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Abstract

Excess zeros are encountered in many empirical count data applications. We provide a new explanation

of extra zeros, related to the underlying stochastic process that generates events. The process has

two rates, a lower rate until the first event, and a higher one thereafter. We derive the corresponding

distribution of the number of events during a fixed period and extend it to account for observed and

unobserved heterogeneity. An application to the socio-economic determinants of the individual number

of doctor visits in Germany illustrates the usefulness of the new approach.
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1 Introduction

A large literature on the analysis of count data is now available (Winkelmann 2008, Cameron and Trivedi

2013), but only a small portion of it deals with the specialness of zeros. If counts are the outcome of

individual choice, zeros can result from a corner solution in the optimization, and this aspect should be

addressed by the econometric model. In practice, zeros often deserve special attention because of their

ubiquity: when analyzing the number of job changes by a worker during a decade, the annual number

of doctor visits or the weekly number of purchases of a specific good at a given supermarket, there are

often many more zeros in the data than predicted by a standard count data model, a situation denoted as

zero-inflation, or “excess zeros”.

The existing zero-inflation approaches in the literature have focused on unobserved heterogeneity and two-

part models. An extreme form of unobserved heterogeneity is obtained in a finite mixture model with

two types of observation units where one type never experiences the event (leading to a count of zero)

and the other type has a standard count distribution (Mullahy 1986, Lambert 1992). In a hurdle model,

like in a two-part model for continuous responses used in health economics, a binary model for the 0/1+

decision is combined with a truncated-at-zero count data model for positive outcomes (Mullahy 1986).

Both approaches have been regularily used in applied work, examples including Pohlmeier and Ulrich

(1995), Street, Jones and Furuta (1999), Campolieti (2002), Winkelmann (2008) and Sari (2009).

In this paper, we propose a new, alternative model for zero-inflation, based on a dynamic hurdle specifica-

tion. Starting point is a stochastic process for the timing of events. The Poisson process for the number of

events prior to time T requires that times between events are i.i.d. exponential with constant hazard rate

λ. We define a generalization, where the distribution of the time to first event can have a different rate

than the distribution of times between subsequent events. In the taxonomy of Heckman and Borjas (1980),

our model allows for occurrence dependence but rules out duration dependence. An extended version of
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the model also accounts for unobserved heterogeneity. In statistics and biometrics, generalizations of the

Poisson process such as the one explored here fall into the class of birth process models (see e.g. Janardan,

1980, Faddy, 1997).

Occurrence dependence leads to zero-inflation if the rate is low until the first event and higher thereafter.

In contrast to the static hurdle model, the higher rate only applies to the time left between the first event

and T . The model thus adds a dynamic selection effect: variation in the first rate systematically affects the

expected arrival time of the first event, and hence the duration for which the process is in the second state.

As a consequence, the probability of a zero and the distribution of positive outcomes are not independent.

Our dynamic hurdle model has a number of useful properties. It nests the standard Poisson (or negative

binomial) model so that testing for the absence of occurrence dependence is straightforward. The param-

eters are easy to interpret, as they are hazard rates of the time to first event and time between further

events, respectively. The mean is available in closed form, so that simple analytical formulas for marginal

effects and average treatment effects exist. Because the model is based on a fully specified structural

stochastic process, it is simple to incorporate varying time of exposure (Baetschmann and Winkelmann,

2013). The methods that we develop in this article are designed for cross-sectional count data. With panel

data or multiple-spell duration data, other approaches would be feasible and occurrence dependence could

be tested more directly.

The paper proceeds as follows. In the next section, we present the standard models for count dependent

variables as well as the static hurdle model. In section 3, we derive the dynamic hurdle model and discuss

its properties, including some possible specification tests. The new model is used, in section 4, to estimate

the socio-economic determinants of the number of quarterly visits to a physician, based on survey data

from the German Socio-Economic Panel for the year 2006. Section 5 concludes.
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2 Modeling count data

It is well known that if events occur randomly over time, without occurrence dependence, duration depen-

dence, or unobserved heterogeneity, the number of events during a unit time interval is Poisson distributed

with probability function

Pr(Y = k) =
exp(−λ)λk

k!
, k = 0, 1, 2, . . . (1)

where λ is the constant rate, or intensity, of the process and also the mean of the Poisson distribution.

