

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Buser, Thomas; Oosterbeek, Hessel; Plug, Erik J. S.; Ponce, Juan; Rosero, José

Working Paper The Impact of Positive and Negative Income Changes on the Height and Weight of Young Children

IZA Discussion Papers, No. 8130

Provided in Cooperation with: IZA – Institute of Labor Economics

Suggested Citation: Buser, Thomas; Oosterbeek, Hessel; Plug, Erik J. S.; Ponce, Juan; Rosero, José (2014) : The Impact of Positive and Negative Income Changes on the Height and Weight of Young Children, IZA Discussion Papers, No. 8130, Institute for the Study of Labor (IZA), Bonn

This Version is available at: https://hdl.handle.net/10419/96810

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

IZA DP No. 8130

The Impact of Positive and Negative Income Changes on the Height and Weight of Young Children

Thomas Buser Hessel Oosterbeek Erik Plug Juan Ponce José Rosero

April 2014

Forschungsinstitut zur Zukunft der Arbeit Institute for the Study of Labor

The Impact of Positive and Negative Income Changes on the Height and Weight of Young Children

Thomas Buser

University of Amsterdam

Juan Ponce FLACSO Ecuador

José Rosero

INEC Ecuador

Hessel Oosterbeek

University of Amsterdam

Erik Plug

University of Amsterdam and IZA

Discussion Paper No. 8130 April 2014

IZA

P.O. Box 7240 53072 Bonn Germany

Phone: +49-228-3894-0 Fax: +49-228-3894-180 E-mail: iza@iza.org

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but the institute itself takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit organization supported by Deutsche Post Foundation. The center is associated with the University of Bonn and offers a stimulating research environment through its international network, workshops and conferences, data service, project support, research visits and doctoral program. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

IZA Discussion Paper No. 8130 April 2014

ABSTRACT

The Impact of Positive and Negative Income Changes on the Height and Weight of Young Children^{*}

We estimate the impact of changes in unearned income on the height and weight of young children in a developing country. As source of variation we use changes in the eligibility criteria for receipt of an unconditional cash transfer in Ecuador. Two years after families lost the transfer, which they had received for seven years, their young children weigh less, and are shorter and more likely to be stunted than young children in families that kept the cash transfer. We find no effect on young children's height and weight two years after gaining the cash transfer. Information on household expenditures suggests that a reduction of food expenditures by households that lost the transfer is the main mechanism behind this finding.

JEL Classification: I14, H51, C31

Keywords: cash transfers, health outcomes, developing country, poverty reduction

Corresponding author:

Thomas Buser Amsterdam School of Economics University of Amsterdam Roetersstraat 11 1018 WB Amsterdam The Netherlands E-mail: t.buser@uva.nl

^{*} We thank seminar participants in Amsterdam, Quito and São Paulo for their helpful comments. We gratefully acknowledge financial support from the University of Amsterdam through the Speerpunt Behavioural Economics and from FLACSO-Ecuador. We also thank the Ecuadorian government for giving us access to administrative data.

1 Introduction

In 2009, the government of Ecuador revised the poverty index that determines eligibility for the unconditional cash transfer that it provides to the forty percent poorest households. Due to this revision, around 200,000 families lost the transfer, which they had received for seven years. A comparable number of families suddenly became eligible for the transfer which they had not previously received. This paper exploits the movement into and out of the cash transfer program to estimate the causal impact of changes in households' unearned income on the height and weight of young children in a developing country, two years after the change.

The impact of income fluctuations on the height and weight of young children is an important question for development policy. Lower height and weight compared to healthy children of the same age are commonly used as indicators of poor nutritional status and are associated with a range of undesirable economic and health outcomes later in life (de Onis and Blössner, 1997).¹ The incomes of poor households are characterized by strong uncertainty and frequent shocks (Banerjee and Duflo, 2007). If negative income shocks have an adverse effect on children's height and weight, such shocks may have permanent effects on their health and on a range of later-life outcomes which directly or indirectly depend on early health conditions (Martorell, 1999; Grantham-McGregor et al., 2007).

The results of our study are also important for the design of cash transfer programs. These programs typically serve a limited share of the population. Every now and then, recipients' eligibility for the cash transfer has to be reconsidered. As was the case in Ecuador, this will result in some recipients losing the transfer and some former nonrecipients qualifying for the program. If movement out of the program has adverse effects on the health of children, it might be necessary to supplement movement out of the program by compensating measures.

Previous studies on the effect of negative income shocks on health take advantage of aggregate economic fluctuations and historical events to estimate causal effects. Most relevant to our study is Hidrobo (2010) who finds that children who were relatively more exposed to the Ecuadorian crisis (1998-2000) are shorter and have lower cognitive

¹Poor growth and smaller size in children are associated with increased risk of illness and mortality, impaired development, worse school performance and intellectual achievement, and reduced work capacity and economic productivity as adults (de Onis and Blössner, 1997). Using Brazilian data, Thomas and Strauss (1997) estimate an elasticity of wages with respect to height of between 2.43 and 3.36 for urban males, controlling for educational achievement.

ability. Baird et al. (2011) find that short-term GDP fluctuations in developing countries are correlated with child mortality. Using rainfall shocks as a proxy for early-life income fluctuations, Maccini and Yang (2009) find effects on the adult health of Indonesian women. Papers using historical data include Van Den Berg et al. (2006), who, using data from 1812-1912, find that being born during a recession increases child mortality and affects adult health. Banerjee et al. (2007) find that a 19th century vine plague in France reduced the adult height of children of wine-growing families and Lumey et al. (2007) find that individuals born during the Dutch hunger winter of 1944-45 have worse adult health outcomes.

There are a number of studies which use unconditional cash transfers as a source of positive income shocks. Duflo (2000) finds that South-African girls whose grandmothers receive pension transfers have large improvements in weight and height and Agüero et al. (2007) find that an unconditional South African child support grant increases child height. Implementing a randomized field experiment, Schady and Rosero (2008) find that Ecuadorian households increase the food share of their expenditures after receiving an unconditional monthly transfer of 15 US\$.² Paxson and Schady (2010) using the same data, however, find only weak effects on the height and cognitive development of children who were 20 to 67 months of age at the start of the transfer.³

The stand-out feature of our paper is that we can estimate the effects of both positive and negative income changes within a single framework. In the subsample of households that did not receive the cash transfer before the revision, some households qualify for the cash transfer after the revision while other households do not. Using a regression discontinuity approach, this allows us to identify the effect of positive income changes. Likewise, in the subsample of households that did receive the cash transfer before the revision, some households do no longer qualify for the cash transfer after the revision while other households still qualify. Again using a regression discontinuity approach, this allows us to identify the effect of negative income changes. Our analysis is based on self-collected data containing information about the height and weight of almost 1400

²This contrasts with the common finding in the literature that the income elasticity of food consumption is less than one (for example Subramanian and Deaton (1996) and Strauss and Thomas (1990)). Schady and Rosero (2008) attribute this to the fact that the cash transfers are made to women. Recent studies of Angelucci and Attanasio (2013) and Attanasio and Lechene (2014) for Mexico and of Attanasio et al. (2012) for Colombia, report a similar result for conditional cash transfers in these countries.

³There is also a large literature evaluating conditional cash transfers (Fiszbein et al., 2009). Because the transfers are often conditional on attendance of health care centers it is difficult to disentangle the impact of the cash transfer from the effect of the conditionality.

children under the age of six years old, as well as on household expenditures including food expenditure.

Our key finding is that two years after families lost the cash transfer, which these families had received for seven years, the young children in these families weigh less, and are shorter and more likely to be stunted than young children in families that kept the cash transfer. We find no effect on young children's height and weight two years after their families started receiving the cash transfer. We also find that households that lost the transfer spend less on food than comparable households that kept receiving the transfer. The difference in food expenditures is similar to the size of the transfer. This suggests that a reduction of food expenditures by households that lost the transfer is the main mechanism behind the adverse effects of losing the transfer on children's height and weight.

The paper proceeds as follows. Section 2 describes the Ecuadorian context and the cash transfer program. Section 3 describes the data and how these were collected. Section 4 explains the empirical strategy. Section 5 lays out the main results and Section 6 looks for pathways for the effects of income changes on child height and weight. Section 7 concludes.

2 Context and cash transfer program

Ecuador is a lower middle income country which has high poverty levels and high inequality. 72 percent of its population of around 14 million live in urban areas. 29 percent of the population are poor and 26 percent are affected by chronic malnutrition.⁴

The cash transfer program is called Bono Desarollo Humano (BDH) and was launched in 2003. It is aimed at the poorest 40 percent of households. Initially, these families received a transfer of 15 US\$ per month which was increased to 30 US\$ in 2007 and then to 35 US\$ in 2009. The transfers are collected by the mother through local banks. Apart from guaranteeing a minimum level of consumption, the official aims are to increase human capital, reduce the persistence of poverty and to reduce the levels of chronic malnutrition and preventable diseases for children below 5 years of age. For the households in our sample, which are located around the 40th wealth percentile, the transfer represents about 11 percent of household expenditure.

⁴These figures are according to the government of Ecuador (http://www.pps.gob.ec/PPS/PPS/Recursos%5CPDF%5CPPS%5CPresentacionIngles.pdf).

Most cash transfer programs in developing countries are conditional on some specified behaviors, usually including school attendance, nutritional supplements for children and health clinic visits for children. The BDH in Ecuador is different in that, while in theory recipients should send there children to school and to half-yearly health checks, these conditionalities were neither effectively communicated nor controlled or enforced.⁵ In Section 6, we will have a closer look at whether receiving the BDH increases the probability of health center visits for the children in our sample.

