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Abstract

Copula-GARCH models have been recently proposed in the financial literature as
a statistical tool to build flexible multivariate distributions. Our extensive simulation
studies investigate the small sample properties of these models and examine how mis-
specification in the marginals may affect the estimation of the dependence function
represented by the copula. We show that the use of normal marginals when the true
Data Generating Process is leptokurtic or asymmetric, produces negatively biased es-
timates of the normal copula correlations. A striking result is that these biases reach
their highest value when correlations are strongly negative, and viceversa. This result
remains unchanged with both positively skewed and negatively skewed data, while
no biases are found if the variables are uncorrelated. Besides, the effect of marginals
asymmetry on correlations is smaller than that of leptokurtosis. We finally analyse
the performance of these models in terms of numerical convergence and positive defi-
niteness of the estimated copula correlation matrix.1
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1 Introduction

The increasing globalisation of world economies raises the issue of multivariate joint mod-
elling. At the same time, the growing importance of financial markets amplifies the
time-varying volatility and leptokurtosis of economic and financial variables. Given these
stylised facts, the assumption of joint normality can be no longer realistic. Copula theory
can be a solution to this problem. Indeed, the essential idea of the copula approach is
that a joint distribution can be factored into the marginals and a dependence function
called copula. The dependence relationship is entirely determined by the copula, while
position, scaling and shape (mean, standard deviation, skewness and kurtosis) are entirely
determined by the marginals. Copulas have been successfully used in finance, and we refer
the interested reader to the outstanding book by Cherubini et al. (2004) for a detailed
treatment of many financial applications. Recently, copulas have also been proposed to
model operational risks (cf. Chernobai et al. (2007) and Fantazzini et al. (2008)).
The first contribution of this paper is a Monte Carlo study of the finite sample properties of
the marginals and copula estimators under different hypotheses about the Data Generating
Process (DGP). We choose to analyze a multivariate Copula-GARCH model because it is
a convenient choice for economic and financial applications. More precisely, we use Normal
or Generalized-t distributions (see Hansen, 1994) for the marginal noise terms. The latter
distribution is suitable to model skewed and leptokurtic data.
As for marginal parameters, when the true DGP is skewed and leptokurtic, our simulation
studies highlight the strong biases affecting the parameter estimates, and particularly the
GARCH parameters. Besides, we show that the empirical distribution for these parameters
is strongly asymmetric and the mean and median estimates can be rather different. In
this case, the biases are largest when normal marginals are considered, but even the use
of the correctly specified Generalized-t marginals results in very poor estimates when
the sample dimension T is small. When T increases, the biases and the t-tests decrease
for all parameters (except for the symmetric Student’s t degrees of freedom, when the
DGP is skewed). However, the t-tests for the null hypothesis that the empirical mean
across simulations is equal to the true value still reject the null hypothesis for most of the
parameters even when T = 2000. Interestingly, no qualitative differences are found across
different copula dimensions as well as across different correlation levels.
In general, these results point out the difficulties of estimating GARCH models with small
samples, thus extending previous simulation evidence in Hwang and Valls Pereira (2006)
who, however, considered only univariate models with normally distributed errors and did
not examine the effect of different joint distributions.
As for the dependence parameters, when there is skewness in the data and symmetric
marginals are used, the estimated correlations are negatively biased, and the bias increases
when moving from the Student’s t to the normal (marginal) distribution, reaching values
as high as 25% of the true values. A striking result is that this bias reaches its highest
value when the correlation is strongly negative (ρ0 < −0.5), and viceversa. This result still
holds with both positively skewed and negatively skewed data, while no biases are found
if the variables are uncorrelated. When the marginal leptokurtosis decreases, the biases
in correlations decrease as expected, but the previous conclusions remain unchanged: the
biases for negative correlations are almost double compared with positive correlations, and
they are highest when the marginals used are normally distributed. No major differences
in the biases are found when moving from small samples to large samples (even though the
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t-statistics are slightly smaller), as well as when moving from bivariate to 10-variate normal
copulas. Besides, these results remain mostly the same even when using an ill-specified
correlation matrix for the normal copula, whose lowest eigenvalue is close to zero.
The second contribution of this paper is an analysis of copula-GARCH models in terms of
numerical convergence and positive definiteness of the estimated copula correlation ma-
trix. The numerical maximization of the log-likelihood fails to converge mostly when the
marginals DGP is leptokurtic and asymmetric and we deal with small samples. In this
case, the use of misspecified normal marginals determines the highest number of conver-
gence failures (close to 50%), while the correctly specified Generalized-t marginals perform
slightly better (over 30%). Similarly to the biases for the copula correlations, leptokurtosis
has a stronger effect on numerical convergence than asymmetry, and convergence improves
when leptokurtosis decreases.
Interestingly, we observe that the type of correlation matrix used for the normal copula
does not affect the number of convergence failures, which remains constant across different
specifications. Furthermore, our simulation studies show that even when the true correla-
tion matrix is ill-conditioned, the estimated correlation matrix is always positive definite
without any constraints. These results confirm recent evidence in Fantazzini (2008) who
compares different estimation methods for the T-copula and finds that the estimated cor-
relation matrix can be non positive definite only when dealing with very small samples
(T < 100) and when the true underlying process has an ill-conditioned correlation matrix.
The rest of the paper is organized as follows. Section 2 presents the copula-GARCH
models, while Section 3 gathers simulation studies purporting to assess the small sample
properties of these models under different DGPs. Section 4 concludes.

2 Copula-GARCH Modelling

Consider a general copula-GARCH model, where the n endogenous variables xi,t are ex-
plained by an intercept µi and an error term

√
hi,tηi,t

2

x1,t = µ1 +
√

h1,t η1,t

...
... (1)

xn,t = µn +
√

hn,t ηn,t.

