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1 Indroduction 

It is well known that regression analysis may be affected by selectivity. Most 
commonly the case is treated, where the dependent variable* Y is not ob-
served for a substantial proportion in the sample while the information for 
the covariate vector X is available for all sample units. In this Situation 
OLS-estimates based on the complete observations may be an inconsistent 
estimate for E(Y \ X) in the population. 

Since situations where the dependent variable is missing in a substantial 
part of the data set occur rather frequently, there has been a great interest 
in procedures that promise to give consistent estimates of E(Y | X) = Xß in 
the presence of selectivity. The most populär procedure in this context is a 
two- step procedure, where first a probit model for the response variable R is 
estimated and secondly from the probit model E(e | X, R = 1) the expected 
value of the error term e conditional that Y and X is observed, is estimated, 
which is added as a new variable to the regression equation. This enlarged 
regression equation is solved by OLS; see for example Heckman (1979), Lee 
(1982) and Olsen (1980). In order to estimate E(e | X, R = 1) one has to 
make some assumptions about the joint distribution of the error terms of 
the regression equation and the probit equation. Most commonly a bivariate 
normal distribution is assumed. In this case it is possible to calculate also 
ML estimates for the joint regression/probit model, see for example Amemiya 
(1984) and Nelson (1984). The use of the two-stage procedure has become 
very populär, since OLS and probit estimation routines are readily available. 

This article deals with a topic relevant for both, the two-step procedure 
and MLE: The overlap of covariate vectors that explain Y and R. It seems 
that this topic is widely ignored by empirical researchers. While for the 
regression-equation in most cases exist careful considerations about the choice 
of covariates, only few ideas exist to explain the observability of Y. The only 
hint one gets from econometric literature is to avoid a perfect overlap of 
covariate sets in order to stabilize the two-step estimates. So mostly the 
choice of the R-covariates is some kind of ad-hoc Solution and no special 
attention is given to the relationship of Y- and R-covariates. 

As will be shown an improper choice of Y- and R-covariates yields incon
sistent estimates of E{e | X,R = 1). Some Simulation results reveal in such 
cases that in the resulting estimates for ß are seriously biased. 

What is mostly refered in literature is the fact the two-step procedure 
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yields consistent but very unstable estimates of ß. So Nelson (1984) gives 
a comparison of asymptotic estimation errors from the two-step procedure 
and MLE. He states that the two-step procedure is especially imprecise in 
situations where the bias from OLS-estimates is biggest. W-ith respect to 
asymptotic variance Nelson states that MLE is much more efficient than 
the two-step procedure. In a recent Simulation study Stolzenberg and Relles 
(1990) compare the Performance of OLS and the two-step procedure in situa
tions where 90% of observations are incomplete. They resume that in 50% 
of the experiments the absolute deviation of estimates from the true value 
was increased by the two-step procedure in comparison with OLS. Similar 
results comparing the MSE of OLS and the two-step procedure were obtai-
ned by Zuehlke and Zeman(1991). Little and Rubin (1987,p.229) report the 
empirical results of Lillard et. al. (1982,1986) where the two-step procedure 
produced unrealistic high estimates for incomes. 

But also ML estimation has been subject to critisism. Little and Rubin 
(1987,p.225ff.) stress the high sensibility of the ML estimates with concern 
to distributional assumptions about Y. 

Only a small number of comments is found concerning the choice of the 
selection model. What is mostly refered, is the fact that the parameters 
of the two-step procedure are only identified by the nonlinearity of E(e | 
X, R = 1) in X if the covariate sets of both models coincide. From this 
reason researchers are advised to chose the set of R-covariates different from 
the Y- covariates, see for example Little and Rubin (1987,p.230). 

It is the purpose of this paper to display the effect of different overlaps 
of the Y- and the R-model for the estimates of the regression model. By 
Monte-Carlo-simulation the distributions of three estimates are compared: 
OLS of complete data, the two- step procedure and MLE. In order to re-
duce the number of possible Simulation parameters only some prototyps of 
overlap-combinations were regarded. These typical situations indicate that 
different sets of covariates may produce seriously biased estimates and Stan
dard errors for both the two-step procedure and MLE. Contrary to Standard 
recommendations the advise is given that the covariate- sets for the selection-
and the regression-model should coincide. 

The article is organized as follows: 
Section 2 refers the definition of nonignorable selection. In section 3 

the two-step procedure and ML-estimation are introduced. Here also some 
theoretical results were formulated, that raise doubts about the Statistical 
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foundation of these estimates. In section 4 the Simulation study displays the 
serious numerical impact of the theoretical arguments. Section 5 concludes. 

2 Ignorable and non-ignorable Selection 

Let: 

Y = Xß + e (1) 

with E(e) = 0 and V(e) = er2, where X is a vector of covariates. The unit 
index i is omitted for notational convenience. The interpretation E(Y \ X) = 
Xß assures that the error term is uncorrelated with each covariate. 

Some of the Y-values are missing, while the covariate vectors X are obser-
ved for all units. The fact that Y is observed is indicated by a dichotomous 
variable R, where R = 0 means that Y is missing and R = 1 stands for Y is 
observed. 