Violation of randomness or homogeneity lead to different count data models (“non-Poissonness”). In the

past, a considerable amount of research has been devoted to the consequences of unobserved heterogeneity

(e.g., Hausman, Hall and Griliches, 1984, Cameron and Trivedi, 1986) and duration dependence (e.g.,

Winkelmann, 1995, McShane et al., 2008). If λ follows a gamma distribution, the resulting marginal

probability function for Y is negative binomial. The negative binomial distribution has, for a given mean,

a larger variance than the Poisson distribution (overdispersion). It also has a higher probability of a zero.

Similarly, extra zeros can be generated from a model where the times between events have a distribution

with negative duration dependence (Winkelmann, 1995).

In many applications, extra zeros (relative to the Poisson model) generated by the above models are

insufficient to account for the full amount of zeros in the data. All single index models have to compromise

between the large proportion of zeros, which tends to lower the mean, and a right-skewed distribution

of counts with large non-zero values, which tends to increase it. Moreover, one often has a substantive

interest in treating the zero-generating process separately from the process for strictly positive outcomes,

which requires different sets of parameters. In the fixed-hurdle (FH) count data model (Mullahy, 1986)

Pr(Y = k) =


φ for k = 0

(1− φ)
f(k)

1− f(0)
for k ≥ 1

(2)
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where f(k) denotes the probability function of a standard count data model, usually either the Poisson or

the negative binomial distribution. Thus, the distribution of positive counts depends on two factors, the

probability of crossing the hurdle and the conditional-on-positives distribution. In health services research,

1 − φ is known as the utilization probability, i.e. the probability of using services at least once. Often,

φ is specified as the survivor function of the exponential distribution. When 1 − φ > f(0), the data are

zero-inflated relative to the base distribution. The distribution f(k) models the frequency of repeat visits

for k ≥ 1. Pohlmeier and Ulrich (1995) argue that such a hurdle model can well represent actual decision

processes, for example in the context of the demand for doctor visits, where a first decision to contact a

general practitioner might be followed by a number of re-appointments or referrals to specialists that are

subject to a different mechanism.

While this approach generates a kind of “occurrence dependence”, it is not derived from an underlying

stochastic process. It therefore ignores the timing dimension, i.e., the difference it makes whether the first

contact was made earlier or later during the observation period. Our new model, by contrast, directly

addresses the dynamic hurdle selection. The process switches from a low rate for the first occurrence (state

1) to a higher rate for subsequent occurrences (state 2) or vice versa. The hurdle is dynamic, since the

timing of the hurdle-crossing from state 1 to state 2 is endogenously determined. The key difference to the

fixed hurdle model is the time effect: the lower the stage 1 rate, the later the expected time of crossing

and the less time is spent in the state 2 process. This time effect is ignored by the fixed hurdle model.
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3 Dynamic hurdle count models

3.1 Timing of the first event

There is a fundamental relationship between the time of the first event, ϑ1, and the total number of events

between 0 and T , Y (0, T ). Suppose that a first event occurs at ϑ1 = t and k − 1 events occur between t

and T , then, for k ≥ 1, the total number of events between 0 and T is equal to k. Therefore

Pr[Y (0, T ) = k, ϑ1 = t] = Pr[Y (t, T ) = k − 1, ϑ1 = t]

= Pr[Y (t, T ) = k − 1]f1(t) (3)

where f1(t) is the density function of the time of the first event. Moreover, the marginal probability

function Pr[Y (0, T ) = k] can be obtained as

Pr[Y (0, T ) = k] =


∫ T

0
Pr[Y (t, T ) = k − 1]f1(t)dt if k ≥ 1

Pr(ϑ1 > T ) if k = 0

with mean

E(Y (0, T )) =
∞∑
k=1

k

∫ T

0
Pr[Y (t, T ) = k − 1]f1(t)dt

=

∫ T

0

∞∑
k=0

(k + 1) Pr[Y (t, T ) = k]f1(t)dt (4)