Let the standardized innovations ηi,t have mean zero and variance one, while
√

hi,t can be
constant or time-varying like in GARCH(1,1) models3:

h1,t = ω1 + α1(η1,t−1
√

h1,t−1)
2 + β1h1,t−1

...
...

... (2)

hn,t = ωn + αn(ηn,t−1
√

hn,t−1)
2 + βnhn,t−1

Furthermore, the innovations ηi,t have a conditional joint distribution Ht (η1,t, . . . , ηn,t; θ)
with the parameters vector θ, which can be expressed as follows, thanks to the so-called

2We also considered models with autoregressive lags, but they delivered similar qualitative results to
the case where only the constant is present. Therefore, we do not consider these models here. We thank
an anonymous referee for highlighting this point.

3See Bollerslev, Engle, and Nelson (1994) for a detailed survey of GARCH models.
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Sklar’s theorem (1959):

(η1,t, . . . , ηn,t) ∼ Ht (η1,t, . . . , ηn,t; θ) = Ct (F1(η1,t;α1), . . . , Fn(ηn,t;αn); γ) (3)

that is the joint distribution Ht of a vector of innovations ηi,t is the copula Ct ( · ; γ)
of the cumulative distribution functions of the innovations marginals F1(η1,t;α1), . . . ,
Fn(ηn,t;αn), where γ, α1, . . . , αn are the copula and marginals parameters, respectively.
Since a copula is a function that links together two or more marginals distributions to
form a multivariate joint distribution, copulas allow us to model the dependence structure
between different variables in a flexible way and, at the same time, to use marginals
distributions not necessarily identical. For example, F1(η1,t; ν1) may follow a Student’s
t distribution with ν1 degrees of freedom, F2(η2,t) a standard normal distribution, while
F3(η3,t;λ3, ν3) may be a Generalized-t distribution (see Hansen (1994)) with ν3 degrees of
freedom, where λ3 is the skewness parameter. For more details about copulas and Sklar’s
Theorem, the interested reader is referred to the methodological overviews by Nelsen
(1999) and Cherubini et al. (2004).
By applying Sklar’s theorem and using the relationship between the distribution and the
density function for the case of the multivariate joint normal, we can derive the Normal
copula, whose probability density function is:

cNormal(Φ(x1), . . . ,Φ(xn);Σ) =
fNormal(x1, . . . , xn)

n
∏

i=1

fNormal
i (xi)

=

1
(2π)n/2|Σ|1/2 exp

(

− 1
2x
′
Σ
−1x

)

n
∏

i=1

1√
2π

exp
(

− 1
2x

2
i

)

=

=
1

|Σ|1/2
exp

(

−1

2
ζ′(Σ−1 − I)ζ

)

, (4)

where ζ = (Φ−1(u1), . . . ,Φ
−1(un))

′ is the vector of univariate Gaussian inverse distribution
functions, ui = Φ (xi), while Σ is the correlation matrix.
A similar procedure can be followed to derive the t-copula, which is the copula of the
multivariate Student’s t-distribution. Moreover, a model can allow for a time-varying
dependence structure. However, recent literature (see Chen et al. (2004)) has shown
that for daily financial data a simple normal copula with no dynamics is sufficient to
describe the joint dependence structure in most cases. Only when the number of considered
variables is higher than 20, statistically significant differences start to emerge and more
complicated copulas than the Normal one may be required. Fantazzini et al. (2008) found
similar evidence with monthly operational risk data. Besides, macroeconomic analysis
usually works with a small number of endogenous variables sampled at a monthly or
lower frequency, which are known to have a much simpler dependence structure than daily
financial data; for this reason we stick to a constant normal copula C Normal

t = CNormal.
This copula belongs to the class of Elliptical copulas. An alternative to Elliptical copulas
is given by Archimedean copulas: however, they present the serious limitation of modelling
only positive dependence (or only partial negative dependence), while their multivariate
extensions involve strict restrictions on bivariate dependence parameters. That is why we
do not consider them here.

2.1 Copula and Marginals Estimation

Let us suppose to have a set of T empirical data of n economic and financial series, and
θ = (α1, . . . , αn; γ) is the parameters vector to estimate, where αi, i = 1, . . . , n are the
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parameters of the marginal distribution Fi and γ is the vector of the copula parameters.
It follows from (3) that the log-likelihood function for the joint conditional distribution
Ht( · ; θ ) is given by:

l(θ) =

T
∑

t=1

log(c(F1(η1,t;α1), ..., Fn(ηn,t;αn); γ))+

T
∑

t=1

n
∑

i=1

log fi(ηi,t;αi) (5)

Hence, the log likelihood of the joint distribution is just the sum of the log likelihoods of
the margins and the log likelihood of the copula. Standard ML estimates may be obtained
by maximizing the above expression with respect to the parameters (α1, . . . ,αn ; γ). In
practice this can involve a large numerical optimization problem with many parameters
which can be difficult to solve. However, given the partitioning of the parameter vector
into separate parameters for each margin and parameters for the copula, one may use (5)
to break up the optimization problem into several small optimizations, each with fewer
parameters. This multi-step procedure is known as the method of Inference Functions for
Margins (IFM), see Joe and Xu (1996) and Joe (1997) for more details.
According to the IFM method, the parameters of the marginal distributions are estimated
separately from the parameters of the copula. In other words, the estimation process is
divided into the following two steps:

1. Estimate the parameters αi, i = 1, . . . , n of the marginal distributions Fi using the
ML method:

α̂i = argmax li(αi) = argmax

T
∑

t=1

log fi(ηi,t;αi), (6)

where li is the log-likelihood function of the marginal distribution Fi;

2. Estimate the copula parameters γ, given the estimations performed in step 1):

γ̂ = argmax lc(γ) = argmax

T
∑

t=1

log(c(F1(η1,t; α̂1), . . . , Fn(ηn,t; α̂n); γ)), (7)

where lc is the log-likelihood function of the copula.

