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Abstract

For various classes of vector optimization problems, necessary and su�cient optimality con-

ditions are developed in terms of �rst order tangent cones and second order tangent sets and cones.

Additional remarks are also made.

Key words
Vector optimization problems, e�cient points, optimality conditions,

tangent cones, tangent sets.

1 Dipartimento di Scienze Economiche e Aziendali, Facolt�a di Economia, Universit�a degli Studi di Pavia,
(Italy). E-mail: ggiorgi@eco.unipv.it

2 Dipartimento di Scienze Economiche e Aziendali, Facolt�a di Economia, Universit�a degli Studi di Pavia,
(Italy). E-mail: czuccotti@eco.unipv.it



1 Introduction, notations and preliminaries

First order tangent cones and second order tangent cones and sets play a central
role, not only in scalar optimization problems but also in vector optimization problems.
In the present paper we point out some uses and applications of some �rst and second
order tangent cones and of second order tangent sets, in obtaining necessary and su�cient
optimality conditions for various types of vector optimization problems, under di�erent
di�erentiability assumptions. The paper is organized as follows. Section 1 is the Intro-
duction; Section 2 is concerned with the use of some �rst and second order tangent sets
to obtain optimality conditions for a vector optimization problem with a set constraint.
Section 3 is concerned with optimality conditions, via tangent cones and sets, under twice
di�erentiability, whereas Section 4 develops optimality conditions under Hadamard di�er-
entiability. Section 5 is concerned with a multiplier rule for a nonsmooth problem. The
last Section 6 makes some comments on a "gap" between scalar and vector optimization,
with reference to the Guignard-Gould-Tolle constraint quali�cation.
We consider a nonempty set E of a partially ordered real space Y (e. g. Y = Rn).

De�nition 1.

A binary relation � on Y is called a partial ordering on Y if the following properties
are satis�ed (for arbitrary x; y; z; u 2 Y and � 2 R+):

(i) x � x;
(ii) x � y; y � z =) x � z;
(iii) x � y; u � z =) x+ u � y + z;
(iv) x � y =) �x � �y:

A partial ordering is called antisymmetric if the following condition holds: x � y; y �
x =) x = y:

De�nition 2.

A real linear space equipped with a partial ordering is called a partially ordered linear
space.

Here we give a characterization of a partial ordering in a real linear space.

Theorem 1.

(i) If � is a partial ordering on Y , then the set

D = fx 2 Y : 0 � xg

is a convex cone. If, in addition, � is antisymmetric, then D is pointed.

(ii) If D is a convex cone in Y , then the binary relation

x �D y () y � x 2 D

is a partial ordering on Y . If, in addition, D is pointed, then � is antisymmetric.

We recall that a nonempty set D � Y is a cone if x 2 D;� � 0 =) �x 2 D (some
authors require only � > 0). A cone D is pointed if D \ (�D) = f0g :
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The most usual ordering cone in a �nite dimensional space Rn is given by the non
negative orthant Rn+. This set is a pointed, closed and convex cone that de�nes the
componentwise partial ordering on Rn, also called a Pareto order. We shall be mainly
concerned with this case.
One of the most important applications of the vectorial optimization techniques is

found in the study of vectorial mathematical programming problems, and, as a particular
case, in multiobjective programming problems. In general, if X;Y; Z and W are partially
ordered linear spaces, with D � Y the ordering cone on Y , K � Z the ordering cone on
Z and M � X a nonempty set, we may consider a generic vectorial optimization problem

Min f(x), subject to x 2M , (1)

where f : X �! Y , and a constrained vectorial optimization problem

Min f(x), subject to x 2M , (2)

where M = S \Q,

S = fx 2 X : g(x) 2 �K; h(x) = 0g, Q � X;
f : X �! Y; g : X �! Z; h : X �! W:

The set Q is also called "set constraint" or "abstract constraint". Usually Q = X:
When (2) is specialized to a multiobjective (nonlinear) programming problem, we have

the formulation
Min f(x), subject to x 2M; (3)

where M = S \Q,

S = fx 2 Rn : g(x) �K 0; h(x) = 0g ; Q � Rn;
f : Rn �! Rp; g : Rn �! Rm; h : Rn �! Rr:

If D = R
p
+ and K = Rm+ , we have the classical multiobjective Pareto problem or vector

Pareto problem. Finally, if p = 1 and D = R+, (3) collapses to the usual scalar nonlinear
programming problem.

Now we give the solution concepts for a vector optimization problem. We consider only
e�cient and weak e�cient solutions (see, e. g., Ehrgott (2005), Ehrgott and Gandibleaux
(2002), Luc (1989), Jahn (2005), Miettinen (1999), Sawaragi and others (1985)), but in
vector optimization there are other solution concepts, such as proper e�cient points (for
a survey on the various de�nitions of proper e�cient points, see the paper of Guerraggio,
Molho and Za�aroni (1994)). We consider problem (1), with X � Rn; Y � Rp;M � Rn

and the ordering cone D � Rp convex, closed, pointed and with int(D) 6= ?:
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De�nition 3.