= Pr(y > 0) + Et[EY (t, T )]

These are completely general results obtained without imposing any particular structure on the stochastic

process. Even so, they tell us that the mean of a count variable is equal to the probability of a positive

count plus the expected number of events occuring after the time of the first event, i.e., after crossing the

dynamic hurdle.
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3.2 A dynamic hurdle Poisson model

To obtain the dynamic hurdle Poisson model, we make the following assumptions. First, f1(t) is the

density of the exponential distribution with rate λ1. Second, events in the second state are generated from

a Poisson process with rate λ2, such that Y (t, T ) ∼ Poisson(λ2(T − t)). With these assumptions, for

k ≥ 1,

Pr[Y (0, T ) = k] =

∫ T

0

exp(−λ2(T − t))[λ2(T − t)]k−1

(k − 1)!
λ1 exp(−λ1t)dt (5)

From now on, we use the normalization T = 1. One can show (see Appendix A) that the integral has

closed form solution, and for y ≥ 1, the probability function of the dynamic hurdle Poisson model is given

by

fDHP (y;λ1, λ2) =
λ1λ

y−1
2 exp(−λ1)
(λ2 − λ1)y

1−
y−1∑
j=0

exp(−(λ2 − λ1))(λ2 − λ1)j

j!



It simplifies to that of the Poisson distribution if λ1 = λ2.

3.3 Properties

For the dynamic hurdle Poisson model, the expected time spent in the first state is

E(t;λ1) = Pr(t ≥ 1;λ1) + Pr(t < 1;λ1)E(t|t < 1;λ1)

= Pr(y = 0) +

∫ 1

0
exp(−λ1t)λ1t dt

= exp(−λ1) + λ−11 − (1 + λ−11 ) exp(−λ1)

= λ−11 (1− exp(−λ1))
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and the expected time spent in the second state is therefore

E(1− t;λ1) = 1− λ−11 (1− exp(−λ1)) (6)

We can use (6) to rewrite (4) as

EDHP (y;λ1, λ2) = Pr(y > 0;λ1) + λ2E(1− t;λ1)

= [1− exp(−λ1)] + λ2[1− λ−11 (1− exp(−λ1))] (7)

= λ2 + (1− λ2/λ1)[1− exp(−λ1)]

As required, the expected value reduces to the Poisson mean when λ1 = λ2. The expected value is greater

than λ2 when λ1 > λ2, and smaller otherwise.

3.4 Comparison to the fixed hurdle Poisson model

Equation (7) illustrates an important property of the dynamic hurdle Poisson model. The expectation

is the sum of the probability of passing the dynamic hurdle, plus the state 2 rate times the expected

duration in state 2. Thus λ1 affects the overall mean through two separate channels. First, it affects the

probability of crossing the hurdle, and second, it affects the expected duration spent in the second state.

This distinction is absent in the fixed hurdle Poisson model, where the expectation is given by

EFHP (y;λ1, λ2) = Pr(y > 0;λ1)E(y|y > 0;λ2)

= [1− exp(−λ1)]
λ2

1− exp(−λ2)
(8)

One can show that ∂EDHP (y)/∂λ1 > ∂EFHP (y)/∂λ1 if the two models have the same expected value and

the same fraction of zeros. On the other hand, the probability of a zero is identical in the two models,

PrDHP (0|λ1, λ2) = PrFHP (0|λ1, λ2) = exp(−λ1)
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and zero-inflation therefore arises in either case whenever λ1 < λ2.