Joe (1997) compares the efficiency of the IFMmethod relatively to full maximum likelihood
for a number of multivariate models and finds the IFM method to be highly efficient.
Therefore, we think it is safe to use the IFM method and benefit from the huge reduction
in complexity implied for numerical optimization.

3 Simulation Studies

In this section we present the results of the simulation studies concerning a multivari-
ate copula-GARCH(1,1) model. This model is tractable and flexible enough to fit many
economic and financial applications. The model specification is given by:

Yt = µ+
√

htηt, (8)

where Yt and µ are vectors, while the matrix h is diagonal and contains the variances:

hi,t = ωi + αi(ηi,t−1
√

hi,t−1)
2 + βihi,t−1, i = 1, . . . , n.

The possible Data Generating Processes (DGPs) we consider are specified below:
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1. We examine six different types of marginals for the innovations ηt:

• A Generalized-t (see Hansen (1994)) with skewness parameter λ = −0.5 and
degrees of freedom ν = 3;

• A Generalized-t with skewness parameter λ = 0 and degrees of freedom ν = 3,
that is a symmetric Student’s t-distribution.

• A Generalized-t with skewness parameter λ = 0.5 and degrees of freedom ν = 3;

• A Generalized-t with skewness parameter λ = −0.5 and degrees of freedom
ν = 10;

• A Generalized-t with skewness parameter λ = 0 and degrees of freedom ν = 10,
that is a symmetric Student’s–t distribution quite close to a standard normal
distribution.

• A Generalized-t with skewness parameter λ = 0.5 and degrees of freedom ν =
10;

2. We examine four types of normal copulas to model the joint dependence (3) of the
innovations ηt. Particularly, we consider:

(a) the case where two variables have a bivariate Normal copula, with the copula
linear correlation ρ0 ranging between −0.9 and 0.9 (step 0.1).

(b) the case where ten variables are uncorrelated, i.e. they have a multivariate
Normal copula whose linear correlation matrix Σ is diagonal:
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1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

Table 1: Normal copula Correlation matrix: Diagonal case

(c) the case where ten variables have a multivariate Normal copula, with the copula
correlation matrix Σ equal to:

1 0.21 0.33 0.22 0.36 0.30 0.37 0.34 0.31 0.47
0.21 1 0.20 0.15 0.27 0.18 0.18 0.31 0.20 0.21
0.33 0.20 1 0.16 0.32 0.28 0.40 0.33 0.17 0.42
0.22 0.15 0.16 1 0.20 0.16 0.18 0.20 0.27 0.20
0.36 0.27 0.32 0.20 1 0.32 0.33 0.55 0.33 0.35
0.30 0.18 0.28 0.16 0.32 1 0.28 0.32 0.26 0.31
0.37 0.18 0.40 0.18 0.33 0.28 1 0.35 0.23 0.40
0.34 0.31 0.33 0.20 0.55 0.32 0.35 1 0.31 0.35
0.31 0.20 0.17 0.27 0.33 0.26 0.23 0.31 1 0.30
0.47 0.21 0.42 0.20 0.35 0.31 0.40 0.35 0.30 1

Table 2: Normal copula Correlation matrix: Dow Jones Industrial Index returns

This is the correlation matrix for the returns of the first 10 stocks belonging to
the Dow Jones Industrial Index, observed between 11/18/1988 and 11/20/2003.

(d) the case where ten variables have a multivariate Normal copula, with the copula
correlation matrix Σ equal to:

1 -0.15 -0.15 -0.15 -0.15 -0.14 -0.09 -0.03 0.05 0.13
-0.15 1 -0.15 -0.15 -0.15 -0.13 -0.08 -0.02 0.06 0.14
-0.15 -0.15 1 -0.15 -0.15 -0.12 -0.07 -0.01 0.07 0.15
-0.15 -0.15 -0.15 1 -0.15 -0.11 -0.06 0.01 0.08 0.15
-0.15 -0.15 -0.15 -0.15 1 -0.10 -0.05 0.02 0.09 0.15
-0.14 -0.13 -0.12 -0.11 -0.10 1 -0.04 0.03 0.10 0.15
-0.09 -0.08 -0.07 -0.06 -0.05 -0.04 1 0.04 0.11 0.15
-0.03 -0.02 -0.01 0.01 0.02 0.03 0.04 1 0.12 0.15
0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 1 0.15
0.13 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 1

Table 3: Normal copula Correlation matrix with lowest eigenvalue equal to 0.0768

We choose this correlation matrix because it is ill-specified and it allows us
to study the effect that ill-specified correlation matrices have on numerical
convergence and positive definitiveness of the estimated correlation matrices.

3. We consider two possible data alternatives: T = 500, T = 2000.

4. We consider the same conditional mean and variance specification for all marginals:
µ =





0.05
. . .

0.05



 , ω =





0.01
. . .

0.01



 , α =





0.05
. . .

0.05



 , β =





0.9
. . .

0.9



 .

This choice is justified for the sake of simplicity and again to keep the number of
simulated DGPs still tractable. However, we choose values to mimic the most com-
mon stylized facts of financial markets, such as the strong persistence in conditional
variances (see, for example, Tsay (2002) and references therein).

7



We generated 1000 Monte Carlo samples for each marginal and copula specification pre-
viously described and then we estimated the following models: 1) Generalized-t / Normal
copula, 2) Student’s t / Normal copula, 3) Normal / Normal copula .

