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We study a market in which k identical and indivisible objects are allocated

using a uniform-price auction where n > k bidders each demand one object.

Before the auction, each bidder receives an informative but imperfect signal

about the state of the world. The good that is auctioned is a common-value

object for the bidders, and a bidder’s valuation for the object is determined

jointly by the state of the world and an action that he chooses after winning

the object but before he observes the state. We show that there are equilibria

in which the auction price is completely uninformative about the state of the

world and aggregates no information even in an arbitrarily large auction. In

the equilibrium that we construct, because prices do not aggregate information,

agents have strict incentives to acquire costly information before they participate

in the market. Also, market statistics other than price, such as the amount of

rationing and bid distributions contain extra information about the state. Our

findings sharply contrast with past work which shows that in large auctions

where there is no ex-post action, the auction price aggregates information.
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“We must look at the price system as a mechanism for communicating information if we want to

understand its real function....The most significant fact about this system is the economy of knowledge

with which it operates, or how little the individual participants need to know in order to be able to

take the right action....by a kind of symbol, only the most essential information is passed on...” ?.

1. Introduction

One important reason to trust markets arises from the belief that market prices accurately

summarize the vast array of information held by market participants. Whether this belief

is justified, that is, whether prices efficiently aggregate information dispersed among agents

that are active in an economy is a central economic question addressed by past research.

In certain auction markets, prices do in fact effectively aggregate dispersed information.

Specifically, consider a market in which a large number of identical common-value objects

are sold through a uniform-price auction. In such an auction, if the bidders each have an

independent signal about an unknown state of the world and if this unknown state determines

the value of the object, then the equilibrium price converges to the true value of the object

as the number of objects and the number of bidders grow arbitrarily large. Therefore, the

auction price reveals information about the unknown state of the world. ?, ?, and ? have

shown that this remarkable result holds under quite general assumptions.

In many situations, however, the common value of an object is not determined solely by

the unknown parameters of the environment, i.e., the unknown state of the world. Rather,

the object’s value is also a function of how the object is utilized; in turn, the optimal way

to utilize the object can depend on the unknown state of the world. For example, suppose

that a large tract of land is to be divided and sold to farmers in smaller parcels through a

uniform-price auction. Each farmer who successfully acquires a parcel of land in the auction

needs to decide which crop to grow (e.g., wheat or rice). However, there is uncertainty about

future crop prices as well as which crop grows best on that land. Alternatively, consider

a uniform-price auction in which bandwidth is sold to telecommunication companies. Each

winner must decide whether to use conventional technology or adopt an unconventional new

one. However, there is uncertainty about future demand drivers (such as customer tastes)

which will determine which technology is more profitable. In both of these examples, the

winner of an object in the auction (a piece of land in the first and bandwidth in the second)

must choose an action which will itself affect the value that the winner derives from the

object. Moreover, this action must be taken after the auction is finalized but before some

payoff-relevant uncertainty is resolved.1

1Numerous other auctions share the characteristics of the two that we highlight here. Examples include
an auction for off-shore oil leases where the winner needs to undertake costly sunk investments in order to
transform the oil reserves into productive use. However, exactly which sort of investment decision is wisest
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In the examples discussed above, if the auction price provides additional information that

reduces uncertainty, i.e., if the auction price aggregates information, then the winners would

make better decisions when choosing their action (which crop to grow or which technology

to adopt). However, none of the past work on information aggregation in auctions explores

how the information revealed by the auction price is used after the auction is completed.

In contrast; in this paper we explicitly model how the information about the state of the

world is used after a common-value auction is completed; in our model, the auction’s winners

must decide on an action in order to put the objects acquired into productive use and the

optimal choice of action depends on the true state of the world. We show that such large

common-value auctions have equilibria in which the equilibrium price reveals no information

about the state of the world. Our result suggests that if information is useful for efficient

decision making, then the equilibrium price may not aggregate all the information relevant

for the decision. This finding stands in stark contrast to earlier studies which show that

prices aggregate information if there is no immediate use for this information.2

More specifically, we study a model in which k identical and indivisible objects are allo-

cated using a uniform-price auction in which n > k bidders each demand one unit of the

good. Before the auction, each bidder receives an informative but imperfect signal about the

state of the world. In the auction, bidders choose their bids as a function of their signal,

the k highest bidders are allocated one unit of the object, and all bidders who win an ob-

ject pay a uniform price equal to the k + 1st highest bid. The good that is auctioned is a

common-value object for the bidders and a bidder’s valuation for the object is determined

jointly by the state of the world and an action that he chooses after winning the object but

before he observes the state. In a large market, if the market clearing price were to aggregate

all information, then actions would be chosen efficiently and competition would necessarily

drive the price of the object to its efficient-use value.

We explore a number of properties of markets as the numbers of bidders and the objects

grow proportionately; however, our primary focus is on the informativeness of prices. An

outsider who could observe the signals of an arbitrarily large number of bidders would learn

the state of the world perfectly. Motivated by such an outsider’s perspective, we say that

prices fully aggregate information if an outsider can figure out the state of the world almost

perfectly just by observing the equilibrium price of a large market.

may depend on parameters unknown to the market participants. Another example is an auction for iron ore
where a winner must decide on which end product he will manufacture from the ore (e.g., flat steel versus
steel rods). However, the ore’s value to the winner will depend crucially on future end product prices and,
therefore, the product mix that he chooses to manufacture.

2Although there is no allocative inefficiency in pure common-value environments, ? extend their first
model to account for private values in addition to a common-value component, and show that uniform-price
auctions achieve both allocative efficiency and informational efficiency.

2



We present two main results. In our first main result, we construct a particular sequence of

symmetric equilibria in which, as the market grows arbitrarily large, the limit price conveys

no information about the true state of the world and remains strictly below the efficient use-

value of the object. Moreover, we show that such a sequence of equilibria can be constructed

for a generic set of parameter values. In the equilibria we construct, a strictly positive fraction

of agents chooses the wrong action because prices convey no new information. Therefore,

inefficiency persists even in a large market whose outcome would have been efficient if one

could observe all of the bidders’ signals. Also, because the equilibrium price does not convey

new information, agents have strict incentives to acquire costly information both before they

participate in the auction and after the objects have been allocated.

A prominent property of the equilibrium which we construct is that equilibrium bids are

nondecreasing in the signal that an agent receives, i.e., the bidding function is nondecreas-

ing. In order to explore the robustness of our first result, we also study arbitrary symmetric

equilibria in which the bidding function is monotonic. In our second result, we characterize

equilibrium behavior in any symmetric equilibrium in which the bidding function is mono-

tonic and we use this characterization to show that no sequence of such equilibria can fully

aggregate information. In any symmetric equilibria where the bidding function is mono-

tonic, the price fails to aggregate information and remains below the efficient use-value of

the object.

To understand the logic of our findings, it is useful to further discuss the particular mono-

tone equilibrium that we construct. In this equilibrium, bidders face two countervailing

incentives that jointly determine equilibrium bids and thus the equilibrium price. The first

is an incentive to compete: if a bidder makes strictly positive profits when he wins an object

at a price equal to his bid, then he prefers to increase his bid. The second is an incentive to

learn: a bidder would ideally like to know the signals of all the other bidders in the event

that he wins an object and therefore has an incentive to bid strategically in order to acquire

information.

In the particular monotone equilibrium that we construct, information is not aggregated

by the price because of the existence of pooling. Pooling by bidders with a range of different

signals at a certain pooling bid makes the equilibrium price less sensitive to the information of

the bidders and thus leads to limited learning. In our construction, the pooling bid is sustained

because of the incentive to learn and in spite of the incentive to compete. Specifically, when

the price is equal to the pooling bid, objects are allocated using rationing among the bidders

who choose the pooling bid. A bidder who chooses the pooling bid and wins an object through

rationing at a price equal to the pooling bid obtains more information about the state of the

world, compared to the case in which he instead chooses a higher bid, avoids rationing, and

3



wins an object. This is because winning an object when rationing is applied is more likely

in one state than the other. In other words, rationing is a lottery whose odds depend on the

state of the world. If a bidder who chooses the pooling bid increases his bid, then he acquires

an object more frequently because he avoids rationing when the price is equal to the pooling

bid. However, in this case he forgoes the extra piece of information that comes from winning

under rationing. Because this extra piece of information is sufficiently valuable for bidders

who choose the pooling bid, these bidders refrain from increasing their bid even though they

make strictly positive profits at the pooling bid.

In the paper, we also characterize all symmetric equilibria that are monotonic and we

argue that these equilibria are qualitatively similar to the particular equilibrium discussed

above. More specifically, we show that in all weakly increasing equilibria, players who receive

low signals choose a pooling bid, players who receive high signals bid above the pooling bid,

and the bidding function is strictly increasing above the pooling bid. Moreover, we show that

prices can never fully aggregate information in monotone equilibria. That is, prices either do

not reveal any information about the state of the world, or there is price indeterminacy, i.e.,

prices are not completely determined by the state of the world.

In a nutshell, our results suggest that the auction price may not be a very good aggregator

of information if the information content of this price is needed to make decisions that affect

the value of the objects. In our model, market statistics other than price, such as the amount

of rationing and bid distributions, are informative. Therefore, whether these statistics are

observed after an auction is finalized can affect how much information is aggregated by

prices.3 Moreover, dynamic models in which traders engage in multiple rounds of activities

may augment the accumulation of useful information.

Relation to the literature. This paper is related to earlier work which studies information

aggregation in auction markets with indivisible goods, in large double auctions, in markets

for divisible goods, in search markets, and in rational-expectation equilibria.

? studied second-price auctions with common value for one object for sale, and ? extended

the analysis to any arbitrary number of objects. Both of these papers show that as the

number of bidders gets arbitrarily large, price converges to the true value of the object, but

only provided that there are bidders with arbitrarily precise signals about the state of the

world. ? further generalize the previous analysis to the case where there are no arbitrarily

precise signals. They show that prices converge to the true value of a common-value object in

all symmetric equilibria if and only if both the number of identical objects and the number

of bidders who are not allocated an object grow without bound. ? generalize the analysis

3This is still an open and interesting question. The transparency of the market changes the incentives of
the bidders at the first place, it may cause them to conceal their own information.
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in ? to a mixed private, common-value environment. Finally, ? shows that the information

aggregation properties of auctions are more general than the particular mechanisms studied

before; he does this by providing a unified approach that uses the statistical properties of

certain order statistics.4,5 The model that we present in this paper is closest to ?. The main

difference from theirs is that in our model the object’s value is jointly determined by the

unknown state of the world and the action that the owner of the object later takes.

The information aggregation properties of prices in large double auctions is addressed in

work by ? and ?. These papers show that prices in double auctions aggregate information

and therefore allocate objects efficiently. ? allow for interdependent values whereas ? study

private-value environments. The approach in all of these papers differs from ours because in

these papers, the state of the world determines the common-value component of the objects

to the bidders and there is no ex-post action choice by the winners.

Information aggregation properties of markets in which the objects are divisible have also

been studied. Most prominently, ? studies competitive supply-schedule games, and shows

that as the number of firms gets large, equilibrium behavior converges to price-taking be-

havior. ? focus on a similar model that allows for heterogeneity in the traders’ private

information; they show that interdependent values may cause non-monotonicity in the price

informativeness with respect to market size. In our environment, objects are not divisible

and each bidder has a unit demand.

