforts in the risk-dominant equilibrium is higher than the efforts in the noise-proof 

equilibrium, i.e. ev(n) > en for all n > 2. 

The different outcomes result because the approaches differ in their assumptions 

on what players believe about the amount of correlation in beliefs and strategies 

of their opponents. Risk dominance rely on more or less ad hoe thought processes 

to model the players' reasoning about the game, while the approach presented in 

section 2 is based on a fully specified noncooperative game. The relative advantages 

of the different theories cannot be settled a priori. 

However, the risk dominant equilibrium and the limit equilibrium selected in 

the noisy game are both well defined and thus further experiments can test which 

approach gives better predictions in Bryant's coordination game. Using a simple 

renormalization (b = 1) in a linear version of the game with efforts in [O,M] the 

unique equilibrium is determined by the payoff parameter a and the number of 

players n. The strategy profile (IVI, ... M) is the unique noise proof equilibrium if 

a > n, and (0, .. , 0) if the opposite holds. Correspondingly, (M, ... M) is the risk 

dominant equilibrium if ln ( a-1) / ln (1 - a-1) + 1 > n, and (0, .. , 0) if the opposite 

holds. 
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In figure 1 we illustrate the different concepts. (M, ... 1\1) is the unique noise 

proof equilibrium below the solid line and (0, ... , 0) above. (M, ... 1\ll) is the risk 

dominant equilibrium below the dotted line and (0, ... , 0) above. At any point D 

between the solid and the dotted lines risk dominance and noise proofness select 

different equilibria. Points A and C illustrate games A and C in VHBB [10]. Thus, 

a modified experiment can possibly test the different theories. 

Recently, Monderer and Shapley [9], pointed out that the game in VHBB [10] 

is a potential game. 5 It can easily be verified that the same is true for the game 

presented in section 2. To see this, define a potential function P: 

n 

p (e) = g (fJ - ~ Cj 

j=l 

(5.2) 

It has been suggested that the potential maximizing equilibrium can be used 

to predict the outcome in potential games. This argument is partly based on the 

experimental findings in VHBB. Interestingly, the limit solution in our noisy model 

always coincide with the potential maximizing equilibrium. P is maximized at the 

strategy profile e, such that g' ( e) = n, which is exactly the condition for an interior 

limit equilibrium in the sequence {re:} dO of noisy games with vanishing noise. This 

may explain the success of the potential maximizing equilibrium to predict behaviour 

in Bryant's model. It is open to future research to investigate the relation between 

the potential maximizing equilibrium and noiseproof equilibrium more thoroughly. 

Yet other approaches to the equilibrium selection problem departure from ra­

tional criteria to evolutionary or adaptive models. Like risk-dominance evolution­

ary stability responds to differences in sizes of basins of attraction. Interestingly, 

VHBB's [10] experimental environment satisfies the structural assumptions of evo­

lutionary game theory. Crawford [4] combines the structure of evolutionary games 

with a model in which players learn from experience. He shows how the strategic 

uncertainty in the minimum game interacts with the learning process to determine 

the probability distribution of the dynamics in VHBB's experiment. By treating the 

belief variables as exogenous it is possible to estimate a learning model and Crawford 

is able to give a unified explanation to the patterns observed in VHBB. Thus, he 

can characterize the process of learning in coordination games. Our model however 

shows that the limiting outcome can be explained without invoking any exogenous 

variables. 
5 r is a potential game if it admits a potential, i.e. a function P : Y -> lR such that for every i E N 

and for every C-i we have Ui ( Ci' e_i) - Ui (e;' C-i) = p ( Ci, e_i) p (e;, C-i) for every ei' ei E [O, M]. 
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6. Conclusions 

The main lesson to be drawn from the present paper is that the problem of coordi­

nation in games with many equilibria need not be as difficult as it appears at first 

sight. Starting from a game with a continuum of strict equilibria we obtained a 

unique solution by a slight perturbation of the original model. This approach has 

several attractive features: In contrast to other equilibrium selection approaches it 

has a strictly noncooperative basis and we manage to derive our solution without 

invoking factors exogenous to the strategic game. Moreover the solution is derived 

by means of a relatively weak equilibrium concept, viz. repeated elimination of 

strictly dominated strategies. Thanks to this our result is likely to be applicable to 

rationalistic contexts as well as to equilibration mechanisms based on evolution or 

learning (with regard to learning, see in particular Milgrom and Roberts [8]). 