3.5 Observed heterogeneity

In cross-sectional count data applications, we observe independent pairs of observations (yi, xi), i = 1, . . . , n,

and the interest usually centers on the effect of covariates on the conditional mean E(yi|xi), or some other

feature of the conditional distribution of f(yi|xi). The standard way of introducing covariates is to let

λij = exp(x′iβj), j = 1, 2, where xi denotes the (k × 1)-vector of covariates, including a constant, and

β the conformable parameter vector. This parameterization ensures positive rates and implies a semi-

elasticity interpretation for β. Further it allows to treat exposure Ti, the length of the observation period,

as a standard covariate. Incorporating exposure explicitly in the model is necessary if Ti varies between

individuals and cannot be normalized to one therefore.

3.6 Decomposing the mean effect

The FH model (see 8) has a standard two-part structure, where the two parts are independent. This allows

for a straightforward decomposition of the overall effect into an effect at the extensive margin and an effect

at the intensive margin:

∂EFH(y;λ1(x), λ2(x))

∂x
=
∂ Pr(y > 0;λ1(x))

∂x
E(y|y > 0;λ2(x)) +

∂E(y|y > 0;λ2(x))

∂x
Pr(y > 0;λ1(x)) (9)

It is useful to think of the extensive margin effect as a participation effect (i.e., whether or not one has

seen a doctor, or changed a job at all), whereas the intensive margin effect is the effect for participants,

also called the conditional-on-positives effect. Note that the extensive margin effect is the change in the

probability of participation times the average outcome of participants. This may overstate the true causal

effect if those at the margin of participation have below average outcomes once they participate (Staub,

8



2013).

The dynamic hurdle model lends itself to a more detailed decomposition of marginal mean effects. Differ-

entiating (7) with respect to x, the DH model implies the following decomposition of the partial derivative

of the overall mean:

∂EDH(y;λ1(x), λ2(x))

∂x
=
∂ Pr(y > 0;λ1(x))

∂x
+ λ2

∂E(T − t;λ1(x))

∂x
+ E(T − t;λ1(x))

∂λ2(x)

∂x
(10)

Here, the extensive margin effect is the change in the participation probability, multiplied by one, and

hence always smaller than the effect under the standard two-part decomposition. The reason is that the

marginal observation does not spend any time in the state 2 process, and hence at the margin gets a weight

of E(y|y > 0, 1 − t = 0) = 1. Also note, that the intensive margin effect can now be further decomposed

into a time effect and a productivity effect.

3.7 Unobserved heterogeneity

Suppose that f(yi|xi, εi) is Poisson distributed with rate exp(x′iβ + εi) where exp(εi) ≡ ui > 0 captures

the effect of unobserved variables zi. It is well known that if ui is i.i.d. gamma distributed with mean 1

and variance α, the distribution of yi conditional on xi but unconditional on ui is negative binomial with

mean λ and variance λ(1 + λα). The DHP model can be extended along the same lines. Let the two rates

be given by λj(xi, ui) = exp(x′iβj)ui, j = 1, 2, where ui is a gamma distributed individual heterogeneity

term that equally affects both rates of the DHP model. The conditional probability of observing a count

y is then fDHP (y;λ1u, λ2u), and integrating over the unobserved u leads to the unconditional probability

function

fDHNB(y;λ1, λ2, α)

=

∫ ∞
0

fDHP (y;λ1u, λ2u)g(u;α)du (11)

9



=


(λ1/α+ 1)−α for y=0

λ1λ
y−1
2

(λ2 − λ1)y
(

α

α+ λ1

)α 1−
y−1∑
j=0

(1− θ)j θα Γ(α+ j)

Γ(α)Γ(j + 1)

 for y = 1, 2, 3, . . . ,

where θ = (α + λ1)/(α + λ2) and g(u;α) is the gamma density function. For λ2 > λ1, the term in

squared brackets is equal to the complementary cumulative distribution function of the negative binomial

distribution. The mean of the dynamic hurdle negative binomial model is given by

EDHNB(y|λ1, λ2, α) =

∫ ∞
0

λ2u+ (1− λ2u/λ1u) (1− exp(−λ1u))g(u;α)du

= λ2 + (1− λ2/λ1)(1− fNB(0;λ1, α))

= λ2E(1− t, λ1, α) + Pr(y > 0;λ1, α) (12)

It preserves the essential structure of the mean of the dynamic hurdle Poisson model, and simplifies to it

for α = 0.