Eligibility for the BDH is determined by a households' percentile on a wealth index called SELBEN.⁶ SELBEN is based on 27 variables including household assets and housing characteristics (access to water, toilet, shower and household appliances), characteristics of the head of the household (schooling, employment), children's characteristics and household size. It is calculated using nonlinear principal components analysis. The variables were collected through a census of all households living in poor areas. In 2007-2008, all households in poor neighborhoods were resurveyed and the definition of the index was changed (SELBEN II). The index is now composed of 59 variables covering the same areas (see Fabara, 2009, for the complete list of variables).

For many households close to the threshold at the 40th percentile, this redefinition led to changes in eligibility. Around 200,000 households who had received the transfer for over seven years suddenly lost it while 200,000 other household started receiving the transfer, which until then they had not received. While some change in eligibility had been announced through the media, individual families were not warned in advance and could therefore not prepare for the change. However, the transfer was phased out over the period of a few months which gave families who lost it some time to adapt.

3 Data

For the data collection, we randomly sampled 2800 households from poor neighborhoods in three urban centers: Guayaquil, Quito and Santo Domingo.⁷ The sample frame consisted of households who scored within 0.3 standard deviations of the cutoff on

⁵In 2012, well after we collected our data, the government eventually started random checks which still only cover a small proportion of recipients.

⁶SELBEN stands for Selection of Beneficiaries.

⁷In population size these are the first, second and fourth cities in Ecuador. According to the 2010 census, Guayaquil has 2.3 million inhabitants, Quito 1.6 million and Santo Domingo 305,000. The country's third city, Cuenca, has 330,000 inhabitants. For logistical reasons, we chose Santo Domingo instead of Cuenca.

SELBEN II. On the basis of the eligibility statuses of the families before and after the revision of the wealth index we defined four groups (see Figure 1): i) the households who did not receive the transfer before the change and newly gained it (to whom we will refer as "winners"); ii) those who used to receive the transfer and lost it ("losers"); iii) those who received it before and after the change ("always-winners"); and iv) those who never received it ("always-losers").

The households were randomly sampled within each city while always picking one of each group from the same parish so that the four groups are balanced by parish. We used administrative data to ensure that all households in our sample were compliers before the change. Furthermore, we only picked single-core households so that our sample only contains households which, if eligible, receive the transfer exactly once.

Figure 2 shows the timing of the SELBEN surveys and our own data collection. The SELBEN II survey was executed in 2007-2008 and the change in eligibility was implemented between August and October 2009. Our survey thus took place approximately two years after the change. The households in our sample were visited by professional enumerators who were instructed to only conduct the interview with the mother of the house. In case of her absence, the enumerators were to revisit the household several times. In case of repeated absence, a random replacement was drawn from within the same parish. In the end, we received data from 2645 households. The households in our sample comprise 1445 children under six years of age. Every child in the sampled households below the age of six was measured and weighed using professional equipment. We obtained valid measurement of the height and weight of 1374 children.⁸

In our analysis we use weight-for-age, height-for-age and weight-for-height as outcome measures (de Onis, 2006). These measures, which are the standard in the child growth literature, were created by the WHO to provide an international standard for detecting malnutrition in children.⁹ Weight-for-age gives the difference in standard deviations between the weight of a child and the average weight of an international comparison sample. Height-for-age does the same for height. The height of a child is a cumulative measure of malnutrition. If a child is affected by malnutrition during the first few years of her life, she will fail to grow at a normal pace during that time. Even if she eats enough from then onwards, she will never catch up (Martorell, 1999). The

⁸681 of these children are from families who initially did not receive the transfer and 693 are from families who initially received the transfer. Table A1 in the appendix reports the numbers of households and children in the different groups.

⁹We use the Stata do-files provided by the WHO to calculate the measures: http://www.who.int/childgrowth/standards/en/.

weight of a child is slightly harder to interpret. Low weight-for-age can either mean a child of normal height who has recently not eaten enough (acute malnutrition) or a child of short stature (who has previously been affected by malnutrition) with normal weight for her height. Finally, weight-for-height gives a more contemporaneous measure of malnutrition, comparing a child's weight to the weight distribution of children of the same height. Low weight-for-height is an indicator of current malnutrition. Children are especially vulnerable to malnutrition in utero and during the first three years of life (Martorell, 1999) and malnutrition is thought to impact stature up to age five (de Onis and Blössner, 1997).

Apart from measuring and weighing the children, the enumerators conducted a lengthy survey with the mother including questions about education, labour supply, household expenditures, personal wellbeing and social indicators. We use information on food expenditures and health center visits to examine potential pathways for our results. We also have access to the data collected by the government through the SELBEN II surveys, most importantly the households' wealth index score, which we link to our own data to implement the regression discontinuity strategy.

Table 1 shows descriptive statistics of the anthropometric measures for the entire sample and for the four subsamples of winners, losers, always winners and always losers. The average child in our sample is 0.78 standard deviations shorter and 0.37 standard deviations lighter than the average child, which is an indication of past malnutrition. On the other hand, the average child in the sample has almost the same weight as an average child of the same height, as indicated by the average weight-for-height. Underweight and stunting, defined by the WHO as a weight-for-age or height-for-age score below -2, respectively, are indicators for the most severe undernourishment (de Onis, 2006). In our sample, 14 percent of children are stunted and 6 percent of children are underweight.¹⁰ There is no significant difference in any of the measures between transfer recipients and non-recipients. This can either mean that the transfers have no impact or that the impact is offset by a positive correlation between wealth and the height and weight measures.

¹⁰Overweight, defined as a weight-for-age score above 2, affects less than 3 percent of the children in our sample.

4 Empirical strategy

Sources of truly exogenous income changes are rare, and often limited to specific populations (e.g. buyers of lottery tickets). The revision of the poverty index and the resulting changes in eligibility for receipt of the cash transfer, however, closely mimic exogenous income changes. Conditional on the eligibility status before the revision and the score on the new poverty index (SELBEN II), some households experience an as good as random change in their eligibility status, while other households do not. This creates the four groups we distinguish. Given data on households from all four groups in the vicinity of the new threshold, we can therefore use a regression discontinuity approach to estimate the effects of positive and negative income changes.

The regression discontinuity design is essentially an instrumental variables approach in which a binary indicator Z for having a SELBEN II score below the cutoff is used as an instrument for receiving the monthly cash transfer. Additionally, we condition on a polynomial in the SELBEN II score (s), which is the forcing variable and, in some specifications, on a set of controls X. Comparing the winners to the always-losers yields estimates of the effects of a positive income change and is done by estimating the following equation using a sample of households that were not eligible before the revision (winners and always-losers):

$$Y_i = \alpha_{WvsAL} + \delta_{WvsAL}T_i + f_{WvsAL}(s) + \gamma_{WvsAL}T_i \cdot f_{WvsAL}(s) + X_i\beta_{WvsAL} + \varepsilon_i$$

where Y is the outcome variable, T is a binary indicator for receiving the transfer, $f_{WvsAL}(s)$ is a polynomial function of s, and α_{WvsAL} , δ_{WvsAL} , γ_{WvsAL} and β_{WvsAL} are parameters to be estimated. Similarly, comparing always-winners to losers yields estimates for the effects of a negative income changes and is done by estimating the following equation using a sample of households that were eligible before the revision (always-winners and losers):

$$Y_i = \alpha_{AWvsL} + \delta_{AWvsL}T_i + f_{AWvsL}(s) + \gamma_{AWvsL}T_i \cdot f_{AWvsL}(s) + X_i\beta_{AWvsL} + \varepsilon_i$$

where the parameters are potentially different from those of the previous equation. Imposing symmetry of the effects of negative and positive income changes ($\delta_{WvsAL} = \delta_{AWvsL}$), we can also use the combined sample to estimate the effect of more money versus less money:

$$Y_i = \alpha_{All} + \delta_{All}T_i + f_{All}(s) + \gamma_{All}T_i \cdot f_{All}(s) + X_i\beta_{All} + \lambda E_i + \varepsilon_i$$

where E is a binary indicator for receiving the transfer before the change.¹¹ In the three equations, T is instrumented by Z, which is a binary indicator for being eligible for the cash transfer after the revision. We will present results for various specifications of f(s).

For our estimation strategy to be valid, households must not be able to precisely manipulate the assignment variable (Lee and Lemieux, 2009). A potential concern is that some households attempt to influence their score on the poverty index by making themselves look poorer than they actually are. Such "manipulating" households have, conditional on their true poverty index a higher chance to end up below the program's threshold. If the share of manipulating households is constant along the poverty index, the shares of manipulating households will be equal at either side of the threshold and the RD approach is valid. If instead the share of manipulating households varies with the poverty index, the RD approach can still accommodate this provided that the share of manipulating households is a smooth function of the poverty index. In that case the control function f(s) does not only capture any direct relationship between the score on the poverty index and the outcome variable, but also the effect of manipulation. If the share of manipulating households is not a smooth function of the poverty index, the RD approach is invalidated if discontinuities in the share of manipulating households coincide with the program threshold. This could occur if households know how the poverty index is constructed and know the location of the program threshold at the moment that they are visited by the enumerators that collect information for SELBEN II. Since neither the variables that are used for the construction of SELBEN II nor their weights were known when the data were collected and since the program threshold was determined ex-post neither condition is fulfilled. As we can see from Figure 3, which shows the distribution of SELBEN II scores for the whole population, there is indeed no indication of bunching.¹²

Another potential problem is non-compliance. Our sampling frame ensures that all households in our sample complied with the assigned eligibility before the change. A

¹¹This comes down to $\alpha_{All} = \alpha_{WvsAL}$ and $\lambda = \alpha_{AWvsL} - \alpha_{WvsAL}$

 $^{^{12}}$ This is confirmed by the McCrary (2008) density test: we cannot reject the hypothesis that there is no shift in the density at the program threshold.

low rate of non-compliance after the change can easily be dealt with using the official assignment as an instrumental variable. However, if rates of non-compliance were very high (i.e. if a large proportion of winners fail to collect the transfer or a large proportion of losers continue to receive them) we would face the weak instrument problem. Having access to administrative data, we can determine exactly which families collected a transfer at their local bank.

