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Abstract

In this note I give a full characterization of all deterministic direct mechanisms
in the public good provision problem with independent private values that are dom-
inant strategy incentive compatible, ex-post individually rational, and ex-post bud-
get balanced.
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1 Introduction

In this note I give a full characterization of all deterministic direct mechanisms in the
public good provision problem with independent private values that are dominant strategy
incentive compatible, ex-post individually rational, and ex-post budget balanced.

2 Setup

The following is as in Börgers (2013), a special case of the more general d’Aspremont and
Gerard-Varet (1979).

A public good problem with independent private values is a tuple consisting of the
following ingredients: A set I of N agents; for each agent i ∈ I, a set of possible private
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values (for the indivisible non-excludable public good) θi ∈ Θi = [θi; θi] ⊂ [0,∞), which
is private information to the agent; the cost of providing the public good c > 0. Let
Θ = ×i∈IΘi and, for all i ∈ I let Θ−i = ×j∈I,j 6=iΘj with typical element θ−i.

For a public good problem an allocation rule can be written as a function q from the
set of value-profiles, Θ, to the set {0, 1}, where a 1 indicates the provision of the public
good and a 0 indicates that the public good is not provided.

A direct mechanism for a public good problem consists of an allocation rule and a set
of transfer functions, ti, one for each agent i ∈ I, where the transfer (possibly negative) is
a money amount that is taken from the agent and given to the mechanism designer. The
transfer functions are functions from the set of value-profiles to RN . A direct mechanism
for a public good problem is ex-post budget balanced (EPBB) if, for all value-profiles, the
sum of all transfers to the designer is equal to the cost of providing the public good if the
public good is provided and equal to zero otherwise.

A direct mechanism is dominant strategy incentive compatible (DSIC) if “truth-telling”
(i.e. stating ones type) is a (weakly) dominant strategy. It is ex-post individually rational
(EPIR) if, for any value-profile, any agent expects a weakly higher payoff from partici-
pating in the mechanism than from not participating.

3 Useful Known Results

The following is, almost verbatim, Proposition 4.5 of Börgers (2013).

Proposition 1 A direct mechanism is dominant strategy incentive compatible (DSIC) if
and only for every i ∈ I and for every θ−i ∈ Θ−i, there are functions θ̂i, τi and τ̂i from
the set Θ−i to the set of real numbers R such that:

θi < θ̂i(θ−i) ⇒ q(θi, θ−i) = 0 and ti(θi, θ−i) = τi(θ−i);

θi > θ̂i(θ−i) ⇒ q(θi, θ−i) = 1 and ti(θi, θ−i) = τ̂i(θ−i);

θi = θ̂i(θ−i) ⇒ q(θi, θ−i) = 0 and ti(θi, θ−i) = τi(θ−i) or

q(θi, θ−i) = 1 and ti(θi, θ−i) = τ̂i(θ−i);

τ̂i(θ−i)− τi(θ−i) = θ̂i(θ−i)

The proof is in Börgers (2013).
The following is, almost verbatim, Proposition 4.6 of Börgers (2013).

Proposition 2 A dominant strategy incentive compatible direct mechanism is ex post
individually rational (EPIR) if and only for every i ∈ I and for every θ−i ∈ Θ−i:

ti(θi, θ−i) ≤ θiq(θi, θ−i).
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4 Full Characterization

Lemma 1 Consider a dominant strategy incentive compatible (DSIC) direct mechanism.
For all i ∈ I, let θ̂i be defined as in Proposition 1. Then θ̂i, is a weakly decreasing function
in all its arguments (i.e. in all θj with j 6= i).

Proof: W.l.o.g. consider agent 1 and consider an arbitrary profile θ−1 = (θ2, ..., θN). Now
let θ1 = θ̂1(θ−1). Then, by definition, we have that q(θ′1, θ−1) = 0 for all θ′1 < θ1 and
q(θ′1, θ−1) = 1 for all θ′1 > θ1. Now assume that q(θ1, θ−1) = 1. W.l.o.g. consider now
agent 2. Let θ̃2 > θ2 and let θ̃−1 = (θ̃2, θ3, ..., θN), or in the case of N = 2 simply
θ̃−1 = θ̃2. By DSIC (Proposition 1) for agent 2 we must have that q(θ1, θ̃−1) = 1 also. By
DSIC (Proposition 1) for agent 1 we then obtain that for all θ′1 > θ1 we must have that
q(θ′1, θ̃−1) = 1 as well. Thus, θ̂1(θ

′
2, θ̃−1) ≤ θ1 = θ̂1(θ−1), which is what we wanted to show.

For the case that q(θ1, θ−1) = 0 a similar argument applies. Instead of θ̃2 > θ2 we need
to choose θ̃2 < θ2 and then go through the appropriate steps. QED

Now to the main result, a version of which has been proven for N = 2 in Börgers
(2013, Proposition 4.8).

Proposition 3 Consider a direct mechanism (q, t) with the property that there is a θ ∈ Θ
such that q(θ) = 1. This mechanism is dominant strategy incentive compatible (DSIC),
ex post individually rational (EPIR), and ex post budget balanced (EPBB) if and only if
there are payments τ̂i ∈ R with

∑
i∈I τ̂i = c such that q(θ) = 1 and ti(θ) = τ̂i for all i ∈ I

if θi ≥ τ̂i for all i ∈ I, and q(θ) = 0 and ti(θ) = 0 for all i ∈ I otherwise.

Proof: It is easy to see that the given mechanisms satisfy DSIC, EPIR, and EPBB. In
what follows I prove the reverse.

Let θ ∈ Θ be such that q(θ) = 0. Then EPIR (Proposition 2) implies that ti(θ) ≤ 0
for all i ∈ I. EPBB implies that

∑
i∈I ti(θ) = 0. Together this implies that ti(θ) = 0 for

all i ∈ I.
Together with Proposition 1 this implies that, using the terminology of Proposition 1,

we have that τ̂i ≡ θ̂i for all i ∈ I.
Denote by θ = (θ1, ..., θN) the vector of maximum values. Now suppose first that

q(θ) = 1 only if θ = θ. Then the result is trivially satisfied.
Thus, suppose that there is a θ ∈ Θ with θ 6= θ such that q(θ) = 1 and let this θ be

otherwise arbitrary. By DSIC (Lemma 1 and the fact that τ̂i ≡ θ̂i) we have that τ̂i(θ−i)
is weakly decreasing in all its arguments.

DSIC (Proposition 1) implies that q(θ) = 1 also. Now EPBB requires that
∑

i∈I τ̂i(θ−i) =∑
i∈I τ̂i(θ−i) = c. But as θi ≥ θi for all i ∈ I and as all functions τ̂i are weakly decreasing

in all its arguments we must have that all τ̂i(θ−i) = τ̂i(θ−i). As θ with q(θ) = 1 was chosen
arbitrarily, this implies that for any such θ we must have that τ̂i(θ−i) = τ̂i(θ−i). Thus, all
payments are equal to the thresholds and all are constant. QED
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