A point x0 2M is said to be a global e�cient point of (1) if, for each x 2M;

f(x0)� f(x) =2 D� f0g

i. e.
f(x) =2 f(x0)� (D� f0g)

i.e.
f(x)� f(x0) \ (�D) = f0g :

A point x0 2M is said to be a global weak e�cient point of (1), if, for each x 2M ,

f(x0)� f(x) =2 int(D)

i.e.

f(x) =2 f(x0)� int(D)

i.e.
f(x)� f(x0) \ (�int(D)) = f0g :

If the previous conditions are veri�ed in N(x0) \M , where N(x0) is a suitable neighbor-
hood of x0, then x0 is said to be a local e�cient point or a local weak e�cient point,
respectively. If D = Rp+ we have the Paretian case.

In the scalar case, i.e. with p = 1, we have D� f0g = int(D) = R+� f0g, so that
the previous de�nitions collapse to the ordinary de�nition of a local or global minimum
point. Obviously, (local) e�ciency implies (local) weak e�ciency, so it is usual to give
the necessary optimality conditions for weak e�cient points and the su�cient optimality
conditions for e�cient points. From now on we consider real �nite-dimensional spaces
and consider the following tangent cones and sets.

De�nition 4.

Let M 2 Rn and x0 2 cl(M); v 2 Rn.
(a) The tangent cone to M at x0 (or Bouligand tangent cone or contingent cone to M
at x0) is given by

T (M;x0) = fy 2 Rn : 9 f�ng � R; 9 fx
ng �M; �n �! +1; xn �! x0

such that �n(x
n � x0) �! yg :

Equivalently:

T (M;x0) =
�
y 2 Rn : 9tn �! 0+; 9yn �! y such that x0 + tny

n 2M; 8n 2 N
	
:

(b) The interior tangent cone to M at x0 (or cone of the interior directions to M at
x0: see, e. g., Bazaraa and Shetty (1976)) is given by
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TI(M;x0) = y 2 fRn : 9� > 0 such that
x0 + ty0 2M; 8t 2 (0; �); 8y0 2 N(y; �)g :

Equivalently:

TI(M;x0) = fy 2 Rn : 8tn �! 0+; 9yn �! y; x0 + tny
n 2M;

for n large enough g :

(c) The second order tangent set to M at (x0; v) is given by

T 2(M;x0; v) = fw 2 Rn : 9tn �! 0+; 9wn �! w such that
xn = x0 + tnv +

1
2
t2nw

n 2M; 8n 2 N
	
:

(d) The asymptotic second order cone to M at (x0; v) is given by

T 00(M;x0; v) = fw 2 Rn : 9(tn; rn) �! (0+; 0+); 9wn �! w such that

(tn=rn) �! 0; xn = x0 + tnv +
1
2
tnrnw

n 2M; 8n 2 N
	
:

The tangent cone T , the interior tangent cone TI and the second order tangent set T 2

(which is not necessarily a cone) are well-known. See, e. g. the paper of Giorgi, Jimenez
and Novo (2010). The asymptotic second order tangent cone T 00 has been independently
introduced by Penot (1998) and by Cambini, Martein and Vlach (1999) in order to state
optimality conditions in scalar optimization. We now collect some properties of these �rst
and second order tangent sets and cones. First note that T (M;x0) = f0g if and only if
x0 is an isolated point and in such a case x0 is obviously both a weak e�cient point and
an e�cient point for problem (1).

Theorem 2.

Let M � Rn be a convex set and x0 2 cl(M). Then we have
(i) T (M;x0) = cl(cone(M � x0)):
If, moreover, int(M) 6= ?, then

(ii) TI(int(M); x0) = TI(M;x0) = int(cone(M � x0):
(iii) cl(TI(M;x0)) = T (M;x0):
If, moreover, M is a cone, then

(iv) TI(M; 0) = TI(int(M); 0) = int(M):

Theorem 3.

Let M be a subset of Rn and let x0 2 cl(M); v 2 Rn:
(i) T 2(M;x0; v) and T 00(M;x0; v) are closed sets contained in

cl fcone [cone(M � x0)� v]g and T 00(M;x0; v) is a cone.
(ii) If v =2 T (M;x0); then T 2(M;x0; v) = T 00(M;x0; v) = ?:
(iii) T 2(M;x0; 0) = T 00(M;x0; 0) = T (M;x0):
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Theorem 4.

Let M � Rn be a convex set, x0 2M; v 2 T (M;x0): Then:

(i) T 2(M;x0; v) + T (T (M;x0); v) � T 2(M;x0; v):

(ii) T (T (M;x0); v) = cl fcone [cone(M � x0)� v]g :

(iii) If T 00(M;x0; v) 6= ?, then

T 00(M;x0; v) = cl fcone [cone(M � x0)� v]g and T 2(M;x0; v) � T"(M;x0; v):

See, e. g., Aubin and Frankowska (1990), Giorgi and Guerraggio (1992, 2002), Jimenez
and Novo (2004), Giorgi, Jimenez and Novo (2010).

2 Optimality Conditions in Vector Optimization

In this Section we state some general optimality conditions (necessary and/or su�-
cient) for a vector optimization problem, using the �rst and second order tangent sets and
cones previously introduced. We consider problem (1), where X = Rn; Y = Rp; M �
Rn; D ordering cone (closed, convex, pointed and with int(D) 6= ?) of Rp:

Theorem 5.

Consider problem (1), where f is di�erentiable at x0. If x0 is a weak local e�cient
point for (1), then

rf(x0)y =2 �int(D);8y 2 T (M;x0): (4)

Proof.

