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Weak approximation of G-expectation∗

Tolulope Fadina†, Frederik Herzberg‡

February 8, 2014

Abstract

We refine the discretization of G-expectation by Y. Dolinsky, M.
Nutz, and M. Soner (Stochastic Processes and their Applications, 122
(2012), 664–675 ), in order to obtain a discretization of sublinear
expectation where the martingale laws are defined on a finite lattice
rather than the whole set of reals.

Mathematics Subject Classification: 60F05; 60G44; 91B25; 91B30
Keywords: G-expectation; Volatility uncertainty; Weak limit theorem.

1 Introduction

In [5], Dolinsky et al showed a Donsker-type result for G-Brownian motion,
henceforth referred to as G-Donsker, by introducing a notion of volatil-
ity uncertainty in discrete time and defined a discrete version of Peng’s
G-expectation. In the continuous-time limit, the resulting sublinear expec-
tation converges weakly to G-expectation. In their discretization, Dolinsky
et al. [5] allow for martingale laws whose support is the whole set of reals.
In other words, they only discretize the time line, but not the state space of
the canonical process. Now for certain applications, for example a hyperfi-
nite construction of G-expectation in the sense of Robinsonian nonstandard
analysis, a discretization of the state space would be necessary. We will
show in this paper, that a slight modification of the construction by Dolin-
sky et al. [5] suffices to obtain a discretization where the state space for the
discrete-time canonical process is discretized, too (whence the martingale
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laws are supported by a finite lattice only). We will prove the convergence
of this discretization to continuous-time G-expectation.

This paper is organised as follows: in Section 2, we introduce G-
expectation, and the discrete-time and continuous-time version of the sublin-
ear expectation in the spirit of [5]. Unlike in [5], we require the discretization
of the martingale laws to be defined on a finite lattice rather than the whole
set of reals. In Section 3, we introduce the strong formulation of volatility
uncertainty, and show that a natural push forward of our discretize sublin-
ear expectation converges weakly to G-expectation as n → ∞. Finally, we
prove that

sup
P∈QD

EP [ξ] = lim
n→∞

max
Q∈Qn

D/n

EQ[ξ(X̂n)].

2 Framework

2.1 G-expectation via volatility uncertainty

Peng [9, 10] introduced a sublinear expectation on a well-defined space L1
G,

the completion of Lipb.cyl(Ω) (bounded and Lipschitz cylinder function) un-
der the norm ‖ · ‖L1

G
, under which the increments of the canonical process

(Bt)t>0 are zero-mean, independent and stationary and can be proved to be
(G)-normally distributed (see [8]). This type of process is called G-Brownian
motion and the corresponding sublinear expectation is called G-expectation.
We fix a constant T > 0 and the dimension d = 1.

TheG-expectation ξ 7→ EG(ξ) is a sublinear operator defined on a class of
random variables on Ω. The symbol G refers to a given function G : R→ R
of the form

G(γ) =
1

2
(Rγ+ − rγ−) =

1

2
sup

c∈[r,R]
cγ,

where 0 ≤ r ≤ R < ∞ are fixed numbers. The construction of the G-
expectation is as follows. Let ξ = f(BT ), where BT is the G-Brownian
motion and f a sufficiently regular function. Then EG(ξ) is defined to be
the initial value u(0, 0) of the solution of nonlinear backward heat equation,

∂tu−G(∂2
xxu) = 0,

with terminal condition u(·, T ) = f , [7]. The mapping EG can be extended
to random variables of the form ξ = f(Bt1 , · · · , Btn) by a stepwise evaluation
of the PDE and then to the completion L1

G of the space of all such random
variables. [3] showed that L1

G is the completion of Cb(Ω) and Lipb.cyl(Ω)
under the norm ‖ · ‖L1

G
, and that L1

G is the space of the so-called quasi-
continuous function and contains all bounded continuous function on the
canonical space Ω (however, not all bounded measurable functions are in-
cluded). Proposition 3.1 cannot be extended to the case where ξ is merely
in L1

G under the norm ‖ · ‖L1
G

, because ‖ · ‖L1
G

does not see the discrete-time
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object (see [5], Remark 3.2), thus, we work in a smaller space L1
∗ defined as

the completion of Cb(Ω;R) under the norm ‖ · ‖∗.
There also exists an alternative representation of G-expectation known

as the dual view on G-expectation via volatility uncertainty [3–5]: One can
show that the G-expectation can be expressed as the upper expectation

EG(ξ) = sup
P∈PG

EP [ξ], ξ = f(BT ), (1)

wherein PG is defined as the set of probability measures on Ω such that, for
any P ∈ PG, B is a martingale with the volatility d 〈B〉t /dt ∈ D in P ⊗ dt
a.e, and D = [r,R], for 0 ≤ r ≤ R <∞.