Figure 4 shows collection rates at the household level left and right of the cutoff for the three estimation samples (winners and always-losers, always-winners and losers, and the combined sample). Compliance rates are high: 97 percent of ineligible households do not collect the transfer while 86 percent of eligible households collect their transfer. Collection rates are higher for always-winners, who were already collecting their transfer before the change, than for winners who are newly eligible. This can be explained with imperfect information. While the eligibility change was announced through the media, there was no personal communication with eligible households and it was the responsibility of each household who thought they might be eligible to go to a local bank to check for themselves. Table A2 in the appendix reports F-statistics for the first stage (i.e. regressions of a binary indicator of transfer collection on the assignment variable) controlling for first, second or third degree polynomials in the SELBEN II score for specifications with and without controls for children's gender and age. These regressions are calculated at the individual level using the sample of analysis of children below six years of age. The F-statistics are in all cases very high and well above the rule-of-thumb threshold of around 10 (Angrist and Pischke, 2008).

5 Results

We will now use the regression discontinuity strategy to estimate the effects of winning and losing the cash transfer on child height and weight.

Figures 5 to 7 show the relationship between children's anthropometric measures and the SELBEN II score of the children's households. The observations are divided into bins with a width of 0.4. Each dot represents the average outcome for the children in each bin. The solid lines are the best linear fits through the dots. The fits are calculated separately below and above the cutoff. Below each graph we report an estimate of the discontinuity at the cutoff and its p-value. These estimates are from IV regressions which allow for separate relationships between SELBEN II scores and outcomes on either side of the cutoff and include no control variables apart from the SELBEN II score. For these and all following analyses, we rescaled the anthropometric measures by their standard deviations and all coefficients are therefore in terms of the standard deviations of our sample rather than the standard deviations of the WHO comparison sample.¹³ Each figure shows the effect of winning the transfer (winners vs. always-losers), losing the transfer (always-winners vs. losers) and for the combined sample, where we implicitly impose that the effects of winning and losing the transfer are symmetric (these regressions additionally control for earlier eligibility).

Figure 5 shows the effects on weight-for-age. As we can see, the positive income change created by winning the cash transfer has no impact on child weight two years down the line. The negative income change experienced by households which lose the transfer, however, has a large and significant negative impact on child weight. Children from households to the right of the cutoff are half a standard deviation lighter compared to children who did not lose the transfer. The lower panel shows that the impact of the income changes is significant for the whole sample. Overall, weight is slightly positively correlated with wealth as measured by SELBEN II.

Figure 6 shows the impact of the income shocks on height-for-age. We see effects in the expected direction for both positive and negative changes, neither of which, however, is individually significant. The combined effect for the whole sample is statistically significant and equal to 0.22 standard deviations when controlling linearly for the SELBEN II score. This means that over the two years since the change in eligibility, children from ineligible families have accumulated a height deficit relative to the children in eligible families.

Height-for-age is a long-term measure of malnutrition in the sense that a strong nutritional shock just after the eligibility change would be picked up even if children resumed eating normally thereafter. Weight-for-age picks up both long and short-term effects. Children can be unusually light either because they are too short for their age or because they recently did not eat enough and are therefore too light for their height. This last point is reflected in the weight-for-height measure (Figure 7) which picks up whether children are too light for their height which would indicate recent

¹³As can be seen in Table 1, the standard deviations in our sample are higher than the ones in the WHO comparison sample. The coefficients would therefore be higher if expressed in terms of the WHO z-scores. One standard deviation in weight in our sample corresponds to 2.4 kilos for children of 24 months or younger and 3.2 kilos for children older than 24 months. One standard deviation in height corresponds to 9.4 centimeters for children of 24 months or younger and 9.2 centimeters for children of deviation of 24 months.

malnutrition. We observe the same pattern as for weight-for-age, with no effect for children from positively affected households but a strong negative effect for children in negatively affected households. These results show that two years after the income change, children from families who lost the transfer are still undernourished and that the strong effects of negative income changes on weight are therefore not due solely to a height deficit accumulated in the months immediately following the change.

Six percent of the children in our sample are underweight and 14 percent are stunted according to the WHO definition. Figure 8 shows the impact of the income shocks on the likelihood of being underweight. Given the low incidence of severe underweight in our sample it is not surprising that the impact is not significant. Figure 9 shows the impact on the likelihood of being stunted. While the effect is not significant for the sample as a whole, children whose family lost their transfer are 12 percentage points more likely to be stunted, a substantial and significant difference.

We further explore these results in Table 2 which shows the results of IV regressions, where eligibility for the cash transfer is used as an instrument for actually receipt of the transfer. We report regressions which control linearly for the forcing variables as well as regressions including a second and third order polynomial. All regressions allow for separate relationships between SELBEN II scores and outcomes on either side of the cutoff. In columns 1 to 3, we only control for the SELBEN II score (and in case of the full sample regressions for earlier eligibility). In columns 4 to 6, we additionally control for a third-order polynomial in age (measured in months) and a gender dummy. This should not significantly alter the coefficients as our measures are already scaled for age and gender. Additionally, we report for each regression the Akaike information criterion (AIC) which is useful for deciding the optimal order of the polynomial (Lee and Lemieux, 2009). The preferred specification is the one with the lowest AIC.¹⁴ This criterion as well as visual inspection of the graphs (and the fact that all our observations are very close to the cutoff) indicate that a linear control is superior.

The results confirm what we saw in the graphs. Children affected by a negative income change are significantly lighter compared to unaffected children of the same age and height. With or without controls, the effect is about half a standard deviation which represents a large impact. These effects are also significant for the sample as a whole but it is evident that they mainly stem from the negatively affected kids while we do not find strong evidence for an effect of positive income changes on weight. The

¹⁴The AIC is defined as $N \ln(\hat{\sigma}^2) + 2p$, where $\hat{\sigma}^2$ is the mean squared error of the regression, and p is the number of parameters in the regression model.

effect is also robust to the order of the polynomial.

The picture looks slightly different for height. Again, negatively affected children are shorter than their peers but this effect is only significant in the linear specification and after the inclusion of controls. Positive income changes have a positive effect on height but the estimate is much higher when we control for a second order polynomial and not generally statistically significant. The effects are significant for the sample as a whole and are roughly equal to a third of a standard deviation. Finally, the weight-forheight regressions mirror the weight-for-age results with strong and significant effects for negative income changes and small and insignificant effects for positive changes. For all regressions, the AIC indicates that a linear control for the forcing variable is optimal.

Table 3 shows the results of equivalent analyses for the likelihood of being underweight and stunted. As indicated by the graphs, the probability of being severely underweight is not significantly affected by the cash transfer. On the other hand, children from families who lost the transfer are significantly more likely to be stunted. This effect amounts to 12 to 14 percentage points when controlling linearly for the forcing variable (the preferred specification according to the AIC).

As mentioned earlier, children are especially vulnerable to the effects of malnutrition in utero and during the first few years of life. Our sample is not large enough to allow for a large number of splits, but in Figures 10 to 12 and Tables 4 and 5, we conduct the above analyses separately for children who were 24 months or younger at the time of our survey and those who were older than 24 months. This split is intuitive as it roughly separates the sample into those children who were affected by the income shocks before or around birth (and were therefore affected during their whole life) and those for whom the change happened at a later age.

We can see from Figures 10 to 12 that the effects are indeed concentrated among the younger sub-group. While the effects of the income change on weight-for-age, height-for-age and weight-for-height are large and significant for the younger children, they are much weaker and mostly insignificant for the older children. As in our analyses using the whole sample, the impact of the negative income shock is much stronger than the impact of the positive shock. The IV regression results in Tables 4 and 5 confirm these results. For the younger subsample, the effects are highly significant and large in magnitude. When controlling linearly for the forcing variable, children from families who lost the transfer are 1.2-1.4 standard deviations lighter than their peers who did not lose the transfer. They are also 0.8 to 1.0 standard deviations shorter and have

0.8 to 0.9 standard deviations lower weight-for-height. The estimated effects are even higher when controlling for a second order polynomial in the forcing variable. For the older subsample, effects are generally much smaller and not significant. Only the effects on weight-for-height are marginally significant for the whole sample. Again, with the one exception of the height-for-age regressions for the younger sub-sample, the AIC point towards using a linear control for the forcing variable.¹⁵

A final important consideration is in which part of the height and weight distribution the estimated effects occur. This is especially interesting for weight, where overweight has recently become an important health problem in some middle-income countries. Does losing a cash transfer increase the amount of children with a weight below the international average or rather decrease the amount of children who already weigh more than they should? We explore this question in Table 6 by applying our regression discontinuity strategy to binary variables indicating a child has a height-for-age or weight-for-age score below a certain threshold. By running regressions for a series of indicators of z-scores from -2 to 2 (in steps of 0.5) we get a clear picture of where in the height and weight distributions our effects occur.

As indicated from the regression results above, only the negative shocks have significant effects. For the sample as a whole, the effect of losing money shifts the entire distribution of weight-for-age: losers are both significantly more likely to have a weightfor-age score of below -1.5 and below 1.5. The effects on height-for-age on the other hand seem to occur more at the lower end of the distribution. For the subsample of children who were affected by the income change before or around birth, the effects on both weight-for-age and height-for-age occur across the entire distribution.

6 Potential pathways

In this section we look at potential mechanisms for the effect of income changes on child height and weight. First of all, we will check whether receiving the transfer has an impact on the likelihood that a child receives a health check. We then turn to the most straightforward explanation for our results: that families adjust their food expenditures when confronted with income changes. We also look at mothers' labour supply and mothers' mental wellbeing as potential mechanisms.