(Here rf(x0) obviously denotes the Jacobian matrix of f at x0). Let y 2 T (M;x0);
then there exist fxng �M; f�ng � R, x

n �! x0; �n �! +1; such that �n(x
n�x0) �! y:

By Taylor's expansion we have

f(xn)� f(x0) = rf(x0)(xn � x0) + o(k xn � x0 k)

where lim
xn�!x0

o(kxn�x0k)
kxn�x0k

= 0:

Consequently,

�n(f(x
n)� f(x0)) = rf(x0)(�n(x

n � x0)) + �no(k x
n � x0 k):

It results

�no(k x
n � x0 k) = �n k x

n � x0 k
o(k xn � x0 k)

k xn � x0 k
�! 0;

so that

�n(f(x
n)� f(x0)) �! rf(x0)y:

On the other hand the weak local e�ciency of x0 implies the existence of �n such that
8n > �n it results
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f(xn)� f(x0) =2 �int(D); so that �n(f(x
n)� f(x0)) =2 �int(D) and thus

lim
xn�!x0

�n(f(x
n)� f(x0)) = rf(x0)y =2 �int(D):

The thesis follows. �

We remark that if p = 1; D = R+ (scalar case), the optimality condition of Theo-
rem 5 collapses to the well known necessary optimality condition: rf(x0)y � 0;8y 2
T (M;x0); or equivalently �rf(x0) 2 (T (M;x0))�; where A� is the polar cone of A:
A� = fy 2 Rn : yx � 0;8x 2 Ag :

Obviously (4) is equivalent to

T (M;x0) \ C0(f; x
0) = ?; (5)

where C0(f; x
0) = fy 2 Rn : rf(x0)y 2 �int(D)g :

The following theorem states a su�cient optmality condition for the same problem
(1).

Theorem 6.

Consider problem (1), under the same assumptions of Theorem 5. A su�cient condi-
tion for x0 to be a local e�cient point for (1) is

rf(x0)y =2 �D; 8y 2 T (M;x0); y 6= 0: (6)

Proof.

Assume that x0 is not a local e�cient point for (1). Then there exists a feasible
sequence fxng with xn �! x0 and f(xn)� f(x0) 2 �D� f0g : By Taylor's expansion we
have

f(xn)� f(x0)

k xn � x0 k
= rf(x0)

�
xn � x0

k xn � x0 k
+
o(k xn � x0 k)

k xn � x0 k

�
:

Since xn�x0

kxn�x0k
�! y 2 T (M;x0) and o(kxn�x0k)

kxn�x0k
�! 0; we have rf(x0)y 2 �D,

in contradiction with the thesis. �

IfM = Rn orM is an open set or x0 2 int(M); problem (1) becomes an unconstrained
problem. In such a case the tangent cone T (M;x0) is the whole space Rn, so that the
necessary optimality condition of Theorem 5 becomes

rf(x0)y =2 �int(D); 8y 2 Rn; (7)

whereas the su�cient optimality condition of Theorem 6 becomes

rf(x0)y =2 �D; 8y 2 Rn; y 6= 0: (8)

In the scalar case (p = 1; D = R+), (7) reduces to the classical Fermat rule f
0(x0) = 0;

whereas (8) is inconsistent (unlike the vector case).
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The optimality conditions (5) and (6) can be expressed by means of multipliers.
Assume, for simplicity, that D = Rp+:

Theorem 7.

Consider the di�erentiable problem (1), where M � Rn is open or x0 2 int(M); and
D = Rp+:
(i) If x0 is a weak local e�cient point, then

9� 2 Rp+� f0g : �rf(x
0) = 0: (9)

(ii) If (9) holds with � 2 int (Rp+), i. e. with � positive vector of R
p and kerrf(x0) =

f0g ; i. e. rankrf(x0) = n; then x0 is a local e�cient point for (1).

Proof.

(i) If we set V = fv 2 Rp : v = rf(x0)y; y 2 Rng ; the relation
rf(x0)y =2 �intRp+; 8y 2 R

n; is obviously equivalent to state

V \ �intRp+ = ?:

The thesis follows from a well known theorem of the alternative (Gordan theorem).
(ii) We can use the Stiemke theorem of the alternative: between the systems

�rf(x0) = 0; � > 0 and rf(x0)v � 0; rf(x0)v 6= 0 or

rf(x0)v � 0; rf(x0)v 6= 0;

one and only one has solutions. Taking into account that, being rankrf(x0) = n; the
system rf(x0)v = 0 admits only the solution v = 0, we obtain the su�cient condition
(8), with D = Rp+: �

For a more general approach to su�cient �rst-order optimality conditions see Giorgi,
Jimenez and Novo (2008). We have to note that condition (ii) is not very useful, as it is
the same both for local e�cient minimum points and for local e�cient maximum points.
In order to obtain useful conditions one has to impose some kind of generalized convexity
(or concavity, in case of a maximum problem) on the objective function f (see, e. g.,
Cambini and Martein (1993, 1994)).
Now we give the e�ciency criteria in the image space. Consider again problem (1),

with f : Rn �! Rp and M � Rn; D closed convex pointed cone of Rp; with int(D) 6= ?:
Denote by E � Rp the image of the feasible set, i. e. E = f(M):

Theorem 8.

If y� 2 E � Rp is a local weak minimum of E (with respect to D), then the following
conditions are satis�ed:
(i) T (E; y�) \ TI(�D; 0) = ?:
(ii) T 2(E; y�; u) \ TI(�int(D); u) = ?, for all u 2 T (E; y�) \ bd(�D):
(iii) T 00(E; y�; u) \ TI(�int(D); u) = ?, for all u 2 T (E; y�) \ bd(�D):
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Proof.