2.2 Continuous-time construction of sublinear expectation

Let Ω = {ω ∈ C([0, T ];R) : ω0 = 0} be the canonical space of continuous
paths with time horizon T ∈ (0,∞), endowed with uniform norm ‖ω‖∞ =
sup0≤t≤T |ωt|, where the Euclidean norm on R is given by | · |. Let B be the
canonical process Bt(ω) = ωt, and Ft = σ(Bs, 0 ≤ s ≤ t) is the filtration
generated by B. A probability measure P on Ω is called a martingale law
of B, if B is P -martingale. Then, PD is the set of martingale laws on Ω and
the volatility takes values in D, P ⊗ dt a.e;

PD = {P -martingale law on Ω; d 〈B〉t /dt ∈ D, P ⊗ dt a.e.} .

Thus, the sublinear expectation is given by

ED(ξ) = sup
P∈PD

EP [ξ], such that, for any ξ : Ω→ R, (2)

ξ is FT -measurable and integrable for all P ∈ PD.

2.3 Discrete-time construction of sublinear expectation

Here, we introduce the sublinear expectation, En, on the n-step canonical
space where n ∈ N. We denote,

Ln =

{
j√
n
, −n ≤ j ≤ n, for j ∈ Z

}
,

where Ln+1
n = Ln×· · ·×Ln(n+1 times). LetXn = (Xn

k )nk=0 be the canonical
process Xn

k (x) = xk defined on Ln+1
n and (Fn

k )nk=0 = σ(Xn
l , l = 0, . . . , k) be

the filtration generated by Xn, such that, D is a bounded set of volatilities.
A probability measure P on Ln+1

n is a martingale law if Xn is a P -martingale
and Xn

0 = 0 P a.s. The increment ∆Xn is denoted by ∆Xn
k = Xn

k −Xn
k−1.

Then, Pn
D is a set of martingale laws on Ln+1

n , such that, the volatility takes
values in D, P ⊗ dt a.e;

Pn
D =

{
P -martingale law on Ln+1

n ; EP [(∆Xn
k )2] ∈ D and rD ≤ |∆Xn

k |2 ≤ RD, P a.e.
}
.
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Let Pn
D be the set of martingale laws on Rn+1, i.e.,

Pn
D =

{
P -martingale law on Rn+1; EP [(∆Xn

k )2] ∈ D and rD ≤ |∆Xn
k |2 ≤ RD, P a.e.

}
,

such that for all n, Ln+1
n ⊆ Rn+1 and Pn

D ⊆ Pn
D. Thus, the sublinear expec-

tation is given by

EnD(ψ) = sup
P∈PnD

EP [ψ], such that, for any ψ : Ln+1
n → R, (3)

ψ is Fn
n - adapted for all P ∈ Pn

D.

In order to establish a relation between the two formulations, we ob-
tained a continuous-time process x = {x̂t : 0 ≤ t ≤ T} from any discrete
path x ∈ Ln+1

n by linear interpolation. i.e.,

x̂ := ([nt/T ] + 1− nt/T )x[nt/T ] + (nt/T − [nt/T ])x[nt/T ]+1

where ̂: Ln+1
n → Ω is the linear interpolated operator, x = (x0, . . . , xn) 7→

x̂ = {(x̂)0≤t≤T }, and [y] denote the greatest integer less than or equal to y.
If Xn is the canonical process on Ln+1

n and ξ is a random variable on Ω,

then ξ(X̂n) defines a random variable on Ln+1
n . Thus,

EnD(ξ(X̂n)) = sup
P∈PnD

EP [ξ(X̂n)]

can be seen as the discrete analogue of G-expectation, and this allows us to
extend EnD(ψ) to a continuous-time object.

3 Results and proofs

We introduce the so-called strong formulation of volatility uncertainty for
the discrete-time construction, as in [5], and for the continuous-time con-
struction, as in [5, 6, 11, 12]; i.e., we consider martingale laws generated by
stochastic integrals with respect to a fixed random walk and Brownian mo-
tion. For the continuous-time construction; let QD be the set of martingale
laws of the form;

QD =

{
P0 ◦ (M)−1; M =

∫
f(t, B)dBt, and f ∈ C([0, T ]× Ω;D1/2) is adapted

}
.