¹⁵We realize that the estimated effects are very large; 1.2 standard deviation in weight amounts to 2.9 kilos and 0.8 standard deviation in height to 7.5 centimeters. After presenting results about possible pathways, we discuss in the final section how plausible effects of these magnitudes are.

6.1 Health checks

The BDH is an unconditional cash transfer in the sense that, at least until recently, there was no serious attempt to enforce any conditions. However, it was announced from the beginning that recipients are supposed to enroll children above five in school and take children below five for a free health check at least once every six months. Although these conditionalities were never enforced, families may still feel compelled to comply. The first conditionality is irrelevant for our study as all children in our sample are five years or younger. But health checks might lead to an earlier detection of malnutrition and increase parents' awareness of the importance of nutrition for the health and development of their children.

Figure 13 shows the likelihood of having received a health check during the past six months for children on both sides of the cutoff. Children from both eligible and ineligible households are quite likely to have had at least one health check during the previous year (approximately 60 percent of children in our sample). The difference in the likelihood of having gone for a health check between children from eligible and ineligible families is approximately 13 percentage points. This difference is significant for the sample as a whole. The figure also shows results for children who were affected before or around birth, the group for which we find the biggest impact of the income shocks. The graphs for this age group show that health checks cannot explain our findings: children whose families are eligible are neither more nor less likely to have gone for a health check. Table 7 shows IV regressions which confirm these results. The regressions also shows that the impact for the sample as a whole is not robust to controlling for a second or third degree polynomial in the forcing variable. We note, however, that the estimates are fairly imprecise so that we can also not completely exclude this channel.

6.2 Food expenditure

The average monthly expenditures of households in our sample with children below 6 is 320 dollars. Of this amount, 196 dollars are spent on food (see Table 8). This amounts to a food share of 61 percent. All the households in our sample are from urban areas and consequently own food production plays a minor role. Households on average only invest 2 dollars in food production and 93 percent of households invest nothing. This makes it very likely that an income shortfall will have to be at least partially covered by a reduction in food expenditures.

Figure 14 shows food expenditures left and right of the cutoff. Households which receive the transfer spend around 20 dollars more on food and the effect is similar for negative and positive changes. For the subsample of households with children below six years of age, the effect is even larger. Households that receive the transfer spend 31 dollars more on food. The data is noisier for the smaller subsample but the graph indicates that the effect is stronger and significant only for the negative income shock. Table 9 shows IV regression results. The effect of losing the cash transfer on food consumption controlling for household size is equal to 16 dollars for the whole sample and 29 dollars for the households with young children when controlling for household size. The IV regressions also show an impact of 23 dollars of the positive income shock on food expenditure when controlling for household size, although this effect is not significant for households with children below six. The effect of the income changes on food expenditure is significant for the sample as a whole and equal to 21 dollars when controlling for household size. On the other hand, there is not much of an impact of the income changes on non-food expenditure (see Figure 15). This is confirmed by the IV regressions in Table 10: controlling for household size, the effect for the whole sample is virtually zero.

The estimated effects of the cash transfer on food expenditures for the whole sample are quite close to the monthly transfer of 35 dollars. This suggests that the households permanently adjust their food consumption following the change in unearned income. This is especially striking for the families who lost the transfer. Even two years after the change, they are not able to make up for even part of the shortfall in income and the adjustment is done almost entirely via a reduction in food expenditure. This is reflected in the fact that both long-term and short-term measures of malnutrition are significantly affected by the negative income change.

These results are in line with Schady and Rosero (2008) who find that the BDH increases the food share of the expenditure of recipients, i.e. that recipients spend a larger share of the transfer on food than is the case for the rest of their income (albeit for a transfer of 15 US\$ and for poorer recipients). A potential reason for this difference in how the money is spent is that the BDH is received by women who might therefore be in control of how to spend it. There is evidence that the nutrition of children increases in the budget share controlled by the mother (Thomas, 1990; Hoddinott and Haddad, 2011).

6.3 Mothers' labour supply and mental wellbeing

A further possibility is that cash transfers have an impact on child health via an impact on the mother. Specifically, we will look at whether mothers who receive the transfer reduce their working hours and therefore have more time to take care of the children and whether mothers who have less money suffer more often from depression.

Figure 16 shows hours worked for mothers on either side of the cutoff, both for the sample as a whole and for mothers of children below six years of age. We can see that if anything, mothers who receive the transfer work more. This is confirmed by the IV regressions in Table 11.

We also measured mothers' mental wellbeing using the CESD depression scale.¹⁶ Figure 17 shows mothers' depression score left and right of the cutoff. There is no significant impact for any specification or subgroup as confirmed by the results in Table 12. This makes it unlikely that an decrease in mothers' mental wellbeing can explain the poor health outcomes of young children in families that lost the transfer.

7 Discussion and conclusion

In this paper we study how changes in unearned income affect the health of young children raised in poor families in a lower middle income country. In particular, we exploit a recent change in cash transfer eligibility in Ecuador to estimate how the height and weight of children respond to unanticipated movements either into or out of an unconditional cash transfer program. Using self-collected survey information on families close to the new eligibility cutoff, we find that unconditional cash transfers improve the height and weight of vulnerable children in a large and statistically significant way. We also find that these cash transfer effects are largely driven by families who lost the cash transfer around the time of birth of their children.

We then explore possible mechanisms to explain why losing the cash transfers is so harmful for very young children; among these are more restrictive health care access, reduction in food expenditures, and reductions in maternal care (in both quantity and quality). Our findings suggest that food expenditures play an important role; that is, we find that the amount families save on food expenditures upon losing the transfer is

¹⁶For the sake of brevity, instead of using the full 20-questions scale we used the data of Rosero and Oosterbeek (2011) to choose the eight variables that best explained the final score. See http://cesd-r.com/cesdr/ for a complete list of question items.

almost as large as the cash transfer itself.

The negative effects that we find for the children that are most affected are sizable. Children under two years old in families that lost the cash transfer are on average around 2.9 kilos lighter and 7.5 centimeters shorter than children under two years old in families that kept receiving the cash transfer. Are effects of such magnitudes plausible? For many of these children, their families lost the cash transfer when they were still in utero, and the loss of the cash transfer translated into a reduction of families' food expenditures of around 25 percent. Due to a lack of credible estimates of the effects of similar interventions, it is difficult to benchmark our results. The vast literature on conditional cash transfer programs is not comparable since it focuses exclusively on the effect of receiving the transfer, not on the effect of losing it.

Three studies present estimates to which we can compare our findings. The first is Almond and Mazumder (2011), who estimate the effect of being exposed to Ramadan while in utero on children's birth weight. They find that children are 20 grams lighter at birth when the pregnancy of their Arab mother overlapped with Ramadan. Ramadan lasts one month and prescribes fasting during daylight but pregnant women can postpone this obligation. If we assume: i) that 50 percent of the pregnant Arab mothers actually observe the fast, ii) that the effect of fasting is equivalent to the effect of a 25 percent reduction in food consumption, and iii) that the effect of nine months equals nine times the effect of one month, losing the cash transfer at the beginning of a pregnancy then reduces the weight of a new born by 360 grams. Almond and Mazumder (2011) and Van Ewijk (2011) also document large negative effects of an overlap of pregnancies and Ramadan in Muslim communities on the long-term health outcomes of children. This indicates that the lower birth weight is not undone afterwards.

The second study to which we can compare our results is Hidrobo (2010). Using a difference-in-differences approach she estimates that one year of exposure to the 1998-2000 crisis in Ecuador decreased height for age scores by 0.1 of a standard deviation. The effect is much larger when the child was between 12 and 17 months during the year of exposure. To benchmark her results, Hidrobo (2010) refers to results from a study by Alderman et al. (2006) who find that a drought in Zimbabwe is associated with a 0.58 decrease in children's height for age z-score.

While it is hard to compare the 1998-2000 crisis in Ecuador, a drought in Zimbabwe and exposure to Ramadan while in utero with the 25 percent reduction in food expenditures caused by the loss of the cash transfer, the estimates of the health effects of these other events suggest that effects of the magnitudes we find are not completely unrealistic. Another study which finds height effects of similar magnitude is Attanasio et al. (2013) who investigate the effects of a pre-school program in Colombia.

Low child height and weight indicate insufficient nutrition which has negative effects on later life health and productivity. Income uncertainty is widespread for poor people in developing countries. Our results show that negative income changes have a detrimental effect when they hit during pregnancy or just after birth. Food supplements for pregnant and breast-feeding mothers therefore appear to be a possible policy opportunity. While costs would be low and limited in time, the positive effects would accrue over the child's whole lifetime. The same applies to food supplements for slightly older children, possibly combined with nutritional advise and regular health check-ups to detect malnourishment early on.

There is no reason to expect that the effects we estimate are unique to reductions in income caused by the loss of a government transfer. Negative income shocks due to bad health, bad weather, natural disasters or macroeconomic fluctuations probably have similarly devastating health effects on affected children. This indicates that income insurance for poor families could have long-term positive health effects.

Our results are also of relevance to the design and management of (conditional) cash transfer programs. The families in our sample are situated around the threshold and the effects we estimate are therefore informative about the impact of marginal adjustments to eligibility criteria. For example, the Ecuadorian government is currently considering to lower the wealth threshold to pay for more generous transfers. Our results indicate that this policy change might have detrimental effects on the long-term health of young children in the affected families if no compensatory measures are taken.

It is also important to know what happens if families graduate from cash transfer programs as they become somewhat wealthier. Our results indicate that it might be better to gradually reduce transfers with increasing wealth rather than handle a strict cutoff at which a family suddenly, and potentially unexpectedly, loses the entire transfer. A longer phase-out period is also a possibility but may not have the desired effect as our results indicate that even two years after the change in eligibility, household expenditure has not yet recovered.