The solution we derived fits the experimental evidence. The existing experi­

ments, however, do not allow to discriminate between several competing explana­

tion. Hence more experiments are needed for an accurate assessment of the solution's 

predictive power. Another interesting task for future research is to see whether the 

above approach can be applied to a larger class of games. 
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Appendix A 

In this appendix we derive the unique risk dominant equilibrium in r. Compare 

two equilibrium point e = (e, ... , e) and e' (e + .6.e, ... , e + .6.e), where .6.e > 0. 

The prior of player i is Pi (e) = .6.e · (g (e + .6.e) g (e))-1 and Pi (e') = 1 - Pi (e). 

Equilibrium e riskdominates e1 if 

( 1 - .6.e · (g (e + .6.e) g (e))-1
) n-l (g (e + .6.e) - g (e)) - .6.e :S: 0 (6.1) 

Now, compare two equilibrium points e = (e, ... , e) and 

e" = (e - .6.e, ... , e - .6.e). The prior of player i is Pi (e) = 1 - Pi (e") and Pi (e") 

.6.e · (g (e) g (e - .6.e))-1
. Equilibrium e riskdominates e 11 if 

( 1 - .6.e · (g (e) - g (e - .6.e))-1r-l (g (e) g (e - .6.e)) - .6.e 2:: 0 (6.2) 

A unique risk dominant equilibrium must satisfy both conditions. We can find a 

solution at the limit. If both conditions are satisfied at the limit then they are also 

satisfied for every .6.e > 0. Hence, we can use the definition of the derivative ( .6.e l 0) 

to obtain a characterization of the risk dominant equilibrium in the minimum game: 

(.91 (e) ir-l - .91 (er-2 0 (6.3) 
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III. Simplicity and Communication in 

Coordination Games 

1. Introduction 

Communication is one avenue through which players might achieve coordination of 

their expectations in games of mutual interest. Pre-play communication should help 

players to avoid coordination failures. Furthermore, transmission of information 

should help players to optimize their collective behaviour. We expect agents to take 

better decisions if they know much about the situation than if they know little. 

Does this mean that pre-play communication guarantees successful coordination? 

Moreover, does pre-play communication favour Pareto-optimal Nash equilibria in 

the underlying game? 

Most coordination games that are studied in the game theoretic literature exhibit 

multiple strict Nash equilibria. While intuition might suggest that players should 

be able to coordinate on a Pareto-optimal equilibrium the traditional refinements 

in game theory fail to select an efficient outcome. Still worse, they even fail to 

select a unique outcome. All strict equilibria survive even the strongest refinements. 

This conflict between intuition and formal analysis has given birth to several efforts 

among game theorists. 

The first approach allows agents to send costless pre-play signals before they 

choose actions. This costless pre-play communication is called cheap talk. Unfortu­

nately, in terms of Nash equilibria, cheap talk does not help players to coordinate 

in the efficient outcome. More precisely, there exist equilibria in which players have 

decisions rules that are constant and therefore unaffected by the message received 

from the other players ( cf. Weibull [21], p. 61). Hence, both problems of coordina­

tion, i.e. the problem of equilibrium selection and the problem of social inefficiency, 

remain unsolved. 

The second approach suggests that if equilibrium arises as the result of costless 

negotiations between the players, then team members should be able to coordinate in 

a Pareto-optimal outcome. It is argued that it must not be profitable for any player 

to propose that a strategy combination be abandoned for another equilibrium in 

which everybody is better off. Only Pareto-optimal equilibria are renegotiation-



proof (Fudenberg and Tirole [9], p. 174f). 

This criterion is controversial when applied to one-shot games. At least two 

critical points can be made. First, messages need not be credible in coordination 

games. For instance, in some games each player is better off if he can convince the 

other player to choose a high effort, regardless of his own intended play. As Aumann 

[1] argues, it is not clear that the players should expect that their opponents to 

believe their announcements. 

A second objection is that we often observe inefficient behaviour in coordination 

problems ( e.g. Van Huyck et al [15]), while renegotiation proofness suggest that 

players should always settle down in a Pareto-optimal equilibrium. Renegotiation 

proofness predict complex behaviour in situations when complex behaviour is opti­

mal.1 Why then are most rules of behaviour in real life simple, when the external 

environment, and consequently the potentially most efficient behaviour, is complex? 

After all, most rules of behaviour are easy to describe. In this paper we will inves­

tigate the relationship between complexity, defined as the length of the description 

of the behaviour, and Pareto-optimality in coordination games. 2 

It could be argued that players do neither as poorly as some cheap talk models 

suggest in terms of equilibrium selection, nor as well as renegotiation proofness pre­

dicts in terms of efficiency. Therefore, we suggest that some underlying assumptions 

must be changed. In this paper we assume that information must be transmitted 

in a structured form through a given channel, and that the transmission is costly. 