Studies have also been carried out on whether prices in economies in which agents need

to match in order to engage in a trade converge to Walrasian prices as the search frictions

disappear. These papers study a dynamic environment in which trade and learning occur

over time. The classical papers in this literature include ?? while ? provides an extensive

survey. The paper closest to ours is ?. In this paper, the authors also establish that there is

an atom in the bid distribution of a common-value auction and, as in our model, it is the

incentive to learn that sustains pooling at the atom.6

Our work also relates to the literature on costly information acquisition in rational-

expectations models, such as ?? and ?. These papers explain the conceptual difficulties

4See also ? for a calculation of the convergence rate of prices to the true value, and ?, which shows that
the results of ? do not generalize once there are individualized prices, i.e., when one considers discriminatory
price auctions.

5Also, see ? for related results on the properties of order statistics.
6Also see ? for a unified approach to when search markets with disappearing frictions exhibit Walrasian

outcomes. More recent work by ? presents a search model in which a seller searches for a buyer who observes
a private signal about the value of an object. Their paper argues that equilibrium prices depend critically on
the tail properties of the signal distributions. In the context of financial markets, ? show that experimenting
with small offers for divisible goods achieves information aggregation and efficient allocations. Also, ? shows
that trading “separable” securities in a dynamic environment allows information that is dispersed among
the traders to get aggregated.
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in interpreting prices as both allocation devices and information aggregators. Specifically,

they argue that if consumers and producers need to undertake a costly activity in order

to acquire information, then equilibrium prices cannot reveal the state of the world per-

fectly. Their reasoning is as follows: if prices were to reveal the state perfectly, then no agent

would have an incentive to pay for information in the first place; but if no agent acquires

information, then the prices cannot reveal the state as there is no information to aggregate.

However, as was the case for auction markets, these papers do not explicitly consider how

the information revealed by the market price could be used by the market participants once

they have completed their trade in the market. In our model, since prices do not aggregate

information, agents have a strict incentive to acquire information. This finding contrasts with

the findings of ?, who argue that agents have no incentive to acquire information precisely

because prices are so efficient in aggregating information.

Rationing in equilibrium is a distinct feature of our model. Equilibrium rationing also

occurs in certain credit market models. For example, ? show that rationing is an equilibrium

phenomenon in credit markets if there is either adverse selection or moral hazard. In this

paper, equilibrium interest rates continue to remain depressed even though they do not

clear the credit market. Rates remain lower than what is needed to clear the market either

because higher rates lead safer types to drop out from the demand pool or, alternatively,

because they result in more aggressive risk taking by the debtors.7 In our model, there is also

asymmetric information among the bidders; however, the seller has no preferences over who

gets the objects. Thus, in our setting rationing plays a different role: some buyers choose to

be rationed in order to receive extra information about the state of the world.

Finally, our model is related to the game analyzed in ?. ? show that trade is possible

between two agents with the same preferences if the value of the object traded is jointly

determined by an unknown state of the world and an ex-post action that the eventual owner

of the object will undertake. In their model, trade is precluded by a no-trade theorem without

any ex-post action. It is the ex-post action and the consequent value of information that lead

to the possibility of trade. Our model shares the feature that the eventual owner of an object

undertakes an action once trading is complete. However, whereas they consider a bilateral

bargaining framework and focus on the possibility of trade, we analyze an auction framework

with a large number of strategic bidders and focus on information aggregation.

2. Model

We consider a sealed-bid, uniform-price auction. In this auction, there are n bidders with

unit demand and k identical objects. We denote the ratio of objects to bidders (i.e., market

7See also the papers by ?? for why rationing disappears if the lenders can screen the borrowers with an
additional instrument other than the interest rate.
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tightness) in this auction by κ := k
n
< 1. The set of states of the world is Ω := {L,R} and

we denote a generic element of this set by ω. The state of the world is drawn according to a

common prior π ∈ [0, 1], where π denotes the prior probability that the state is R, and 1−π

denotes the prior probability that the state is L. Each bidder i observes a private signal si

that belongs to the set of signals S = [0, 1], and submits a bid bi ∈ [0,∞). Each of the k

highest bidders receives an object and is called a winner; all other bidders are called losers.8

Each winner pays a price p which is equal to the (k + 1)st highest bid.

The payoff of a bidder who does not win an object is equal to zero. We assume that a

bidder who wins an object must choose an action from a finite set of actions denoted by A.

This action, together with the state of the world, determines the winner’s valuation for the

good. Although all our of arguments go through with an arbitrary, finite number of actions,

to keep exposition simple, we assume that A = {l, r}. A winning bidder’s payoff is jointly

determined by the auction price p, the action that he chooses a ∈ A, and the state of the

world ω ∈ Ω. In particular, we assume that a winning bidder’s payoff is equal to v(a, ω)− p,

where the function v(a, ω) gives the winner’s valuation for the object. In what follows, we

assume, without loss of generality, that v(r, R) ≥ v(l, L) and we make the following main

assumption:

Assumption 1 The valuation function satisfies the following two inequalities:

v(l, L) > v(r, L),(1)

v(l, L) > v(l, R).(2)

Note that if the valuation function does not satisfy inequality (1), then r is a weakly

dominant action. Also, if the valuation function does not satisfy inequality (2), then for any

given action a bidder’s valuation for the good is higher in state R than in state L. In what

follows, we normalize the valuation function such that

(3) v(l, R) = v(r, L) = 0.

This normalization is without loss of generality if a valuation function satisfies Assumption

1. Under this normalization, Assumption 1 requires that v(l, L) > 0, or in words, that the

bidder’s valuation for the good be positive if his action matches the state of the world, and

his valuation for the good be zero if his action does not match the state of the world.

Remark 1 Assumption 1 is the substantive assumption which allows us to argue that

8To rank bids that are tied, nature picks a ranking of bidders at random with each ranking equally likely.
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information is not aggregated in our model. The main implication of Assumption 1 which we

use in many of our arguments is the fact that a bidder’s expected valuation for the good is a

nonmonotonic function of the probability that he assigns to state R. See section 2.2 and figure

1 for a more detailed discussion of this nonmonotonicity. In contrast, if either inequality (1)

or (2) is not satisfied, then a bidder’s expected valuation for the good is a monotonic function

of the probability that he assigns to state R. In either of these two cases, ?’s findings apply

and therefore information is aggregated in every symmetric equilibrium of a large market.

We discuss this issue in more detail in section 5.1.

2.1. Signals The set of signals is S := [0, 1], and the bidders’ signals are independently and

identically distributed conditional on the state of the world. Each bidder’s signal distribution

has a cumulative distribution function F (.|w) with a density function f(.|w) for each w ∈ Ω.

Assumption 2 (Weak MLRP) f(s|R)
f(s|L)

≥ f(s′|R)
f(s′|L)

for s > s′.

Since we make the MLRP assumption only in its weak form, our model is able to accommo-

date discrete signals. Moreover, since there are only two states of the world, this assumption

is without loss of generality because we can ensure that it is satisfied by reordering the

signals.

Assumption 3 (Limited individual information) There exists a number η > 0 such that

η < f(s|w) < 1
η
for every s ∈ S, w ∈ Ω.

This assumption requires that signals convey only a bounded amount of information.

Hence, there is no bidder who possesses arbitrarily precise information based solely on the

bidder’s signal.

Assumption 4 (Informative signals exist) f(0|R)
f(0|L)

< 1 and the likelihood function f(s|R)
f(s|L)

is

continuous at zero.

When taken together with the weak MLRP assumption, this assumption implies that the

signal distributions are not identical across the two states of the world.

In what follows, we refer to the mth highest value among n signals by Y m
n . We define the

unique signals sκR ∈ S and sκL ∈ S such that F (sκR|R) = 1 − κ and F (sκL|L) = 1 − κ. Recall

that κ < 1 is the market tightness, i.e., the ratio of objects to bidders. Intuitively, in a large

market there are as many bidders with signals above sκR as there are objects in state R.

Therefore, if we were to allocate the objects to the bidders with higher signals first, then,

in state R, the bidders who receive an object would be exactly those bidders whose signals

exceed sκR.
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2.2. The value function. In this section, we define a bidder’s value as a function of his

beliefs. If a bidder believes that the probability of state R is p, then we say that the bidder’s

likelihood ratio is ρ := p/(1 − p). In what follows, we will work with the likelihood ratio

instead of working directly with beliefs for analytic convenience.9 Since the bidders have a

common prior on the state of the world, and this prior assigns probability π to state R, their

prior likelihood ratio is ρ0 := π/(1 − π). Below we introduce the value function u which

gives a bidder’s expected valuation for an object as a function of the likelihood ratio ρ. In

particular, let u : [0,∞] → R be the function defined by

u(ρ) = max
a∈{l,r}

{

1

ρ+ 1
v(a, L),

ρ

ρ+ 1
v(a, R)

}

.

This function gives the bidder’s expected value for the object as a function of his beliefs

about the state of the world, expressed as the relative likelihood ratio about the state of the

world. Note that u(0) = v(l, L) and limρ→∞ u(ρ) = v(r, R). Let ρ∗ ∈ (0,∞) be the unique

solution to the following equation:

1

ρ+ 1
v(l, L) =

ρ

ρ+ 1
v(r, R).

This cutoff is the likelihood ratio that makes a bidder indifferent between action l and

r. Such a cutoff always exists because of Assumption 1. In what follows, we extensively use

the fact that the value function u(·) is strictly decreasing in the interval [0, ρ∗] and strictly

increasing in the interval [ρ∗,∞). See figure 1 for a depiction of the value function.

For a bidder who receives signal s ∈ [0, 1], we denote his likelihood ratio, slightly abusing

notation, to be ρ(s), defined as follows:

ρ(s) =
π

1− π

f(s|R)

f(s|L)
= ρ0

f(s|R)

f(s|L)
.

More generally, if the bidders behave according to some bidding strategy profile b and a

bidder arrives at an information set I, then the likelihood ratio, conditional on I, is denoted as

ρb(I) =
Prb(I|R)
Prb(I|L)

, where Prb(I|R) and Prb(I|L) denote the probability of reaching information

set I conditional on states R and L, respectively.

Remark 2 In the current framework with A = {l, r}, the ordering of the bidders according

to their expected valuation can change with the arrival of new information. In order to see

this, consider a situation where ρ(0) > ρ∗, as in figure 2. Moreover, for the sake of exposition,

9The whole analysis could be redone working directly with beliefs as there is a one-to-one mapping between
likelihood ratios and beliefs.
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0
ρ

Valuation

ρ∗

u(ρ) = max{ 1
1+ρ

v(l, L), ρ
1+ρ

v(r,R)}

v(l, L)

v(r,R)

Figure 1: Continuation value as a function of the likelihood ratio of the bidder who wins a unit in
the auction, before he makes the action choice. Assumption 1 implies that u(ρ) is a nonmonotonic
function which is minimized at ρ∗ as depicted here.

suppose that ρ(s) is continuous and is strictly increasing in s. Note that ρ(0) > ρ∗ implies

that ρ(s) > ρ∗ for all s ∈ [0, 1]. This is a consequence of Assumption 3. If ρ(0) > ρ∗, then

u(ρ(s)) is an increasing function of s, the bidder with signal zero has the lowest expected

valuation for the good, and the bidder with signal one has the highest expected valuation for

the good. See figure 2 for a depiction.