References

- Agüero, J., Carter, M., and Woolard, I. (2007). The impact of unconditional cash transfers on nutrition: The South-African child support grant. Technical report, International Poverty Centre.
- Alderman, H., Hoddinott, J., and Kinsey, B. (2006). Long term consequences of early childhood malnutrition. Oxford Economic Papers, 58:450–474.
- Almond, D. and Mazumder, B. (2011). Health capital and the prenatal environment: The effect of Ramadan observance during pregnancy. *American Economic Journal: Applied Economics*, 3(4):56–85.
- Angelucci, M. and Attanasio, O. (2013). The demand for food of poor urban Mexican households: Understanding policy impacts using structural models. *American Economic Journal: Economic Policy*, 5(1):146–178.
- Angrist, J. and Pischke, J. (2008). Mostly harmless econometrics: An empiricist's companion. Princeton University Press.
- Attanasio, O., Battistin, E., and Mesnard, A. (2012). Food and cash transfers: Evidence from Colombia. *Econonomic Journal*, 122:92–124.
- Attanasio, O. P., Di Maro, V., and Vera-Hernández, M. (2013). Community nurseries and the nutritional status of poor children. evidence from colombia. *The Economic Journal*, 123(571):1025–1058.
- Attanasio, O. P. and Lechene, V. (2014). Efficient responses to targeted cash transfers. Journal of Political Economy, 122:178–222.
- Baird, S., Friedman, J., and Schady, N. (2011). Aggregate income shocks and infant mortality in the developing world. *Review of Economics and Statistics*, 93(3):847–856.
- Banerjee, A., Duflo, E., Postel-Vinay, G., and Watts, T. (2007). Long run health impacts of income shocks: Wine and phylloxera in 19th century France. Technical report, National Bureau of Economic Research.
- Banerjee, A. V. and Duflo, E. (2007). The economic lives of the poor. The Journal of Economic Perspectives, 21(1):141–167.

- de Onis, M. (2006). Who child growth standards: Length/height-for-age, weight-forage, weight-for-length, weight-for-height and body mass index-for-age: Methods and development. *World Health Organization*.
- de Onis, M. and Blössner, M. (1997). WHO global database on child growth and malnutrition. World Health Organization Geneva.
- Duflo, E. (2000). Grandmothers and granddaughters: Old age pension and intrahousehold allocation in South Africa. Working Paper 8061, National Bureau of Economic Research.
- Fabara, C. (2009). Reformulación del índice de clasificación socioeconomica del registro social [reformulation of the socioeconomic classification index of the social registry]. *Ministerio de Coordinación de Desarrollo Social-MCDS*.
- Fiszbein, A., Schady, N., and Ferreira, F. (2009). *Conditional cash transfers: reducing present and future poverty*. World Bank Publications.
- Grantham-McGregor, S., Cheung, Y. B., Cueto, S., Glewwe, P., Richter, L., and Strupp, B. (2007). Developmental potential in the first 5 years for children in developing countries. *The Lancet*, 369(9555):60 – 70.
- Hidrobo, M. (2010). The effect of Ecuador's 1998-2000 economic crisis on child health and cognitive development. Technical report, University of California, Berkeley.
- Hoddinott, J. and Haddad, L. (2011). Does female income share influence household expenditures? Evidence from Côte d'Ivoire. Oxford Bulletin of Economics and Statistics, 57(1):77–96.
- Lee, D. and Lemieux, T. (2009). Regression discontinuity designs in economics. Technical report, National Bureau of Economic Research.
- Lumey, L., Stein, A., Kahn, H., van der Pal-de, K., Blauw, G., Zybert, P., Susser, E., et al. (2007). Cohort profile: The Dutch hunger winter families study. *International Journal of Epidemiology*, 36(6):1196–1204.
- Maccini, S. and Yang, D. (2009). Under the weather: Health, schooling, and economic consequences of early-life rainfall. *The American Economic Review*, 99(3):1006–1026.

- Martorell, R. (1999). The nature of child malnutrition and its long-term implications. Food & Nutrition Bulletin, 20(3):288–292.
- McCrary, J. (2008). Manipulation of the running variable in the regression discontinuity design: A density test. *Journal of Econometrics*, 142:698–714.
- Paxson, C. and Schady, N. (2010). Does money matter? The effects of cash transfers on child development in rural Ecuador. *Economic Development and Cultural Change*, 59(1):187–229.
- Rosero, J. and Oosterbeek, H. (2011). Trade-offs between different early childhood interventions: Evidence from Ecuador.
- Schady, N. and Rosero, J. (2008). Are cash transfers made to women spent like other sources of income? *Economics Letters*, 101(3):246–248.
- Strauss, J. and Thomas, D. (1990). The shape of the calorie-expenditure curve. Yale-Economic Growth Center Papers.
- Subramanian, S. and Deaton, A. (1996). The demand for food and calories. *Journal of Political Economy*, pages 133–162.
- Thomas, D. (1990). Intra-household resource allocation: An inferential approach. *Jour*nal of Human Resources, 25:635–664.
- Thomas, D. and Strauss, J. (1997). Health and wages: Evidence on men and women in urban Brazil. *Journal of Econometrics*, 77(1):159–185.
- Van Den Berg, G., Lindeboom, M., and Portrait, F. (2006). Economic conditions early in life and individual mortality. *The American Economic Review*, 96:290–302.
- Van Ewijk, R. (2011). Long-term health effects on the next generation of Ramadan fasting during pregnancy. *Journal of Health Economics*, 30(6):1246–1260.

Tables

1abl	<u>e 1: Means</u> All children	Combined	d <u>ard dev</u> d sample	Winners vs	always-losers	Always-wini	ners vs losers
		Recipients	s Non-rec.	Recipients	Non-rec.	Recipients	Non-rec.
Height-for-age	-0.78	-0.78	-0.78	-0.84	-0.84	-0.73	-0.73
	(1.32)	(1.31)	(1.34)	(1.31)	(1.34)	(1.30)	(1.34)
Weight-for-age	-0.37	-0.37	-0.36	-0.41	-0.39	-0.34	-0.33
	(1.12)	(1.11)	(1.14)	(1.07)	(1.11)	(1.14)	(1.17)
Weight-for-height	0.06	0.09	0.03	0.1	0.03	0.08	0.03
	(1.35)	(1.32)	(1.37)	(1.18)	(1.31)	(1.45)	(1.43)
Stunted	0.14	0.14	0.14	0.16	0.16	0.11	0.12
	(0.35)	(0.35)	(0.35)	(0.37)	(0.37)	(0.32)	(0.33)
Underweight	0.06	0.06	0.05	0.07	0.06	0.05	0.04
-	(0.23)	(0.24)	(0.22)	(0.25)	(0.23)	(0.22)	(0.21)

	(1)	(2)	(3)	(4)	(5)	(6)	
Weight-for-age:							
Winners vs	0.079	0.222	0.036	0.085	0.236	0.133	N = 681
always-losers	(0.234)	(0.421)	(0.545)	(0.229)	(0.412)	(0.535)	
	[-17.5]	[-12.1]	[-12.0]	[-32.1]	[-26.5]	[-25.8]	
Always-winners	0.559^{***}	0.747***	0.793***	0.596^{***}	0.763***	0.814***	N = 693
vs losers	(0.181)	(0.262)	(0.288)	(0.178)	(0.263)	(0.292)	
	[22.5]	[31.4]	[36.0]	[10.3]	[19.0]	[23.5]	
Combined sample	0.350^{**}	0.532**	0.478^{*}	0.372**	0.550^{**}	0.529^{*}	N = 1374
	(0.147)	(0.235)	(0.279)	(0.146)	(0.234)	(0.280)	
	[2.6]	[15.8]	[16.4]	[-23.1]	[-9.9]	[-7.2]	
Height-for-age:							
Winners vs	0.236	0.711	0.087	0.249	0.731^{*}	0.266	N = 681
always-losers	(0.238)	(0.467)	(0.596)	(0.221)	(0.430)	(0.543)	
	[-29.5]	[-12.3]	[-27.2]	[-84.9]	[-65.5]	[-80.9]	
Always-winners	0.308	0.263	0.167	0.367^{*}	0.301	0.205	N = 693
vs losers	(0.189)	(0.273)	(0.274)	(0.185)	(0.266)	(0.266)	
	[-34.9]	[-31.6]	[-29.7]	[-63.9]	[-61.2]	[-59.3]	
Combined sample	0.279^{*}	0.450^{*}	0.134	0.313**	0.477^{**}	0.207	N = 1374
	(0.150)	(0.248)	(0.280)	(0.145)	(0.235)	(0.263)	
	[-69.6]	[-59.1]	[-69.1]	[-150.6]	[-139.6]	[-149.3]	
Weight-for-height:							
Winners vs	0.144	-0.058	0.255	0.127	-0.072	0.173	N=580
always-losers	(0.253)	(0.489)	(0.636)	(0.249)	(0.473)	(0.615)	
	[-45.7]	[-43.8]	[-37.7]	[-51.4]	[-49.4]	[-44.3]	
Always-winners	0.501^{***}	0.752^{**}	0.927^{***}	0.495^{***}	0.729^{**}	0.918^{***}	N=580
vs losers	(0.192)	(0.294)	(0.291)	(0.190)	(0.290)	(0.286)	
	[39.0]	[47.3]	[52.0]	[37.5]	[45.4]	[50.1]	
Combined sample	0.348^{**}	0.416	0.642^{**}	0.335^{**}	0.401	0.617^{**}	N = 1160
	(0.157)	(0.267)	(0.308)	(0.157)	(0.265)	(0.305)	
	[-4.4]	[1.9]	[15.6]	[-7.4]	[-1.2]	[12.0]	
1st-order polynomial							
2nd-order polynomial					\checkmark		
3rd-order polynomial							
Age and gender cont.				√	\checkmark	√	