We expect the structural conditions for communication to influence the equilibrium 

selection problem. In order to simplify the analysis we assume that the coordina­

tion game does neither involve conflicts of interest, such as the Battle of Sexes, nor 

problems of trustworthiness, as in the Stag Hunt Game. 

This paper focuses on a variant of the Dodo game (Binmore [2]). In the Dodo 

game all players have identical interests and there are no incentives to send insincere 

messages. In our model the game has many strict Nash equilibria, and players have 

asymmetric information. The informed player will know the relative Pareto ranking 

of all Nash equilibria before players choose actions, while the uninformed player 

expects all symmetric pure strategy combinations to be strict Nash equilibria with 

the same payoff ex ante. Following the literature on renegotiation proofness we 

assume that the uninformed player believes credible messages. 

We model the pre-play communication in two steps. Before one player is informed 

1 Harsanyi and Selten's [10] "general theory of equilibrium" selection discriminate between strict 
equilibria. In HS's theory payoff-dominance should have absolute precedence and players should 
have no trouble coordinating their expectations at the commonly preferred equilibrium point. Thus, 
HS's theory predicts the same outcome as renegotiation proofness in games of mutual interests. 

2 Complexity is defined in a quite different way in other contributions to the literature, see for 
instance Holm [11]. 
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about the ranking of equilibria both players negotiate without cost. Once the in­

formed player has learned the Pareto-ranking of equilibria every message is costly. 

In this game players can use communication both to coordinate their expectations 

in a specific equilibrium and to optimize their collective behaviour. 

We can illustrate our basic results in a simple version of the game: 

H 

L 

H L 

2, 2 0,0 

0, 0 1, 1 

G1 

H 

L 

H L 

1, 1 0, 0 

0,0 2,2 

G2 

In this Dual-Dodo game two players choose Hor L. Player 1 selects a row and player 

2 selects a column and Nature determines the state of the world ( G1 or G2). The 

payoffs are given as the intersection of a row and a column, where player l's payoff 

is specified first. Before either player is informed about Nature's choice they can 

meet and decide how to communicate after Nature has told player 1 about its choice. 

Assume that they decide to play (H, H) if no information is transmitted. In other 

words they choose the H strategy as a convention. Next, they can decide that if 

player 1 transmits a signal to player 2 they should both change their strategies to 

L, i.e. (L, L). 

If Nature selects G 1 they are both happy with the convention and no information 

is transmitted, but what if the other state of the world occurs? It immediately follows 

that players are ready to give up one unit of utility each to transmit a message which 

would trigger L-play. If the cost is higher they will remain in the (H, H) equilibrium. 

Thus, if the cost of communication is sufficiently high, players would choose 

the strategy described by the empty string. This equilibrium is the most simple 

in two ways. First of all, the empty string is the shortest description available in 

the language chosen by players. In that sense the equilibrium is the most easy to 

describe. Secondly, the equilibrium is simple because the behaviour is not conditional 

on the state of the world: players would choose the same action independent of 

Nature choice. 

It is worth noting that, if communication is very costly, players do not transmit 

any information in equilibrium. Accordingly, they do not incur any cost of com­

munication. In this sense players would behave as in the models of renegotiation 

proofness. Nevertheless, we get an equilibrium which is not Pareto-optimal in the 

underlying game. 
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2. Main features of the model 

This paper studies a simple coordination game with multiple strict Nash equilibria. 

The multiplicity of equilibria causes strategic uncertainty.::i Findings in experiments 

with similar games suggest that players' beliefs are initially widely dispersed and 

players get low expected payoffs in the initial periods of the treatments ( cf. Van 

Huyck, Battalio and Beil [15]). Thus, players have strong incentives for pre-play 

communication. We analyse how the structure of a common language influences 

the equilibrium selection problem in coordination games when players are allowed 

to transmit messages to coordinate their behaviour in a language, i.e. a labelling 

procedure and a code, which is optimal for a class of coordination games.4 

In order to model this problem we consider a set of payoff structures that vary 

with respect to the number of strict equilibrium points. We refer to this as the 

meta-game. While players still remain behind the veil of ignorance, i.e. none of 

the players know the Pareto-ranking of the Nash equilibria, they will construct an 

optimal language for the meta-game. The language consists of a labelling procedure 

and a code which is optimal with respect to the joint distribution over possible payoff 

structures and the channel for communication. Specifically, the alphabet contains 

few letters in relation to the large number of strategies (equilibria) that the players 

potentially wish to describe. It is assumed that the channel admits transmissions 

in binary code only. Consequently, only few strategies can be described with short 

code-strings, so the descriptions of equilibrium strategies vary in complexity.::; 

After the first stage Nature selects a specific payoff structure. One of the two 

players are informed about Nature's choice. We refer to the resulting choice problem 

as the coordination game. 