The selection process R is said to be "missing at random" (MAR) or igno
rable if the conditional distribution of Y \ X,R does not depend on R, cf. 
David 1979 a,b and Rubin 1976. In the language of error terms this is equi-
valent to the fact that the distribution of e coincides for R = 0 and R = 1. 
The MAR- condition is satisfied if for each value of the covariate -vector 
the units were chosen (i.e. R = 1) by simple random sampling from the 
universe of all units with the same value of covariate vector. Thus the MAR-
condition depends on the population we want to make inferences for. The 
MAR-condition is violated if Y depends on some other variable , say V, not 
included in the covariate set and R depends on V. 

Since we are dealing with the selection of covariates it is worth to remem-
ber that: 

1. Omitting covariates from the Y-model may destroy the MAR- property 

2. But also adding covariates to the Y-model may introduce a dependence 
of Y | X, R on R. 

Let ß be some Standard estimator of /?, for example the OLS-estimator. 
Denote by ßobS the estimate of ß where ß is applied to all units where Y is 
observed. If ß is a consistent estimate for ß if no selection occurs then under 

3 



the MAR-condition ßobS is consistent for ß too. Thus under the MAR-
condition ßobs converges to ß if number of units where Y is observed tends 
to infinity.1 Sometimes much weaker conditions, depending on ß, guarantee 
the consistency of ßois, cf. Manski 1989 and Verbeek/Nijman 1980. 

Although the MAR-condition is easily stated, there is little chance to 
check this condition unless one has a-priori information about the distribution 
of Y | X, R = 0. 

3 The two-Step Procedure and the MLE in 

the presence of different covariates for the 

Y- and the R-model 

In order to get consistent estimates for ß in the case of nonignorable selection 
one usually assumes a joint model for Y and R. The Standard model is a 
threshold model for R 

R* = Zf + 6 (2) 

r i if R- > o 
\0ifÄ"<<> w 

where Z is a vector of covariates to explain missing Y-values and 6 is an 
error-term. 6 and e may be correlated. 

The starting point of the two-step procedure is that only Y \ X, R = 1 is 
observed and hence OLS estimates only E(Y \ X, R — 1). By (1) we get: 

E[Y \X,R = l] = Xß + E(e\X,R = l) (4) 

1One should not forget that the variance of ßobs may be grossly inflated if the selection-
process produces a bad conditioned moment matrix. In extreme cases it may happen that 
the effect of certain covariates cannot be estimated, since in the selected sample there is 
no variance with respect to that variable. 
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If we use the decomposition2 e = <resS + 7], where rj is independent from 
6 and cres is the covariance between e and 6, we have: 

E[e | X, R = I] = tregE[6 | X, Zj + 6 > 0] + E[V ( X, Z1-+6> 0] (5) 

Most textbooks proceed by equating: 

E(V \X,Z1 + 6>0) = E(TJ) = 0 (6) 

and 

E{6 \X,Z1 + 8>0) = ^(Z7)/$(Z7) (7) 

=: H(Z-r) 

where 4> is the density function of the Standard normal distribution and $ is 
its cumulative. Inserting (7) into (4) one gets: 

E(Y\X,R=l)=Xß + cresH{Znf) (8) 

On the basis of (8) among others Heckman (1979) suggested the following 
two-step procedure: 

Step 1: Estimate 7 from all units by probit- estimation and calcuiate from 
7 variable H(Zy) for all units with R = 1. 

Step 2: Estimate ß and aes by OLS where Y is regressed upon X and H. 

If the X and Z variable coincide, the identification of the parameters ß 
and cre6 depends solely on the non-linearity of //(•). But as shown in Figure 1 
H(X) behaves in broad ranges like an almost linear function, so the estimates 
of ß may become very unstable. 

In order to remove this instability many textbooks (for example Ru-
bin/Little 1987, p.222) recommend to add a least one variable. 

2If e and 6 are bivariate - normal with zero- means all required distributional assump-
tions are fullfilled. Indeed this decomposition may be derived under weaker distributional 
assumptions. If suffices that the conditional distribution of e | 6 is linear in 6 and 6 is 
normal with zero mean, see Olsen (1980). 
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Figure 1: The Quasi-Linearity of H{X) = (f>(X)/$(X) 

It has to be stressed that equations (6) and (7) may not hold and hence 
the results of the two-step procedure may be misleading. 

Lets first consider the case X = Z, i.e. the set of covariates for Y and R 
are the same. Regarding E(TJ \ X,X*f + 6 > 0) we know that by construction 
6 is independent from TJ. But we don't know whether X and TJ a re independent 
or at least orthogonal. All we know is that X and e — cregS + rj are orthogonal. 
But from this we may not conclude that X is orthogonal to each of the 
components 6 and 77. Hence one may construct examples were eq.(6) and (7) 
do not hold. 