3.8 Estimation and testing

One can estimate β1, β2 and α by maximum likelihood (Stata code is available from the authors upon

request). In empirical applications, the interest is often in testing for the presence of excess zeros. Under

the null of no additional zeros, λ1 = λ2 which requires that β1 = β2. The DH Poisson model simplifies

to a Poisson model, and the DH negative binomial model to a negative binomial model, respectively. The

likelihood ratio test statistic is chi-squared distributed with k degrees of freedon. A similar test is possible

for the FH model.

Since the DH, FH, and ZIP models are not pairwise nested, one can use the Vuong-Test (Vuong, 1989)

for overlapping models to discriminate between them. The two-step procedure requires first testing for

equivalence. For example, in the case of the DH and FH models, both nest the Poisson model and thus
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are equal in that case. The ZIP model can be rewritten as a hurdle model with utilization probability

φ = p+(1−p)f(0) where p is the probability of an extra zero. The two are thus equivalent in the constant-

only case. Once these conditions for equivalence are rejected, the second stage of the test determines

whether one of the two models significantly outperforms the other in terms of minimizing the Kullback-

Leibler distance (see Vuong, 1989, for additional detail). Alternatively, one can select the best model

using an information criterion. However, since the models have an identical number of parameters, an

adjustment for degree of freedom is not required, and the model with the highest log likelihood value will

be selected.

Finally, there is a possibility of an informal specification test of the DH model. Define the binary event

“positive count yes/no”. Under the assumption of the DH model, this event has Bernoulli distribution

with complementary log-log link and parameter λ1. Thus, λ1 is identified from a separate binary model

and does not require estimation of the full DH model. An informal specification test can be based on a

comparison of β̂1 in the full DH model with that of a simple binary model (i.e., the first stage of the FH

model). If the two differ a lot, the DH specification is likely wrong.

4 Application: the socio-economic determinants of the number of doc-

tor visits in Germany

We apply the new dynamic hurdle models to estimate the socio-economic determinants of the quarterly

number of doctor visits in Germany. Most people living in Germany are covered by statutory health

insurance which is financed through payroll deductions. Services are offered at no cost but there is a co-

payment for prescription drugs. In addition, between 2004 and 2012, a one-time quarterly fee of 10 Euros

had to be paid for the first visit to the family doctor, or general practitioner (“Praxisgebühr”). Further

visits, or subsequent referrals to a specialist, were then free of charge. Effectively, this non-linear pricing
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scheme mirrors to the structure of the dynamic hurdle process developed in this paper: in state 1, without

a previous visit during the quarter, the price of a visit is 10 Euro. Thereafter, in state 2, it drops to 0.

Provided people respond to price incentives, the state 1 rate should be lower than the state 2 rate, leading

to zero inflation in the distribution of the quarterly number of visits. Although we do not observe the

timing of the first visit, if any, the dynamic hurdle model can account for this latent selection process.

The data for the analysis have been extracted from the Socio-Economic Panel (SOEP, see Wagner et. al,

2007). As our models are designed for cross-section data, we use data from a single wave, the year 2006.

There are two reasons for choosing this particular year. First, by that time, people should have adapted

their demand behavior to the new pricing system introduced two years earlier. And second, there are

certain questions on interesting health behaviors that were included in the 2006 wave but are missing in

other years.

The dependent variable is the self-reported number of doctor visits during the previous three months.