Next, the informed player can send a message to his less informed counterpart. 

The informed player can use a message to convey some information about the optimal 

strategy. He will choose to transmit a message which results in maximized payoff 

for both players given the cost of transmitting the message. More precisely, the 

informed player will make a suggestion about what players should do in the game. 

This suggestion is a list specifying a strategy for each player. If the message is 

credible we want to assume that the uninformed player believes it. It is assumed 

:iMuch recent discussion in game theory has focused on simple coordination experiments. Coor­
dination problems have been used by game theorists to test various hypotheses on learning, equi­
librium selection and strategic uncertainty (for numerous examples and references see van Huyck, 
Battalio and Beil [15], [16], [17]; van Huyck et al [18]; van Huyck, Battalio and Rankin [19] and van 
Huyck, Cook and Battalio [20]). 

1 Our approach to equilibrium selection is rationalistic. This is different from other approaches 
to equilibrium selection in coordination games, such as models of learning (Crawford [4], Fudenberg 
and Levin [8]), models of stochastic dynamics (Young [22], Kandori, Mailath and Rob [12]) or 
evolutionary models (Weibull [21]). 

"This is a parallel to the fact that most binary strings are complex (Chaitin [6]). 
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that the message is transmitted at a unit cost per bit. 

The coordination problem is modelled as a repeated binary choice problem. 

Both players make a binary choice in each of T periods, without observing pre­

vious choices. Any symmetric profile of actions is a strict Nash equilibrium. It is 

assumed that T is drawn from some probability distribution. 

The set of payoff structures has two features. First, the payoff structures can 

be ranked with respect to the number of strict Nash equilibria. As the number 

of periods increases the number of strict equilibria increases. In this sense the 

coordination problem is harder for large number of time periods and therefore the 

decision problem becomes more complex. The most simple coordination problem is 

when players have to choose between two strict equilibria only, i.e. the one-period 

game. Secondly, in every game of a given length all equilibria have exactly the same 

expected value before uncertainty is resolved, and exactly one equilibrium which is 

strictly better than all other ex post. Both players would prefer to coordinate in 

the Pareto-optimal equilibrium, but they cannot resort to payoff dominance as an 

equilibrium selection rule because one player remains uninformed about the ranking 

of equilibria. More exactly, he can never be sure which equilibrium is the Pareto­

optimal one until the game is over. 

3. The binary choice game 

Now, consider a simple coordination problem in which two players are required to 

choose one or the other of two actions, called a 1 and a2. Before players choose actions 

Nature has decided which of the two equilibrium profiles is dominant, i.e. which 

strategy profile is associated with a "superior" and "inferior" outcome respectively. 

When Nature selects A1, strategy profile (a1,a1) dominates (a2,a2) and when it 

chooses A2 the dominance relation is reversed. In a superior equilibrium each player 

gets x and in an inferior equilibrium both get 1 each. If players fail to coordinate 

they both get 0. The two payoff matrices A1 and A2 are defined as follows: 

x,x 0,0 

0, 0 1, 1 

A1 

1, 1 0, 0 

0,0 x,x 

A2 

(3.1) 

where x > l. In this game both symmetric strategy profiles are strict Nash equilibria. 

The binary choice game is a meta-game with asymmetric information. The 

players face the coordination problem described above T times. The rules of the 

meta-game are defined as follows. 
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First, players meet to construct a code in an alphabet A before the number of 

periods in the game is determined and a specific payoff structure is chosen. Before 

Nature's choice both players know the joint distribution over time periods and payoff 

structures. It is assumed that players will choose an optimal code for the whole class 

of payoff structures. 

Second, the number of periods in the game is drawn, i.e. T E D, where D = 
{ 1, 2, ... , T} · It is assumed that there is a probability function 7r : D - (0, 1), such 

that I::TEn 7r (T) 1 and 7r (T) > 0 for all TE n. Next, Nature selects a sequence of 

matrices which determines payoffs in every period. Let At E { A1, A2} be the payoff 

matrix in period t and A= (A1, ... ,AT) be the sequence of matrices which defines 

the payoff structure. There is a probability function PT : XtET {A1,A2} - (0, 1), 

such that PT (A)= 2-T for all A E XtET {A1,A2}. At the end of the second stage 

player 1 is informed about A and T without noise. 