(i) From Theorem 2 (iv) we have that TI(�D; 0) = TI(�int(D); 0): Let us suppose that
there exists v 2 T (E; y�) \ TI(�D; 0): As v 2 T (E; y�); there exist sequences
fyng � E; fyng �! y� and ftng �! 0+; such that vn = ((yn � y�)=tn) �! v; then

yn = y� + tnv
n 2 E; 8n 2 N. (10)

On the other hand, since v 2 TI(�int(D); 0); there exists � > 0 such that 0 + tv0 2
�int(D); 8t 2 (0; �] ;8v0 2 N(v; �): Now, for this � > 0, there exists n0 2 N such that
tn 2 (0; �] and v

n 2 N(v; �) for all n � n0: Making t = tn and v
0 = vn, we have that

�dn = tnv
n 2 �int(D); 8n � n0 and taking (10) into account, it follows that

yn = y� � dn 2 E; dn 2 int(D)

in contradiction withthe local weak minimality of y�:

(ii) and (iii) The proofs of (ii) and (iii) are similar, taking the respective de�nitions
of T 2 and T" into account, so we only prove part (iii). See also Jimenez and Novo
(2004). Suppose that there exists z 2 T 00(E; y�; u) \ TI(�int(D); u): By the de�nition of
the set T 00(E; y�; u); there exist sequences (tn; rn) �! (0+; 0+) and zn �! z such that
(tn=rn) �! 0 and

yn = y� + tnu+
1

2
tnrnz

n 2 E; 8n 2 N. (11)

On the other hand, as z 2 TI(�int(D); u); there exists � > 0 such that

u+ �z0 2 �int(D);8� 2 (0; �); z0 2 N(z; �):

For this � > 0 there exists an n0 2 N such that 1
2
rn 2 (0; �) and z

n 2 N(z; �) for all
n � n0: So, u+

1
2
rnz

n 2 �int(D); and consequently

�dn = tnu+
1

2
tnrnz

n 2 �int(D):

Thus (11) can be written

yn = y� � dn; with dn 2 int(D);

in contradiction to the local weak e�ciency of y�: �

The theorem that follows (see Jimenez and Novo (2004)) establishes su�cient condi-
tions for local e�ciency in the image space of problem (1).

Theorem 9.

Let y� 2 E: If one of the following conditions holds:
(i) T (E; y�) \ �D = f0g :
(ii) For each u 2 T (E; y�) \ �D� f0g we have

T 2(E; y�; u) \ u? \ �cl(cone(D + u)) = ?

T 00(E; y�; u) \ u? \ �cl(cone(D + u)) = f0g

then y� is a local e�cient point of E:

Here u? denotes the orthogonal complement of u:
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3 Optimality conditions under twice di�erentiability

In the present Section, as an application to vector optimization of second order
tangent sets and asymptotic second order tangent cones, we assume twice Fr�echet di�er-
entiability of the functions involved and shall establish, on the grounds of Jimenez and
Novo (2004), second order necessary optimality conditions for problem (1) and second
order su�cient conditions, without any "gap" between them.
We consider problem (1), with f : Rn �! Rp; M � Rn; and the partial ordering in

Rp de�ned through a closed, pointed convex cone D with nonempty interior. Let x0 2M
be a feasible point for problem (1). We continue to denote the Jacobian matrix of f at
x0 by rf(x0); whereas f 00(x0) denotes the second order Fr�echet derivative of f at x0 (in
other words f 00(x0)(v; v) is the vector whose i�th component is v>r2fi(x

0)v): Following
Jimenez and Novo (2004), we de�ne the following cones.
C0(f; x

0) = fv 2 Rn : rf(x0)v 2 �int(D)g ;
C(f; x0) = fv 2 Rn : rf(x0)v 2 �Dg ;
Let v 2 C(f; x0); then

C20(f; x
0; v) = fw 2 Rn : rf(x0)w + f 00(x0)(v; v) 2 �int(cone(D +rf(x0)v))g ;

C2(f; x0; v) = fw 2 Rn : rf(x0)w + f 00(x0)(v; v) 2 �cl(cone(D +rf(x0)v))g ;
C 000 (f; x

0; v) = fw 2 Rn : rf(x0)w 2 �int(cone(D +rf(x0)v))g ;
C 00(f; x0; v) = fw 2 Rn : rf(x0)w 2 �cl(cone(D +rf(x0)v))g :

Theorem 10.

Let x0 be a local weak e�cient point for (1). Then

(i) T (M;x0) \ C0(f; x
0) = ?:

(ii) For each v 2 T (M;x0) \ [C(f; x0)�C0(f; x
0)] it holds

T 2(M;x0; v) \ C20(f; x
0; v) = ? (12)

T 00(M;x0; v) \ C 000 (f; x
0; v) = ?: (13)

This proposition improves Theorem 3.1 in Bigi and Castellani (2000), Theorem 3.1 in
Jimenez and Novo (2003), Theorem 3.7 in Cambini and Martein (2002) and Theorem 3.3
in Hachimi and Aghezzaf (2007). Obviously, part (i) is nothing but Theorem 5. Part (ii)
is valid for all v 2 Rn; but is only meaningful for v 2 T (M;x0) \ [C(f; x0)�C0(f; x

0)] :
See Jimenez and Novo (2004).
If D = Rp+; we obtain the following necessary conditions for a Pareto problem.

