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Abstract

The reproductive value (see Fisher 1930) arises as part of the shadow price of the 
population in a large class of age-structured optimal control models.
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The Reproductive Value as Part of the Shadow
Price of Population

Gustav Feichtinger, Michael Kuhn, Alexia Prskawetz, Stefan Wrzaczek

1 Relationship

The reproductive value at age a, introduced by Fisher [16], is defined as

v(a) =

∫ β

a

e−r(s−a) l(s)

l(a)
m(s) ds, (1)

where l(s) denotes the probability to survive from birth until age s, m(s) the fertility
rate of age s, β the oldest age of childbearing and r the discount rate, which is equal
to Lotka’s r (see e.g. Keyfitz [22]).

Consider an optimal control model in which an intertemporal objective functional
is to be optimised over a finite time horizon, where the objective itself depends on
the size and age-structure of some population. Further assume that within such an
age-structured optimal control model, population aged a at time t is used as a state
variable N(a, t), described by the McKendrick equation (see Keyfitz [22] and Keyfitz and
Keyfitz [23]), then the shadow price attached to population ξN(a, t) typically embraces
a generalization of the reproductive value. ξN(a, t) itself can be interpreted as the
marginal value of an additional a-year old individual at time t. The relationships
become clearer when considering the following decomposition1

ξN(a, t) = ξd(a, t) +

∫ ω

a

e−ρ(s−a) l(s, ·)
l(a, ·)m(s, ·)ξN(0, t − a + s) ds, (2)

for t − a + ω < T , where ω denotes the maximal length of life, t time, a age and ρ
the time discount rate. The direct effect ξd(a, t) accounts for the marginal value of
the population that is currently alive. The indirect effect, as given by the second term
on the right hand side, accounts for the marginal value of expected newborns and is
a generalized form of the classical reproductive value (1). Put differently the indirect
effect could represent the economic value of the lineage associated with an additional
individual.

Note that the integral in the above result is a variant of Fisher’s formulation. The
integrand, the discounted expected number of newborns at time t − a + s, is weighted
by their value to the decision-maker, as given by the shadow price ξN(0, t − a + s). In
Fisher’s case this value equals one, since he regarded the birth of a child as lending
to him of a life. Moreover, while the discount rate is equal to Lotka’s r in (1), in our

1Equation (2) is derived in section 2 (see equations (4)-(6)).

2



expression (2) the discount rate is equal to the time preference ρ and exogenously given.
Note that it makes no difference that the upper bound of the integral is the maximal
length of life, since the fertility rate is zero after the maximal age of childbearing.

The generality of the above expression has two important implications. Firstly, in
Fisher’s original formulation (1) the population is stable. The above expression allows
for changes in the demography over time.2 Secondly, the sign of the reproductive value
is always positive. Due to the weighting with ξN(0, t − a + s), the general expression
can also have a negative sign.

2 Proof

Consider the following age-structured optimal control model3,4

V (N(a, 0)) = maxu∈U

∫ T

0

∫ ω

0

e−ρtL(a, t, N, u) da dt

s.t.
( ∂

∂a
+

∂

∂t

)
N(a, t) = −μ(a, t, u)N(a, t)

N(0, t) = B(t) =

∫ ω

0

m(a, t, u)N(a, t) da,N(a, 0) = N0(a)

(3)

where population dynamics is modeled according to the McKendrick equation with
an endogenous number of newborns B(t). The decision maker chooses the control u(a, t)
from the set of admissible controls U such that the objective, equal to the discounted
instantaneous objective functionals5 L(·) aggregated over age and time, is maximized
over a finite time horizon T < ∞ with a zero salvage value. The control u(a, t) itself
influences the objective functionals as well as the mortality and the fertility rates.

For age-structured optimal control models with additional cohort states (45-degree
line in the Lexis diagram), period states (90-degree line in the Lexis diagramm) and a
non-zero salvage value we refer to Wrzaczek et al. [31].

According to the Maximum principle for age-structured optimal control models (see
Brokate [4] or Feichtinger et al. [14])6 we formulate the current-value Hamiltonian,

2See also Ediev[10] on the dynamics of the reproductive value.
3For simplification a and t are omitted sometimes.
4V (N(a, 0)) denotes the optimal value of the objective functional, which depends on N(a, 0). In

dynamic optimisation V (N(a, t)) is referred to as value function.
5For instance, the aggregate objective could be intertemporal social welfare. In this case, the

objective functional L(·) would measure the instantaneous welfare of age-group N(a, t). In different
settings, L(·) may describe the (economic) value ascribed to an animal or plant population.