Now suppose that new information arrives in the form of an additional public signal s∗ ∈

{d, u} which is conditionally independent from the bidders’ private signals. After a bidder

observes the additional public signal s∗, his likelihood ratio is given by ρ(s, s∗) = ρ(s)Pr(s
∗|R)

Pr(s∗|L)
,

where Pr(s∗|ω) denotes the probability of observing signal s∗ given that the state is ω ∈

{L,R}. If the realization of the public signal is s∗ = d, then a sufficiently strong public

signal can completely reverse the ordering of the bidders.10 In other words, it is possible that

the value function u(ρ(s, d)) is decreasing in s even though the value function u(ρ(s)) was

increasing in s before the bidders observed the public signal d. See figure 3 (a) for a depiction.

Similarly, it is also possible for the function u(ρ(s, d)) to be non monotonic even though the

value function was monotonic before the bidders observed the public signal d. See figure 3 (b)

for a depiction.

10For example, if Pr(d|R)
Pr(d|L) < ρ∗/ρ(1) or, equivalently, if ρ(1, d) < ρ∗, then ρ(s, d) < ρ∗ for all s ∈ [0, 1]. This

is because ρ(s) ≤ ρ(1) for all s ∈ [0, 1]. However, ρ(s, d) < ρ∗ for all s ∈ [0, 1] implies that the value function
u(ρ(s, d)) is decreasing in s even though the value function u(ρ(s)) was increasing in s before the bidders
observed the public signal d.
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0 ρ

Valuation

ρ∗

u(ρ)

v(l, L)

v(r,R)

ρ(0) ρ(1)

initial range of beliefs

Figure 2: This figure shows the initial range of beliefs, expressed as likelihood ratios, on the belief-
value graph. Note that the types that assign a higher probability to state R (i.e., types with higher
signals) are the types with higher values because ρ(0) ≥ ρ∗.

0
ρ

Valuation

ρ∗

u(ρ)

ρ(1, d)ρ(0, d)

v(l, L)

v(r,R)

ρ(0) ρ(1)

(a)

0
ρ

Valuation

ρ∗

u(ρ)

ρ(0, d) ρ(1, d)

v(l, L)

v(r,R)

ρ(0) ρ(1)

(b)

Figure 3: This figure shows both the range of initial beliefs and two examples of the range of beliefs
that bidders could hold if they received an extra signal d which suggests that the state is L. The
signal d that the bidders receive is more strongly in favor of L in (a) than in (b).
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Remark 3 In auctions where there is no ex-post action, the ordering of the bidders accord-

ing to their valuation cannot change as a result of new information.11To demonstrate this

point, we continue with the example in Remark 1. An auction in which there is no ex-post

action can be modeled in our framework by restricting the actions available to the bidders to

only one action, e.g., restricting A = {r}. In this case, u(ρ) is an increasing function of ρ

for all ρ. Consequently, both u(ρ(s)) and u(ρ(s, s∗)) are increasing functions of s, for every

s∗ ∈ {u, d}.

2.3. Strategies and equilibrium Each bidder submits a bid after observing his signal.

A bidding strategy for player i is a measure Hi on [0, 1]× [0,∞) with marginal distribution

F (s) = πF (s|R)+(1−π)F (s|L) on its first coordinate (see ?). The set of all bidding strategies

is Σ. A strategy is pure if there is a function b : [0, 1] → [0,∞) such that H({s, b(s)}s∈[0,1]) =

1.12

Each winner chooses an action from the set of actions A. Hence, the action strategy is

a mapping from a bidder’s signal, his bid, and the winning price to an action, ai : S ×

[0,∞)× [0,∞) → A. Since the bidders’ actions do not affect other bidders’ payoffs, confining

attention to pure strategy actions is without loss of generality.

Every bidding strategy profile H := {Hi}i∈{1,2,...,n}, together with nature’s choice of state

and signals, induces a joint probability distribution H̄ over signals, prices, and winners. Let

ρi(s, b, p, win) denote the posterior likelihood of state R for a bidder i who receives a signal

s, bids b, and wins an object from the auction at price p ≤ b. Such a bidder’s optimal action

choice is r if ρi(s, b, p, win) > ρ∗, and l if ρi(s, b, p, win) < ρ∗. Moreover, the continuation

payoff of such a bidder is u(ρi(s, b, p, win)). The payoff to bidder i of the bidding strategy

Hi when the bidders other than i are following the strategy profile H−i is given by:

Ui(Hi, H−i) =

∫

s∈S

∫

b∈[0,∞)

∫

p∈[0,∞)

u(ρi(s, b, p, win))dH̄(s, b, p, i wins a unit).

A bidding strategy profile H is a Nash equilibrium if

Ui(Hi, H−i) ≥ Ui(H
′, H−i) for every H ′ ∈ Σ and i ∈ {1, 2, ..., n}.

In the rest of the paper, we will construct equilibria in which bidders use pure bidding

strategies. We will also restrict our attention to pure symmetric Nash equilibria, which are

equilibria where each bidder uses the same pure bidding strategy, i.e., bi = bj for every two

bidders i and j. The term Prb denotes the probability distribution induced by the pure and

11See, for example, ? or ?.
12Of course, if b represents H , then so will any function that agrees with b for almost every s ∈ [0, 1].
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symmetric bidding strategy profile where each bidder uses the bidding strategy b over states

of the world, signal and bid distributions, allocations, and prices.

3. Large Markets and the Failure of Information Aggregation

In this section we present our main result as Theorem 1. In Theorem 1, we constuct a

sequence of equilibria for auctions {Γn}
∞
n=1 where the n

th auction Γn has n bidders and ⌊κn⌋

objects for sale.13 In the remainder of the paper, we will proceed as if κn is an integer for

expositional simplicity. We assume that the other parameters of the auctions, i.e., (v, F, π, κ),

are constant along the sequence and satisfy all the assumptions that we have already made.

For the sequence of equilibria we construct, equilibrium price reveals no information about

the state of the world at the limit where there is an arbitrarily large number of bidders. Al-

though the limit equilibrium price reveals no information, bidders do learn some information

about the state of the world through rationing. However, the amount of information that

they learn is limited, and incorrect ex-post actions are played frequently.

3.1. Information aggregation. Here we formally define information aggregation and its

failure. Our object of study is a sequence of bidding functions b = {bn}
∞
n=m. We say that the

sequence b is an equilibrium sequence if bn is part of a symmetric Nash equilibrium of Γn

for each n.

Suppose that the number of bidders n is large. In this case, the law of large numbers

implies that observing the signals (s1, ..., sn) conveys precise information about the state

of the world ω ∈ {L,R}. The bidding function bn determines a price p∗ for the auction

Γn given any realization of signals (s1, ..., sn). We say that information is aggregated in the

auction if this price p∗ also conveys precise information about the state of the world. More

precisely, (i) if the likelihood ratio
Prbn (p

∗|R)

Prbn (p
∗|L)

is close to zero (i.e., if it is arbitrarily more

probable that we observe such a price when ω = L), then an outsider who observes price

p∗ learns that the state is L. Alternatively, (ii) if the likelihood ratio
Prbn (p

∗|R)

Prbn (p
∗|L)

is arbitrarily

large, then an outsider who observes price p∗ learns that the state is R. If the probability

that we observe a price that satisfies either (i) or (ii) is arbitrarily close to one, then we say

that the equilibrium sequence b fully aggregates information. Conversely, if the likelihood

ratio
Prbn (p

∗|R)

Prbn (p
∗|L)

is close to one, i.e., if we are equally likely to observe price p∗ in either of the

two states, then an outsider who observes price p∗ learns arbitrarily little information about

the state of the world. If the probability that we observe such a price is arbitrarily close

to one, then we say that the equilibrium sequence b aggregates no information. The precise

definitions are as follows:

13 The term ⌊κn⌋ refers to the highest integer not bigger than κn.
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Definition 1 An equilibrium sequence b aggregates no information if, for any ǫ > 0,

lim
n→∞

Prbn

(

pn ∈

{

p ∈ [0,∞) :
Prbn(p|R)

Prbn(p|L)
∈ (1− ǫ, 1 + ǫ)

})

= 1.

An equilibrium sequence b fully aggregates information if, for any ǫ > 0,

lim
n→∞

Prbn

(

pn ∈

{

p ∈ [0,∞) :
Prbn(p|R)

Prbn(p|L)
∈ [0, ǫ) ∪ (1/ǫ,∞))

})

= 1.

Remark 4 Our definition of information aggregation differs from the definition provided

by ?. In their model, the state of the world is defined as the value of the object and each bidder

receives a signal about that value. Therefore, they say that information is aggregated if the

equilibrium prices converge to the true value of the object (i.e., if the price converges to the

state of the world) as the market grows large. In their setup, each state represents a distinct

value for the object, so when information is aggregated in their model with their definition,

then it is also aggregated under our definition. Therefore, if information aggregation fails

using our definition, then it will also fail under the definition of ?.

3.2. Failure of information aggregation. Our main theorem shows that if, in addition

to Assumptions 1-4, two conditions are satisfied, then there exists an equilibrium sequence

b which aggregates no information. The first condition that we require for the theorem is as

follows:

Condition 1 ρ(0) > ρ∗.

If this condition is satisfied, then all the bidders would choose action r if they acted solely

on the information contained in their private signal. See figure 2 for a depiction of a situation

that satisfies Condition 1.

Recall that sκR ∈ S is the signal such that F (sκR|R) = 1 − κ. The second condition we

require for the theorem is as follows:

Condition 2 infs>sκ
R
u(ρ(s)) < v(l, L).

Under this condition, if a bidder who received a signal arbitrarily close to sκR chooses an

action based solely on this signal, then this bidder’s expected valuation is lower than v(l, L).

Therefore, a sufficiently strong additional signal in favor of state L can increase the expected

valuation of such a bidder. See figure 4 for a depiction of a situation where both Conditions

1 and 2 are satisfied.

Our main theorem is as follows:
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ρ(sκR)

u(ρ)

v(l, L)

u(ρ(sκR))

ρ(0) ρ(1)ρ∗

Figure 4: This figure shows the initial range of beliefs, expressed as likelihood ratios, on the belief-
value graph. Note that the bidders who assign higher probability to state R, i.e., the bidders with
higher signals, are the bidders with higher value.

Theorem 1 Suppose that Assumptions 1-4 hold. If Condition 1 and Condition 2 also hold,

then there exists an equilibrium sequence b which reveals no information.

Proof: see Appendix. �

We prove this theorem by constructing an equilibrium sequence which aggregates no in-

formation. In this construction, each bidding function bn in the equilibrium sequence b is

a nondecreasing function of s. In this construction, Condition 1 allows us to construct an

equilibrium sequence in which each bidding function bn is nondecreasing in s. Condition

2, on the other hand, allows us to ensure that the equilibrium sequence that we construct

aggregates no information about the state of the world.