3.1 Effects of Marginals Misspecifications on Marginals Parameters Es-

timation

We report in Figures 25-54 in the Appendix the mean bias in percentage, the median
bias in percentage, and the t-test for the null hypothesis that the empirical mean across
simulations is equal to the true value. Figures 25-32 report the results when the empirical
marginals are Normal, Figures 33-42 report the results when the empirical marginals are
symmetric Student’s t, and Figures 43-54 report the results when the empirical marginals
are Generalized-t.
The simulation studies highlight some interesting results:

• Normal marginals parameters estimation :

– Conditional Mean: If the true DGP has skewed marginals but we use the Nor-
mal, the biases in the conditional mean parameters are close to 8% of the true
values for the parameter µ, when T = 500 and ν = 3. Particularly, if there
is negative skewness, the estimated µ̂ is positively biased and viceversa. This
bias remains constant across different correlation levels as well as copula di-
mensions (bivariate or 10-variate). If the sample dimension or the degrees of
freedom of the true DGP increases, the biases decrease and the t-tests become
not significant or weakly significant at the 5% level.

If the true DGP is symmetric, the empirical parameters are not statistically
different from the true values in all cases.

– Conditional Variance: the lack of a parameter modelling fat tails induces a
large positive bias in the parameters ω and α and a negative one in β. The
mean biases of these parameters can be larger than 150%, 50% and 10%, re-
spectively, when T = 500, ν = 3 and data are skewed, while they are slightly
smaller when data are symmetric. Instead, if we consider median estimates,
biases are much smaller and α is negatively biased, thus highlighting a strong
asymmetric distribution for the variance parameters. These results point out
the difficulties of estimating GARCH models with small samples, thus con-
firming previous simulation evidence in Hwang and Valls Pereira (2006) who,
however, considered only univariate models with normally distributed errors
and did not examine the effect of different joint distributions. Moreover, strong
biases were expected, since it has been shown by Newey and Steigerwald (1997)
that a QML estimator can be biased when data are not symmetric. When the
dimension T increases, the biases and the t-tests decrease for all parameters,
but they still remain significant (apart for α̂ when ν = 10 and considering a
bivariate copula).

– Sample dimension: when the T dimension increases, biases and t-statistics
decrease for all parameters. However, the t-tests still reject the null hypothesis
for all parameters, except for µ̂.

– Copula dimension: no qualitative differences are found across different copula
dimensions.
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• Student’s t marginals parameters estimation :

– Conditional Mean: If the true DGP has skewed marginals but we use the Stu-
dent’s t, the biases in the conditional mean parameters can be as high as 140%
of the true values for the parameter µ, when T = 500 and ν = 3. Again, if there
is negative skewness, the estimated µ̂ is positively biased and viceversa. As ex-
pected, no significant bias is found when the true DGP is symmetric. Biases
decrease when ν increases but they remain significant. Interestingly, the biases
do not change much when the sample dimension increases. Biases remain con-
stant across different correlation levels as well as copula dimensions (bivariate
or 10-variate).

– Conditional Variance: The use of this symmetric distribution causes severe
(positive) biases in the ω and α estimates, when T = 500 and ν = 3 and the
data are skewed: up to 130% and 30% of the true values for the former two
parameters, respectively. Instead, the parameter β is estimated more precisely,
with (negative) biases smaller than 7%. Similarly to the normal distribution,
the median estimates are more precise: up to 30% and 10% for the ω and α,
whereas the negative bias for β decreases to 2%. Interestingly, all these biases
remain almost unchanged across different values for λ and ν when T = 500.
Instead, when the T dimension increases, biases and t-statistics decrease as
well. Besides, even though the biases for β̂ and α̂ are smaller than 1%-2% (in
absolute values) of the true values when T = 2000 and λ = 0, nevertheless the
t-statistics still reject the null hypothesis.

– Degrees of freedom: When data are skewed, there is a negative bias that in-
creases both with the sample dimension and the magnitude of ν. It can be
higher than 30% of the true value when T = 2000.

– Sample dimension: Except for the degrees of freedom previously discussed,
when the T dimension increases, biases and t-statistics decrease as well. Besides,
the t-tests still reject the null hypothesis for all parameters, except for µ̂ when
the true DGP is symmetric.

– Copula dimension: All the previous biases remain constant across different
correlation levels as well as copula dimensions (bivariate or 10-variate).

• Generalized-t marginals parameters estimation :

– Conditional Mean: the estimated parameters of the conditional mean show a
small mean bias around 3% (5% if we consider the median), when T = 500 and
ν = 3, which is statistically significant. The bias decreases and becomes no
more significant when ν or T increase.

– Conditional Variance: When there is skewness in the data, the parameters are
estimated more precisely than when the observations are symmetric: in the lat-
ter case, for example, the constant ω shows a strong positive bias which can be
close to 90% (mean) when T = 500, while in the former case the bias is around
60% (mean). These biases are smaller if median estimates are considered, in-
stead. This difference can be explained by the fact that the Generalized-t is
not the most efficient model when data are symmetric. However, these posi-
tive biases are present for all considered distributions, and clearly highlight the
remarkable difficulty of estimating a GARCH model in small samples.
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– Degrees of freedom: As expected, the degrees of freedom ν are estimated much
more precisely when they are low than viceversa (positive mean bias around 40%
when T = 500 and ν = 10), given that this parameter is much more difficult to
identify when it is high in magnitude. If the sample dimension increases, biases
and t-statistics decrease as expected.

– Skewness parameter : The estimates show a negative mean bias around 10%
in small samples with fat tails, i.e. ν = 3, which disappears as the sample
dimension increases. Small samples and thinner tails, i.e. ν = 10, slightly
mitigate the bias to 8%. Similar but smaller biases hold when the median is
considered.

– Sample dimension: when the T dimension increases, biases and t-statistics
decrease for all parameters. However, the t-tests still reject the null hypothesis
for all parameters, except for µ̂, ν̂ when ν = 3 and λ̂ when λ = 0.

– Copula dimension: No difference is found across different copula dimensions
(and correlation levels): this result was expected since the Generalized-t is the
true marginal specification and, in this case, its parameters are variation free
with respect to the copula parameters (see Patton (2006)).