Theorem 11.

Let in (1) be D = Rp+: If x
0 is a local weak e�cient point for (1), then for each

v 2 T (M;x0) \ fv 2 Rn : rfi(x
0)v � 0; 8i = 1; 2; :::p

and rfi(x
0)v = 0 for some ig

the following systems in w 2 Rn are incompatible:
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(a)

(
w 2 T 2(M;x0; v)

rfi(x
0)w + f 00i (x

0)(v; v) < 0; 8i 2 I(v);

(b)

(
w 2 T 00(M;x0; v)

rfi(x
0)w < 0; 8i 2 I(v);

where I(v) = fi : rfi(x
0)v = 0g :

The result is just Theorem 3.7 in Cambini and Martein (2002) and also coincides with
Corollary 3.2 in Hachimi and Aghezzaf (2007).
Now we associate to the necessary conditions of Theorem 11 the su�cient conditions

of the same type. We need a further de�nition and some previous results. Let us again
consider problem (1), for the �nite-dimensional case. The following notion was introduced
by Jimenez (2002).

De�nition 5.

Let k � 1 an integer. The point x0 2M is said to be a strict local minimum of order
k for problem (1), denoted x0 2 Strl(k; f;M); if there exist � > 0 and a neighborhood U
of x0 such that

(f(x) +D) \N(f(x0); �kx� x0kk) = ?; 8x 2M \ U�
�
x0
	
:

When D = Rp+; such a point is called a strict local Pareto minimum of order k:

De�nition 5 becomes the notion introduced by Hestenes (1966, 1975) of strict local
minimum of order k = 1; 2; when p = 1; D = R+ :

f(x) � f(x0) + �kx� x0kk; 8x 2M \ U�
�
x0
	
:

We have that every strict local minimum of order k is also of order j, for j � k; and
every strict local minimum of order k is a local minimum (see Jimenez (2002)).
We have the following results, due to Jimenez and Novo (2004), which show that by

a joint use of T 2 and T 00; there is no "gap" between necessary optimality conditions and
su�cient optimality conditions for problem (1). In fact we have

T 2(M;x0; v) \ v? \ C20(f; x
0; v) = ?() T 2(M;x0; v) \ C20(f; x

0; v) = ?;

T 00(M;x0; v) \ v? \ C 000 (f; x
0; v) = ?() T 00(M;x0; v) \ C 000 (f; x

0; v) = ?:

Theorem 12.

Let us consider problem (1) and let x0 2M � Rn :

(i) T (M;x0) \ C(f; x0) = f0g if and only if x0 2 Strl(1; f;M):

(ii) If for every v 2 T (M;x0) \ [C(f; x0)� f0g] we have

T 2(M;x0; v) \ v? \ C20(f; x
0; v) = ?;

T 00(M;x0; v) \ v? \ C 000 (f; x
0; v) = f0g ;

then x0 2 Strl(2; f;M):

10



This proposition improves Theorem 3.8 in Cambini and Martein (2002), Theorem 3.6
in Hachimi and Aghezzaf (2007) and extends Theorem 4 in Cambini, Martein and Vlach
(1999) to vector optimization. Moreover, relation (i) improves relation (i) of the previous
Theorem 10. The inclusion of the orthogonal subspace to v in the su�cient conditions is
a slight improvement, as it holds

T 2(M;x0; v) \ v? \ C2(f; x0; v) = ?() T 2(M;x0; v) \ C2(f; x0; v) = ?

but

T 00(M;x0; v) \ v? \ C 00(f; x0; v) = f0g () T 00(M;x0; v) \ C 00(f; x0; v) = lin fvg ;

where lin fvg is the subspace generated by v:
When D = Rp+ (Pareto case) we have the following su�cient optimality conditions for

strict Pareto minimality.

Theorem 13.

Let in problem (1) beD = Rp+; M � Rn; f : Rn �! Rp: If for each v 2 T (M;x0)� f0g
satisfying rf(x0)v � 0 one has that the following systems in w 2 Rn are incompatible:

(a)

(
w 2 T 2(M;x0; v) \ v?

rfi(x
0)w + f 00i (x

0)(v; v) � 0; 8i 2 I(v);

(b)

(
w 2 T 00(M;x0; v) \ v?� f0g

rfi(x
0)w < 0; 8i 2 I(v);

then x0 is a strict local Pareto minimum of order 2 for f on M:

4 Optimality Conditions in Nonsmooth Vector Opti-

mization Problems

In this Section we apply the previous results to a vector optimization problem with
nonsmooth data, more precisely under Hadamard di�erentiability. We recall some basic
de�nitions and properties.

De�nition 6.

Let f : X �! R, with X � Rn and x0; v 2 Rn:
(a) The Hadamard derivative of f at x0 in the direction v is

df(x0; v) = lim
(t;u)�!(0+;v)

f(x0 + tu)� f(x0)

t
:

(b) The directional derivative (or Dini derivative) of f at x0 in the direction v is

Df(x0; v) = lim
t�!0+

f(x0 + tv)� f(x0)

t
:
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(c) f is Hadamard (resp. Dini) di�erentiable at x0 if there exists df(x0; v) (resp.
Df(x0; v)) for all v 2 X: In the one-dimensional case (Rn = R) the Hadamard derivative
coincides with the Dini derivative.