6The Maximum Principle presented in Feichtinger et al. [14] is a generalization of that in Brokate [4].
Firstly the formulation of the model allows for more general forms of the objective function and the
dynamics. Secondly, an additional type of state accounting for interactions between the cohorts (often
important in epidemiological models) is allowed. On the other hand, the Maximum Principle of

3



which consists of the instantaneous objective functional (current contribution) and the
dynamics (population as well as the integral constraint7) weighted by the adjoint vari-
able (future contribution), i.e.

H = L(a, t, N, u) − ξN(a, t)μ(a, t, u)N(a, t) + ξN(0, t)m(a, t, u)N(a, t) (4)

and maximize it with respect to the control u(a, t). The Hamiltonian may be seen as
a generalization of the Lagrangean method (for an excellent reference see Leonard and
van Long [26]). We further derive the adjoint equation equal to the negative partial
derivative of the Hamiltonian with respect to population N(a, t) plus a term due to
discounting the future, i.e.

( ∂

∂a
+

∂

∂t

)
ξN(a, t) = (ρ + μ)ξN(·) − ∂L(·)

∂N
− ξN(0, t − a + s)m(·), (5)

In this expression the optimal value of the control has already been used. Together with
the corresponding transversality condition ξN(ω, t) = 0 the above differential equation
can be turned into an equivalent integral equation, which can be solved recursively. We
obtain8

ξN(a, t) =

∫ ω

a

e−ρ(s−a) l(s, t − a + s)

l(a, t)

∂L(·)
∂N

ds +

+

∫ ω

a

e−ρ(s−a) l(s, t − a + s)

l(a, t)
m(s, t − a + s, u(·))ξN(0, t − a + s) ds. (6)

The direct effect is represented by the first integral. It is equal to the marginal effect
of the population on the instantaneous objective functional ∂L(·)

∂N
. Discounted by ρ and

weighted by the survival probability, this effect is aggregated over the remaining life
of the cohort born at t − a. The second integral is the more general form of Fisher’s
reproductive value as discussed in the previous section.

For a detailed discussion on a general model and mathematical details (assumptions
on the functions involved, conditions for the existence of solutions) we refer to Wrzaczek
et al. [31] and Feichtinger et al. [14]. For a model with a male and female population
the analysis is analogous and the core result does not change.

Brokate [4] allows for an infinite life-time horizon, which is not contained in that of Feichtinger et
al. [14]

7The integrand of B(t) is weighted by a separate adjoint variable η(t). However, since B(t) only
acts as boundary constraint of the population η(t) = ξN (0, t) follows immediately.

8Note that the conditional survival probability l(s,t−a+s)
l(a,t) is a transformation of the term

e−
R s

a
μ(·) ds′

, which originally enters according to the adjoint equation (5). For greater clearness we
have chosen the demographic notation.
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3 History and related results

While intertemporal optimization is ubiquitous in population economics,9 it is not a
standard tool in demography. One main purpose of the present note is to illustrate its
applicability in population dynamics. Since population processes evolve in time we use
intertemporal optimization in particular optimal control theory. Its main advantage
is to provide qualitative insights into structural properties of optimal solution paths.
The core concept of dynamic optimization is the shadow price of the state variable. It
measures the marginal value (in terms of the objective function) of an increment of the
state at time t when moving along the optimal path. Assume that the decision maker
who is faced with a state N(a, t) at time t decides optimally from t onwards until the
end of the process. The shadow price ξN(a, t) is defined as the partial derivative of the
optimal value of the process V (·) with respect to N(a, t), i.e.

ξN(a, t) =
∂V (N(a, t))

∂N(a, t)
(7)

This imputed (marginal) value can be seen as a dynamic extension of the dual variable
in (static) mathematical (linear and non-linear) programming. Note that it is no market
price (which must be always non-negative), but measures the marginal impact of an
additional (infitesimal) unit of the state on the objective. In optimal control theory
this dynamic shadow price is referred to as adjoint variable. Clearly, shadow prices can
take negative values.

At any instant of time t, the decision-maker considers the state of the system N(a, t)
and has to choose the control u(a, t) optimally. This selection has two effects (see e.g.
Grass et al. [18]). (i) to generate an instantaneous utility L(a, t, N, u), and (ii) to
change the state through the system dynamics, i.e. in our case −μ(a, t, u)N(a, t) as
well as the boundary constraint B(t). Thus, a rational decision maker has to take into
consideration the change of the state appropriately.

Our indirect effect that shows up in the dynamics of the shadow price (equation
(2)) may therefore be seen as a further alternative of the valuation of the reproductive
value at age zero, by taking into account the marginal value of a newborn as given by
the shadow price at age zero.