3.2 Effects of Marginals Misspecifications on Copula Parameters Esti-

mation

Figures 1-4 report the mean bias in percentage, and the t-test for the null hypothesis that
the empirical mean across simulations is equal to the true value, in this case H0 : ρ̂ = ρ0.
Figure 1 reports the results for the bivariate copula correlations; Figure 2 for the 10-variate
Normal copula with the correlation matrix reported in Table 1 (that is diagonal); Figure 3
for the 10-variate Normal copula with the correlation matrix reported in Table 2 (that is
the one referring to DJI stocks returns); Figure 4 for the 10-variate Normal copula with the
correlation matrix reported in Table 3 (the one with the lowest eigenvalue close to zero).
For the sake of interest and space, we report in the manuscript only the case when T = 500
and the empirical marginals are normally distributed, while we put in the Appendix in
Figures 5-12 the cases with the other marginal distributions and in Figures 13-24 all the
cases with T = 2000. Differently from the coefficients of the marginal distributions, we do
not report the median biases in the figures, because they are very close to the mean biases
and do not provide any additional information.

• Bivariate Normal Copula :

– Correlation Matrix : when there is skewness in the data and symmetric marginals
are used, the estimated correlations are negatively biased, and the bias increases
when moving from the Student’s t to the normal (marginal) distribution, reach-
ing values as high as 25% of the true values. A striking result is that this bias
reaches its highest value when the correlation is strongly negative (ρ0 < −0.5),
and viceversa. This result remains unchanged with both positively skewed and
negatively skewed data, while no biases are found if the variables are uncorre-
lated: the latter case is the only one when the t-statistics are not significant
and the null hypothesis is not rejected4.

4Figures 1,5,6 and 13-15 do not report the case where ρ0 = 0, because the mean and median biases in
percentage involve a division by zero in this case.
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If the true Generalized-t is used, the estimation biases are equal or smaller
than 1% even with T = 500. However, the t-tests reject the null hypothesis
that ρ̂ = ρ0 across simulations when the correlation is strongly negative or
positive (|ρ| > 0.5). Interestingly, the t-statistics (in absolute value) take again
higher values when ρ is negative than when ρ is positive: for example, when
T = 500, the true DGP is a Generalized-t with ν = 3 and λ = −0.5 with a
bivariate copula linear correlation ρ0 = −0.8, the t-statistic for the null that
ρ̂ = ρ0 is equal to 9.85. If the true correlation is ρ0 = 0.8, everything else kept
the same, the t-statistic (in absolute value) is equal to 5.33.

When the degrees of freedom of the true marginals increase from 3 to 10, the
biases in the correlations decrease as expected (ranging between −10% and
0%), but the previous conclusions remain unchanged: the biases for negative
correlations are almost double compared to positive correlations, and they are
highest when the marginals used are normally distributed.

– Sample dimension: no major differences in the biases are found when moving
from T = 500 to T = 2000, even though the t-statistics are slightly smaller.

• 10-variate Normal Copula (Diagonal case):

– Correlation Matrix : Similarly to the result obtained in the bivariate case, if
the variables are uncorrelated we can use misspecified marginals with no harm.
The t-tests do not reject the hypothesis that ρ̂ = ρ0 in almost all cases.

– Sample dimension: no major differences in the biases are found when moving
from T = 500 to T = 2000.

• 10-variate Normal Copula (DJI returns):

– Correlation Matrix : If normal marginals are used and the true DGP is skewed,
the estimated correlations are again negatively biased and this bias decreases
if the true positive correlations increase: the bias is close to −20% if ρ0 = 0.15
and decreases to −12% if ρ0 = 0.55. Biases decrease when ν increases and/or
the process is symmetric but they remain significant. If the Student’s–t is
used biases decrease, but the qualitative results do not change. Similarly to
the bivariate case, t-statistics increase with the magnitude of the (positive)
correlations when the true DGP is skewed. This result holds also when using
the Generalized-t distribution, when the mean bias is close to zero.

– Sample dimension: no major differences in the biases are found when moving
from T = 500 to T = 2000, even though the t-statistics are smaller.

• 10-variate Normal Copula (Ill-conditioned correlation matrix):

– Correlation Matrix : The previous results are confirmed also when the correla-
tion matrix is ill specified: the correlations show a negative bias and t-statistics
are higher for negative correlations than for positive correlations. However, we
observe two interesting facts: biases tend to be almost constant across positive
and negative correlations (also if the true DGP is skewed). Besides, when the
true correlation ρ0 → 0, the bias tends to explode (but the t-tests do not reject
the null hypothesis).
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– Sample dimension: no major differences in the biases are found when moving
from T = 500 to T = 2000, even though the biases around ρ0 = 0 tend to
decrease.
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Figure 1: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for the bivariate copula
correlations when T=500 and the empirical marginals are Normal. The DGP values of ν
and λ are reported on top of the plots.
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Figure 2: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Normal
copula with the correlation matrix reported in Table 1, when T=500 and the empirical
marginals are Normal. The DGP values of ν and λ are reported on top of the plots.
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Figure 3: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Normal
copula with the correlation matrix reported in Table 2, when T=500 and the empirical
marginals are Normal. The DGP values of ν and λ are reported on top of the plots.
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Figure 4: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Normal
copula with the correlation matrix reported in Table 3, when T=500 and the empirical
marginals are Normal. The DGP values of ν and λ are reported on top of the plots.
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3.3 Computational Aspects

We now investigate the computational aspects of copula-GARCH models in terms of nu-
merical convergence5. Table 4 reports the numerical convergence failures across different
DGPs and sample dimensions.
Table 4 highlights some interesting results:

• If the true marginal DGP is skewed, strongly leptokurtic and T = 500, the number
of numerical failures is extremely high, being close to 33% for the Generalized-t, to
35% for the symmetric t, and up to 48% when normal marginals are used.

• If the true process is leptokurtic but symmetric, numerical failures decrease but still
remain very high, ranging between 22% (Generalized-t) and 35% (Normal).