De�nition 7.

A function f : X �! R, X � Rn, is said to be Lipschitz continuous on a set S � X;
modulus c (c � 0); if for all x1; x2 2 S it follows that

j f(x1)� f(x2) j� c k x1 � x2 k :

If f is Lipschitz continuous (modulus c) in a neighborhood of a point x0 2 X; f is said
to be locally Lipschitz at x0 (see, e. g. Clarke (1983)).

The above de�nitions can at once be generalized to vector-valued functions and to
functions de�ned on a vector normed space and with values on another vector normed
space. It is well known that:

(i) if f is Fr�echet di�erentiable at x0; then rf(x0)v = df(x0; v);

(ii) if there exists df(x0; v), then there exists Df(x0; v) and both derivatives are the
same;

(iii) if f is locally Lipschitz at x0 and there exists the Dini derivative at x0; then there
exists the Hadamard derivative at x0;

(iv) if f is Hadamard di�erentiable at x0; then f is continuous at x0 and df(x0; :) is
continuos on X: This property is not true for a Dini-type derivative.

See, e. g., Bonnans and Shapiro (2000), Demyanov and Rubinov (1995).
Next we recall the notion of Dini subdi�erential.

De�nition 8.

Let f : X �! R, X � Rn, be Dini di�erentiable at x0: The Dini subdi�erential of f
at x0 is

@Df(x
0) =

�
� 2 Rn : �v � Df(x0; v); 8v 2 X

	
:

It is well known that if Df(x0; :) is a convex function, then there exists the Dini
subdi�erential, i. e. this one is a nonempty set. If Df(x0; :) is not a convex function,
then @Df(x

0) can be the empty set.
We consider again problem (1), with f : Rn�!Rp; M � Rn; D � Rp (D closed,

pointed convex cone with a nonempty interior) and f Hadamard di�erentiable at x0 2M:
We rede�ne the critical cone C(f; x0) and the strict critical cone C0(f; x

0) as follows:

CH(f; x0) =
�
v 2 Rn : df(x0; v) 2 �D

	

CH0 (f; x
0) =

�
v 2 Rn : df(x0; v) 2 �int(D)

	
:

In the following lemma we prove an interesting property of the Hadamard derivative.
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Lemma 1.

Let M � Rn; x0 2M and v 2 Rn:

(i) If there exist df(x0; v) and v = lim
n�!1

(xn � x0)=tn, with tn �! 0+ and xn 2M; then

lim
n�!1

f(xn)� f(x0)

tn
= df(x0; v):

(ii) If f is Hadamard di�erentiable at x0, then

df(x0; :)(T (M;x0)) � T (f(M); f(x0)):

Proof.

If v 2 T (M;x0); then there exist sequences fxng �! x0; fxng � M; and ftng �! 0+

such that vn = ((xn � x0)=tn) �! v; so

df(x0; v) = lim
(t;u)�!(0+;v)

f(x0 + tu)� f(x0)

t
= lim

n�!1

f(x0 + tnv
n)� f(x0)

tn

= lim
n�!1

f(xn)� f(x0)

tn

and part (i) follows.
Since f is continuous at x0 we have that ff(xn)g �! f(x0): Taking into account that

f(xn) 2 f(M) and that ftng �! 0+; we deduce that

df(x0; v) 2 T (f(M); f(x0));

and the proof is �nished. �

As an application of Theorem 8 we prove the following �rst order necessary optimality
conditions for problem (1), under Hadamard di�erentiability.

Theorem 14.

Let f : Rn�!Rp be Hadamard di�erentiable at x0 2M: If x0 is a local weak e�cient
point for problem (1), then

T (M;x0) \ CH0 (f; x
0) = ?;

i.e.
df(x0; v) =2 �int(D);8v 2 T (M;x0):

Proof.

If x0 is a local weak e�cient point for (1), there exists a neighborhood of x0 such that
f(x0) = y�; with y� local weak e�cient vector for the set f(M \ U); always under the
ordering expressed by the cone D: From Theorem 8 we have that

T (f(M \ U); y�) \ TI(�D; 0) = ?;
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equivalent to
T (f(M \ U); y�) \ (�int(D)) = ?:

Since T (M \ U; x0) = T (M;x0); from Lemma 1 it follows that

df(x0; :)(T (M;x0)) = df(x0; :)(T (M \ U; x0)) � T (f(M \ U); y�);

consequently df(x0; :)(T (M;x0)) \ (�int(D)) = ?: Using the inverse of df(x0; :); we con-
clude that T (M;x0) \ CH0 (f; x

0) = ?: �

Similarly to Theorem 6, a su�cient local optimality condition can be stated for prob-
lem (1), under Hadamard di�erentiability: a su�cient condition for x0 2M to be a local
e�cient point for problem (1) is:

T (M;x0) \ CH0 (f; x
0) = f0g ; (14)

i. e.
df(x0; v) =2 �D; 8v 2 T (M;x0); v 6= 0: (15)

However, this result can be improved; indeed, Jimenez and Novo (2004) have proved
the following proposition.

Theorem 15.