3.3. Sketch of the construction. In this section, we sketch the ideas behind construct-

ing the equilibrium sequence b whose existence Theorem 1 claims. Specifically, we construct

an equilibrium in which no information is aggregated in a hypothetical market with a con-

tinuum of bidders with mass one and a continuum of objects with mass κ. Focusing on a

hypothetical market with a continuum of bidders allows us to capture the main properties

of the equilibrium sequence b for a market with a finite but large number of bidders while

allowing us to avoid the more technical details involved in describing such equilibria for finite

markets. In section 5.2, we discuss in detail how one can use the intuition developed here to

construct the equilibrium sequence b for a sequence of finite markets. In order to simplify

the exposition, we also assume that ρ(s) is a continuous, strictly increasing function of the

signal s. Also, in what follows we repeatedly use the fact that the value function u(·) is

strictly decreasing in the interval [0, ρ∗] and strictly increasing in the interval [ρ∗,∞).
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b(s)

Figure 5: A typical equilibrium bid function that is monotonic and increasing. Buyers with signals
below a cutoff sp bid a pooling bid bp, and those with signals above sp bid according to the bid
function in ?, i.e., b(s) = ρ(s1 = s, Y k

n−1 = s) for s > sp.

We construct an equilibrium in which the equilibrium bidding function b is constant on

the interval [0, sp) for some cutoff signal sp > sκR, which we calculate further below (i.e.,

b(s) = bp for all s ∈ [0, sp)), and the bidding function is strictly increasing on the interval

(sp, 1]. We call the bid bp (i.e., the bid submitted by all bidders with signals in the interval

[0, sp)) the pooling bid. See figure 5 for a depiction of the bidding function b.

In this equilibrium, the following properties hold true:

(i) The auction price is equal to the pooling bid in either state of the world, and hence

conveys no additional information about the state of the world. The auction price is

always equal to the bidding price because sp exceeds sκR. The fact that sp exceeds sκR
implies that for any price p′ > bp, the mass of bidders who submit a bid greater than

or equal to p′ is strictly less than the mass of objects available, i.e., the measure of the

set {s : b(s) ≥ p′} is strictly less than κ in both states.

(ii) Bidders with signals that exceed sp, i.e., those bidders whose bid exceeds the pooling

price, are always allocated an object and always choose action r. These bidders choose

action r because they obtain no new information from the auction price and because

choosing r is optimal based solely on their private signal.

(iii) Bidders with signals less than sp who are allocated an object, i.e., the bidders who bid

the pooling price, take action l. Although the price conveys no information about the

state, the fact that a bidder wins an object by bidding the pooling price is a strong

signal favoring state L which induces that bidder to choose action l. Winning an object

by bidding the pooling price is a strong signal favoring state L because the mass of

bidders bidding the pooling price exceeds the mass of objects to be allocated to bidders

who bid the pooling price. Moreover, a bidder is more likely to be allocated a good in
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state L than in state R. We discuss this issue in more detail below.

We now discuss how to calculate the cutoff signal sp. The cutoff signal sp is the signal

which leaves a bidder indifferent between bidding the pooling bid and bidding slightly above

the pooling bid. As a first step in calculating sp, we calculate a bidder’s payoff if he bids

slightly above the pooling bid, and if he bids the pooling bid and wins an object.

Payoff from bidding slightly above the pooling bid. If a bidder bids above the pooling bid,

then she wins an object with certainty. The posterior belief of a bidder who wins an object

by bidding above the pooling bid is equal to her initial beliefs. This is because the auction

price is always equal to the pooling bid in this equilibrium and conveys no information.

Consequently, the expected value of the object to a bidder with signal s if she bids above

the pooling bid is u (ρ(s)).

Payoff from bidding the pooling bid. We now calculate the value of the object for a bidder

who receives the cutoff signal sp if he bids the pooling bid and wins a unit, when sp ≥ sκR.

In such an event, this bidder has an extra piece of information, which comes from the fact

that he wins a unit while bidding the pooling bid. In particular, a fraction 1 − F (sp|ω) of

bidders bid strictly above the pooling bid and each wins an object with certainty regardless

of the state. The fraction of objects that remains to be delivered to bidders who choose the

pooling bid is κ − (1 − F (sp|ω)). Since the number of objects remaining to be delivered is

less than the number of bidders, there is rationing among the bidders at the pooling bid.

Consequently, the belief of type sp (represented as the likelihood ratio) if he bids the pooling

bid and wins the object is as follows:

ρp(sp) := ρ(sp)
κ− (1− F (sp|R))

F (sp|R)
/
κ− (1− F (sp|L))

F (sp|L)
= ρ(sp)

κ− (1− F (sp|R))

κ− (1− F (sp|L))

F (sp|L)

F (sp|R)
,

where the ratio ∆(sp) := κ−(1−F (sp|R))
F (sp|R)

/κ−(1−F (sp|L))
F (sp|L)

reflects the extra information that a

bidder learns from winning an object at the pooling bid. If a bidder with signal sp bids the

pooling bid and wins the object, then the expected value of the object to him is equal to

u (ρp(sp)).

Remark 5 It is straightforward to verify that ∆(sp) < 1, that is, winning an object at the

pooling bid is more likely in state L than in state R; winning an object at the pooling bid is

therefore an additional signal in favor of state L. In the context of the auction models of ?

or ?, the fact that ∆(sp) < 1 is commonly referred to as the loser’s curse.14 Intuitively,

the loser’s curse holds because if the state is L, then the weak MLRP (Assumption 2) implies

14The loser’s curse is defined in the setting with finitely many bidders; however, the idea extends naturally
to the hypothetical setting with a continuum of bidders.
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Figure 6: This figure depicts the functions ρ and ρp, in the range [sκR, 1]. Notice that ρ(s) ≥ ρp(s);
ρp(sκR) = 0; and ρ(1) = ρp(1).

that fewer bidders choose a bid which exceeds the pooling bid, and therefore more goods are

left over to be allocated to the bidders who choose the pooling bid. We discuss the loser’s

curse in greater detail in Section 3.5.

As we stated above, the cutoff signal sp is the signal which leaves a bidder indifferent

between bidding the pooling bid and bidding slightly above the pooling bid. In other words,

the cutoff signal is defined implicitly by the following equation:

u (ρ(sp)) = u (ρp(sp)) .

We now argue that this cutoff signal is unique. Specifically, we show that there is a unique

signal s > sκR such that u (ρ(s)) = u (ρp(s)), and we denote this signal by sp. Note that

ρp(sκR) = 0 and limsցsκ
R
ρp(s) = ρp(sκR). By Condition 2, we have v(l, L) > u(ρ(sκR)), and

hence, u(ρp(sκR)) = u(0) = v(l, L) > u(ρ(sκR). Let s∗ denote the unique signal such that

ρp(s∗) = ρ∗, and note that s∗ ∈ (sκR, 1). The function u(ρ(s)) is strictly increasing in s, and

u(ρ(s)) > u(ρ∗) for all s. The function u(ρ(s)) is strictly increasing because ρ(s) > ρ∗ (by

assumption), because ρ(s) is strictly increasing in s, and because u(ρ) is strictly increasing

for any ρ ∈ (ρ∗, ρ]. Also, the function u(ρp(s)) is strictly decreasing in s for all s ∈ [sκR, s
∗],

is strictly increasing in s for all s ∈ [s∗, 1], and reaches its minimum at u(ρp(s∗)) = u(ρ∗).

Consequently, the two functions must cross at some point sp ∈ (sκR, s
∗). There is a unique

such point, sp, because ρp(s) = ρ(s)∆(s) < ρ(s) for all s ∈ [sκR, 1). See figures 6 and 7 for

depictions.

We now check that bidders will not want to deviate from the equilibrium we described.

We first argue that bidders with signals lower than sp cannot profitably deviate from the

equilibrium by choosing a bid that exceeds the pooling bid. If a bidder with signal s < sp
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Figure 7: This figure depicts the value of the object to the cutoff type as a function of the choice
of the cutoff type.

deviates and bids above the pooling bid, then she wins an object with certainty and pays the

pooling bid bp = u(ρ(sp)). In this case, her posterior and prior likelihood ratios coincide and

are equal to ρ(s). However, Condition 1 implies that ρ∗ < ρ(s) < ρ(sp), and therefore we have

u(ρ(s)) < bp = u(ρ(sp)), i.e., the auction price exceeds the expected valuation, conditional

on winning, of the bidder with signal s. See figure 8 for a depiction of this argument for the

case of s = 0.

We now argue that a bidder with signal s > sp cannot profitably deviate from equilibrium

by choosing the pooling bid. If the bidder sticks to the equilibrium strategy, then she wins

an object with certainty and her payoff is equal to u(ρ(s)) − bp, a payoff which is strictly

positive. If she deviates instead and chooses the pooling bid, then, conditional on winning,

her posterior is equal to ρ∗(s) := ρ(s)∆(sp). Note that ρp(sp) < ρ∗(s) < ρ(s). To see that

this deviation is not profitable, consider two cases. First, if ρ∗(s) ≥ ρ∗, then u(ρ∗(s) <

u(ρ(s)). This is because ρ∗(s) = ρ(s)∆(sp) < ρ(s) and because u(·) is increasing on [ρ∗,∞).

Alternatively, if ρ∗(s) ≤ ρ∗, then u(ρ∗(s)) − bp = u(ρ(s)∆(sp)) − u(ρp(sp)) < 0. This is

because ρ∗(s) = ρ(s)∆(sp) > ρ(sp) and because u(·) is decreasing on [0, ρ∗]. See figure 8 for

a depiction.

3.4. Properties of equilibrium. There are a number of novel properties of the equi-

librium that we constructed for Theorem 1. In particular, the properties listed below are

satisfied as the number of bidders grow arbitrarily large. Note that none of these properties

is present in a standard auction where there are no ex-post actions.

(i) No information aggregation: the equilibrium price aggregates no information even

when the market grows arbitrarily large. We have already discussed the intuition behind

this property in the preceding section.

(ii) Learning from one’s own bid: The posterior beliefs of the bidders who win an

object depend on their bid. In particular, the posterior beliefs of the bidders who win
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Figure 8: This figure depicts the posterior beliefs of bidders with signals 0, sp, and 1 under two
cases: (i) If they bid the pooling bid and win the object. In this case, their posterior likelihood
ratios are ρ∗(0) = ρ(0)∆(sp), ρp(sp) = ρ(sp)∆(sp), and ρ∗(1) = ρ(1)∆(sp). (ii) if they bid above the
pooling bid and win a unit at the pooling price. In this case, the bidders obtain no new information
and therefore their posterior and prior likelihood ratios coincide, i.e., their posterior likelihood
ratios are also equal to ρ(0), ρ(sp), and ρ(1). Bidders with signal 0 strictly prefer to bid the pooling
bid, those with signal sp are indifferent between bidding the pooling bid and above it, and those
with signal 1 strictly prefer to bid above the pooling bid. Note that the pooling bid satisfies the
equality bp = u(ρ(sp)) = u(ρp(sp)).
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an object by bidding above the pooling bid is equal to their prior belief. This is because

the auction price reveals no new information. In contrast, the posterior likelihood ratio

of bidders who win an object by bidding the pooling bid is equal to their prior belief,

ρ(s), multiplied by the constant ∆(sp) ∈ (0, 1). Hence, a bidder’s bid may affect the

information he will have if he wins a unit.