• If the sample dimension increases to T = 2000, convergence errors decrease substan-
tially for the Generalized-t and the Symmetric t, being smaller than 1% if the process
is symmetric, while close to 7% for the Generalized-t and to 3% for the symmetric
t if the true process is skewed. Interestingly, convergence failures are still very high
if normal marginals are used and the process is leptokurtic: over 40% if the DGP is
skewed, over 20% if it is symmetric.

• Instead, if the true DGP shows low leptokurtosis, then the use of normal marginals
determine the lowest convergence errors, both in large (≤ 1%) and in small samples
(≤ 16%), thus confirming the results with univariate normal GARCH reported in
Hwang and Valls Pereira (2006)6.

• Finally, we observe that the type of correlation matrix for the normal copula does not

affect the number of convergence failures, which remains constant across the three
different specifications. Furthermore, all estimated correlation matrices are positive

definite without any constraints: these results confirm recent evidence in Fantazzini
(2008) who compares different estimation methods for the T-copula and finds that
the correlation matrix can be non positive definite only when dealing with very small
samples (n < 100) and when the true underlying process has the lowest eigenvalue
close to zero.

4 Conclusions

This paper investigated the small sample properties of copula-GARCH models. We ana-
lyzed a model specification suitable for many economic and financial applications. This
model can account for GARCH variance and skewed and asymmetric noise terms. We
performed a Monte Carlo study to assess the potential impact of misspecified margins on
the estimation of the marginals and copula parameters under different hypotheses for the
Data Generating Process.

5We used the maxlik library of the GAUSS software and a convergence tolerance for the gradient of
the estimated parameters equal to 1e-5;

6We investigated the properties of the ML estimates imposing the standard Bollerslev’s (1986) non-
negativity conditions for the conditional volatility. In order to keep the number of simulated DGPs still
tractable, we did not consider here the weaker non-negativity conditions proposed by Hwang and Valls
Pereira (2006). However, we expect the estimates of these variations to show similar properties. We leave
this topic as an avenue for further research.
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With regards to marginals parameters, our simulation studies highlight the strong biases
affecting the parameter estimates when the true DGP is skewed and leptokurtic, particu-
larly in the case of GARCH parameters. Besides, they show that the empirical distribution
of these parameters is strongly asymmetric and that the mean and median estimates can
be rather different. Biases are largest when normal marginals are considered, but even the
use of the correctly specified Generalized-t marginals results in very poor estimates when
the sample dimension is small. When the T dimension increases, biases and the t-statistics
decrease for all parameters (except for the symmetric Student’s t degrees of freedom, when
the DGP is skewed). Interestingly, no qualitative differences are found across different cop-
ula dimensions as well as across different correlation levels. In general, these results point
out the difficulties in estimating GARCH models with small samples, thus extending pre-
vious simulation evidence in Hwang and Valls Pereira (2006) who, however, considered
only univariate models with normally distributed errors and did not examine the effect of
different joint distributions.
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Copula corr. matrix: DIAGONAL DOW JONES returns ILL-SPECIFIED

Sample True Marginal DGP Failure rate True Marginal DGP Failure rate True Marginal DGP Failure rate
dimension Empirical: Generalized-t / Normal copula

T=500 ν=3,λ=-0.5 33.96% ν=3,λ=-0.5 33.80% ν=3,λ=-0.5 34.49%
T=500 ν=3,λ=0 23.19% ν=3,λ=0 22.63% ν=3,λ=0 21.96%
T=500 ν=3,λ=0.5 31.63% ν=3,λ=0.5 32.89% ν=3,λ=0.5 32.50%
T=500 ν=10,λ=-0.5 27.69% ν=10,λ=-0.5 28.82% ν=10,λ=-0.5 28.57%
T=500 ν=10,λ=0 25.52% ν=10,λ=0 25.96% ν=10,λ=0 24.74%
T=500 ν=10,λ=0.5 27.54% ν=10,λ=0.5 29.10% ν=10,λ=0.5 28.89%
T=2000 ν=3,λ=-0.5 8.51% ν=3,λ=-0.5 8.51% ν=3,λ=-0.5 8.13%
T=2000 ν=3,λ=0 0.90% ν=3,λ=0 1.01% ν=3,λ=0 0.89%
T=2000 ν=3,λ=0.5 6.78% ν=3,λ=0.5 6.89% ν=3,λ=0.5 7.29%
T=2000 ν=10,λ=-0.5 2.99% ν=10,λ=-0.5 3.01% ν=10,λ=-0.5 3.19%
T=2000 ν=10,λ=0 0.88% ν=10,λ=0 0.93% ν=10,λ=0 0.73%
T=2000 ν=10,λ=0.5 3.07% ν=10,λ=0.5 3.02% ν=10,λ=0.5 3.18%

Empirical: Student’s t / Normal copula

T=500 ν=3,λ=-0.5 34.78% ν=3,λ=-0.5 35.58% T=500,ν=3,λ=-0.5 35.40%
T=500 ν=3,λ=0 22.05% ν=3,λ=0 22.32% T=500,ν=3,λ=0 21.81%
T=500 ν=3,λ=0.5 35.09% ν=3,λ=0.5 35.36% T=500,ν=3,λ=0.5 35.64%
T=500 ν=10,λ=-0.5 26.12% ν=10,λ=-0.5 26.67% T=500,ν=10,λ=-0.5 26.55%
T=500 ν=10,λ=0 23.70% ν=10,λ=0 23.59% T=500,ν=10,λ=0 24.24%
T=500 ν=10,λ=0.5 25.69% ν=10,λ=0.5 26.90% T=500,ν=10,λ=0.5 26.39%
T=2000 ν=3,λ=-0.5 3.76% ν=3,λ=-0.5 3.43% T=2000,ν=3,λ=-0.5 3.63%
T=2000 ν=3,λ=0 0.95% ν=3,λ=0 0.95% T=2000,ν=3,λ=0 0.96%
T=2000 ν=3,λ=0.5 3.16% ν=3,λ=0.5 3.40% T=2000,ν=3,λ=0.5 3.50%
T=2000 ν=10,λ=-0.5 2.14% ν=10,λ=-0.5 1.81% T=2000,ν=10,λ=-0.5 2.18%
T=2000 ν=10,λ=0 0.83% ν=10,λ=0 0.76% T=2000,ν=10,λ=0 0.68%
T=2000 ν=10,λ=0.5 1.96% ν=10,λ=0.5 1.84% T=2000,ν=10,λ=0.5 2.10%