B is the canonical process under the Wiener measure P0, and D is a
convex set. Recall from [5], (Proposition 3.5,) that the convex hull of
QD ⊆ PD. For the discrete-time construction; we fix n ∈ N, Ωn = {ω =
(ω1, . . . , ωn) : ωi ∈ {±1}, i = 1, . . . , n} equipped with the power set and let
Pn = {2−1, . . . , 2−1}︸ ︷︷ ︸

n times

be the product probability associated with the uniform
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distribution. Let ξ1, . . . , ξn be an i.i.d sequence of Ln-valued random vari-
able such that ξk belongs to {±1} and the components of ξk are orthonormal
in L2(Pn). We denote the associated random walk by Zn

k =
∑k

l=1 ξl, then,
we can view

k−1∑
l=0

f(l,X)∆Xl

as discrete-time integrals of X, where f is Fn-adapted and X = 1√
n
Zn is the

scaled random walk. We denote by Qn
D/n the set of martingale laws of the

form;

Qn
D/n =

{
Pn ◦ (Mf )−1; f : {0, . . . , n} × Ln+1

n → D
1/2
n is Fn-adapted,

and ∀ k ∈ {0, . . . , n}, Mf
k =

∑k−1
l=0 f(l,X)∆Xl,

}
.

Proposition 3.1 states that this sublinear expectation with discrete-time
volatility uncertainty on a finite space converges to G-expectation.

Proposition 3.1. Let ξ : Ω → R be a continuous function satisfying
|ξ(ω)| ≤ a(1+ ‖ ω ‖∞)b for some constants a, b > 0. Then,

lim
n→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)] = sup
P∈QD

EP [ξ]. (4)

Proof. To prove (4), we prove two separate inequalities together with a
density argument which imply (4). Before then, we introduce a smaller
space L1

∗ that is defined as the completion of Cb(Ω;R) under the norm

‖ ξ ‖∗:= sup
Q∈Q

EQ|ξ|, Q :=

{
P ∈ PD

}
∪
{
P ◦ (̂Xn)

−1
;P ∈ Pn

D/n, n ∈ N.
}
.

[5], (Lemma 3.4,) show that if ξ : Ω→ R satisfies the condition of Proposi-
tion 3.1, then ξ ∈ L1

∗.

First inequality (for ≤ in (4)):

lim sup
n→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)] ≤ sup
P∈QD

EP [ξ].

Let Qn
D be the set of martingale laws of the form;

Qn
D =

Pn ◦

(
k−1∑
l=0

f(l, Z)∆Zl

)−1

; f : {0, . . . , n} × Rn+1 → D1/2 is adapted

 .

[5] show that Qn
D ⊆ Pn

D. For all n, trivially Ln+1
n ⊆ Rn+1. Thus, Qn

D/n ⊆
Qn

D. Therefore,

sup
Q∈Qn

D/n

EQ[ξ(X̂n)] ≤ sup
P∈QnD

EP [ξ(X̂n)],

5



and for all n, we have

lim sup
n→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)] ≤ lim sup
n→∞

sup
P∈QnD

EP [ξ(X̂n)]. (5)

In [5], it was shown that

lim sup
n→∞

sup
P∈QnD

EP [ξ(X̂n)] ≤ sup
P∈QD

EP [ξ].

Thus,
lim sup
n→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)] ≤ sup
P∈QD

EP [ξ]. (6)

Second inequality (for ≥ in (4)):

It remains to show that

lim inf
n→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)] ≥ sup
P∈QD

EP [ξ].

For arbitrary P ∈ QD, we construct a sequence (Pn)n such that for all n,

Pn ∈ Qn
D/n, (7)

and

EP [ξ] ≤ lim inf
n→∞

EPn [ξ(X̂n)]. (8)

Fix n, and let ξ1, . . . , ξn be some i.i.d sequence of random variables on Ωn

as defined above, i.e., ξi : Ωn → Ln, for i = 1, . . . , n. Now, we want to
construct martingales Mn whose laws are in Qn

D/n and the laws of their
interpolations tend to P. To achieve the above task, we introduce a scaled
random walk with the piecewise constant càdlàg property (right continuity
with left limits),

Wn
t :=

1√
n

[nt/T ]∑
k=1

ξk, 0 ≤ t ≤ T, (9)

and we denote the continuous version of (9) obtained by linear interpolation
by

Ŵn
t :=

1√
n
Ẑn, 0 ≤ t ≤ T. (10)

By the central limit theorem;

(Wn, Ŵn) converges in distribution to a Brownian motion (W,W ),
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i.e., the law (Pn) converges to the law P0 on the Skorohod space D([0, T ];R2)
[2]. Let g ∈ C([0, T ]× Ω,D1/2), such that

P = P0 ◦
(∫

g(t,W )dWt = M

)−1

.