Third, the informed agent, i.e. player 1, can send a message m coded in alphabet 

A which is received by player 2. We assume that player 1 can transmit a message 

to player 2 through a channel which admits transmissions in binary code only. For 

this purpose fix an alphabet A = {0, 1 }. Let A* ( c) denote the set of all strings 

z = z 1z2z3 ... zc of length c with elements zk E A. Define the union of all strings 

A* = Uc:::,:l A* (c). The complexity of a message m coded in A is defined as the 

length, c, of the string.6 The cost of transmission is w per bit. 

The message which is transmitted from the informed to the uninformed player is 

a suggestion about what players should do in the coordination game. A suggestion 

is a list specifying a strategy for each player. The suggestion is consistent if the 

strategy profile is a mutual best response (see Farrell [7]). We assume that player 1 

will only make consistent suggestions. As any strict equilibrium is a symmetric pure 

strategy profile, this assumption implies that a consistent suggestion can be reduced 

to a description of a single pure strategy. 

Fourth, players choose strategies. A strategy of player i is an ordered string of 

actions, written si E Si, where Si = x tET { a1, a2}. We assume that in a T period 

game the sequence of actions is truncated after the T:th element. Finally, the game 

is played T periods and players receive payoffs. The payoff is the average period 

revenue minus the cost of communication. There is no observation of actions or 

payoffs until the game ends. 

GThe definition of complexity as the length of the description is inspired by algorithmic infor­
mation theory ( cf. Calude [3]). 
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4. Labels 

In contrast to classical game theory, this paper contributes to a strand in the lit­

erature which was initiated by Gauthier [5]. A player chooses an option under a 

description. A choice problem exists only if the player conceives a set of distinct 

alternative options. Thus, we can consider the coordination problem to be defined 

by the agent's description of the game. Each player i knows which player she is. It 

is also assumed that all players make a mutual distinction between the one-period 

actions a1 and a2 before the game starts. 

We shall use the term label for the description by which players recognise pure 

strategies. 7 A labelling is a function Li which assigns a label Li (Big) to each strategy 

Big E S; of each player i, such that for each player, each of her pure strategies has 

a distinct label. We assume that the players construct a common language, i.e. 

L (B) = L1 (B) L2 (B) for all pure strategies BE Si. 

In order to model the language selection problem it is assumed that players both 

players are allowed to meet and construct a labelling and subsequently a code in the 

binary alphabet A before uncertainty is resolved. The idea is to set up a procedure 

so that players will choose an appropriate language for the entire class of payoff 

structures. To do this we will assume that players are situated behind a veil of 

ignorance. It is assumed that players know distributions, but not the particular 

choice by Nature. 

Now, players can proceed in the following manner. They attach one label to 

each action in the games in one period, call them YI and Y2. Moreover, the players 

will associate the two labels with two pure strategies in every game in T periods. 

Next players will choose labels for the sequences of actions in the two-period games 

which remain to be named, call them y3 and y4. These labels are also associated 

with two pure strategies in every game in more than two periods. Next players 

will choose four labels in the games in three periods, for sequences of actions which 

remain unnamed, call them y5 , ... , YS· Continue in this way to name 2k-I sequences 

of actions in the k-period games and let these labels be associated with strategies in 

every game in T periods. Denote the set of all labels with Y {yI,Y2, ... }. 

The procedure described above leaves many questions unresolved. The procedure 

only implies that when k is small a label Yk is used in a wider range of games. For 

instance YI and Y2 must be attached to the actions in the one-period game but it 

is arbitrary which strategies these labels are used for in games in more than one 

period. However, we can apply one more assumption to provide more structure to 

the code. 

'cf. Sugden [14] 
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To both players a T-period game can be decomposed in 1T /kl games ink periods, 

where the last game is possibly truncated. 8 Consider a strategy called ff in a k-period 

game. This strategy is a sequence of actions. Repeat this sequence 1T /kl times. 

This results in a sequence of actions which is a strategy in the T-period game. The 

resulting sequence is labelled yin the T-period game. We refer to this as invariance 

with respect to decomposition. 

This assumption implies that our labelling procedure is highly structured. Indeed 

there is a unique labelling, up to symmetric transformations, which satisfies this 

condition. For instance, the one-period game labels y1 and Y2 would describe uniform 

sequences of actions in any T-period game. Any T-period game can be decomposed 

in T one-period games with a uniform action labelled y1 or Y2· Denote repetition 

with *· Labels YI or Y2 refer to (a1) * and (a2) *· Correspondingly, labels y3 or y4 

refer to (a1,a2) * and (a2,a1) *· We can proceed to construct this labelling in the 

same manner for y5, Y6 etc. 

5. Optimal coding 

Now, we can proceed to the problem of coding. A code is a function cp : Y ___, A* 

and the elements of cp (Y) are called code-strings. 