Table 2: Impact of income changes on child height and weight

	(1)	(2)	(3)	(4)	(5)	(6)	
Underweight:							
Winners vs	-0.018	0.023	0.131	-0.016	0.026	0.134	N = 681
always-losers	(0.058)	(0.102)	(0.141)	(0.058)	(0.101)	(0.141)	
	[-964.1]	[-961.7]	[-953.4]	[-965.7]	[-963.3]	[-954.9]	
Always-winners	-0.028	-0.053	-0.097	-0.027	-0.055	-0.098	N=693
vs losers	(0.036)	(0.055)	(0.065)	(0.036)	(0.056)	(0.066)	
	[-1056.9]	[-1051.1]	[-1043.5]	[-1057.9]	[-1051.9]	[-1044.2]	
Combined sample	-0.024	-0.025	-0.006	-0.023	-0.025	-0.006	N = 1374
	(0.033)	(0.053)	(0.068)	(0.033)	(0.053)	(0.068)	
	[-2021.0]	[-2016.9]	[-2015.1]	[-2023.4]	[-2019.1]	[-2017.4]	
Stunted:							
Winners vs	0.011	-0.129	0.104	0.009	-0.125	0.091	N = 681
always-losers	(0.087)	(0.160)	(0.195)	(0.086)	(0.157)	(0.193)	
	[-675.5]	[-667.3]	[-668.3]	[-682.1]	[-674.6]	[-674.7]	
Always-winners	-0.122**	-0.207**	-0.195*	-0.136**	-0.217**	-0.208**	N=693
vs losers	(0.056)	(0.092)	(0.107)	(0.056)	(0.090)	(0.103)	
	[-781.7]	[-773.5]	[-770.5]	[-790.6]	[-781.9]	[-778.7]	
Combined sample	-0.063	-0.173**	-0.083	-0.072	-0.175**	-0.093	N = 1374
	(0.050)	(0.086)	(0.103)	(0.050)	(0.084)	(0.101)	
	[-1455.8]	[-1441.3]	[-1449.2]	[-1471.0]	[-1456.8]	[-1463.7]	
1st-order polynomial							
2nd-order polynomial							
3rd-order polynomial							
Age and gender cont.							

Table 3: Impact of income changes on a child's likelihood of being underweight and stunted

	(1)	(2)	(3)	(4)	(5)	(6)	,
Weight-for-age:							
Winners vs	0.158	0.645	-0.314	0.175	0.625	-0.499	N=203
always-losers	(0.400)	(1.069)	(1.260)	(0.391)	(1.013)	(1.191)	
	[1.3]	[9.6]	[7.0]	[-8.7]	[-1.1]	[-2.4]	
Always-winners	1.221***	1.733***	1.569^{***}	1.397^{***}	1.837***	1.633***	N=222
vs losers	(0.334)	(0.503)	(0.511)	(0.332)	(0.500)	(0.520)	
	[42.9]	[52.5]	[54.3]	[38.9]	[48.6]	[49.5]	
Combined sample	0.760^{***}	1.317***	0.864	0.792***	1.289^{***}	0.795	N=425
	(0.264)	(0.522)	(0.589)	(0.261)	(0.500)	(0.564)	
	[44.9]	[63.7]	[52.8]	[32.2]	[49.7]	[37.7]	
Height-for-age:							
Winners vs	0.311	1.442	0.222	0.350	1.364	-0.098	N=203
always-losers	(0.458)	(1.319)	(1.410)	(0.407)	(1.136)	(1.181)	
	[23.5]	[44.0]	[27.2]	[8.3]	[28.1]	[10.6]	
Always-winners	0.806^{**}	0.987^{*}	0.734	0.985^{***}	1.037^{**}	0.804	N=222
vs losers	(0.316)	(0.515)	(0.569)	(0.292)	(0.446)	(0.494)	
	[-0.2]	[5.9]	[3.9]	[-12.2]	[-7.7]	[-9.6]	
Combined sample	0.603**	1.190^{**}	0.543	0.679^{***}	1.139**	0.456	N=425
	(0.274)	(0.567)	(0.638)	(0.251)	(0.497)	(0.561)	
	[21.8]	[42.1]	[22.1]	[-6.2]	[12.2]	[-9.1]	
Weight-for-height:							
Winners vs	-0.048	-0.371	-0.235	-0.099	-0.356	-0.197	N=202
always-losers	(0.467)	(1.237)	(1.542)	(0.466)	(1.210)	(1.494)	
	[4.0]	[8.8]	[10.7]	[2.6]	[7.2]	[9.2]	
Always-winners	0.815^{**}	1.268^{***}	1.244^{***}	0.915^{***}	1.379^{***}	1.299^{***}	N=222
vs losers	(0.316)	(0.477)	(0.459)	(0.327)	(0.487)	(0.482)	
	[32.6]	[39.7]	[42.8]	[31.3]	[39.0]	[41.4]	
Combined sample	0.432	0.627	0.689	0.426	0.652	0.701	N=424
	(0.277)	(0.557)	(0.637)	(0.283)	(0.555)	(0.636)	
	[32.2]	[37.6]	[42.5]	[30.3]	[36.3]	[41.1]	
1st-order polynomial							
2nd-order polynomial		\checkmark			\checkmark		
3rd-order polynomial							
Age and gender cont.					\checkmark	\checkmark	

Table 4: Impact of income changes on child height and weight (24 months and younger) (1) (2) (3) (4) (5) (6)

	(1)	(2)	(3)	(4)	(5)	(6)	
Weight-for-age:							
Winners vs	0.048	0.123	0.269	0.059	0.115	0.281	N = 478
always-losers	(0.264)	(0.417)	(0.554)	(0.262)	(0.419)	(0.559)	
	[-20.7]	[-16.5]	[-11.1]	[-22.1]	[-18.5]	[-12.7]	
Always-winners	0.237	0.335	0.491	0.220	0.326	0.513	N = 471
vs losers	(0.205)	(0.301)	(0.332)	(0.204)	(0.298)	(0.337)	
	[-28.9]	[-23.8]	[-18.9]	[-31.5]	[-26.9]	[-21.5]	
Combined sample	0.155	0.244	0.360	0.159	0.235	0.378	N=949
	(0.166)	(0.249)	(0.302)	(0.165)	(0.249)	(0.305)	
	[-54.6]	[-48.9]	[-41.8]	[-58.0]	[-52.7]	[-44.8]	
Height-for-age:							
Winners vs	0.205	0.475	0.257	0.173	0.370	0.189	N = 478
always-losers	(0.250)	(0.429)	(0.553)	(0.244)	(0.407)	(0.526)	
	[-96.3]	[-89.7]	[-89.9]	[-99.4]	[-96.4]	[-94.6]	
Always-winners	0.057	-0.036	-0.044	0.082	0.012	0.017	N = 471
vs losers	(0.236)	(0.343)	(0.337)	(0.233)	(0.341)	(0.332)	
	[-39.8]	[-36.2]	[-32.2]	[-43.4]	[-39.9]	[-35.9]	
Combined sample	0.122	0.184	0.062	0.122	0.179	0.089	N=949
	(0.172)	(0.268)	(0.301)	(0.171)	(0.262)	(0.296)	
	[-138.8]	[-135.6]	[-132.3]	[-145.4]	[-142.6]	[-139.1]	
Weight-for-height:							
Winners vs	0.249	0.103	0.315	0.274	0.158	0.343	N = 378
always-losers	(0.255)	(0.385)	(0.493)	(0.251)	(0.371)	(0.476)	
	[-50.4]	[-48.6]	[-41.6]	[-50.8]	[-49.0]	[-41.8]	
Always-winners	0.322	0.469	0.771^{**}	0.294	0.433	0.769^{**}	N=358
vs losers	(0.225)	(0.342)	(0.337)	(0.222)	(0.334)	(0.338)	
	[9.8]	[15.2]	[20.3]	[8.3]	[13.4]	[18.7]	
Combined sample	0.299^{*}	0.309	0.561*	0.293^{*}	0.295	0.540^{*}	N = 736
	(0.170)	(0.254)	(0.291)	(0.170)	(0.250)	(0.289)	
	[-40.5]	[-36.2]	[-25.7]	[-41.8]	[-37.7]	[-27.4]	
1st-order polynomial							
2nd-order polynomial							
3rd-order polynomial							
Age and gender cont.							