Next, suppose that an additional variable, say V, is added to the set of 
R-covariates. In this case one has to compute E(6 | X, X*)x -f V~jv 4- 6 > 0) 
and E(r} j X,X"fx + V~fv + 6 > 0). To do this one needs information about the 
joint distribution of V,X and 8 and V,X and TJ w hich is not available, since £ 
and t) are not observed. All that is known about 6 and TJ i s that e = <re$6 + Tj 
is orthogonal to the X-vector. The relation of 6 and rj to other variables is not 
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determined. Even if we assume that V is independent from 6, TJ and the X-
vector, there is still the problem to evaluate the two conditional expectations, 
since V is not fixed by the conditioning. 

Now suppose some of the X-variables, say W, is not iricluded in the 
computation of the selection correction variable H. If the corresponding 7-
coefficient -yw in eq. (2) is different from zero, then 7wW becomes part of 
a new error- term 6 = 6 + 7wW. Since e is orthogonal to W it is not pos-
sible to find a decomposition e = + fj, where fj is independent from 6. 
Hence also the exclusion of X-variables from the Z-variables may destroy the 
justification for the use of the two-step procedure. 

Now we treat the case of MLE. If we assume a bivariate normal distribu-
tion 

CHtGMt. T)] 

for the error terms of the joint Y-and R-model, then one may compute the 
ML-solution for the joint model. Again we assume that the R-model con-
tains an additional variable V that is not part of the Y-model. In order to 
compute the likelihood for the unknown parameter 1? = (/?,7, <7e, p£g) one has 
to distinguish the cases R = 1 and R = 0. 
For R = 0 we observe only X and V. Hence: 

L{d | X, V, R = 0) = P(R = 0\X,V) (10) 

= P(Xlx + Vyv + 6> 0\X,V) 

= ${Xlx + Vlv) 

For R = 1 we observe Y,X and V. Hence: 

L(d\Y,X,V,R = l) = P{R = l\Y,X,V)f(Y \ X,V) (11) 

The problem to compute the likelihood axises from the second factor, 
which is the density of Y given X and V. Since Y | X ~ Xß + e one has 
to know the distribution of e \ V. Only if e and V are independent we 
have f(Y | X, V") = f(Y \ J£) what is used in Amemiya (1984, p.32). But 
e is unobserved, so there is no chance to check a condition like E(eV) = 
0. If f(Y | X) ^ f(Y j X) the use of f(Y \ X) yields not a proper 
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likelihood function. Under the model- assumptions P(R = 1 | Y,X,V) may 
be computed. 

It follows from (11) that: 

Conditional on Y,X (which together fix £ ) and V one may treat (X^x -f 
V^iv as a constant and the distribution of S is given by (13). 

Once one has reasonable starting values for ß, 7, as and p$s the ML- esti
mate may be obtained by using Standard maximation techniques. Starting 
values for ß and ac may be obtained by OLS of the Y-model, while the probit 
estimate of the R-model provides a starting value for 7. The only parameter 
at free guess is pse. 

In Econometric literature it is often stated that a selection rule is igno-
rable if and only if p$e ^ 0, since in these cases the two-step procedure is 
equivalent with OLS and P(R = 1 | Y,X, V) becomes independent from ß in 
the ML-case. It is worth to remember that this is only true in the case where 
X = Z. As will be shown by an example in the next paragraph one may 
immediately construct situations where by switching unobserved variables to 
observed ones pge — 0 changes to pst ^ 0 although the selection process is 
still the same. 

4 The stability of estimated Y-model Para

meters when the R- model changes 

In this section we want to see by means of a Simulation study the numerical 
effects of a different overlap of the R-covariate set and the Y-covariate set. 
For all different overlap-combinations the distribution of the estimates for 
the Y-model are inspected for OLS, the two-step procedure and the MLE. 

S \ e ~ N(pi,elo„ 1 - pfj (12) 

P(M=1\Y,X,V) = (13) 

* 1/\A - Pl (^{Y - Yß) + Xlr + 
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4.1 Parameters of Simulation run 

The Simulation results are generated from the following equation: 

Y = 0.0 + 2Xi - 2X2 + D + v + e (14) 

R* = 0.2 + O.SXi + 0.5X2 + D + v + d (15) 

Y is observed, if R* > 0. Xi, X2, D, v, e, and d were generated independently 
although for different estimates the same values for X\, X2, D, V, e and d were 
used. With the exception of D which is 0-1-variable with P(D = 1) = 0.5 all 
variables were generated from a Standard normal distribution. The variables 
Xi, X2 and D were treated as Y-covariates. Thus e = v •+ e may be regarded 
as error terms.3 

The motivation for this Simulation design is as follows: Dummy variables 
rather frequantly occur in empirical work but rather seldom in Simulation 
studies. One may expect that for D — 1 there is a high probability to 
observe Y while for D = 0 the probability to observe Y is much smaller. 
This reduces the variance of D in eq. (14) a great deal. So one expects 
that the selection- effects for the estimate of ßo are most severe namely one 
expects a substantial trade-off with the estimate for the constant ß0. The 
variance of the continuous contributions 0.5Xi and 0.5X2 in eq. (15) are the 
same as the variance of D. Because of their continuous nature there remains 
a lot of variance for R — 1 for X\ and X2 in eq. (14). This variance is 
enlarged by the coefficients ßx1 = 2 and ßx2 = —2 So one expects that 
selection-effects for the estimate of ßxx and ßx2 are much smaller than for 
ßo- The different signs of ßx^ and ßx2 compensate for the fact that Y is 
observed mostly for high values of and X2- The covariates were chosen 
to be independent in order to disentangle the effects of different covariates 
on the estimation of eq. (14). 