(iii) Incorrect choice of action: Because prices convey no new information and because

bidders’ posterior beliefs are heterogeneous, a strictly positive fraction of bidders take

the wrong action in equilibrium. Therefore, inefficiency persists even in a large market

in which the outcome would have been efficient if one could use all of the signals

observed by the bidders. In particular, irrespective of the state of the world, all bidders

who win an object at the pooling bid choose action l and all other bidders who win

an object choose action r. Consequently, the proportion of bidders choosing the wrong

action is equal to 1− F (sp|L) and κ− (1− F (sp|R)) when the state of the world is L

and R, respectively. Note that the total expected surplus in the equilibrium that we

construct is equal to this expression:

πv(r, R) (1− F (sp|R)) + (1− π)v(l, L) (κ− (1− F (sp|L))) .

Because ρ(0) > π∗ (by assumption), the equilibrium surplus is strictly decreasing in

sp.

(iv) Positive profits: The expected profit of each bidder, except the bidder who receives

signal sp, is strictly positive in equilibrium. Even though the equilibrium price is equal

to the pooling bid, the bidders who submit the pooling bid also make positive profits.

In particular, the following profit function is obtained:

Π(s) :=







κ−(1−F (sp|L))
F (sp|L)(1+ρ(s))

(v(l, L)− bp(1 + ρ(s)∆(sp))) if s ≤ sp,

ρ(s)
1+ρ(s)

v(r, R)− bp if s ≥ sp.

Note that Π(sp) = 0 by construction, Π(s) > 0 for all s < sp and for all s > sp.

(v) Valuable information: The value of information, i.e., the value of receiving a signal,

is strictly positive for the bidders. This is because winning an object at the pooling

bid is only partially informative and the equilibrium price is uninformative, while, on

the other hand, signals provide partial information about the state as a consequence

of Assumption 5.

3.5. Loser’s curse. A novel feature of our equilibrium construction is the existence of

a pooling bid bp, which is chosen by bidders who receive a signal in the interval [0, sp].
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In other words, in the equilibrium that we construct, there is an atom in the equilibrium

bid distribution at bp. In sharp contrast, the existence of a pooling bid, i.e., an atom in

the equilibrium bid distribution, is not possible in the symmetric equilibria of the auction

models of ? or ?, where there is no ex-post action, even when the signal space is discrete.

The existence of a pooling bid in our model and the impossibility of pooling in auctions

without ex-post actions are both consequences of the loser’s curse, i.e., the fact that the

probability of winning an object at the pooling bid in state L is strictly higher than the

probability of winning an object at the pooling bid in state R. Equivalently, a bidder is more

convinced that the state is R when he does not win an object than when he does, provided

that the price is the pooling bid and he bid the pooling bid.

In the previous section, we discussed the role of the loser’s curse in sustaining our equilib-

rium construction. We now discuss how the loser’s curse precludes a pooling bid in an auction

in which there is no ex-post action. Such an auction can be modeled in our framework by

restricting the actions available to the bidders to only one action, for example, taking A to

equal {r}. In this case, u(ρ) is an increasing function of ρ and so u(ρ(s)) is also an increasing

function of s. Consider again the equilibrium discussed in the previous section. In that con-

struction, the bidding function is weakly increasing in the signals, i.e., b(s) ≥ b(s′) whenever

s ≥ s′. Moreover, all bidders with a signal s < sp choose the pooling bid bp. We now argue

that such an equilibrium is not possible because of the loser’s curse. If a bidder with signal

s < sp chooses the pooling bid, then, conditional on winning an object, her payoff is equal to

u(ρ(s)∆(sp))− bp. If she deviates instead and bids above the pooling bid, then she wins an

object with certainty and pays the pooling bid bp. In this case, her posterior is equal to ρ(s)

and consequently her payoff, if she deviates, is equal to u(ρ(s)) − bp. However, the loser’s

curse, i.e., ∆(sp) < 1, implies that ρ(s)∆(sp) < ρ(s) and hence, that u(ρ(s)∆(sp)) < u(ρ(s)).

Therefore, this is a profitable deviation as long as u(ρ(s)∆(sp)) ≥ bp, which shows that this

cannot be an equilibrium.

Intuitively, not winning an object at the pooling bid, when the auction price is equal to

the pooling bid, is a strong signal in favor of state R. Therefore, whenever the auction price

is equal to the pooling price, a bidder would rather increase his bid slightly and ensure that

he wins an object. Following this intuition, ? show that, if there is no ex-post action, there

is no symmetric equilibrium where the bid distribution includes an atom (or pooling).

4. Information Aggregation Failures in Monotone Equilibria

In the previous section, while discussing Theorem 1, we described equilibria in which no

information is aggregated by the price. A prominent property of the equilibrium we described

is that equilibrium bids are nondecreasing in the signal that a bidder receives, i.e., the bidding
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function is a nondecreasing function of signals. In this section, in order to demonstrate the

robustness of Theorem 1, we characterize all symmetric equilibria in which the bid function

is a monotonic function of signals (Lemma 1). We then use our characterization to show

that information cannot be fully aggregated in equilibria in which the bidding function is

monotonic (Theorem 2). Moreover, we show that equilibria in which the bidding function is

monotonic exist under a mildly restrictive condition (Theorem 2). Consequently, our results

in this section show that i the failure of information aggregation is inherent in equilibria in

which the bidding function is monotonic; and moreover, ii such equilibria exist for a wide

range of parameter values.

Recall that our object of study is a sequence of equilibrium bidding functions b = {bn}
∞
n=m.

We say that a bidding function is nondecreasing (nonincreasing) if b(s) is a nondecreasing

(nonincreasing) function of s, and we say that a bidding function is monotone if it is either

nondecreasing or nonincreasing. We say that an equilibrium sequence b is nondecreasing

(nonincreasing) if bn is part of a symmetric Nash equilibrium of Γn and if bn is a nondecreasing

(nonincreasing) bidding function for each n. We say that a sequence b is monotonic if the

sequence is either nondecreasing or nonincreasing. We begin by characterizing nondecreasing

equilibrium bidding functions.15

Lemma 1 (Characterization) Suppose that Assumptions 1-4 hold. Every equilibrium bidding

function b that is nondecreasing satisfies the following conditions:

(i) There is a cutoff signal sp ∈ [0, 1] and a pooling bid bp such that b(s) = bp for every

s < sp, and b(s) > bp for every s > sp.

(ii) The bidding function b(s) is strictly increasing in the range (sp, 1].

(iii) If sp ∈ (0, 1), then the equilibrium action is a(s, b(s), bp) = r for s > sp; and it is

a(s, b(s), p) = r for every p ∈ (bp, b(s)] for which there exists an s′ ∈ S such that

b(s′) = p.

(iv) For s ∈ [0, sp), a(s, b(s), bp) = l.

Proof: see Appendix. �

The characterization lemma essentially states that any nondecreasing equilibrium resem-

bles the equilibrium that we constructed in the previous section for Theorem 1. More specif-

ically, Lemma 1 shows that in any nondecreasing equilibrium, there is at most one interval,

which includes zero, over which the bidding function is constant and equal to the pooling

bid; outside of this interval, the bidding function is strictly increasing. Moreover, on the

15A straightforward modification of the lemma delivers a characterization of all nonincreasing equilibrium
bidding functions as well.
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equilibrium path, the bidders who win an object choose l if they have submitted the pooling

bid, and choose r if they have submitted a bid above the pooling bid. Below we provide an

intuitive sketch of the argument for the characterization of nondecreasing equilibria when

the auction is large (although Lemma 1 is stated for every market size).

− There must be pooling in any monotone equilibrium. Assume not, i.e., assume

that the bidding function is strictly increasing. Consider a bidder who receives the

signal zero. If this bidder’s bid is equal to the auction price, then it must be the case

that this bidder is almost certain that the state is L if the auction is sufficiently large.

By a continuity argument, this is also true for a bidder who receives signal ǫ > 0 for ǫ

sufficiently close to zero. But then a bidder who receives signal zero must be willing to

submit a bid that is greater than a bidder who receives signal ǫ, because the bidder with

signal zero is more convinced that the state is L than the bidder with signal ǫ. This,

however, contradicts the assumption that the bidding function is strictly increasing.

− Bidders who bid a pooling bid choose action l if they win an object. On

the way to a contradiction, suppose that there is a bidder who bids the pooling bid

and chooses action r if he wins an object. Notice that he wins an object only when the

auction price is not more than the pooling bid. Moreover, when the price is equal to the

pooling bid, there is rationing with strictly positive probability. When the price is equal

to the pooling bid, losing a unit is a signal more favorable to state R because of the

loser’s curse. However, if this bidder deviates from such a strategy by increasings his

bid slightly, he ensures that he wins an object whenever the auction price is equal to the

pooling price. Such a deviation is profitable, because such a bidder chose action r when

he won an object before the deviation (by the hypothesis), and after the deviation, he

wins an object in those instances when he had been losing by bidding the pooling bid.

− There is only one pooling bid. If the bidders who are bidding a pooling bid choose

action l when they win an object at the price equal to the pooling bid, then they also

choose action l if the price is lower than the pooling bid. Therefore, all bidders who

are bidding below the pooling bid also choose action l. This is because such bidders

must have received lower signals since we assume that the bidders use a nondecreasing

bidding function. However, the bidder with signal zero then has the highest valuation

for the object among all bidders whose bids are less than the highest pooling bid. This

implies that the pooling bid chosen by a bidder who receives signal zero must be at

least as large as all the other pooling bids. Therefore, our assumption that the bidders

use a nondecreasing bidding function implies that there is at most one pooling bid.

− Bidders who submit bids above the pooling bid choose action r if they win

an object. Recall that sp is the highest signal for which b(sp) equals the pooling
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bid. Pick a signal s′ greater than but arbitrarily close to sp. Assume that a bidder

who receives signal s′ plays l if he wins an object and the auction price is equal to the

pooling bid. We now argue that this assumption leads to a contradiction. A bidder who

receives signal s′ prefers submitting a bid that exceeds the pooling bid to submitting

the pooling bid because s′ > sp. Now consider the bidder who receives signal zero.

Suppose that this bidder deviates and submits a bid that exceeds the pooling bid by

an arbitrarily small amount and wins an object at the pooling price. In this event, the

posterior of a bidder with signal zero puts more weight on state l than the posterior of

a bidder with signal s′. Therefore, if the bidder who receives signal s′ prefers to submit

a bid that exceeds the pooling bid, then so does a bidder who receives signal zero.

However, this contradicts the fact that type zero submits the pooling bid.

In the theorem below, we use the characterization given by Lemma 1 to show that mono-

tone equilibria cannot fully aggregate information. Moreover, we establish that a monotone

equilibrium sequence exists if Condition 1 holds, i.e., if ρ(0) ≥ ρ∗.

Theorem 2 Suppose that Assumptions 1-4 hold. If b is nondecreasing, then b does not fully

aggregate information. Moreover, if Condition 1 is satisfied, then a nondecreasing equilibrium

sequence b exists.

Proof: We will prove the first part of the theorem here. The proof of the second part is

in the Appendix.

Note that when z is sufficiently large, a monotonic equilibrium bid function cannot be

strictly increasing, because otherwise types that are arbitrarily close to zero would have a

profitable deviation to submit bids of higher types. Therefore, such bid functions should

have exactly one pooling bid, due to Lemma 1. Let bpz be the pooling bid, and let spz be the

highest bidder type that bids the pooling bid in the monotonic bidding function bz. Based

on Lemma 1, our first observation is that:

ρ(Y zκ
z−1 ≤ spz, s1 > spz) ≥ ρ∗.