Let us suppose that x0 2 M � Rn and f Hadamard di�erentiable at x0. Then (14)
(or equivalently (15)) holds if and only if x0 2 Strl(1; f;M):

Obviously, Theorems 14 and 15 hold also under the assumption that f is Dini dif-
ferentiable at x0 2 M and locally Lipschitz at x0: In the scalar case (p = 1; D = R+),
Theorem 14 gives the necessary optimality condition

df(x0; v) � 0; 8v 2 T (M;x0);

whereas Theorem 15 gives the su�cient optimality condition

df(x0; v) > 0; 8v 2 T (M;x0); v 6= 0;

which is also necessary for a strict local minimum of order one. These last results appear
in the literature from time to time, in a less or more general formulation. See, e. g., Ben
Tal and Zowe (1985), L. Qi (2001), Huang (2005).

5 A Multiplier Rule for a Nonsmooth Multiobjective

Pareto Programming Problem

Several multiplier rules for problems (2) and (3) have been proposed by various au-
thors, making use of �rst order tangent cones, second order tangent sets and second order
asymptotic cones. The literature is quite abundant; we quote only the books of Ehrgott
(2005), Jahn (2005), Luc (1989), Miettinen (1999), Sawaragi, Nakayama and Tanino (1985).
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We quote also the papers of Giorgi, Jimenez and Novo (2004a, 2004b) and of Jimenez and
Novo (2002a, 2002b, 2003, 2004, 2008).
Here we consider the following Pareto program with equality and inequality constraints

Min f(x); subject to x 2 S (16)

where
S = fx 2 Rn : g(x) � 0; h(x) = 0g ;

f : Rn �! Rp; g : Rn �! Rm; h : Rn �! Rr; i. e. we consider problem (3), de�ned
on real �nite-dimensional spaces and with the ordering cones given by Rp+ and R

m
+ and

without the set constraint Q: Problem (16) is the classical Pareto optimization problem.
We denote by fi; i 2 I = f1; 2; :::; pg ; gj; j 2 J = f1; 2; :::;mg ; hk; k 2 K =
f1; 2; :::; rg, the component functions of f; g and h, respectively. The set of active indices
of g at the feasible point x0 is

J0 =
�
j 2 J : gj(x

0) = 0
	
:

Then we denote G = fx 2 Rn : g(x) � 0g ; H = fx 2 Rn : h(x) = 0g, therefore S =
G \H: We assume the following two conditions:

(H1) f and g are Hadamard di�erentiable with convex derivatives.

(H2) h is Fr�echet di�erentiable and rh(x0) has maximal rank, i. e. the vectors
rhk(x

0); k 2 K; are linearly independent.

We de�ne the strict critical cones formed by the objective function and by the inequal-
ity constraints:

CH0 (f; x
0) = fv 2 Rn : df(x0; v) 2 �int(Rp+)g =

= fv 2 Rn : dfi(x
0; v) < 0; 8i 2 Ig ;

CH0 (G; x
0) = fv 2 Rn : dgj(x

0; v) < 0; 8j 2 Jg :

We need two previous results.

Theorem 16. (Jimenez and Novo (2002b)).

Under the assumptions (H1) and (H2) we have

CH0 (G; x
0) \ ker(rh(x0)) � T (S; x0):

We recall that a proper function f : Rn �! R is sublinear if

f(x+ y) � f(x) + f(y); 8x; y 2 Rn

f(�x) = �f(x); 8x 2 Rn; 8� > 0;

i. e. a proper sublinear function is a convex function positively homogeneous of �rst
degree. We recall also the classical notion of subdi�erential of a convex function f . If
f : Rn �! R is convex, the set

@f(x0) =
�
v 2 Rn : f(y) � f(x0) + (y � x0)v; 8y 2 Rn
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is the subdi�erential of f at x0: Moreover, for convex functions (de�ned on open convex
subsets of Rn) the subdi�erential of f at x0 can be characterized by Dini derivatives:

@f(x0) = @Df(x
0) =

�
v 2 Rn : vy � Df(x0; y); 8y 2 Rn

	
:

Theorem 17. (Jimenez and Novo (2002a)).

Let us suppose that '1; '2; :::; 'q : R
n �! R are sublinear functions and  1;  2; :::;  r :

Rn �! R are linear functions given by  k(u) = cku; k 2 K = f1; 2; :::; rg : Then one and
only one of the following assertions are true:

(a) There exists v 2 Rn such that

�
'i(x

0; v) < 0; 8i = 1; 2; :::q
 k(v) = 0; 8k = 1; 2; :::k:

(b) There exists (�; �) = (�1; �2; :::�q; �1; �2; :::�k) 2 R
q+r; � 6= 0; � � 0; such that

0 2

qX

i=1

�i@'i(0) +
rX

k=1

�kc
k:

Theorem 18.

Let us consider the Pareto programming problem (16) and let us assume conditions
(H1) and (H2). If x0 is a local e�cient point for (16), then there exists (�; �; �) 2
Rp � Rm � Rr such that

(�; �) � 0; (�; �) 6= 0 (17)

0 2

pX

i=1

�i@Dfi(x
0) +

mX

j=1

�j@Dgj(x
0) +

rX

k=1

�krhk(x
0) (18)

�jgj(x
0) = 0; j = 1; :::;m: (19)

If, in addition, CH0 (S; x
0) 6= ?; then � 6= 0:

Proof.