While most interviews are conducted before the summer holidays, there is substantial variation by month

and day of the month. Thus, the three months reporting period does not necessarily coincide with the

calendar quarter that is relevant for the dynamic pricing of doctor visits. There are two possible responses

to this reporting mismatch. First, following Farbmacher and Winter (2013), one can select a subset of

persons who were interviewed within plus or minus 10 days of the end of the quarter (March 31, June

30, or September 30, respectively; there are no interviews held in the second half of December or at the

beginning of January). This is what we do in our analysis. Second, it is easy to show that the expected

duration spent in the low hazard state 1 (where the price of a visit is 10 Euros) unaffected by the reporting

period, as is the expected duration spent in state 2 (where visits are free). One could thus estimate the

DH model with the unrestricted sample as well.

— — — Table 1 about here — — —
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After further limiting our sample to those covered by statutory health insurance, being older than 18

(those aged 18 or younger were exempt from the quarterly fee) and younger than 70, we are left with 2966

observations. Table 1 shows selected summary statistics of the variables employed in the estimation. The

number of doctor visits has a mean of 2.1, and 34 percent of all persons in the sample did not visit a doctor

during the previous quarter. The remaining variables are used as determinants of health care utilization:

two demographic variables (age and its square as well as gender), two socio-economic variables (years of

schooling and log of disposable household income), two indicators of health behaviors (current smoker and

the body mass index), and a disability indicator. Thus, the hazard rate in each part of the model depends

on a total of 9 parameters each.

We intended to estimate the fixed and dynamic hurdle models without and with unobserved heterogeneity.

However, the DHNB model did not converge for our particular dataset. Convergence problems with

modified negative binomial models are not unusual in our experience, including problems for the zero-

truncated negative binomial routine available in STATA, that is a component of the fixed hurdle model with

unobserved heterogeneity. For example, it may be the case that the true process displays underdispersion

in the positive part of the model, but overdispersion overall, so that the mixture hurdle model will never

converge.

As a consequence, we report in Table 2 estimates from three models, the standard Poisson model, the fixed

hurdle Poisson model, and the dynamic hurdle Poisson model. Columns (2) and (3) show the results for

the hazard rates λ1 and λ2 for the two states of the fixed hurdle Poisson model and columns (4) and (5)

the corresponding results for the dynamic hurdle Poisson model, respectively. A positive β means that a

unit increase in the associated regressor increases the rate of the state specific process by [exp(β)−1]×100

percent. In the case of the first state, an increase in the hazard rate implies a reduction in the probability

of a zero count.
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In terms of overall fit, the simple Poisson model is clearly rejected against either of the two generalizations,

based on a likelihood ratio test. The DHP model has a substantially higher loglikelihood value than the

FHP model (-5961.5 as compared to -6153.1). We also estimated the zero-inflated Poisson model (see

Winkelmann, 2008, for specification details). While it offers an improvement over the simple Poisson and

the FHP models, its loglikelihood of -6150.9 falls short of that of the DHP model. Thus, any of the standard

model selection criteria would pick the DHP model, and the same is true when applying the Vuong test

for overlapping models.

— — — Table 2 about here — — —

The estimated partial effects of the FHP and the DHP models are qualitatively similar. As mentioned

above, the probability of a zero visit equals exp(−λ1) in both models, so it is reassuring that the estimated

coefficients are of similar magnitude. The λ2 parameters tend to be larger in the DHP model. The DHP

estimates thereby compensate for the fact that the second, or state 2, rate applies only for a fraction of

the entire period, in contrast to the FHP model, where such a time effect is ruled out. It should also be

noted that the standard errors of β̂2 are substantially higher in the DHP than in the FHP model. The

dynamic interdependence between the two rates in the DHP model means that the second rate cannot be

estimated independently of the first rate, reducing the precision of the estimator. On the other hand, β̂1

is estimated somewhat more precisely in the DH model than in the FH model, as it uses the distribution

of the positives as an additional source of identification.

There are some interesting asymmetries between extensive margin (λ1) and intensive margin (λ2) effects in

the DHP model. For instance, income has no effect at the extensive margin, but a statistically significant

negative effect on the number of doctor visits at the intensive margin, where a 10 percent increase in income

is predicted to reduce the hazard rate for each further doctor visit by 0.7 percent. The opposite pattern

is observed for current smokers: perhaps surprisingly, the extensive margin effect is negative, while there
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is no effect at the intensive margin. Individuals with disabilities have higher hazard rates in both states,

and thus a higher predicted number of doctor visits, than others. Women have more visits than otherwise

similar men.