Since Ŵn
t is the interpolated version of (9), it turns out that

g
(

[nt/T ], Ŵn
)

converges in distribution to g(t,W ) on D([0, T ];R).

We introduce martingales with discrete-time integrals,

Mn
k :=

k−1∑
l=0

g

(
lT

n
, Ŵn

)
1√
n

(
Zn
l+1 − Zn

l

)
. (11)

In order to show that Pn ◦ (Mn)−1 ∈ Qn
D/n, we have to find

gn : {0, . . . , n} × Ln+1
n → D1/2/n, ∀ l ∈ {0, . . . , n},

such that,

Mn
k =

k−1∑
l=0

gn

(
l,

1√
n
Zn

)
1√
n

∆Zn
l .

This is possible: simply put

gn(`, ~X) 7→ g

(
`T

n
, ~̂W

)
.

Therefore,
Pn ◦ (Mn)−1 ∈ Qn

D/n.

By [5], the continuous version of (11) obtained by linear interpolation M̂n

converges in distribution to M on Ω endowed with the uniform metric on
the Skorohod space, i.e., M̂n ⇒M on Ω. Since ξ is bounded and continuous,

lim
n→∞

EPn◦(Mn)−1

[ξ(X̂n)] = EP0◦M−1
[ξ]. (12)

Therefore, (7) is satisfied for Pn = Pn ◦ (Mn)−1 ∈ Qn
D/n. Trivially, (7)

implies
EPn [ξ(X̂n)] ≤ sup

Q∈Qn
D/n

EQ[ξ(X̂n)]. (13)

Combining (12) and (13), and taking the lim inf as n tends to ∞, gives

EP [ξ] ≤ lim inf
n→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)]. (14)

7



Taking the supremum of (14) over P ∈ QD, the equation becomes

sup
P∈QD

EP [ξ] ≤ lim inf
n→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)].

Hence,
lim inf
n→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)] ≥ sup
P∈QD

EP [ξ]. (15)

Combining (6) and (15),

sup
P∈QD

EP [ξ] ≥ lim sup
n→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)]

≥ lim inf
n→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)]

≥ sup
P∈QD

EP [ξ].

Therefore,
lim
n→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)] = sup
P∈QD

EP [ξ]. (16)

Density argument: Hence (4) is established for all ξ ∈ Cb(Ω,R). Since
Qn

D/n ⊆ Q and QD ⊆ Q, this implies that QD ⊆ PD [5], (Propostion 3.5,)

that is (4) holds for all ξ ∈ L1
∗, and hence [5], (Lemma 3.4,) holds for all ξ

that satisfy condition of Proposition 3.1.

Proposition 3.2. Let ξ : Ω → R be a continuous function satisfying
|ξ(ω)| ≤ a(1 + ‖ω‖∞)b for some constants a, b > 0 and Qn

D/n be the set

of probability measure as defined in (18), then

sup
Q∈Qn

D/n

EQ[ξ(X̂n)] = max
Q∈Qn

D/n

EQ[ξ(X̂n)]. (17)

Proof. The LHS of (17) can be written as

sup
Q∈Qn

D/n

EQ[ξ(X̂n)] = sup
f∈A

EPn◦(Mf )−1
[ξ(X̂n)],

where A = {f : {0, . . . , n} × Ln+1
n → D1/2} such that f is Fn-adapted. We

shall prove that A is a compact subset of a finite-dimensional vector space,
and that f 7→ EPn◦(Mf )−1

[ξ(X̂n)] is continuous.

First part

Recall; for fix n ∈ N, Xn = (Xn
k )nk=0 is the canonical process defined by

Xn
k (x) = xk for x = (x0, . . . , xn) ∈ Ln+1

n , and (Fn
k )nk=0 = σ(Xn

l , l =
0, . . . , k) is the filtration generated by Xn. We consider Ωn = {ω =

8



(ω1, . . . , ωn) : ωi ∈ {±1}, i = 1, . . . , n} equipped with the power set, and
Pn = {2−1, . . . , 2−1}n is the product probability associated with the uniform
distribution. ξ1, . . . , ξn is the i.i.d sequence of real-valued random variable
such that ξk belongs to {±1} and the components of ξk are orthonormal in
L2(Pn). We denote the associated random walk by Zn

k =
∑k

l=1 ξl.
A is closed1 and obviously bounded with respect to the norm ‖ · ‖∞ as D
is bounded2. By Heine-Borel theorem, A is a compact subset of a N(n, n)-
dimensional vector space equipped with the norm ‖ · ‖∞.