Table 5: Impact of income changes on child height and weight (older than 24 months) (1) (2) (3) (4) (5) (6)

Weight-for-age	< -2	<-	1.5	<-1	< -0.5	< 0	${<}0.5$	<1	$<\!\!1.5$	${<}2$
W vs AL	-0.018	0.0	013	0.061	-0.053	-0.104	-0.034	-0.015	-0.005	-0.017
AW vs L	-0.028	-0.1	40** -0	.265***	-0.188**	-0.208**	-0.176^{**}	-0.099	-0.114***	-0.034
All	-0.024	-0.	074 -	0.122*	-0.129*	-0.163**	-0.114*	-0.061	-0.066**	-0.027
Height-for-age	<-:	2	<-1.5	<-1	<-0.5	<0	$<\!0.5$	<1	<1.5	$<\!2$
W vs AL	0.01	1	-0.077	-0.079	-0.129	-0.027	-0.034	-0.013	0.002	0.011
AW vs L	-0.12	2**	-0.123	-0.077	-0.118	-0.119	-0.034	-0.020	-0.024	-0.014
All	-0.0	63	-0.104*	-0.079	-0.124*	-0.078	-0.036	-0.018	-0.012	-0.002
Weight for and			< 1 5		< 0.5	<0	<0.5	~1	~15	
weight-for-age (young)	<-2	<-1.3	<-1	<-0.5	< 0	< 0.5	<1	<1.0	< 2
W vs AL		0.066	0.033	0.142	-0.150	-0.308	-0.050	-0.027	-0.035	0.001
AW vs L		-0.046	-0.293**	* -0.412**	* -0.425**	* -0.401**	** -0.442**	* -0.350**	** -0.202**	-0.100
All		0.003	-0.153*	-0.170	-0.306**	• -0.370**	** -0.268**	* -0.203*	-0.126**	-0.056
Height-for-age (y	young)	<-2	<-1.5	<-1	<-0.5	< 0	$<\!0.5$	<1	< 1.5	$<\!2$
W vs AL		-0.034	-0.134	-0.272	-0.204	-0.054	-0.074	0.028	0.002	0.052
AW vs L		-0.146	-0.183	-0.175	-0.363**	-0.270*	-0.275**	-0.202* -	-0.199** -	0.186**
All		-0.104	-0.167	-0.224*	-0.297**	-0.181	-0.193*	-0.104	-0.112	-0.080
Note: Coeffici	ients a	re fron	n IV-reg	ressions of	f transfer	receipt o	n binary v	variables	indicating	a child

 Table 6: Distribution of effects

Note: Coefficients are from IV-regressions of transfer receipt on binary variables indicating a child has a height-for-age or weight-for-age z-score below a certain threshold, from -2 to 2 (in steps of 0.5). "Young" denotes children who were affected before or around birth. * p < 0.10, ** p < 0.05, *** p < 0.01; based on standard errors that are clustered at the household level.

	(1)	(2)	(3)	(4)	(5)	(6)	
Received health check	k (all childr	en):					
Winners vs	0.164	-0.094	-0.147	0.175	-0.053	-0.045	N=681
always-losers	(0.121)	(0.204)	(0.283)	(0.120)	(0.199)	(0.278)	
	[-476.2]	[-482.1]	[-476.9]	[-498.0]	[-505.7]	[-501.8]	
Always-winners	0.143	0.260^{*}	0.252	0.131	0.248^{*}	0.221	N = 693
vs losers	(0.097)	(0.144)	(0.157)	(0.093)	(0.137)	(0.148)	
	[-496.8]	[-490.0]	[-489.7]	[-520.9]	[-514.3]	[-514.6]	
Combined sample	0.159^{**}	0.122	0.114	0.157^{**}	0.134	0.133	N = 1374
	(0.077)	(0.121)	(0.146)	(0.075)	(0.116)	(0.141)	
	[-976.0]	[-976.2]	[-974.0]	[-1019.2]	[-1018.6]	[-1015.8]	
Received health check	k (children	affected at	or before b	oirth):			
Winners vs	-0.020	-0.259	-0.040	-0.017	-0.300	-0.137	N=203
always-losers	(0.182)	(0.421)	(0.533)	(0.185)	(0.436)	(0.555)	
	[-160.0]	[-156.6]	[-154.6]	[-168.0]	[-163.7]	[-163.2]	
Always-winners	0.057	-0.159	0.148	0.114	-0.095	0.212	N=222
vs losers	(0.126)	(0.210)	(0.239)	(0.121)	(0.207)	(0.240)	
	[-182.5]	[-178.3]	[-177.7]	[-186.3]	[-182.8]	[-181.5]	
Combined sample	0.035	-0.151	0.069	0.065	-0.144	0.072	N=425
	(0.109)	(0.197)	(0.237)	(0.108)	(0.200)	(0.242)	
	[-344.6]	[-342.5]	[-339.9]	[-351.3]	[-349.6]	[-346.9]	
1st-order polynomial							
2nd-order polynomial							
3rd-order polynomial							
Age and gender cont.					\checkmark		

Table 7: Impact of income changes on the likelihood of receiving a health check

	Mean:	SD:
Food	196	159
Food production	2	16
Food outside the house	7	20
Rent, housing, utilities	35	33
Education	42	53
Health	34	71
Alcohol, cigarettes	3	11
Other expenses	30	127
Total expenditure	320	159

Table 8: Household expenditure in US\$

	(1)	(2)	(3)	(4)	(5)	(6)	
Food expenditure (al	l households	5):					
Winners vs	17.451	32.373	24.524	25.104^{**}	38.532^{*}	47.043*	N = 1317
always-losers	(13.196)	(21.801)	(26.028)	(11.883)	(19.822)	(24.366)	
	[5988.6]	[6001.7]	[6000.2]	[5853.5]	[5868.4]	[5880.9]	
Always-winners	21.997^{*}	19.482	31.837	16.383	11.527	24.779	N = 1327
vs losers	(11.986)	(17.817)	(20.785)	(10.676)	(16.442)	(19.843)	
	[6019.4]	[6022.5]	[6028.1]	[5842.4]	[5844.9]	[5851.0]	
Combined sample	19.879**	25.424*	29.358*	20.808***	24.105*	36.508^{**}	N = 2644
	(8.891)	(13.868)	(16.497)	(7.950)	(12.645)	(15.443)	
	[12003.1]	[12011.8]	[12019.1]	[11693.1]	[11700.6]	[11719.6]	
Food expenditure (fa	milies with	children < 6):				
Winners vs	10.969	42.029	58.901	23.046	57.866	88.726*	N=551
always-losers	(22.610)	(38.303)	(50.557)	(21.447)	(37.160)	(50.584)	
	[2516.0]	[2524.7]	[2533.8]	[2470.8]	[2484.9]	[2505.5]	
Always-winners	46.140**	37.238	51.514^{*}	29.215^{*}	18.161	26.262	N=568
vs losers	(19.773)	(28.876)	(29.444)	(17.408)	(26.180)	(28.142)	
	[2610.2]	[2612.3]	[2615.5]	[2523.5]	[2524.9]	[2528.4]	
Combined sample	31.411**	39.321*	54.110**	29.857**	38.587^{*}	56.136^{**}	N=1119
	(15.035)	(23.395)	(27.461)	(13.789)	(21.945)	(26.621)	
	[5124.5]	[5130.6]	[5141.1]	[4997.5]	[5004.4]	[5019.5]	
1st-order polynomial							
2nd-order polynomial							
3rd-order polynomial							
Household size cont.							
			<u>c</u>	1			

Table 9: Impact of income changes on food expenditure

	(1)	(2)	(3)	(4)	(5)	(6)	
Non-food expenditure	e (all familie	es)					
Winners vs	-8.765	-18.504	-43.031	-4.958	-15.446	-32.004	N = 1317
always-losers	(14.889)	(24.502)	(29.877)	(14.475)	(23.756)	(29.110)	
	[6166.0]	[6168.1]	[6171.5]	[6142.6]	[6144.1]	[6146.7]	
Always-winners	-15.804	-8.910	4.511	-17.717	-11.604	2.114	N = 1327
vs losers	(13.933)	(20.840)	(28.630)	(13.773)	(20.681)	(28.463)	
	[6259.4]	[6262.6]	[6265.9]	[6247.0]	[6250.4]	[6253.4]	
Combined sample	-12.318	-13.028	-16.533	-11.926	-13.584	-13.524	N = 2644
	(10.214)	(15.963)	(20.918)	(10.031)	(15.633)	(20.591)	
	[12420.5]	[12424.4]	[12427.5]	[12384.1]	[12387.9]	[12391.4]	
Non-food expenditure	e (families v	vith childrei	n <6)				
Winners vs	-3.169	-3.601	-19.072	0.423	1.122	-10.059	N=551
always-losers	(26.952)	(48.617)	(65.314)	(26.624)	(47.932)	(64.247)	
	[2644.0]	[2647.9]	[2649.8]	[2642.2]	[2646.3]	[2648.4]	
Always-winners	0.396	18.441	42.852	-4.865	12.580	35.093	N=568
vs losers	(19.505)	(24.462)	(29.572)	(19.114)	(24.485)	(29.838)	
	[2675.0]	[2679.4]	[2685.4]	[2669.3]	[2673.6]	[2679.2]	
Combined sample	-0.725	8.367	18.148	-1.200	8.144	18.761	N=1119
	(16.394)	(25.441)	(32.409)	(16.235)	(25.151)	(32.059)	
	[5316.8]	[5322.8]	[5329.6]	[5309.2]	[5315.3]	[5322.5]	
1st-order polynomial							
2nd-order polynomial					\checkmark		
3rd-order polynomial			\checkmark			\checkmark	
Household size cont.						\checkmark	
N + O C · + O	· · · · · · · · · · · · · · · · · · ·	• •	c ·	1 1		11 0 1	1 • 1 1

Table 10: Impact of income changes on non-food expenditure

14010 1	1. Impace	01 11100111	e eman.800	011 1110 0110	is iaseai	sappij	
	(1)	(2)	(3)	(4)	(5)	(6)	
Hours worked (all mo	others):						
Winners vs	0.440	-2.560	-5.726	0.681	-2.195	-5.400	N = 1317
always-losers	(3.489)	(6.043)	(7.835)	(3.477)	(5.995)	(7.812)	
	[4161.0]	[4160.5]	[4161.8]	[4149.8]	[4149.4]	[4150.3]	
Always-winners	9.026***	8.574*	7.195	9.313***	8.421*	7.188	N=1320
vs losers	(2.952)	(4.620)	(5.855)	(2.895)	(4.502)	(5.687)	
	[4146.6]	[4149.8]	[4151.5]	[4130.9]	[4133.6]	[4135.7]	
Combined sample	5.000**	3.574	1.262	5.201**	3.549	1.253	N = 2637
	(2.274)	(3.736)	(4.803)	(2.251)	(3.681)	(4.734)	
	[8309.6]	[8308.7]	[8305.8]	[8283.8]	[8282.3]	[8279.4]	
Hours worked (mothe	ers of childre	en below 6)	:				
Winners vs	2.322	-0.753	-7.168	3.697	0.529	-4.968	N=551
always-losers	(5.732)	(9.891)	(13.505)	(5.830)	(9.915)	(13.689)	
	[1754.9]	[1755.9]	[1756.9]	[1753.1]	[1754.0]	[1755.1]	
Always-winners	5.601	6.273	6.592	5.601	5.635	6.095	N = 564
vs losers	(4.430)	(7.308)	(8.791)	(4.413)	(7.302)	(8.791)	
	[1732.5]	[1735.9]	[1738.1]	[1729.7]	[1732.8]	[1735.1]	
Combined sample	4.151	3.182	0.512	4.529	3.010	0.402	N = 1115
	(3.573)	(5.980)	(7.557)	(3.578)	(5.942)	(7.527)	
	[3486.7]	[3489.1]	[3489.0]	[3482.7]	[3484.3]	[3484.5]	
1st-order polynomial							
2nd-order polynomial							
3rd-order polynomial							
Controls							