Empirical: Normal / Normal copula

T=500 ν=3,λ=-0.5 48.39% ν=3,λ=-0.5 48.02% ν=3,λ=-0.5 48.25%
T=500 ν=3,λ=0 34.72% ν=3,λ=0 34.31% ν=3,λ=0 34.84%
T=500 ν=3,λ=0.5 48.68% ν=3,λ=0.5 48.67% ν=3,λ=0.5 48.26%
T=500 ν=10,λ=-0.5 16.57% ν=10,λ=-0.5 16.92% ν=10,λ=-0.5 16.56%
T=500 ν=10,λ=0 14.59% ν=10,λ=0 14.99% ν=10,λ=0 14.33%
T=500 ν=10,λ=0.5 16.52% ν=10,λ=0.5 15.99% ν=10,λ=0.5 16.65%
T=2000 ν=3,λ=-0.5 42.36% ν=3,λ=-0.5 43.00% ν=3,λ=-0.5 42.17%
T=2000 ν=3,λ=0 26.89% ν=3,λ=0 27.76% ν=3,λ=0 27.24%
T=2000 ν=3,λ=0.5 42.90% ν=3,λ=0.5 43.39% ν=3,λ=0.5 41.95%
T=2000 ν=10,λ=-0.5 0.15% ν=10,λ=-0.5 0.13% ν=10,λ=-0.5 0.15%
T=2000 ν=10,λ=0 0.08% ν=10,λ=0 0.13% ν=10,λ=0 0.13%
T=2000 ν=10,λ=0.5 0.13% ν=10,λ=0.5 0.15% ν=10,λ=0.5 0.08%

Table 4: Numerical convergence failures across different DGPs and sample dimensions

19



With regards to the dependence parameters, when there is skewness in the data and
symmetric marginals are used, the estimated correlations are negatively biased, and the
bias increases when moving from the Student’s t to the normal (marginals) distribution,
reaching values as high as 25% of the true values. A striking result is that this bias
reaches its highest value when the correlation is strongly negative, and viceversa. This
result remains unchanged with both positively skewed and negatively skewed data, while
no biases are found if the variables are uncorrelated. When the marginals leptokurtosis
decreases, the biases in the correlations decrease as expected, but the previous conclusions
remain unaltered. No major differences in the biases are found when moving from small
samples to large samples (even though the t-statistics are slightly smaller), as well as
when moving from bivariate to 10-variate normal copulas. Interestingly, these results
remain mostly unchanged even when using an ill-specified correlation matrix for the normal
copula, whose lowest eigenvalue is close to zero.
The second contribution of this paper is an analysis of copula-GARCH models in terms of
numerical convergence and positive definiteness of the estimated copula correlation ma-
trix. The numerical maximization of the log-likelihood function fails to converge mostly
when the marginals DGP is leptokurtic and asymmetric and we deal with small samples.
In this case, the use of misspecified normal marginals determines the highest number of
convergence failures (close to 50%), but the correctly specified Generalized-t marginals
do not perform much better (over 30%). Similarly to the biases in the copula correla-
tions, leptokurtosis has a stronger effect on numerical convergence than asymmetry, and
convergence improves when leptokurtosis decreases.
Interestingly, we observe that the type of correlation matrix for the normal copula does
not affect the number of convergence failures, which remains constant across different
specifications. Furthermore, our simulation studies show that even when the true correla-
tion matrix is ill-conditioned, the estimated correlation matrix is always positive definite
without any constraints. These results confirm recent evidence in Fantazzini (2008) who
compares different estimation methods for the T-copula and finds that the correlation
matrix can be non positive definite only when dealing with very small samples (n < 100)
and when the true underlying process has the lowest eigenvalue close to zero.
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A Technical appendix