Let sc ∈ (0, 1) be the unique signal such that

F (sc|L)1−κ (1− F (sc|L))κ = F (sc|R)1−κ (1− F (sc|R))κ .

We will now argue that for ∀ε > 0, there exists a Zε such that spz > sc−ε for every z > Zε.

The reason for the claim is the following: Suppose, on the contrary, that spz < sc − ε for

some z > Z for every Z. Pick a convergent subsequence of such cutoffs, spz, and renumerate
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its elements to cover the natural numbers. Then limz→∞Pr(ω = R|Y zκ
z−1 ≤ spz, s1 > spz) <

limz→∞ Pr(ω = R|Y zκ
z−1 = spz, s1 > spz) = 0, which contradicts our initial observation that

ρ(Y zκ
z−1 ≤ spz, s1 > spz) ≥ ρ∗.

Since F (sc|L) > 1 − κ, by the Weak LLN it follows that limz→∞Pr(pz = bpz|L) = 1.

Combining this with our initial observation that ρ(Y zκ
z−1 ≤ spz, s1 > spz) ≥ ρ∗, we argue that

lim infz→∞ Pr(pz = bpz|R) > 0. Hence, the pooling price becomes the price with probability

one conditional on the state of the world L, and with a nonnegligible probability conditional

on the state of the world R. Therefore, the pooling price doesn’t reveal the state of the world

with a strictly positive probability in the limit as z → ∞. �

We now use the characterization in Lemma 1 to provide the intuition for why information

is not fully aggregated in nondecreasing equilibria. The argument essentially shows that, in

an arbitrarily large market, the cutoff bid sp is sufficiently large and therefore the price is

equal to the pooling bid with probability one in state L and with strictly positive probability

in state R. We begin by supposing that in an auction with n bidders and nκ objects, the

equilibrium bidding function is nondecreasing. Below we define the posterior likelihood ratio,

for a bidder who receives signal s, if she wins an object and the auction price is equal to

b(s′) where b(s′) > bp:

ρn(p = b(s′), s) = ρ0
F (s′|R)n−nκ−1(1− F (s′|R))nκ−1f(s|R)f(s′|R)

F (s′|L)n−nκ−1(1− F (s′|L))nκ−1f(s|L)f(s′|L)

= ρ0

(

F (s′|R)1−κ(1− F (s′|R))κ

F (s′|L)1−κ(1− F (s′|L))κ

)n
f(s|R)f(s′|R)

f(s|L)f(s′|L)

(

F (s′|L)(1− F (s′|L))

F (s′|R)(1− F (s′|R))

)

= ρ0

(

g(F (s′|R))

g(F (s′|L))

)n
f(s|R)f(s′|R)

f(s|L)f(s′|L)

(

F (s′|L)(1− F (s′|L))

F (s′|R)(1− F (s′|R))

)

,

where the function g(t) := t(1−κ)(1 − t)κ. In words, the bidder’s posterior likelihood is cal-

culated in the event that she receives signal s, another bidder receives a signal s′, there

are nκ − 1 other bidders who receive signals that exceed s′, and there are n − nκ − 1

other bidders who receive signals less than s′. Let sc denote the unique signal s′ such that

g(F (s′|R)) = g(F (s′|L)). See Figure 9 for a depiction of sc. Note that if s′ < sc, then

g(F (s′|R)) < g(F (s′|L)) (as depicted in Figure 9), and consequently, ρn(p = b(s′), s) con-

verges to zero as n grows large.16 We now provide the basic intuition behind the argument

that establishes that information cannot be fully aggregated in a large auction:

− In state L, the probability that the auction price is equal to the pooling

bid approaches one as the auction grows arbitrarily large. Note that, because

16Similarly, if s′ > sc, then g(F (s′|R)) > g(F (s′|L)) and consequently ρ(p = b(s′), s, n) converges to
infinity as n grows large.
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g(F (s|ω))

g(F (s|R))

g(F (s|L))

ssc

sκL sκR

Figure 9: In this figure, g(t) := t(1−κ)(1− t)κ and sc is the unique signal s′ such that g(F (s′|R)) =
g(F (s′|L)). The function g(t) is concave and is maximized at t∗ = 1− κ. Recall that sκL and sκR are
the unique signals such that F (sκL|L) = 1 − κ and F (sκR|R) = 1 − κ, respectively. Note that weak
MLRP and informativeness of signals together imply that sκL < sκR. Also, concavity of the function
g implies that F (sc|L) > sκL and F (sc|R) < sκR.

of the law of large numbers, if F (sp|L) > 1− κ (if the expected proportion of bidders

who choose the pooling bid in state L exceeds 1 − κ), then the price is equal to the

pooling bid with probability one. Assume that F (sp|L) ≤ 1 − κ. This implies that

sp < sc. However, this implication contradicts the findings of Lemma 1 that a bidder

who submits a bid that exceeds the pooling bid plays r when he wins an object at the

price of the pooling bid. This is because sp < sc implies that ρn(p = b(sp), s) converges

to zero as n grows large, i.e., his posterior probability that the state is R converges to

zero as the market grows large.

− The auction price is equal to the pooling bid with strictly positive proba-

bility when the state is R. Moreover, this probability is bounded strictly away from

zero even as the number of bidders grows arbitrarily large. If this were not the case,

then nobody would be willing to choose action r when the price is equal to the pooling

bid. However, we know from Lemma 1 that all the bidders who submit a bid above the

pooling bid play r when they win an object at the price of the pooling bid.

− Therefore, an outside observer is uncertain about the state when she ob-

serves that the auction price is equal to the pooling bid. Moreover, this event

occurs with strictly positive probability.

4.1. Indeterminate and suppressed prices. In a monotone equilibrium, the price is

equal to the pooling bid with probability arbitrarily close to one in state L. If the probability

that the price is equal to the pooling bid approaches one also in state R, then the price reveals

no information about the state of the world. Otherwise, the price is equal to the pooling bid

in state R with strictly positive probability. In this case, the lowest bid that exceeds the
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pooling bid is arbitrarily close to v(r, R) in a large market because sp > sc. Therefore, if the

price reveals some information, then it is either equal to the pooling bid or equal to v(r, R) in

state R. Therefore, prices are not deterministic functions of the state of the world. Moreover,

if v(l, L) < v(r, R), then the price of the object is strictly less than its efficient use value

with a strictly positive probability in state R. This is because the pooling bid cannot exceed

v(l, L) and the pooling bid is the auction price with strictly positive probability in state R.

5. Discussion

5.1. Auctions with no Ex-Post Actions, Auctions with Actions, and Assumption

1. In this subsection, we sketch how information is aggregated in an auction with actions

where the valuation function does not satisfy Assumption 1 using ?’s methodology. We then

contrast this sketch with the case where the valuation function satisfies Assumption 1.

For simplicity, suppose that v(r, R) > v(l, L) = v(r, L) = v(l, R) = 0, that is, action

l is weakly dominated by action r. In this case, the valuation function v satisfies neither

inequality (1) nor (2) and our model coincides with ?’s model with two states of the world

Ω = {L,R} where the value of the object is equal to zero in state L and equal to v(r, R) in

state R.17 In the unique symmetric equilibrium of the auction with n bidders and k objects,

the bidding function is then as follows:

b(s) = v(r, R) Pr(ω = R|s1 = s, Y k
n−1 = s)

for every s ∈ (0, 1). This function is strictly increasing in s because the signal distribution

satisfies MLRP (see also Figure 10).18 Now consider the cutoff signal sc ∈ (0, 1), which is

the unique interior solution to the following equation:19

F (sc|L)1−κ(1− F (sc|L))κ = F (sc|R)1−κ(1− F (sc|R))κ.

If we keep κ = k
n
constant and take n to infinity, then Pr(ω = R|s1 = s, Y k

n−1 = s)

approaches zero for any s < sc. Moreover, Pr(ω = R|s1 = s, Y k
n−1 = s) approaches one for

any s > sc. Therefore, the bid of any bidder who receives a signal smaller than sc approaches

zero, and the bid of any bidder who receives a signal that exceeds sc approaches v(r, R). A

17More generally, if the valuation function does not satisfy inequality (1), or (2), then the model in this
paper coincides with ?’s model with two states of the world Ω = {L,R} and the arguments provided here
and in ? can be used to show that information is aggregated in any symmetric equilibrium of the auction as
the market grows arbitrarily large.

18This function is strictly increasing in s even if the signal distribution satisfies only weak MLRP.
19 The uniqueness follows from the following: weak MLRP taken together with the assumption that

signals are not completely uninformative implies that for any s ∈ (0, 1), F (sc|L) > F (sc|R). The function
t(q) = q1−κ(1 − q)κ is single-peaked and has a maximum at q = 1− κ. Therefore, the solution is unique.
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Figure 10: This figure depicts the equilibrium bidding function in ? for κ = 1/2 for different market
sizes. For every ǫ > 0, the range of signals [sn, sn] whose bids are in the interval [ǫ, v(r,R)−ǫ] shrinks
to the point sc.

bidder with signal sc always wins an object in state L and never wins an object in state R.

Therefore, the auction price approaches zero in state L and v(r, R) in state R as n grows

large. Since prices are different in each of the two states of the world, an outside observer

can learn the state simply by observing the price.

Alternatively, suppose that the valuation function satisfies Assumption 1, i.e, that v(l, L) >

0. In this case, Lemma 1 implies that all types who bid strictly above the pooling bid take

action r at any price. We first look at types who are arbitrarily close to the cutoff signal sp

and are bidding above the pooling bid bp. Since they are taking action r at prices close to

their bids, the following holds:

ρ(ω = R|s1 > sp, Y k
n−1 ≤ sp) > ρ∗.

Therefore, for every ǫ > 0, if n is sufficiently large, it has to be the case that sp is at least

sc − ǫ. Therefore, the price becomes the pooling bid in state L with probability close to one

when n is sufficiently large. On the other hand, bidders with signals close to but above sp

take action r when the price is bp. Therefore, as n gets larger, it must be the case that the

price is the pooling bid with a non vanishing probability conditional on state R. And hence,

the pooling bid does not reveal the state of the world even when the market is very large.

The equilibrium price distribution becomes concentrated on two points: one point at the
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pooling bid and another at v(r, R).

5.2. Sketch of the Construction with Finite Markets. In this subsection, we also

assume that f(.|R) and f(.|L) are continuous functions. For every market size z, we first

find a cutoff signal spz ∈ (0, 1) such that the following holds:

v(r, R) Pr(ω = R|s1 = spz, Y
κz
z−1 ∈ [0, spz)) = v(l, L) Pr(ω = L|s1 = spz, Y

κz
z−1 ∈ [0, spz), 1 wins by bpz).

If the bidding function satisfies the following: i) it is constant and is equal to some arbitrary

bid bpz over the interval [0, spz); ii) it is strictly increasing in the interval (spz, 1]; and iii) it is

above bpz in the interval (spz, 1], then the valuation for the object of a bidder with signal spz is

identical under the following two cases: i) if he bids bpz and wins an object ii) if he submits

a bid above bpz, wins an object, and the auction price is equal to bpz.

Remark 6 Note that from the loser’s curse, it follows that:

Pr(ω = R|s1 = spz, Y
κz
z−1 ∈ [0, spz)) > Pr(ω = R|s1 = spz, Y

κz
z−1 ∈ [0, spz), 1 wins by bpz).