Each Simulation generates a sample of n = 400 units, which seems a 
reasonable size in empirical work. The value for the constant in the selection 
equation was chosen to meet the requirement that 1/3 of the Y- values are 
missing.4 100 replications for each overlap combination were run. 

3The ratio of explained to total variance is 8.25/10.25 « 0.80. 
4The Standard deviation of that drop -out rate weis 2.2%. 
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4.2 Same covariates in Y-and R-model 

First we investigate the case were the covariates of the Y- and the R-model 
are the same. 

In this case one would regard 8 = d + v as error terms in the threshold-
model. Because of the joint component e and 6 are correlated. Hence the 
selection is non-ignorable and the estimation of the Y-model by OLS is in-
consistent. 

Table 1 compares the estimates from OLS, the two-step procedure and 
MLE. The first column in table 1 displays the average of the estimates over 
the replications, while the second column displays the Standard deviation of 
the estimates. In the third column the mean of the estimated Standard errors 
is displayed. 

OLS d(beta) std(beta) d(sig) 

consty 0.4958 0.1191 0.1309 
XI 1.8785 0.0827 0.0844 
X2 -2.1233 0.0928 0.0839 
D 0.7807 0.1518 0.1667 

two-step d(beta) std(beta) d(sig) 

consty 0.0831 1.0689 1.0559 
XI 1.9669 0.2616 0.2442 
X2 -2.0362 0.2611 0.2399 

D 0.9859 0.5415 0.5342 
H 0.5716 1.4852 1.4625 

ml d(beta) std (beta) d(sig) 

consty 0.2166 0.5390 0.3738 
Y- XI 1.9361 0.1437 0.3738 

model X2 -2.0624 0.1468 0.1178 
D 0.9144 0.2840 0.2482 

constr 0.1390 0.0896 0.0937 
R- XI 0.3621 0.0688 0.0735 

model X2 0.3564 0.0715 0.0734 
D 0.7554 0.1220 0.1417 

PeS 0.2605 0.4856 0.3080 
1.4293 0.1252 0.1147 

Table 1: Same covariates in Y- and R-model 
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d(beta) = Mean of estimates 
Std(beta) = Std. Derivation of estimates 
d(sig) = Mean of estimated Standard errors 

Table 1 reveals that the OLS-estimates of the normally distributed covariates 
Xi and X2 are somewhat downbiased. But the relative error is only of small 
size (about 6%). On the other hand the coefficient for the dummy - variable D 
is seriously downbiased (about 22 %), while the constant of Y-model is grossly 
over-estimated. If we measure the bias in units of the Standard deviation for 
the estimates, we see, that the effect of all covariates is downbiased about 
1.5 of their Standard deviation. Comparing column 2 and 3 we see, that the 
estimates of the Standard estimation are not effected by the selection rule. 

Now we switch to the two-step procedure. The means of the estimates 
for the Y-model fit the theoretical values nearly perfectly. 

O O . 
0) 

-0.2 0.2 0.6 1.0 1.4 1.8 
K h i H r\ r\ i n + ..I.Wf, w •. .v 

Figure 2: The distribution of ßo from the two-step procedure. 
Histogram of 100 estimates. R-covariates equal Y-covariates. 
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But this appealing result is misleading, since the Standard deviation of 
all estimates are increased by a factor of about 3.0 with respect to the OLS-
value (for the constant this factor amounts 8.0). Moreover the distribution of 
the estimates does not look unimodal with the modus given by the average. 
For example look at the histogram of the estimates of ßo in Figure 2. This 
histogram seems to belong to a rectangular distribution rather than to a 
normal distribution. From the Standard deviation of estimates one would 
conclude that the effect of the discrete covariate is insignificant and that 
there is no significant covariance crs$. Hence one would conclude that the 
selection process is ignorable. 

The results for the ML-estimation are some what in between the OLS-
and the two-step estimates. The bias of the OLS-estimates is reduced by 
factor 0.5 and the Standard deviation of the estimates is only half of the 
corresponding value for the two-step estimate (but still about 1.5 times bigger 
than the OLS- values). Also the ML-estimate of p$E is insignificant. 

4.3 Additional variables in the R-model 

In order to reduce the variance of the two step-procedure (but also in case of 
the ML-estimate) an additional variable is incorporated into the R-model. 

There are 4 possible cases: The added variable is:, 
(i) correlated with Y and R 
(ii) correlated with Y but not with R 
(iii) correlated with R but not with Y 
(iv) uncorrelated with R and Y 

In the Simulation these cases were achieved by adding to the R- model: 
v(case i), e(case ii), d(case iii). For case (iv) an independent Standard normal 
variable z was generated. 