For the DHP model, the average predicted state 1 hazard rate in the sample is 1.1, the average predicted

state 2 hazard rate is 3.8; the predicted average duration spent in state 2 is 0.38, i.e., a bit more than one

month. Applying (4), the predicted average number of doctor visits is 2.13, close to the sample average of

2.05. One should be careful, though, in interpreting the predicted increase in the hazard rate following the

first visit as resulting from the non-linear pricing introduced by the first-visit fee. While the rate increase

implied by the DHP model is compatible with such an explanation, it seems much too large to be resulting

from a 10 Euro change in price, and more importantly, there are other potential explanations for the same

effect.

First and foremost, the model does not allow for unobserved heterogeneity. It is easy to show that un-

observed heterogeneity leads to excess zeros relative to the Poisson model, so that ignoring unobserved

heterogeneity will reappear as state dependence in the DHP, with a lower initial rate. Second, the non-

linear pricing argument focusses on the demand side, while there can be supply side effects as well. For

instance, doctors have an incentive to reduce appointments towards the end of a quarter and rather have

patients come back at the beginning of the next quarter (Schmitz, 2013). This is unrelated to the one-time

fee, which was collected by physicians but entirely passed on to the insurance companies, but rather due to

a fixed budget allocation, or remuneration cap, applied to a physician on a per-patient-and-quarter basis.

However, note that this effect would work in the opposite direction and tend to lower the state 2 hazard.

Finally, this analysis also entirely abstracted from the dynamics of sickness spells, that obviously also can

lead to clustered visits and a non-stationary stochastic process. With the limited amount of information

provided by a simple count of visits, is is perhaps not too surprising that there are limits to what we can
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learn from the data, and without further assumptions, one should interpret the changes between λ1 and λ2,

i.e. the dynamic hurdle, as the combined, reduced form effect of a number of different underlying factors.

5 Concluding remarks

This article develops a new approach for the regression analysis of zero inflated and overdispersed count

data. In our model, zero inflation is modeled by assuming that the counts are generated from a non-

stationary stochastic process, where there is a one-time increase in the otherwise constant underlying

hazard rate at the time of the first event. The timing of the first event is thus endogenously determined

in such a dynamic hurdle count model. Regressors are allowed to differentially affect the two hazard

rates before and after the first event, and the effect on the overall count has three distinct channels: the

probability of zero, the expected duration of the second state, and the hazard rate in that second state.

We derive a Poisson and a negative binomial version of the model. In principle, the model can account for

zero-deflation and underdispersion as well, if the rate to the first event is higher than the subsequent rate.

We apply the new model to an analysis of individual level health-care usage in Germany. The dependent

variable is the self-reported number of visits to a doctor during the previous calendar quarter. Our model

implicitly accounts for an institutional feature of the German health care system, namely that users have to

pay a fee for the first visit per quarter, but not for subsequent ones. If users are responsive to prices, such

a system can contribute to a one-time change in the underlying rate. Our results show that the dynamic

hurdle model fits the data substantially better than two existing approaches for zero-inflated count data.

The results are easy to interpret, since regression coefficients are semi-elasticities of the two hazard rates,

and they allow for a useful distinction between intensive and extensive margin effects. On the substantive

side, we find no evidence for the hypothesis that unhealthy behaviors (smoking, body mass index) increase

the number of doctor visits.
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Appendix A. Derivation of the probability function of the stochastic hurdle model

The probability of a zero in the DH model equals the probability of a zero in a Poisson model with rate

λ1. If, λ1 = λ2 the DH model degenerates to a Poisson model. For k = 1, 2, 3, . . . and λ1 6= λ2:

Pr( Y = k|λ1, λ2)