Therefore, for the valuation for the object of a bidder who receives signal spz to be identical

in both instances, the following two inequalities must hold:

ρ(ω = R|s1 = spz, Y
κz
z−1 ∈ [0, spz)) > ρ∗

and

ρ(ω = R|s1 = spz, Y
κz
z−1 ∈ [0, spz), 1 wins by bpz) < ρ∗.

In other words, the bidder who receives signal spz should be taking action l when he wins by

bidding the pooling bid, and action r when he wins with a higher bid.

The existence of such a cutoff is guaranteed when z is sufficiently large because of the

intermediate value theorem. Note that the term given just below is strictly negative if s is

close to zero and if z is larger than a certain market size Z1; and it is strictly positive if s is

close to one and z is larger than a certain market size Z2.

hz(s) := v(r, R) Pr(ω = R|s1 = s, Y κz
z−1 ∈ [0, s))−v(l, L) Pr(ω = L|s1 = s, Y κz

z−1 ∈ [0, s), 1 wins by bpz).

Moreover, hz(s) is strictly increasing in s and is continuous. Hence, when the market size z

is larger than max{Z1, Z2}, there is a unique spz that satisfies the equality hz(s
p
z) = 0.
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We set the pooling bid bpz equal to the valuation of a bidder who receives signal spz condi-

tional on winning the object at a price equal to the pooling price, i.e.,

bpz = v(r, R) Pr(ω = R|s1 = spz, Y
κz
z−1 ∈ [0, spz)),

and we complete the bidding function a-la ? for signals higher than spz. That is, for s > spz
the bidding function is defined as follows:

bz(s) = v(r, R) Pr(ω = R|s1 = s, Y κz
z−1 = s)).

Note that for s > spz, the following equality holds:

bz(s) = v(r, R) Pr(ω = R|s1 = s, Y κz
z−1 = s)) > v(r, R) Pr(ω = R|s1 = spz, Y

κz
z−1 ∈ [0, spz)) = bpz.

Bidders with signals higher than spz can not profitably deviate because they weakly prefer to

bid above bpz. Agents with signals lower than sps would clearly not want to submit a bid that

exceeds bpz and to take action r upon winning the object at some price. Therefore, the only

deviation left to check is the deviation where a bidder with a signal lower than sps bids above

bpz and takes action l upon winning the object at a price equal to bpz. The bidder who would

have the most to gain from such a deviation is a bidder who receives signal zero. As we will

explain below, our two restrictions on the priors and values ensure that such a deviation is

not profitable and that the cutoff types converge to a signal above sκR.

To see that a bidder with signal zero does not want to deviate, we look at the three possible

limit points of spz and argue that the bidder does not want to bid above bpz and take action

l upon winning the object in any of the three cases . Moreover, we will argue that any such

limit point has to be at least sκR.

First, suppose that a subsequence of the cutoffs converges to a signal strictly higher than

sκR. If this is the case, then the pooling bid reveals no information when the market is

sufficiently large. Therefore, a bidder with signal zero who deviates and submits a bid above

the pooling bid and wins an object at a price equal to the pooling bid would prefer to take

action r because ρ(0) > ρ∗ and because the pooling bid reveals no information. Since the

bid bpz is equal to the valuation of the bidder with signal spz when the price is equal bpz, the

bidder with signal zero would have a negative payoff under such a deviation.

Second, suppose that a subsequence of the cutoffs converges to sκR. We will now argue that

this cannot be the case. If this were the case, then the critical observation is that, in state

R, the fraction of objects remaining to be allocated to those bidders bidding the pooling bid

approaches zero. Moreover, the fraction of objects to be shared among those bidders in state
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L approaches a strictly positive number. Therefore, for a bidder who bids the pooling bid,

winning an object is very strong evidence for the state L. The pooling bid thus approaches

v(l, L) as the market gets large. But this contradicts the property satisfied in the choice of

the cutoff signal that, the bidder with the cutoff signal is indifferent between bidding the

pooling bid and bidding above the pooling bid, because we assumed that u(ρ(sκR)) < v(l, L).

Third, suppose that a subsequence of the cutoffs converges to a signal strictly less than

sκR. In this case, as the market gets large, the pooling price is increasingly likely to reveal

that the state is L. However, it cannot then be the case that the posterior of the bidder with

signal spz puts a sufficiently high probability on state R when the bidder bids above bpz and

the price is the pooling bid.20 Therefore, a subsequence of the cutoffs cannot converge to a

signal which is strictly less than sκR.

6. Conclusion

In this paper, we have explored the role of market prices in aggregating information about

the correct use of objects. In our set-up, multiple homogeneous goods are allocated among

multiple bidders via a Vickrey-type auction. Our main finding is that, when prices contain

information about the ex-post actions that the owners of the object will take, then prices

may not reveal all the information available in the market. In the extreme case, prices reveal

no information about the state of the world, and a nonnegligible fraction of the objects are

thus used incorrectly.

There are trivial mechanisms that could aggregate information. In our model, there is

no room for allocative inefficiency. Therefore, a direct mechanism that elicits the signals

of bidders, allocates the objects randomly, discloses the signal profile would achieve full

efficiency. However, we study Vickrey auctions for four main reasons. First, such auctions

are frequently used in practice. Treasury bill auctions are prominent examples. Second, such

auctions resemble competitive markets in which agents are price takers, since in a Vickrey

auction, a bidder cannot change the price he pays for the object by altering his bid. Third, just

as in competitive markets, there is a uniform price. Fourth, there is a large body of academic

work that studies Vickrey auctions. Therefore, knowing how such auctions perform when the

objects have a use value which depends on ex-post actions is in and of itself.

We interpret our results as suggesting that it is too much to expect prices alone to reveal

the state of the world perfectly. Also, our results highlight that markets have several statistics

other than price, such as the amount of rationing, volume of trade, and bid distributions,

20 More precisely, this contradicts the fact that

ρ(ω = R|s1 = spz, Y
κz
z−1 ∈ [0, spz)) > ρ∗.
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that are relevant for aggregating information.

A. Organization of the Appendix

We start by proving Theorem 2 instead of Theorem 1, because the construction we use

for the former is used for the latter theorem. Later we prove Lemma 1, and then we present

the proofs of some lemmata that we use in the proofs of our theorems and lemma 1.

B. Proof of Theorem 2

Theorem 2. Suppose that Assumptions 1-4 hold. If b is nondecreasing, then b does not fully

aggregate information. Moreover, if Condition 1 is satisfied, then a nondecreasing equilibrium

sequence b exists.

The first part of the theorem is proven in the main text. Here we prove the second part.

We remind that, the informative signal assumption is assumed to hold, and hence f(0|L) 6=

f(0|R).

B.1. Method used for the construction The construction has two general steps. In the

first step, we show that in a large market with size z, there exists a cutoff signal, spz such that

in a monotonic bidding profile bz where all types below spz bid a pooling bid, the following

two properties are satisfied. i) the value of the object to bidders with signals s < spz, who win

a unit by bidding the pooling bid, is not less than the value of the object to such bidders if

they win a unit by bidding above the pooling bid, and when the price is the pooling bid. ii)

The value of the object to bidders with signals s > spz when they bid above the pooling bid

and the price is the pooling bid is not less than if such bidders bid the pooling bid and win

a unit. In this step, we also determine the value of the pooling bid.

The second step of the construction shows that under condition 1, the bidding profiles

constructed in step 1 constitute an equilibrium of the auction game when z is sufficiently

large. We do this by showing that no type has a profitable deviation from the bidding profile

constructed in step 1.

B.2. Step 1: Cutoff type For any s ∈ (0, 1), s′ ∈ S and z ∈ Z, let ρ−z (s
′, s) and ρ+z (s

′, s)

be

ρ−z (s
′, s) : =

P
(

Y κz
z−1 ≤ s, s1 = s′, 1 wins the lottery|R

)

P
(

Y κz
z−1 ≤ s, s1 = s′, 1 wins the lottery|L

) ,

ρ+z (s
′, s) : =

P
(

Y κz
z−1 ≤ s, s1 = s′|R

)

P
(

Y κz
z−1 ≤ s, s1 = s′|L

) ,

The event that “1 wins the lottery” corresponds to the event that 1 wins a prize (or equiv-

alently one unit of the object) in the following auxiliary lottery whose odds depend on the

signal distribution across the bidders. The lottery has q prizes allocated equally likely to o

33



people, where the number of prizes q = max {0, κz − |j ∈ {2, ..., z} : sj > s|} and the number

of people is o = 1 + |j ∈ {2, ..., z} : sj ≤ s|.21 Intuitively, ρ−z (s
′, s) is the posterior likelihood

ratio of state R and L for type s′, when he bids the pooling bid and wins a unit, where

the bidders who bid the pooling bid are those with signals less than s. The second function,

ρ+z (s
′, s) is the posterior likelihood ratio of states R and L when a bidder with a signal s′

wins a unit by bidding above the pooling bid, at a price equal to the pooling bid.

Remark 7 Observe that, these functions are continuous in their second argument. This

is because the cdf F (s|ω) admits a positive density function f and is thus a continuous

function of s. On the other side, if f is a continuous function, then these functions are also

continuous in their first argument. However, we have not made such an assumption, hence

these functions may have jumps as we vary the first argument.

We also make the following definitions:

ρ−z (s) : =
P
(

Y κz
z−1 ≤ s, s1 = s, 1 wins the lottery|R

)

P
(

Y κz
z−1 ≤ s, s1 = s, 1 wins the lottery|L

) ,

ρ+z (s) : =
P
(

Y κz
z−1 ≤ s, s1 = s|R

)

P
(

Y κz
z−1 ≤ s, s1 = s|L

)

Intuitively, these functions are the posterior likelihoods of the states for the cutoff types.

Remark 8 From Pesendorfer and Swinkels (Lemma 7, page 1272) and from f(0|L) 6=

f(0|R) we know that i) ρ−z (s) < ρ+z (s) for any s ∈ (0, 1), and ii) ρ−z (s
′, s) < ρ+z (s

′, s) for any

s, s′ ∈ (0, 1). This is called the loser’s curse. Moreover, both of these functions are strictly

increasing in s and weakly increasing in s′ since f(0|L) 6= f(0|R), as we later show in Lemma

6.

Note that, because ρ−z and ρ+z are both increasing functions, u(ρ−z ) and u(ρ+z ) are both at

most single-troughed functions. Now we make two observations about the endpoints of the

functions ρ−z and ρ+z . Our third observation lets us draw the shapes of the functions u(ρ−)

and u(ρ+).

Lemma 2

1. ∃ε > 0 and a Z1 such that ρ−z (s) < ρ∗ and ρ+z (s) < ρ∗ for every s ≤ ε and every

z > Z1.

2. ∃ε > 0 and a Z2 such that ρ−z (s) > ρ∗ and ρ+z (s) > ρ∗ for every s ≥ 1 − ε and every

z > Z2.

21The index sets exclude the number 1 since it is reserved for the bidder who is doing these calculations
for her best response.
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Proof:

1. ∃ε > 0 such that limz→∞ ρ−z (ε) = limz→∞ ρ+z (ε) = 0. Since ρ−z (s) < ρ+z (s) for s ∈ (0, 1),

we have that u(ρ−z (s)) > u(ρ+z (s)) for s ≤ ε.