The players' goal is to find a code which maximizes the expected payoff. Now, 

introduce the function bin : N -+ A*, where bin is a binary expansion of n 2:: 0, 

such that (nh = lbin (n). By definition bin (1) = .,\. To simplify notation let 

log k = llog2 (k)J, where l·J denotes the "floor" of the real (rounding downwards). 

Define log 0 = 0. 

We consider two situations. In the first case the empty string can be used as a 

message, in the second case it can not be used as a message. We define the following 

condition: 

( C) ,\ is a code-string. 

where .,\ is defined as the empty string. Condition C is satisfied in the first case and 

violated in the second. For the first case we obtain the following result: 

Proposition 1. If condition C applies then cp (yk) = bin (k) for k = l, 2, ... is an 

optimal code. 

The probability distribution over sequences of payoff matrices is uniform. Therefore, 

all pure equilibrium strategies are identical with respect to expected revenue. We 

will make use of the following simplifying lemma. 

8 I al denotes the "ceiling" of the real a, (i.e. rounding upwards). 
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Lemma 1. The expected revenue in any equilibrium in pure strategies is½ (x + 1) 
before Nature has selected A. 

Proof. The expected revenue in any equilibrium before Nature has selected A is 

E [u] = ~2-T Lk=o (i) ((T - k) x + k) = ½ (x + 1). • 

We can now provide the proof of the main result. 

Proof. Step 1. There are 2n unique code-strings of length n in <p and in A* LJ { >.} 
for all n :2: 0. Thus, <p uses all strings in A* LJ {>-}. Step 2. The length of a code­

string zp(yk) is lzp(yk)I = lbin(k)I = logk, which is increasing ink. Step 3. Using 

the lemma the expected value of the sequence of equilibria generated by the labels 

(Yk, Yk) for T :2: 1 + log (k - 1) is Lt=l+logk, ... ,T [ 7r (t) ½ (x + 1) - 7r (t) · w · lzp (yk) I]. 
The expected revenue ( the first part in the squared brackets) is independent of 

the code. Therefore we can reduce the problem of finding an optimal code to a 

minimization problem of the expected cost. The optimal code must solve: 

From step 1 it follows that all code-strings in A* LJ p} are used. Therefore, the 

assumption that 7r (t) > 0 for all t implies that short code-strings must be used for 

small k, i.e. 11P (yk) I must increase monotonically in k, which is shown in step 2. • 

As condition C is met players decide to associate the empty string with a strategy 

in the one-period game and therefore in any game in more periods. If the players 

wish to play this strategy they do not need to transmit any information through the 

channel. It is as if they had chosen a convention in the game. Under the assumption 

of invariance with respect to decomposition that means that the players had decided 

to define a uniform sequence of actions, (a1) * or (a2) *, as the convention. 

For the second case when condition C is not applied we obtain a similar result: 

Proposition 2. If condition C does not apply then zp' (Yk) 

1, 2, ... is an optimal code. 

bin(k+l) fork= 

Proof. Step 1. There are 2n unique code-strings of length n in <p and in A*. Thus, 

<p uses all strings in A*. Step 2. The length of a code-string <p1 (Yk) is lzp' (Yk)I = 
lbin (k + 1)1 = log (k + 1), which is increasing in k. Step 3. Using the lemma we 

can see that the expected value of the sequence of equilibria generated by (Yk, Yk) 

for T :2: l+log(k-1) is Lt=l+logk, ... ,T[1r(t)½(x+l)-1r(t)-w·lzp'(yk)I]- The 
expected revenue ( the first part in the squared brackets) is independent of the code. 
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Therefore we can reduce the problem of finding an optimal code to a minimization 

problem of the expected cost. The optimal code must solve: 

From step 1 it follows that all code-strings in A* are used. Therefore, the assumption 

that 7f ( t) > 0 for all t implies that short code-strings must be used for small k, i.e. 

Jcp' (Yk)I must increase monotonically ink, which is shown in step 2. • 

In the second case we obtain a symmetric code. Both strategies in the one-period 

game are associated with one-bit code strings. This situation is reasonable if player 

2 is genuinely uninformed. For instance, we can think of a situation when both 

players know the rules of the game but the uninformed player does not know at 

which point in time the game will occur. In that case the first bit of the message 

has a very high coordination value. 

The results in proposition 1 and 2 are not surprising. Players will use all strings 

of length zero before they use code-strings of length one, and strings of length one 

before they use code-strings of length two, and all strings of length two before strings 

of length three etc. Put in other words: they will attach a label to each node in 

a binary tree. Thus, the problem of finding a code is reduced to the problem of 

associating code-strings of a given length with some particular labels. To minimize 

the expected average length it suffices to attach the most likely labels with the 

shortest strings. The two codes cp and cp' are two such examples. 