Before we switch to the corresponding estimation results, a remark con-
cerning the error terms is to be made. In case (i) the error term of the 
R-model is given by 6 = d. The error term of the Y-model is e = v -f e, hence 
the error terms of the Y- and the R-model are independent. In case (iii) we 
have for the error terms 8 = v and e — v + e. Hence the error terms are 
correlated. But the generated selection process is in both cases the same. If 
we would judge the MAR- condition on the basis of pse we would conclude 
that in case (i) the selection is ignorable and in case (iii) it is not ignorable. 
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Table 2 displays the results for the two-step procedure and the ML-
estirnate for the case (i) to (iv). Since the OLS estimate is independent 
from the R-model, the OLS results coincide with table 1. We start with case 
(iv), where the added variable z is independent from Y and R. As one ex-
pects, this does not influence the estimation and therefore the corresponding 
results in table 1 and 2 axe almost equal. If the added variable is correlated 
with R but uncorrelated with Y (case iii) then the two step-procedure and 
the ML- estimate perform very well. The high Standard errors of estimate 
are reduced to the level of the OLS- estimates.5 Also the distribution of the 
estimates - which is not displayed here - turns out to be approximate normal. 
The coefficients of the Y-model are estimated with high accuracy. Also the 
estimated value for pse is in perfect accordance with the theoretical value 
from the simulated error terms (which is l/\/2 = 0.70) 

In case (i) - were the added variable is correlated with Y and R a strong 
negative correlation between e and 6 is estimated [pst = —0.9], which is far 
away from the true value. The resulting estimates for the Y-model are down
biased. Compared with the OLS-results from table I the effect of selectivity 
is enlarged. For example the effect of the discrete variable D is estimated by 
OLS to be 0.78, while it is 0.45 by ML and 0.17 by the two-stage procedure. 

5Comparing column 2 and 3 in case 3 (iii) we see that the estimated error of the two-
step procedure are a little (about 10%) downbiased. This is due to the fact, that the 
Variation of results depending on the estimate of the R-model is ignored. See Lee et. al. 
(1980) for an un biased estimate of the Standard errors. 
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Table 2 
case (i) case (ii) 

two-step d(beta) std(beta) d(sig) d(beta std(beta) d(sig) 

consty 1.7225 0.2034 0.1590 -0.1675 4.5139 0.8707 

XI 1.6114 0.0918 0.0751 2.0626 0.9948 0.2076 

X2 - 2.3805 0.1107 0.0745 -19730 0.9938 0.2099 

D 0.1796 0.1967 0.1509 1.0685 2.1012 0.4338 

H -2.4041 0.3057 0.2254 0.8966 6.2340 1.1922 

ml d(beta) std(beta) d(sig) d(beta) std(beta) d(sig) 

consty 1.1121 0.1283 0.1362 -0.2339 0.8700 0.1540 
XI 1.7322 0.0766 0.0848 2.0823 0.2244 0.0963 

X2 -2.2613 0.0865 0.0845 -1.9284 0.2369 0.0961 

D 0.4526 0.1709 0.1678 1.1128 0.4586 0.1897 
constr 0.1100 0.1100 0.1055 0.0437 0.0983 0.0904 

XI 0.4325 0.0904 0.0838 0.3038 0.0654 0.0671 

X2 0.4286 0.0895 0.0841 0.3082 0.0684 0.0666 

D 0.8908 0.1766 0.1634 0.6057 0.1355 0.1311 
v/e/d/z 1.0750 0.1026 0.0966 -0.3083 0.3683 0.0529 

PeS -0.9022 0.0358 0.0340 0.6354 0.7155 0.0182 
<ye j 1.4164 0.0640 0.0656 1.6618 0.0785 0.0869 

14 



continuation table 2 
case(iii) case(iv) 

two-step d(beta) std(beta) d(sig) d(beta) std(beta) d(sig) 

consty 0.0019 0.1980 0.1874 0.2247 1.0192 0.9181 

XI 1.9914 0.0961 0.0878 1.9641 .2481 0.2194 

X2 -2.0086 0.0970 0.0871 -2.0351 0.2453 0.2226 

D 1.0190 0.1835 0.1753 0.8955 0.5139 0.4589 

H 0.9770 0.2676 0.2629 0.4080 1.3582 1.2587 

ml d(beta) std(beta) d(sig) d(beta) std(sig) d(sig) 

consty -0.0031 0.1730 0.1640 0.2818 0.5312 0.3570 

XI 1.9906 0.0926 0.0885 1.9524 0.1491 0.1164 

X2 -2.0079 0.0927 0.0881 -2.0498 0.1613 0.1176 

D 1.0229 0.1771 0.1757 0.8611 0.2987 0.2360 

constr 0.1937 0.1129 0.10182 0.1344 0.0956 0.0934 

XI 0.5145 0.0826 0.0879 0.3664 0.0714 0.0735 

X2 0.4953 0.0779 0.0871 0.3692 0.0657 0.0731 

D 1.0585 0.1744 0.1699 0.7304 0.1435 0.1417 

v/e/d/z 1.0232 0.1094 0.1080 0.0025 0.0806 0.0679 

PeS 0.6963 0.1180 0.1050 0.2309 0.4899 0.2942 

1.4025 0.0705 0.0712 1.4049 0.1034 0.1112 
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continuation table 2 
case (v) case (vi) 