=

∫ T

0
exp(−λ1t)λ1 exp(−λ2(T − t))(λ2(T − t))k−1/(k − 1)!dt

= λ1λ
k−1
2 exp(−λ2)

∫ T

0

exp(λ2 − λ1)t(T − t)k−1

(λ2 − λ1)(k − 1)!
dt

= λ1λ
k−1
2 exp(−λ2)

(
exp(λ2 − λ1)t(T − t)k−1

(λ2 − λ1)(k − 1)!
+

∫ T

0

exp(λ2 − λ1)t(T − t)k−2

(λ2 − λ1)(k − 2)!
dt

)

=
λ2

λ2 − λ1
Pr(Y = k − 1|λ1, λ2)−

λ1λ
k−1
2

λ2 − λ1
exp(−λ2)/(k − 1)!

Setting T = 1, and solving the recursive equation pk = αpk−1 + ck leads to:

Pr( Y = k|λ1, λ2)

= αk−1 Pr(k = 1|λ1, λ2) +
k−2∑
j=0

αjck−j

=
λ1λ

k−1
2

(λ2 − λ1)k
(exp(−λ1)− exp(−λ2))−

k−2∑
j=0

(
λ2

λ2 − λ1

)j λ1λk−j−12

λ2 − λ1
exp(λ2)

(k − j − 1)!

=
λ1λ

k−1
2

(λ2 − λ1)k

exp(−λ1)− exp(−λ2)
k−1∑
j=0

(λ2 − λ1)j

j!


=

λ1λ
k−1
2 exp(−λ1)
(λ2 − λ1)k

1−
k−1∑
j=0

exp(−(λ2 − λ1))(λ2 − λ1)j

j!



See Janardan (1980) for an alternative derivation.
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Table 1. Descriptive Statistics

Mean Std. Dev. Min Max

Number of doctor visits 2.058 2.810 0 25

No visit (yes/no) 0.343 0.475 0 1

Age 44.9 14.1 19 70

Years of schooling 12.1 2.50 7 18

Log net household income 10.32 0.643 6.68 13.46

Male (yes/no) 0.458 0.498 0 1

Disability (yes/no) 0.095 0.293 0 1

Current smoker (yes/no) 0.334 0.471 0 1

Body mass index 25.9 4.70 15.8 59.5

Source: Socio-Economic Panel (SOEP), version 26, doi:10.5684/soep.v26

Data for year 2006. N=2966.
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Table 2. Hurdle Poisson Models for Number of Doctor Visits

Poisson Fixed Hurdle Dynamic Hurdle

λ λ1 λ2 λ1 λ2

Constant 0.451 -0.093 1.063 -0.088 1.125
(0.409) (0.457) (0.264) (0.448) (0.385)

Age 0.003 -0.039 0.021 -0.038 0.038
(0.011) (0.012) (0.007) (0.012) (0.010)

Age squared×10−2 0.005 0.059 -0.022 0.056 -0.043
(0.013) (0.013) (0.008) (0.013) (0.011)

Years of schooling 0.005 0.021 -0.007 0.022 -0.016
(0.010) (0.010) (0.006) (0.010) (0.009)

Log net household income -0.039 0.024 -0.068 0.024 -0.077
(0.037) (0.041) (0.023) (0.040) (0.034)

Male (yes/no) -0.272 -0.304 -0.142 -0.267 -0.137
(0.050) (0.051) (0.029) (0.049) (0.042)

Disability (yes/no) 0.825 0.740 0.589 0.556 0.643
(0.066) (0.087) (0.035) (0.081) (0.053)

Current smoker (yes/no) -0.087 -0.161 -0.009 -0.129 -0.012
(0.052) (0.054) (0.032) (0.054) (0.046)

Body mass index 0.015 0.010 0.012 0.006 0.017
(0.005) (0.006) (0.003) (0.005) (0.004)

Log likelihood -6754.5 -6153.1 -5961.5

Number of observations 2966 2966 2966

Source: Socio-Economic Panel (SOEP), version 26, doi:10.5684/soep.v26

Standard errors in parentheses.
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