Second part

Here, we want to show that F : f 7→ EPn◦(Mf )−1
[ξ(X̂n)] is continuous.

Qn
D/n =

{
Pn ◦ (Mf )−1; f : {0, . . . , n} × Ln+1

n → D1/2 is Fn-adapted,

and ∀ k ∈ {0, . . . , n}, Mf
l =

∑k−1
l=0 f(l,X)∆Xl,

}
,

(18)

and

X =
1√
n
Zn.

EPn◦(Mf )−1
[ξ(X̂n)] =

∫
Ln+1
n

ξ(X̂n)dPn ◦ (Mf )−1,

=

∫
Ωn

ξ(X̂n(Mf ))dPn, (transforming measure)

=
∑

ωn∈Ωn

Pn{ωn}ξ ◦ (X̂n) ◦Mf (ωn).

From Proposition 3.1 we know that ξ is continuous, X̂n is the in-
terpolated canonical process, i.e., X̂ : Ln+1

n → Ω, thus X̂n is con-
tinuous and Pn takes it value from the set of real numbers. For
F : f 7→ EPn◦(Mf )−1

[ξ(X̂n)] to be continuous, ψ : f 7→ Mf

has to be continuous. Since A = {f : {0, . . . , n} × Ln+1
n →

D1/2, where f is adapted with respect to the filtration generated by X} is
a compact subset of a N(n, n)-dimensional vector space for fix n ∈ N and
Mf : Ωn → Ln+1

n , for all f, g ∈ A,

|Mf −Mg| = |‖f‖∞ − ‖g‖∞| ≤ ‖f − g‖∞.
1The cardinality of Ln, #Ln = 2n + 1, #Ln+1

n = (2n + 1)n+1, and #({0, . . . , n} ×
Ln+1
n ) = (n+1)(2n+1)n+1 = N(n, n). Let (fm)m ∈ AN(n,n) and f : {0, . . . , n}×Ln+1

n →
R, such that fm → f , as m → ∞, with respect to the maximium norm ‖ · ‖∞ (or any
norm as a result of norm equivalent) on RN(n,n). We have to prove that f is adapted and
D1/2-valued (is obvious, D1/2 is closed). For the first part, let j ∈ {0, . . . , n}. We want to
show that f(j, ·) is Fnj -measurable. This, however, follows from ( [1], Theorem 13.4(ii).).

2If V ∈ R>0 such that D ⊆ [0, V ], then obviously ‖f‖∞ = maxj∈{0,...,n}
ω∈Ln+1

n

|f(j, ω)| ≤
√
V .
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Thus, ψ is continuous with respect to the norm ‖·‖∞. Hence F is continuous
with respect to any norm3 on RN(n,n).

Theorem 3.1. Let ξ : Ω → R be a continuous function satisfying |ξ(ω)| ≤
a(1 + ‖ω‖∞)b for some constants a, b > 0. Then,

sup
P∈QD

EP [ξ] = lim
n→∞

max
Q∈Qn

D/n

EQ[ξ(X̂n)]. (19)

References

[1] P. Billingsley. Probability and measure. Wiley Series in Probability
and Mathematical Statistics. John Wiley & Sons Inc., New York, third
edition, 1995.

[2] P. Billingsley. Convergence of probability measures. Wiley Series in
Probability and Statistics. John Wiley & Sons Inc., New York, second
edition, 1999.

[3] L. Denis, M. Hu, and S. Peng. Function spaces and capacity related
to a sublinear expectation: application to G-Brownian motion paths.
Potential Analysis, 34(2):139–161, 2011.

[4] L. Denis and C. Martini. A theoretical framework for the pricing of
contingent claims in the presence of model uncertainty. Ann. Appl.
Probab., 16(2):827–852, 2006.

[5] Y. Dolinsky, M. Nutz, and M. Soner. Weak approximation of G-
expectation. Stochastic Processes and their Applications, 122(2):664–
675, 2012.