As x0 is a local weak e�cient point for (16), from Theorem 14 we have that

T (S; x0) \ CH0 (f; x
0) = ?; (20)

but, since in this case CH0 (f; x
0) = fv 2 Rn : dfi(x

0; v) < 0;8i 2 Ig ; condition (20) means
that there exists no v 2 Rn such that

(
dfi(x

0; v) < 0; 8i 2 I

v 2 T (S; x0):
(21)
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Now, from Theorem 16 we have that

CH0 (G; x
0) \ ker(rh(x0)) � T (S; x0):

So, taking (20) into account, there exists no v 2 Rn such that
8
><

>:

dfi(x
0; v) < 0; 8i 2 I

dgj(x
0; v) < 0; 8j 2 J0

rhk(x
0)v = 0; 8k 2 K;

(22)

and using Theorem 17 the conclusion follows, choosing �j = 0 for all j 2 J�J0:
For the second part of the theorem, let us suppose that CH0 (S; x

0) 6= ?; that is, there
exists w 2 Rn such that

dgj(x
0; w) < 0; 8j 2 J0; rhk(x

0)w = 0; 8k 2 K: (23)

Assume that � = 0: Then conditions (17)-(19) imply that

X

j2J0

�jdgj(x
0; u) +

rX

k=1

�krhk(x
0)u � 0;8u 2 Rn

with � 6= 0: For u = w, we have a contradiction, since from (23) it follows that

X

j2J0

�jdgj(x
0; w) +

rX

k=1

�krhk(x
0)w < 0:

Consequently � 6= 0: �

6 On the Use of the Guignard-Gould-Tolle Constraint

Quali�cation in Vector Optimization Problems.

In discussing a gap between multiobjective optimization and scalar optimization (a
gap �rst pointed out by Wang and Yang (1991)), Aghezzaf and Hachimi (2001) state that
"in multiobjective optimization problems, many authors have derived the �rst-order and
second-order necessary conditions under the Abadie constraint quali�cation, but never
under the Guignard constraint quali�cation". This deserves a clari�cation. Several au-
thors have proposed a suitable Guignard-Gould-Tolle constraint quali�cation to obtain a
Karush-Kuhn-Tucker type multiplier rule for a Pareto optimization problem. For exam-
ple, Maeda (1994) considers the following Pareto optimization problem

Min f(x); subject to g(x) � 0;

where f : Rn �! Rp; g : Rn �! Rm and introduces the following "generalized Guignard
constraint quali�cation" for this problem:

C(Q; x0) � \pi=1cl(conv(T (Q
i; x0)));
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where x0 is a feasible vector,

Q =
�
x 2 Rn : g(x) � 0; f(x) � f(x0)

	

Qi =
�
x 2 Rn : g(x) � 0; fk(x) � fk(x

0); k = 1; 2; :::p and k 6= i
	

C(Q; x0) =
�
h 2 R : rfi(x

0)h � 0; i = 1; :::; p; rgj(x
0)h � 0; j 2 I(x0)

	
:

(I(x0) = fi : gi(x
0) = 0g). Indeed, the inclusion in the above constraint quali�cation

means in fact equality. Similarly, Jimenez and Novo (1999), Giorgi, Jimenez and Novo
(2004a, 2009), Giorgi and Zuccotti (2011); in this last paper there is a misprint: the equality
sign between the �rst and the second member of the Guignard constraint quali�cation
has been omitted.
What is true is that the Guignard-Gould -Tolle theory cannot be transferred "sic et

simpliciter" from the scalar to the vector case. It is well known that if we have a scalar
optimization problem

Min f(x); subject to x 2M � Rn;

with f : Rn �! R, f at least di�erentiable at x0; if x0 is a local solution of the above
problem, then

�rf(x0) 2 (T (M;x0))�: (24)

The result obtained by Guignard (1969) seems more general, as Guignard claims that

�rf(x0) 2 (P (M;x0))�;

where P (M;x0) = cl(conv(T (M;x0))) is the so-called pseudotangent cone to M at x0:
However, this greater generality is only apparent, as it is true that for any cone C, it
holds C� = (cl(conv(C)))�, so we obtain (T (M;x0))� = (P (M;x0))�:
Relation (24) obviously is equivalent to the inconsistency of

rf(x0)y < 0 for y 2 T (M;x0), or equivalently for y 2 P (M;x0):

We have seen in Theorem 5 that if x0 is a local weak e�cient point for (1), with f :
Rn �! Rp di�erentiable, M � Rn; D = Rp+; then we have the relation

rf(x0)v =2 �int(Rp+); 8v 2 T (M;x0);

i. e. the system
rfi(x

0)v < 0; i = 1; :::; p;

has no solution for v 2 T (M;x0): One may wonder if this last system (for p > 1) is also
inconsistent for v 2 (conv(T (M;x0))); as it holds for p = 1: The answer is: no, as shown
by Wang and Yang (1991) with a numerical example (a misprint in this example has been
corrected by Castellani and Pappalardo (2001)). This is the "gap" between scalar and
vector optimization problems, with reference to a result of Guignard, to which the paper
of Wang and Yang (1991) makes reference. Su�cient conditions to remove this "gap" are:

(a) the cone T (M;x0) is convex;
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(b) the objective function f is subconvexlike on its domain X � Rn, i. e. for any
x1; x2 2 X; � 2 (0; 1) and a 2 int(Rp+); there exists x

3 2 X such that

a+ �f(x1) + (1� �)f(x2)� f(x3) 2 Rp+:

See, for further considerations, Castellani and Pappalardo (2001).
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