Life-history theories of ageing aim for an explanation of the genetic architecture of
the life-history. Life-histories are defined as cycles of maturation, fertility and mortality
(see e.g. Charlesworth [6]). Remarkably, there is an interesting analogy with a finding
by Goodman [17] who considers an optimal control model to deal with life-history opti-
misation10, where a decision-maker (evolution) chooses optimal trajectories of fertility
(rates) in order to maximise the total reproductive contribution of cohort at birth sub-
ject to certain physiological constraint. He shows that the reproductive value (at age

9For an early example we refer to Arthur and McNicoll [1].
10For an even earlier dynamic programming and optimal control approach to life history optimisation

see Leon [25] or Taylor et al. [30].
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a) is the current shadow price of survival of an age a individual in the cohort. Thus, for
an optimal life-history model any individual is valued exactly at its reproductive value,
whereas in our model, in which population may have a more general value than repro-
duction alone, the weighted reproductive value constitutes one part of an individual’s
value.

Notably, the shadow price of population bears close resemblance to the economic-
demographic potential (see Ediev [7], [8], [9] based on earlier measures as e.g. by
Hersch [19] and Burgeois-Pichat [5]). While the demographic potential measures a
population’s prospects for future growth (Ediev [7], [8]), the economic-demographic
potential extends this to provide an index reflecting the net present value of future
economic flows originating from both the present generation (our direct effect ξd(a, t))
and future generations (our indirect effect). By deriving the shadow price of popula-
tion within an explicit optimal control problem, our approach lends a foundation to
the economic-demographic potential as measure of an optimal ’policy’. Indeed, by its
very nature the shadow price embraces a measure of the future economic-demographic
prospects.

In a similar vein, economists have thought since long about the value of (human)
life. Hofflander [20] provides an excellent survey of such thought, including promi-
nent contributions by William Farr and Alfred Marshall. Schelling [28] was first to
(re-)introduce the concept in a modern way, which was subsequently formalized by
Shepard and Zeckhauser [29]. The value of a statistical life, rigorously defined as the
(hypothetical) monetary value an individual would attach to its survival from an ex-
ante perspective, is typically derived within a life-cycle model, where an individual
maxmises utility over the remaining (expected) life course, but does not account for its
progeny. For such an egoistic individual the value of life only depends on the prospect
over the own remaining life course, corresponding to the direct term ξd(a, t) in expres-
sion (2). Recent work by Birchenall and Soares [3] and by Kuhn et al. [24] accounts for
the presence of altruism towards descendants in the spirit of Becker and Barro [2]. In
this case the value of an individual’s life is amended by the value the individual attaches
to its prog eny (depending inter alia on their future prospects), corresponding to the
indirect effect in (2). In practical terms this implies that the value of life may well be
underestimated for individuals who are still within their fertile years.

4 Applications

In section 1 we mentioned that the generalized reproductive value can have a negative
sign. As an example consider a model minimizing the impact of a population of a
pest on a valuable store of a resource. If the pest population (destroying the resource)
is modeled in the above way, the corresponding shadow price will be negative. This
implies that also the generalized reproductive value (i.e. the impact of yet to be born
pest individuals on the future stock of the resource) is negative.

For another application consider an age-specific predator-prey model, embracing
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cattle and wolves, say, as presented in Wrzaczek et al. [31]. In this model the dynamics
of the predator and prey population is modeled by a generalized form of the McKendrick
equation in order to account for the interaction between them. The more prey is alive
the better is the nutrition for the predator, and the more predators are alive the more
prey will be killed. Using these dynamics when optimizing a general objective function
(e.g. the net economic value of the cattle population) leads to an interesting interactio
of the shadow prices relating to the two populations. In addition to the generalized
reproductive vlaue, the shadow price of the prey enters the direct effect of the predator
and vice versa. This accounts for the fact that the prey population represent the
predator’s food supply and the predator population represents a prime cause for prey
mortality. Also in this example the reproductive term can be negative depending on
the type of objective function (e.g. the reproductive vlaue of the predator if in contrast
to the prey it has no direct economic value in and of itself).

A further epidemiological application involving the interaction of infected and sus-
ceptible individuals is presented in Wrzaczek et al. [31].

Finally, we want to emphasize that the concept of the reproductive value is not only
applicable for humans and animals, but also for self-renewable machines or even capital
(for examples see e.g. Sethi and Thompson [27]). In several models machines have
vintage structure in order to account for technological progress (see e.g. Feichtinger et
al. [12] and references therein). If then new machines are produced by using existing
machines, the corresponding shadow price has the same structure as discussed above.
In that case the birth rate can be interpreted as productivity of existing machines
producing new ones. Due to technical progress the productivity will increase over
time. The survival probability equals the value of the machines according to physical
depreciation.
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