ols d(beta) std(beta) d(sig) 

consty 0.5267 0.0809 0.0868 

XI 1.8925 0.0609 0.0564 
X2 -2.1137 0.0574 0.0565 
D 0.7414 Q.1085 0.1113 

e/m 0.9884 0.0509 0.0554 
two-step d(beta) std(beta) d(sig) d(beta) std(beta) d(sig) 

consty -0.0192 0.7076 0.6882 1.7121 0.1860 0.1559 

XI 2.0132 0.1677 0.1620 1.6307 0.0981 0.0748 

X2 -1.9885 0.1640 0.1630 -2.3738 0.1004 0.0749 

D 0.9997 0.3739 0.3379 0.1786 0.1800 0.1490 

e/m 0.9856 0.0694 0.0630 - - -

H 0.7560 0.9381 0.9445 -2.3275 0.2604 0.2204 

ml d(beta) std(beta) d(sig) d(beta) std(beta) d(sig) 

consty 0.1273 0.3092 0.1985 1.1383 0.1273 0.1351 

XI 1.9810 0.0966 0.0742 1.7451 0.0809 0.0845 

X2 -2.0222 0.0894 0.0737 -2.2565 0.0866 0.0844 

D 0.9277 0.1950 0.1465 0.4234 0.1573 0.1668 
e/m 0.9875 0.0586 0.0599 - - -

constr 0.1320 0.0937 0.0930 0.0880 0.0914 0.1056 

XI 0.3645 0.0676 0.0728 0.4289 0.0802 0.0841 

X2 0.3663 0.0688 0.0723 0.4285 0.0836 0.0829 
DIS 0.7316 0.1381 0.1404 0.8785 0.1627 0.1639 
e/m -0.0022 0.0763 0.0695 0.2681 0.0347 0.0239 

PeS 0.5466 0.3860 0.2046 -0.8991 0.0351 0.0351 
0.9845 0.0761 0.0787 1.4011 0.0543 0.0654 
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continuation table 2 
case (vii) 

ols d(beta) std(beta) d(sig) 

consty 0.0142 0.1076 0.1041 

XI 2.0061 0.0647 0.0638 

X2 -1.9974 0.0644 0.0639 

D o.9777 0.1251 0.1262 
e/m 0.2281 0.0174 0.0176 

two-step d(beta) std(beta) d(sig) 

consty -0.0133 0.2751 0.3627 
XI 2.0081 0.0878 0.0835 
X2 -1.9991 0.0904 0.0839 

D 0.9781 0.1688 0.1704 
e/m 0.2479 0.0328 0.0323 

H 0.0003 0.3601 0.3629 

ml d(beta) std(beta) d(sig) 

consty 0.0041 0.2480 0.2307 
XI 2.0098 0.0810 0.0792 

X2 -1.9964 0.0858 0.0796 
D 0.9817 0.1630 0.1608 

e/m 0.2490 0.0292 0.0293 
constr 0.1806 0.1049 0.1096 

XI 0.5155 0.0828 0.0910 

X2 0.5104 0.0871 0.0900 
D 1.0466 0.1758 0.1763 

e/m 0.2577 0.0294 0.0279 

Pe6 0.0131 0.3059 0.3003 
0.9964 0.0454 0.0509 
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Table 2: Adding a variable to the R-Model. 
The added variable is: 
(i) v added, correlated with R and Y 
(ii) e added, correlated with Y but not with R 
(iii) d added, correlated with R but not with Y 
(iv) z added, uncorrelated with R and Y 
(v) e added to the R- and Y-model 
(vi) m = + d + e + z) added to the R-model 
(vii) m added to the R- and Y-model 

Figure 3a: Simulated distribution of ML-estimate of 7e, where e was 
added to R-model. e uncorrelated with R but correlated with Y. 
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Figure 3b: Simulated distribution of ML-estimate of /?£>. 
Added to the R-model: e uncorrelated with R 
but correlated with Y). 

In case (ii) the estimated correlation between £ and 6 was on the average 
0.63. Hence the resulting estimates for the Y-model are corrected into the 
right direction but on the average the results are positively biased. If we take 
a look at the estimated and the simulated Standard errors of estimates, we 
see that estimated Standard errors are grossly downbiased. The simulated 
Standard errors are even much bigger than in the case, where the Y- and R-
variables coinciae. If one takes a look at the shape of the distribution of the 
estimates, they are far from being unimodal or normal. The ML-estimates 
exhibit a clear bimodal pattern, which is shown in Figure 2a and 2b. Figure 
2a shows the distribution of the ML-estimate for 7e, the effect of e on R". 
This is clearly different from the theoretical value 0. Figure 2b demonstrates 
the corresponding bimodality of the estimate of ß&. So we have to realize 
that the most frequent estimate for ßp is aproximately 1.4, which is much 
higher than the mean value (1.1). Hence most frequently the bias due to high 
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estimated correlations between the Y- and the R- error terms is much bigger 
than indicated by the mean values in Table 2 case (iii). The bimodality of 
the ML-estimates results from a large proportion of p£($-estimates about 0.95 
and a minor proportion, where peg is about -0.95. Thus the addition of e into 
the R-model makes the estimation of the joint model nearly collapse. 