Table 11: Impact of income changes on mothers' labour supply

	(1)	(2)	(3)	(4)	(5)	(6)	
Depression scale (all 1	mothers):						
Winners vs	-0.327	1.233	0.430	-0.177	1.584	0.653	N = 1314
always-losers	(1.173)	(1.960)	(2.481)	(1.150)	(1.912)	(2.440)	
	[2722.3]	[2725.4]	[2728.7]	[2705.2]	[2710.4]	[2712.3]	
Always-winners	-0.352	-0.174	-0.317	-0.311	0.025	-0.035	N = 1323
vs losers	(1.017)	(1.637)	(2.126)	(1.006)	(1.622)	(2.112)	
	[2701.9]	[2705.7]	[2708.8]	[2692.6]	[2696.4]	[2699.6]	
Combined sample	-0.346	0.457	0.056	-0.257	0.725	0.318	N = 2637
	(0.771)	(1.262)	(1.619)	(0.760)	(1.241)	(1.598)	
	[5421.3]	[5424.9]	[5428.2]	[5395.4]	[5400.2]	[5402.8]	
Depression scale (mot	thers with c	hildren < 6)):				
Winners vs	-0.899	0.866	0.754	-0.704	1.018	1.090	N=550
always-losers	(1.907)	(3.162)	(4.119)	(1.875)	(3.109)	(4.004)	
	[1146.0]	[1147.8]	[1151.8]	[1144.0]	[1146.3]	[1150.3]	
Always-winners	-2.095	-2.658	-2.752	-2.076	-2.618	-2.669	N=567
vs losers	(1.494)	(2.355)	(2.670)	(1.481)	(2.335)	(2.659)	
	[1148.0]	[1152.7]	[1156.3]	[1146.5]	[1151.1]	[1154.7]	
Combined sample	-1.551	-1.127	-1.344	-1.451	-1.036	-1.149	N = 1117
	(1.193)	(1.926)	(2.325)	(1.181)	(1.904)	(2.297)	
	[2290.0]	[2292.3]	[2296.9]	[2286.5]	[2288.8]	[2293.0]	
1st-order polynomial							
2nd-order polynomial							
3rd-order polynomial							
Controls							

Table 12: Impact of income changes on mothers' depression score

Figures

Figure 1: Treatment and control groups

Figure 2: Timeline

2003	Mid-2005	2007-08	Aug – Oct 2009	Jun – Aug 2011	
SELBEN survey / start of BDH	First children in sample are born	SELBEN II survey	Change in BDH eligibility	Data collection	

Figure 3: Frequency distribution of SELBEN II (population)

Note: The histograms are generated using the full SELBEN 2 database (2.175.512 households). The cutoff is normalised to zero.

Figure 4: First stage

Note: the figure shows the proportion of households who collect the BDH above and below the cutoff for the three estimation samples (winners and always-losers, always-winners and losers, and the combined sample). Observations are divided into bins with a width of 0.4 and the SELBEN II score is normalized to be zero at the cutoff. Households to the left of the cutoff are eligible to receive the transfer while those to the right are not.

Figure 5: Impact of income changes on weight-for-age of children below 6 years of age Weight for age (under 6)

Note: Observations are divided into bins with width 0.4. Dots represent average outcome in each bin. Solid lines are best linear fits through the dots, calculated separately below and above the cutoff. Discontinuities are from IV regressions which allow for different slope on either side of the cutoff and include no controls apart from SELBEN II score.

Figure 6: Impact of income changes on height-for-age of children below 6 years of age

Note: Observations are divided into bins with width 0.4. Dots represent average outcome in each bin. Solid lines are best linear fits through the dots, calculated separately below and above the cutoff. Discontinuities are from IV regressions which allow for different slope on either side of the cutoff and include no controls apart from SELBEN II score.

Figure 7: Impact of income changes on weight-for-height of children below 5 years of age

Note: Observations are divided into bins with width 0.4. Dots represent average outcome in each bin. Solid lines are best linear fits through the dots, calculated separately below and above the cutoff. Discontinuities are from IV regressions which allow for different slope on either side of the cutoff and include no controls apart from SELBEN II score.

Figure 8: Impact of income changes on the likelihood of being underweight for children below 6 years of age

Note: Observations are divided into bins with width 0.4. Dots represent average outcome in each bin. Solid lines are best linear fits through the dots, calculated separately below and above the cutoff. Discontinuities are from IV regressions which allow for different slope on either side of the cutoff and include no controls apart from SELBEN II score.

Figure 9: Impact of income changes on the likelihood of being stunted for children below 6 years of age

Note: Observations are divided into bins with width 0.4. Dots represent average outcome in each bin. Solid lines are best linear fits through the dots, calculated separately below and above the cutoff. Discontinuities are from IV regressions which allow for different slope on either side of the cutoff and include no controls apart from SELBEN II score.

Figure 10: Impact of income changes on weight-for-age split by age group

Note: Observations are divided into bins with width 0.4. Dots represent average outcome in each bin. Solid lines are best linear fits through the dots, calculated separately below and above the cutoff. Discontinuities are from IV regressions which allow for different slope on either side of the cutoff and include no controls apart from SELBEN II score.

Figure 11: Impact of income changes on height-for-age split by age group

Note: Observations are divided into bins with width 0.4. Dots represent average outcome in each bin. Solid lines are best linear fits through the dots, calculated separately below and above the cutoff. Discontinuities are from IV regressions which allow for different slope on either side of the cutoff and include no controls apart from SELBEN II score.

Figure 12: Impact of income changes on weight-for-height split by age group

Note: Observations are divided into bins with width 0.4. Dots represent average outcome in each bin. Solid lines are best linear fits through the dots, calculated separately below and above the cutoff. Discontinuities are from IV regressions which allow for different slope on either side of the cutoff and include no controls apart from SELBEN II score.

Figure 13: Impact of income changes on the likelihood of receiving a health check

Note: Observations are divided into bins with width 0.4. Dots represent average outcome in each bin. Solid lines are best linear fits through the dots, calculated separately below and above the cutoff. Discontinuities are from IV regressions which allow for different slope on either side of the cutoff and include no controls apart from SELBEN II score.

Figure 14: Impact of income changes on food expenditure

Note: Observations are divided into bins with width 0.4. Dots represent average outcome in each bin. Solid lines are best linear fits through the dots, calculated separately below and above the cutoff. Discontinuities are from IV regressions which allow for different slope on either side of the cutoff and include no controls apart from SELBEN II score.

Figure 15: Impact of income changes on non-food expenditure

Note: Observations are divided into bins with width 0.4. Dots represent average outcome in each bin. Solid lines are best linear fits through the dots, calculated separately below and above the cutoff. Discontinuities are from IV regressions which allow for different slope on either side of the cutoff and include no controls apart from SELBEN II score.

Figure 16: Impact of income changes on mothers' labour supply

Note: Observations are divided into bins with width 0.4. Dots represent average outcome in each bin. Solid lines are best linear fits through the dots, calculated separately below and above the cutoff. Discontinuities are from IV regressions which allow for different slope on either side of the cutoff and include no controls apart from SELBEN II score.

Figure 17: Impact of income changes on mothers' depression score

Note: Observations are divided into bins with width 0.4. Dots represent average outcome in each bin. Solid lines are best linear fits through the dots, calculated separately below and above the cutoff. Discontinuities are from IV regressions which allow for different slope on either side of the cutoff and include no controls apart from SELBEN II score.

Appendix

	Tab	le A1: N	umber o	of <u>observ</u>	ations				
	Combined			Winners vs		Always-winners			
				а	always-losers		vs losers		
	Recip.	Non-rec.	Total	Recip.	Non-rec.	Total	Recip.	Non-rec.	Total
Households	1,344	1,301	2,645	670	648	1,318	674	653	$1,\!327$
Households /w children <6	568	552	$1,\!120$	275	277	552	293	275	568
Persons	6,092	5,712	11,804	2,974	2,795	5,769	$3,\!118$	2,917	6,035
Children < 6	765	680	$1,\!445$	372	344	716	393	336	729
Children < 6 (sample)	729	645	$1,\!374$	353	328	681	376	317	693

	Table A2:	First-sta	ge F-statisti	CS		
	Combined sample		Winners vs always-losers		Always-winners vs losers	
	No controls	Controls	No controls	Controls	No controls	Controls
Linear	723.44	711.63	236.64	234.33	660.64	647.27
Second-order polynomial	284.50	285.75	76.97	78.33	350.75	342.49
Third order polynomial	179.14	179.78	41.28	42.31	254.54	245.75

Note: The F-Statistics are from regressions of actual transfer collection on an eligibility dummy controlling for a polynomial in the assignment variable (the SELBEN II score). The regressions labelled 'Controls' include a third order polynomial in the child's age (measured in months) and a gender dummy.