6. Simplicity and efficiency 

Player 1 can send a message m coded in an alphabet A to player 2. After com­

munication, player 1 and 2 each chooses a strategy s1 and s2, respectively. Players 

choose strategies simultaneously and for all periods. No observations are done until 

the game ends. Finally, players receive payoffs determined by A and strategies s1 

and s2. The cost of transmission is w per bit. 

If the efficiency gains are small and communication is costly it is always profitable 

to coordinate in a Nash equilibrium with the shortest description. Now, we can 

present the following result: 

Proposition 3. Assume condition C applies. If x - 1 < w then player 1 would 

choose to transmit >. as a message to the uninformed player. None of the players 

would incur any cost of communication. 
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Proof. (i) The minimum payoff of the least complex message is y_ = 1. It can easily 

be seen that the maximum payoff transmitting further steps of a more complex 

message is u = x - w. Now, x w < I if x - I < w • 

Secondly, we can proceed to the case in which the empty string cannot be used as a 

message. A similar result holds if condition C does not apply: 

Proposition 4. Assume condition C does not apply. If x - I < 2w then player 1 

would choose to transmit a 1 bit code-string to the uninformed player. 

Proof. (i) The minimum payoff of the least complex message is 'JJ. = ½ (x + I) w. 

It can easily be seen that the maximum payoff transmitting further steps of a more 

complex message is u x 2w. Now, ½ (x + I) - w > x 2w if x - I< 2w. • 

It is worth noting that the value of communication is high in both cases. If players 

were choosing an equilibrium strategy at random the expected payoff would be 

¼ ( x + I), which is clearly lower than the expected payoff in the first case and lower 

than the expected payoff in the second case if w < ¼ ( x + I). Second, as we restrict 

our attention to a labelling that satisfy the principle of invariance with respect 

to decomposition the Nash equilibrium with the shortest description is a strategy 

profile with a sequence of actions with the most regular pattern. In that case we can 

expect players to choose the same action in every period if the cost of transmitting 

information is high. 

Corollary 1. As the labelling satisfy invariance with respect to decomposition the 

expected equilibrium strategy is a sequence of actions which is uniform, i.e. (a1) * 

or (a2) *, if (i) x - I< wand condition C applies, or, (ii) x I < 2w and condition 

C does not apply. 

The results in proposition 3 and 4 suggest that high costs of communication 

and small differences between the revenues in different equilibria gives both players 

incentives to keep the transmission of information at a minimum level. Both results 

are rather extreme in the following sense: players would not transmit more than the 

minimum number of bits even if that would result in successful coordination in the 

equilibrium with the highest revenue. If communication costs are high they prefer 

to transmit the shortest string available even if they only succeed to coordinate in 

the least efficient equilibrium. The reason is that the efficiency gains are outweighed 

by the additional cost of transmitting extra bits. In the game studied in this paper 

this is equivalent to choose the most regular pattern of behaviour if the labelling is 

invariant with respect to decomposition. 
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However, short descriptions and simple strategies do not exist merely at high 

communication costs. At lower levels of the communication cost the problem of 

choosing an optimal equilibrium is a trade-off between ease of describability and 

efficiency. This is possible to illustrate with two simple examples. 

EXAMPLE 1. Consider a labelling which is invariant with respect to decomposition. 

Then (a1, a2) * or (a2, a1) * must be labelled y3. For instance, let y3 denote (a1, a2) *· 

As condition C applies the code-string for this label is one bit. Of course, for this 

strategy there exists exactly one state of the world for which the sequence of actions 

is optimal with respect to revenues. However, for every T there exist T sequences 

of payoff matrices in which ( a1, a2) * is almost optimal in terms of revenue, i.e. it 

is optimal in every period except one. For each of these sequences approximately 

half of the matrices are A1 and A2, respectivelyY Naturally, that means a uniform 

sequence of actions, ( ai) * or ( a2) *, is far from optimal with respect to revenues. 

If the number of periods is large, T > 7, then the sequences of actions with the 

shortest descriptions are never optimal in more than T - 3 periods. 