In empirical work one is rather seldom in a position to know a- priori 
the relationship of the added variable to R and Y. Hence - because of the 
severe consequences, if the added variable is correlated with Y- one should 
check for this. This brings one back to the Situation, where the Y- and the 
R- covariates coincide. 

If the added variable turns out to be insignificant in the Y-model but 
significant in the R-model, it may be dropped from the Y-model in order to 
stabilize the estimates. If the added variable is significant in the Y-model 
this may considerably improve the Y- model and thus reduce the Standard 
errors. For example, if e is included in the Y-model, case (v) in table 2, then 
the Standard errors of MLE are about the same size as in case (iii), which 
proved to be optimal for cases (i) to (iv). This is not true for the two-step 
procedure. Also the means of the estimates now are very near to the true 
values. 

The cases (i) to (v) are extreme cases to display the possible effect of 
adding a variable to the R-model. In practice one would expect intermediate 
cases, where the added variable is some combination of v, d, e and z. This 
Situation is displayed in cases (vi) and (vii) in table 2 (continued), where the 
additional variable is m = l/y/Ä(v -(-d+e + z). In case (vi) m was added to 
the R-covariates, while in case (vii) m was added also to the Y-covariates. As 
table 2 reveals the two-step procedure and MLE do not remove the selection 
bias if m is included in R-model but not the Y-model, case (vi). The selection 
bias is even bigger than in the OLS- estimate. 

If m is included in the Y-model too, one realizes that the OLS- selection-
bias has vanished. This due to the fact that m is correlated with R. Here 
the Situation is different from case (v), where the added variable was not 
correlated with R and consequently no reduction of OLS-selection-bias was 
achieved. Of course also the two-step procedure and MLE provide accurate 
estimates but the variance of their estimates is bigger (in case of the constant 
much bigger) than the corresponding OLS- variances. 
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4.4 Omitting a variable from the R-model 

Now we treat the case that one variable of the Y-covariates is not included 
in the R-model. This may be due to fact that this variable is not known for 
all units. It may happen for example that the omitted variable is missing 
whenever Y is missing. Alternatively one may be motivated to omit a variable 
in order to reduce the instability of the two-step- or the ML- estimate. Since 
the results are very similar for all covariates only the case, where D is omitted 
from the R-model is displayed in table 3. 

Table 3 
two-step d(beta) std(beta) d(sig) 

consty 0.1577 1.5126 1.3082 
XI 1.9711 0.3978 0.3785 
X2 -2.0190 0.4005 0.3712 
D 0.7835 0.1623 0.1671 
H 0.6179 2.7808 2.3901 

ml d(beta) std(beta) d(sig) 

consty 0.2213 0.4125 0.3255 
Y- XI 1.9585 0.1328 0.1290 

model X2 -2.0362 0.1480 0.1262 
D 0.7761 0.1611 0.1656 

constr 0.4778 0.0691 0.0686 
R- XI 0.3370 0.0680 0.0707 

model X2 0.3281 0.0651 0.0705 

Pe6 0.3330 0.4546 0.3407 
<7e 1.4446 0.1171 0.1260 

Table 3: D omitted in the R-model 

Comparing table 1 and table 3 one realizes that the two-step procedure 
and the ML-estimate have lost their ability to correct for selection when ßp is 
estimated. Also the Standard errors for the other /3-values estimates remain 
at high levels-like in table 1. Only the Standard error of ßjj has decreased. 
Thus omitting variables to stabilize the two-step estimates or MLE is a pretty 
bad idea. It should be mentioned that the independence of the covariates 
in the Simulation experiments comes into play here. If some covariates are 
correlated, the omission of one covariate in the R-model may be compensated 
by another covariate that remains in the R-model. 
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4.5 The mixed case 

Now we deal with the mixed case, where some covariate of the Y- model 
is omitted, while some other variable is added to the R- model. This case 
appears to be the most frequent in empirical applications. 

Table 4 
case (i) case (ii) 

two-step d(beta) std(beta) d(sig) d(beta std(beta) d(sig) 

consty 1.4337 0.1677 0.1308 -0.4753 6.0432 0.9239 
XI 1.5884 0.1036 0.0733 2.2052 1.6679 0.2731 
X2 -2.4108 0.1052 0.0733 -1.8515 1.6880 0.2749 
D 0.9839 0.1262 0.1364 0.7338 0.1505 0.1512 
H -2.5424 0.2916 0.2184 1.7091 10.7944 1.6425 

ml d(beta) std(beta) d(sig) d(beta) std(beta) d(sig) 

consty 0.9249 0.1154 0.1247 -0.0975 0.5937 0.1339 
XI 1.7331 0.0822 0.0854 2.1018 0.2137 0.0978 
X2 -2.2662 0.0871 0.0854 -1.9015 0.2133 0.0975 
D 0.9012 0.1340 0.1452 0.6948 0.1380 0.1386 

constr 0.4809 0.0709 0.0793 0.3250 0.0677 0.0673 
XI 0.377 0.0646 0.0774 0.2867 0.0622 0.0655 
X2 0.3876 0.0696 0.0776 0.2904 0.0644 0.0650 

v/e/d 0.9726 0.0862 0.0856 -0.3391 0.3322 0.0506 

PeS -0.9093 0.0328 0.0306 0.7117 0.6440 0.0167 
cre 1.4327 0.0628 0.0681 1.6998 0.0800 0.0898 