[6] M. Nutz. Random G-expectations. Ann. Appl. Probab., 23(5):1755–
1777, 2013.

[7] É. Pardoux and S. Peng. Adapted solution of a backward stochastic
differential equation. Systems Control Lett., 14(1):55–61, 1990.

[8] S. Peng. G-Brownian motion and dynamic risk measure under volatility
uncertainty. Lecture Notes, 2007.

[9] S. Peng. G-expectation, G-Brownian motion and related stochastic
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Appendix

Density argument verification

Let

f : ξ 7→ sup
P∈QD

EP [ξ]

and
g : ξ 7→ lim

n→∞
sup

Q∈QnD/n
EQ[ξ(X̂n)].

From (16), we know that for all ξ ∈ Cb(Ω,R), f(ξ) = g(ξ). Since L1
∗ is the

completion of Cb(Ω,R) under the norm ‖ · ‖∗, Cb(Ω,R) is dense in L1
∗; and

we want to prove for all ξ ∈ L1
∗, f(ξ) = g(ξ). To prove this, it is sufficient to

show that f and g are continuous with respect to the norm ‖ · ‖∗.

For continuity of f :

∀P ∈ QD and ξ, ξ
′ ∈ L1

∗,

sup
P∈QD

EP [ξ]− sup
P∈QD

EP [ξ
′
] ≤ sup

P∈QD
EP [ξ − ξ′ ]

and
sup

P∈QD
EP [ξ − ξ′ ] ≤ sup

P∈QD
EP [|ξ − ξ′ |].

Since, QD ⊆ Q,

sup
P∈QD

EP [|ξ − ξ′ |] ≤ sup
Q∈Q

EQ[|ξ − ξ′ |] = ‖ξ − ξ′‖∗.

Then,
sup

P∈QD
EP [ξ]− sup

P∈QD
EP [ξ

′
] ≤ ‖ξ − ξ′‖∗. (20)

Interchanging ξ and ξ
′
,

sup
P∈QD

EP [ξ
′
]− sup

P∈QD
EP [ξ] ≤ ‖ξ′ − ξ‖∗. (21)
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Adding (20) and (21), we have∣∣∣∣ sup
P∈QD

EP [ξ]− sup
P∈QD

EP [ξ
′
]

∣∣∣∣ ≤ ‖ξ − ξ′‖∗. (22)

Hence,
|f(ξ)− f(ξ

′
)| ≤ ‖ξ − ξ′‖∗.

For continuity of g:

Since Qn
D/n ⊆ Q, we can follow the same argument as above; for all Q ∈

Qn
D/n, ξ, ξ

′ ∈ L1
∗ and for all n,

sup
Q∈Qn

D/n

EQ[ξ(X̂n)]− sup
Q∈Qn

D/n

EQ[ξ
′
(X̂n)]

≤ sup
Q∈Qn

D/n

EQ[ξ(X̂n)− ξ′(X̂n)]

≤ sup
Q∈Qn

D/n

EQ[|ξ(X̂n)− ξ′(X̂n)|].

Since, Qn
D/n ⊆ Q, we can say that

sup
Q∈Qn

D/n

EQ[|ξ(X̂n)− ξ′(X̂n)|] ≤ sup
Q∈Q

EQ[|ξ − ξ′ |] = ‖ξ − ξ′‖∗,

then,

sup
Q∈Qn

D/n

EQ[ξ(X̂n)]− sup
Q∈Qn

D/n

EQ[ξ
′
(X̂n)] ≤ ‖ξ − ξ′‖∗. (23)

When the limit of n tends to ∞, (23) becomes,

lim
n7→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)]− lim
n7→∞

sup
Q∈Qn

D/n

EQ[ξ
′
(X̂n)] ≤ ‖ξ − ξ′‖∗. (24)

Interchanging ξ and ξ
′
,

lim
n7→∞

sup
Q∈Qn

D/n

EQ[ξ
′
(X̂n)]− lim

n 7→∞
sup

Q∈Qn
D/n

EQ[ξ(X̂n)] ≤ ‖ξ′ − ξ‖∗. (25)

Adding (24) and (25), we have

∣∣∣∣ lim
n7→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)]− lim
n7→∞

sup
Q∈Qn

D/n

EQ[ξ
′
(X̂n)]

∣∣∣∣ ≤ ‖ξ − ξ′‖∗.
Hence, ∣∣∣g(ξ)− g(ξ

′
)
∣∣∣ ≤ ‖ξ − ξ′‖∗.
12
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