Figure 5: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for the bivariate copula
correlations when T=500 and the empirical marginals are symmetric Student’s t. The
DGP values of ν and λ are reported in the top of the plots.
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Figure 6: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for the bivariate copula
correlations when T=500 and the empirical marginals are Generalized-t. The DGP values
of ν and λ are reported in the top of the plots.
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Figure 7: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Normal
copula with the correlation matrix reported in Table 1, when T=500 and the empirical
marginals are symmetric Student’s t. The DGP values of ν and λ are reported in the top
of the plots.
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Figure 8: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Normal
copula with the correlation matrix reported in Table 1, when T=500 and the empirical
marginals are Generalized-t. The DGP values of ν and λ are reported in the top of the
plots.
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Figure 9: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Normal
copula with the correlation matrix reported in Table 2, when T=500 and the empirical
marginals are symmetric Student’s t. The DGP values of ν and λ are reported in the top
of the plots.
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Figure 10: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Normal
copula with the correlation matrix reported in Table 2, when T=500 and the empirical
marginals are Generalized-t. The DGP values of ν and λ are reported in the top of the
plots.
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Figure 11: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Normal
copula with the correlation matrix reported in Table 3, when T=500 and the empirical
marginals are symmetric Student’s t.
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Figure 12: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Normal
copula with the correlation matrix reported in Table 3, when T=500 and the empirical
marginals are Generalized-t. The DGP values of ν and λ are reported in the top of the
plots.
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Figure 13: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for the bivariate copula
correlation when T=2000 and the empirical marginals are Normal. The DGP values of ν
and λ are reported in the top of the plots.
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Figure 14: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for the bivariate copula
correlation when T=2000 and the empirical marginals are symmetric Student’s t. The
DGP values of ν and λ are reported in the top of the plots.
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Figure 15: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for the bivariate copula
correlation when T=2000 and the empirical marginals are Generalized-t. The DGP values
of ν and λ are reported in the top of the plots.
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Figure 16: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Nor-
mal copula with correlation matrix reported in Table 1, when T=2000 and the empirical
marginals are Normal. The DGP values of ν and λ are reported in the top of the plots.
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Figure 17: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Nor-
mal copula with correlation matrix reported in Table 1, when T=2000 and the empirical
marginals are symmetric Student’s t. The DGP values of ν and λ are reported in the top
of the plots.
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Figure 18: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Nor-
mal copula with correlation matrix reported in Table 1, when T=2000 and the empirical
marginals are Generalized-t. The DGP values of ν and λ are reported in the top of the
plots.
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Figure 19: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Nor-
mal copula with correlation matrix reported in Table 2, when T=2000 and the empirical
marginals are Normal. The DGP values of ν and λ are reported in the top of the plots.
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Figure 20: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Nor-
mal copula with correlation matrix reported in Table 2, when T=2000 and the empirical
marginals are symmetric Student’s t. The DGP values of ν and λ are reported in the top
of the plots.
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Figure 21: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Nor-
mal copula with correlation matrix reported in Table 2, when T=2000 and the empirical
marginals are Generalized-t. The DGP values of ν and λ are reported in the top of the
plots.
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Figure 22: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Nor-
mal copula with correlation matrix reported in Table 3, when T=2000 and the empirical
marginals are Normal. The DGP values of ν and λ are reported in the top of the plots.
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Figure 23: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Nor-
mal copula with correlation matrix reported in Table 3, when T=2000 and the empirical
marginals are symmetric Student’s t. The DGP values of ν and λ are reported in the top
of the plots.
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Figure 24: Mean bias (in %), and t-test for the null hypothesis that the empirical mean
across simulations is equal to the true value. Monte Carlo results for 10-variate Nor-
mal copula with correlation matrix reported in Table 3, when T=2000 and the empirical
marginals are Generalized-t. The DGP values of ν and λ are reported in the top of the
plots.
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Figure 25: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient µ when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Normal. The DGP values of ν and λ are reported in the top
of the plots.
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Figure 26: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient ω when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Normal. The DGP values of ν and λ are reported in the top
of the plots.
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Figure 27: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient α when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Normal. The DGP values of ν and λ are reported in the top
of the plots.
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Figure 28: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient β when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Normal. The DGP values of ν and λ are reported in the top
of the plots.
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Figure 29: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient µ when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Normal. The DGP values of ν and λ are reported in the
top of the plots.
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Figure 30: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient ω when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Normal. The DGP values of ν and λ are reported in the
top of the plots.
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Figure 31: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient α when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Normal. The DGP values of ν and λ are reported in the
top of the plots.
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Figure 32: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient β when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Normal. The DGP values of ν and λ are reported in the
top of the plots.
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Figure 33: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient µ when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Student’s t. The DGP values of ν and λ are reported in the
top of the plots.
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Figure 34: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient ω when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Student’s t. The DGP values of ν and λ are reported in the
top of the plots.
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Figure 35: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient α when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Student’s t. The DGP values of ν and λ are reported in the
top of the plots.
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Figure 36: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient β when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Student’s t. The DGP values of ν and λ are reported in the
top of the plots.
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Figure 37: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient ν when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Student’s t. The DGP values of ν and λ are reported in the
top of the plots.
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Figure 38: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient µ when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Student’s t. The DGP values of ν and λ are reported in
the top of the plots.
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Figure 39: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient ω when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Student’s t. The DGP values of ν and λ are reported in
the top of the plots.
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Figure 40: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient α when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Student’s t. The DGP values of ν and λ are reported in
the top of the plots.
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Figure 41: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient β when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Student’s t. The DGP values of ν and λ are reported in
the top of the plots.
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Figure 42: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient ν when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Student’s t. The DGP values of ν and λ are reported in
the top of the plots.
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Figure 43: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient µ when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Generalized-t. The DGP values of ν and λ are reported in the
top of the plots.
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Figure 44: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient ω when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Generalized-t. The DGP values of ν and λ are reported in the
top of the plots.
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Figure 45: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient α when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Generalized-t.
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Figure 46: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient β when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Generalized-t. The DGP values of ν and λ are reported in the
top of the plots.
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Figure 47: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient ν when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Generalized-t. The DGP values of ν and λ are reported in the
top of the plots.
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Figure 48: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient λ when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 500 and
the empirical marginals are Generalized-t. The DGP values of ν and λ are reported in the
top of the plots.
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Figure 49: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient µ when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Generalized-t. The DGP values of ν and λ are reported
in the top of the plots.
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Figure 50: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient ω when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Generalized-t. The DGP values of ν and λ are reported
in the top of the plots.
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Figure 51: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient α when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Generalized-t. The DGP values of ν and λ are reported
in the top of the plots.
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Figure 52: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient β when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Generalized-t. The DGP values of ν and λ are reported
in the top of the plots.
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Figure 53: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient ν when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Generalized-t. The DGP values of ν and λ are reported
in the top of the plots.
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Figure 54: Mean bias (in %), Median bias (in %), and t-test for the null hypothesis that the
empirical mean across simulations is equal to the true value. Monte Carlo results for the
marginal coefficient λ when the True DGP is a Generalized-t with parameters ν = [3, 10],
λ = [−0.5, 0,−0.5], the bivariate copula correlation ranges in ρ ∈ [−0.9, 0.9], T = 2000
and the empirical marginals are Generalized-t. The DGP values of ν and λ are reported
in the top of the plots.
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