Now, if the state is one of the sequences close to ( a1, a2) * the first bit transmitted 

from the informed to the uninformed player would increase each agents revenue with 

at least two times the difference between the revenues in the inferior and superior 

subperiod outcome at the cost of w. The second bit transmitted would only increase 

the revenues with half as much, but at the same cost. More precisely, an intermediate 

communication cost, 

w E (0.125x - 0.125, 0.25x - 0.25) (6.1) 

is a sufficient condition to ensure that it is optimal for the informed player to choose 

the equilibrium strategy with the 1-bit code-string, <p (y3), rather than try to coor­

dinate in the equilibrium with the highest revenue or the equilibrium with shortest 

description ( the empty string ,\). Indeed, the optimal choice of both players is 

a trade-off between ease of describability and efficiency. Players approximate the 

perfect fit with some sequence of actions that is easy to describe in order to save 

communication costs. 

EXAMPLE 2. The previous example was devoted to show how the players can ap­

proximate some specific strategy with a sequence of actions with short description. 

Now, this example will show how players choose messages at some given number of 

time periods as the cost of communication varies. We are interested in the expected 

average length of the message. 

9 There is at least 0.5 (T - 3) matrices of each kind in every sequence. 
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To this aim we define the average length of the code-string with respect to PT to 

be the number: 

Lip (w) = lPr (A) lcp (y (A, w))I] (6.2) 

where cp(y(A,w)) is the optimal code-string in state A at cost w. 

Again, consider a labelling which is invariant with respect to decomposition. 

Assume that condition C applies and let T = 8 and x 1.5. We can easily solve for 

the two extreme cases. As the communication cost is zero, w 0, the players would 

naturally choose to coordinate in the revenue-maximizing outcome in any state of 

the world. The average length of the message transmitted would be Lip (0) ~ 6.01. 

At the other extreme, when the cost of communication is high, w > 0.5, the informed 

player would choose the empty string as a message in every state of the world. In 

this case the average length of the message transmitted would be Lip (0.5) = 0. 

To see what the average code length would be at intermediate levels of the 

communication cost we have conducted some numerical simulations. Let n denote 

the number of states in which players choose a different strategy than the most 

efficient in terms of revenues and, correspondingly, let ri1 denote the number of 

states in which the players choose ,\ rather than the most efficient in the underlying 

game. The number of deviations from the revenue-maximizing strategy, i.e. n and 

ri1, should be related to the total number of states which is 256. 

The results of our simulations are reported in Table 1. The average length of 

the code-string transmitted decreases monotonically as the cost of communication 

increases. It is worth noting that players do not alter to the shortest description at 

some threshold, but rather change their behaviour gradually. At relatively low levels 

of w, players would start to play more easily described strategies. For instance, when 

w 0.04 the probability that players would play a more easily described strategy is 

0.86. Hence, players are very likely to alter from the revenue-maximizing strategy 

to some more easily described sequence of actions. However, the probability that 

they would play the strategy with the shortest description is only 0.23. In 159 of 

256 states the informed player would transmit some, but not all, information about 

the payoff structure to the uninformed player. 

In terms of communication, players would start from a situation with zero com­

munication cost when the uninformed player learns the Pareto-optimal behaviour 

perfectly and then change gradually to a situation when the uninformed player re­

mains without any knowledge about the state of the world at very high cost of 

transmission of information. In terms of communication costs, players would not 

incur any cost of transmission at zero and very high costs. At intermediate lev-
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Table 1: Numerical simulation. 

w Lcp n n1 

0.00 6.012 0 0 

0.01 5.902 4 4 

0.02 4.484 77 16 

0.03 2.492 185 31 

0.04 1.629 219 60 

0.05 1.105 235 86 

0.06 1.105 235 86 

0.07 0.637 247 111 

0.08 0.637 247 111 

0.09 0.613 249 113 

0.10 0.559 250 120 

0.20 0.184 252 208 

0.30 0.035 254 246 

0.40 0.004 254 254 

0.50 0.000 255 255 

els, however, they would use the channel for transmission of information and the 

expected cost of communication is strictly positive. 

7. Conclusions 

It is shown that simplicity can select among multiple strict Nash equilibria. Not 

surprisingly, choosing a message ( and an equilibrium) is a trade-off between efficiency 

and ease of describability. Simple patterns of behaviour occur if talk is costly. 

As communication is costly players will coordinate in a Nash equilibrium in which 

the sequences of actions have descriptions that occur in games in few as well as many 

periods. The equilibrium appears to be simple to the players since it is obtained 

with a description that occurs in a wide range of games, including the least complex 

coordination problems (with few strict Nash equilibria). In this way the observed 

equilibrium behaviour is: (i) easy to describe because the code-string attached to 

the strategy is short, and (ii) simple because it is a replication of a behaviour from 

a much less complex decision problem. We expect team-behaviour to be highly 

regular. In Herbert Simon's [13] words, man is not only a concept forming, but also 

a patternfinding animal. 
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