22 



continuation table 4 
case (iii) 

heck d(beta) std(beta) d(sig) 

consty 0.1735 0.1607 0.1592 
XI 2.0100 0.0978 0.0880 
X2 -1.9878 0.0966 0.0882 
D 0.6583 0.1604 0.1634 
H 0.9738 0.2760 0.2652 

ml d(beta) std(beta) d(sig) 

consty 0.1952 0.1344 0.1441 
XI 2.0089 0.0902 0.0893 
X2 -1.9888 0.0969 0.0894 
DIS 0.6233 0.1618 0.1629 

constr 0.6199 0.0723 0.0818 
XI 0.4585 0.0821 0.0817 
X2 0.4517 0.0696 0.0806 

v/e/d 0.9004 0.0826 0.0956 

PsS 0.6893 0.1060 0.1074 
1.4066 0.0715 0.0759 

Table 4: deleted from the R-model: D 
Added to the R-model: 
case (i): v 
case (ii): e 
case (iii): d 

In table 4 D was deleted from the R-model and v (case i), e (case ii), 
or d (case iii) was added. Note that the added and omitted variable are 
independent. So one would expect that the effects of adding and omitting 
these variables are independent too, like in OLS-estimation. For example, 
deleting D from R-model as well as adding v effect a serious underestimation 
of ßo- Thus one would expect that in the mixed case ßo is underestimated 
too. But, as table 4 reveals, this is not true: ßn is with high precision near 
the true value.6 Still the estimates of ßx\ and /?x2 are downbiased in the same 

6Analogues results were obtained when Xi and were omitted from the R-model. 
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way as in table 2. In cases (ii) and (iii) the effects of omitting and including 
independent variables are disentangled. This appears to be reasonable, since 
in these cases the included variable effects only R or Y. In case (i) v and 
D both effect R and Y, and hence unexpected interaction-effects may arise. 
Note that this case seems to be typical one is applied work. 

5 Conclusions 

As demonstrated by the Simulation results the choice of the R- model has a 
great impact on the estimation of the Y-model. 

Omitting Y-variables in the R-model may yield inconsistent estimates for 
the Y-model. Thus one is advised to use al least the Y-covariates in the 
R-model. This may be impossible if some of the Y-covariates are subject 
to selectivity too. If the Y-variables and R-variables are the same, the two-
step procedure becomes very unstable and the distribution of estimates is far 
from being normaly or even unimodal. But also the MLE Standard errors 
are markedby bigger than the corresponding OLS-values. If one calculates 
the MSE the Simulation results, the two-step procedure yields about 4 times 
the OLS-MSE, and the MLE-amounts to 1.3 times the OLS-MSE. 7 The 
Simulation results strongly suggest that the inclusion of additional covariates 
into the R-model but not into the Y-model is a hazardous - strategy. If one is 
able to find a variable that is correlated with R but not with Y, the two-step 
procedure and MLE perform quite well: The true values for ß are estimated 
without selection bias and the variances of ß are only slightly bigger then the 
corresponding OLS-values. In terms of MSE one gets less than half of the 
OLS-MSE if ßo is regarded.8 In this case the two-step procedure operates 
nearly as efficient as MLE. 

As the Simulation results indicate, the estimation of the Y-model may 
become very poor if the added variable is correlated with Y. The bias of 
estimates may become even bigger than selection-bias of the OLS-estimate. 
In terms of MSE the two-step-procedure yields about 10 times and MLE 5 
times the OLS -value for ßo- 9 In order to avoid wrong conclusions from 
two-step or ML-estimation one is strictly advised to check the correlation of 

7Values computed from table 1, columns 1 and 2. 
8Values computed from table 1 and table 2 case (iii). 
9Values computed from table 1 and table 2 case (i). 
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the added variable and Y. This brings one back to the Situation where the 
two covariate set are equal. 

It should be mentioned that the addition of a new variable to the Y-model 
also effects the OLS-estimate. If the added variable is correlated with R the 
selectivity bias may disappear. If the additional variable is correlated with 
Y the Standard errors of estimates are reduced. 

Comparing the two-step procedure and MLE, the latter turns out to be 
more stable and more efficient. But it is rather striking that - although the 
distributional assumptions are satisfied - MLE may produce rather mislea-
ding estimates. 

If one uses the MSE-criterion to bring bias and variance into account 
one realizes that OLS-estimation performs quite well in relation to both the 
two-step procedure and the ML- estimate. The superiority of OLS over MLE 
was not stated before, while the bad Performance of the two step procedure 
with respect to MSE was mentioned earlier by Stolzenberg/Relles (1990) 
and Zuehlke/Zeman (1991). Thus - as far as estimation is concerned - risk 
averse researchers would be better off with simple and easy to compute OLS-
estimation. 
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