2. This is because, ∃ε > 0 such that limz→∞ ρ−z (1−ε) = limz→∞ ρ+z (1−ε) = ρ0(1−ε) > ρ∗,

by condition 1. Since ρ−z and ρ+z are strictly increasing , we have that ρ−z (s) > ρ∗ and

ρ+z (s) > ρ∗ for every s ≥ 1− ε when z is sufficiently large. Since ρ−z (s) < ρ+z (s) for s < 1, we

have that u(ρ−z (s)) < u(ρ+z (s)) for s ≥ 1− ε. �

Lemma 3

1. For every z > max{Z1, Z2}, there is a unique spz ∈ (ε, 1−ε) that satisfies the following:

u (ρ−z (s))− u (ρ+z (s)) < 0 for s > spz and u (ρ−z (s))− u (ρ+z (s)) > 0 for s < spz.

2. When such an spz exists, ρ+z (s) > ρ∗ for s > spz and ρ−z (s) < ρ∗ for s < spz.

Proof: 1. Let s1z := sups{ρ
−
z (s) ≤ ρ∗} and s2z := sups{ρ

+
z (s) ≤ ρ∗}. Note that s1z, s

2
z ∈

(0, 1) when z > max{Z1, Z2} from lemma 2. Moreover, because ρ−z (s) < ρ+z (s), z1 ≥ z2. In

the range [0, z2), u(ρ
−
z (s)) > u(ρ+z (s)), and in the range (z1, 1], u(ρ

+
z (s)) > u(ρ−z (s)).

If z1 = z2, then spz = z1 = z2 satisfies the claim of the lemma. So now we assume that

z1 > z2.

In the range (z2, z1), u(ρ
−
z (s)) is strictly decreasing and u(ρ+z (s)) is strictly increasing.

Therefore, u(ρ−z (s))−u(ρ+z (s)) is strictly negative in [0, z2), strictly increasing in [z2, z1], and

strictly positive in (z1, 1]. Therefore, by the intermediate value theorem, there is a unique

signal spz, in the range [z2, z1] that satisfies the property in the lemma.

2. As we have argued, such a signal is in the range [z2, z1] and hence ρ+z (s) > ρ∗ for s > spz
and ρ−z (s) < ρ∗ for s < spz.

�

B.3. Setting the pooling bid and its properties We now determine the bidding func-

tion, bz, when z > max{Z1, Z2}. The bidding function is constant and equal to a num-

ber that is denoted by bpz in the interval [0, spz) and is strictly increasing and equal to

u(ρ(s1 = s, Y κz
z−1 = s)) in the region (spz, 1). Notice that, the increasing part of the bid-

ding function coincides with Pesendorfer and Swinkel’s equilibrium bidding function, in the

case where bidders are taking action r.

Next, we determine the value of bpz.

bpz = min

{

inf
s<s

p
z

u
(

ρ−z (s)
)

, inf
s>s

p
z

u
(

ρ+z (s)
)

}

Remark 9 A few comments are now in order:
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1) Since ρ−z (s) < ρ∗ for s < spz, as shown in lemma 3, and since ρ−z is an increasing

function, u(ρ−z (s)) is decreasing for s < spz.

2) infs<s
p
z
u(ρ−z (s)) = limsրs

p
z
u(ρ−z (s)), because u(ρ−z (s)) is a decreasing function with a

bounded range, hence its limit exists and is equal to the inf expression. Moreover, since

ρ−z (s
′, s) is continuous in its second argument, we have that infs<s

p
z
u(ρ−z (s)) = infs<s

p
z
u(ρ−z (s, s

p
z)).

3) Similar to item 2) above, infs>s
p
z
u(ρ+z (s)) = infs>s

p
z
u(ρ+z (s, s

p
z)).

4) If f(s|ω) is continous at spz, then bpz = u(ρ−z (s
p
z)) = u(ρ+z (s

p
z)).

In the next step we will show that there is a Z3 such that for any z > Z3 a bidding

function bz that is characterized by the cutpoint spz and the pooling bid bpz as defined above

is an equilibrium.

We state the following remark that summarizes some of the findings up to now, before we

proceed:

Remark 10 The posterior likelihood ratio of types lower than spz, conditional on winning

at price bpz is less than ρ∗, and types higher than spz, conditional on the price being bpz has a

posterior likelihood ratio that is more than ρ∗. In particular,

ρ(s1 = s, Y κz
z−1 ≤ spz, 1 wins with bpz) ≤ ρ∗ for s < spz, and

ρ(s1 = s, Y κz
z−1 ≤ spz) ≥ ρ∗ for s > spz.

The reason is that, as we have shown in lemma 3, ρ−z (s) < ρ∗ for s < spz. Since ρ−z (s, s
p
z) =

lims′↑spz ρ
−
z (s, s

′) ≤ sups′↑spz
ρ−z (s

′) ≤ ρ∗, we have established the first inequality. A similar

reasoning yields the second inequality.

B.4. Step 2: Checking deviations In this step, we will show that the bid function we

constructed in step 1 (i.e., bz) is an equilibrium when z is large (i.e., when z > Z3 for

some integer Z3). In particular, we will show that no type has a profitable deviation. In the

following we assume that z is large enough that spz exists, i.e., z > max{Z1, Z2}.

B.4.1. Bidders with signals above spz Pick a type s > spz. We will now argue that, such a

type s wouldn’t have a profitable deviation to any bid between bpz and b(s). Pick a type s′

that satisfies spz < s′ < s. Then, u(ρ(s1 = s, Y κz
z−1 = s′)) ≥ bz(s

′) = u(ρ(s1 = s′, Y κz
z−1 = s′)),

because ρ(s1 = s, Y κz
z−1 = s′) ≥ ρ(s1 = s′, Y κz

z−1 = s′) ≥ ρ∗. Similarly such types wouldn’t have

a positive payoff conditional on prices above their bid, hence they wouldn’t have a profitable

deviation to bid above b(s). Finally, in the next paragraph, we will argue that such a type

doesn’t find it a profitable deviation to bid at bpz.

In order to prove that bidders with signals above spz don’t have profitable deviations to
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bid bpz, we will show two inequalities for every s > spz:

u(ρ+z (s, s
p
z)) ≥ bpz(4)

u(ρ+z (s, s
p
z)) ≥ u(ρ−z (s, s

p
z))(5)

To see that these inequalities suffice to prove that bidding bpz is not a profitable deviation,

notice that the first inequality says that, bidding above bpz gives a non-negative payoff at

prices equal to bpz. The second inequality says that, the payoff to a bidder when he bids

above bpz and the price is bpz is not less than when he bids bpz and wins a unit. Moreover, the

probability of winning a unit by bidding above bpz is strictly larger than winning by bidding

bpz. Hence, bidding bpz is not a profitable deviation. Next, we will prove the two inequalities.

Before proving these two inequalities remember that a property of type spz is that u(ρ
−
z (s)) <

u(ρ+z (s)) and ρ+z (s) > ρ∗ for every s > spz. We will now start showing the first inequality.

Since ρ+(s) ≥ ρ∗ for every s > spz, and since ρ+(., .) is continuous in its second argument, we

have that:

inf
s>s

p
z

ρ+(s, spz) = inf
s>s

p
z

ρ+(s) ≥ ρ∗

Since ρ+(., .) is increasing in its first argument, we have that, for every s > spz:

ρ+(s, spz) ≥ inf
s>s

p
z

ρ+(s, spz) ≥ ρ∗

Since bpz ≤ infs>s
p
z
u(ρ+(s, spz)), and since u(ρ) is increasing when ρ ≥ ρ∗, we have that

u(ρ+(s, spz)) ≥ bpz, which establishes the first inequality.

Now we will show the second inequality. There are two cases to consider. Either ρ−(s, spz) ≥

ρ∗ or ρ−(s, spz) < ρ∗. In the former case, ρ+(s, spz) ≥ ρ−(s, spz) together with the facts that

both are at least ρ∗ and u is increasing when ρ ≥ ρ∗ deliver the desired inequality. We will

now show the validity of the inequality in the latter case.

On the way to a contradiction, suppose that u(ρ+(s, spz)) < u(ρ−(s, spz)) and that ρ−(s, spz) <

ρ∗. Since ρ−(., .) is continuous in its second argument, and since u(ρ) is decreasing when

ρ < ρ∗ and ρ− is increasing in both of its arguments, there exists a signal s′ > spz and an

ǫ > 0 such that u(ρ+(s, spz)) < u(ρ−(s′′))− ǫ for every s′′ ∈ (spz, s
′]. Since u(ρ−(s)) < u(ρ+(s))

for every s > spz, u(ρ
+(s, spz)) < u(ρ+(s′′))− ǫ for every s′′ ∈ (spz, s

′]. Therefore, u(ρ+(s, spz)) <

infs′′′>s
p
z
u(ρ+(s′′′))− ǫ = infs′′′>s

p
z
u(ρ+(s′′′, spz))− ǫ, which is a contradiction.

B.4.2. Bidders with signals below spz In this part of the proof, we’ll show that bidders with

signals below spz don’t have a profitable deviation to bidding above bpz when z is sufficiently

large, using our restriction on the priors that ρ(0) > ρ∗. Remember that sκR is the signal such
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that F (sκR|R) = 1− κ. To prove that there is no profitable deviation, we will start with the

following lemma:

Lemma 4 ∃Z5 ∈ Z such that u(ρ+z (s, s
p
z))− bpz ≤ 0 for every s < spz, every z > Z5.

Proof: We’ll make our argument under the assumption that the limit of the sequence

{spz, b
p
z}

∞
z=1 = (sp, bp) exists and then we will verify this in lemma 5. The next four claims are

the steps of the proof. �

Claim 1 sp ≥ sκR.

Proof: On the way to a contradiction, suppose that sp < sκR. Then, limz→∞ infs>s
p
z
ρ+z (s, s

p
z) =

0, because limz P
(

Y κz
z−1 ≤ spz|L

)

= 1 and limz P
(

Y κz
z−1 ≤ spz|R

)

= 0 if sp < sκR. This contra-

dicts the assertion in Remark 10 that ρ(s1 = s, Y κz
z−1 ≤ spz) ≥ ρ∗ for s > spz. �

Claim 2 If sp > sκR, then ∃Z3 ∈ Z such that u(ρ+z (s, s
p
z))− bpz ≤ 0 for every s < spz, every

z > Z3.

Proof: To show that types s < spz don’t want to deviate bidding above bpz for large z, first

note that since F (sp|ω) > 1 − κ for ω ∈ Ω, we have limz→∞ ρ(s1 = s, pz = bpz) = ρ(s1 = s)

for every s ∈ [0, 1]. Since we assumed ρ(0) > ρ∗, it’s also true that ρ(s) > ρ∗ for every

s ∈ [0, 1]. Now we will show that there is a Z3 such that u(ρ+z (s, s
p
z)) ≤ bpz for all s < spz

if z > Z3. On the way to a contradiction suppose that u(ρ+z (sz, s
p
z)) > bpz for some sz < spz

for every z that belongs to an unbounded subset of natural numbers. Since limz→∞ ρ(s1 =

0, pz = bpz) = ρ(0) > ρ∗, we have that u(ρ+z (s, s
p
z)) is increasing in s for z sufficiently large

and u(ρ+z (s
′, spz)) ≥ u(ρ+z (sz, s

p
z)) for every s′ > sz. There are two cases to consider: either

bpz = infs′>s
p
z
u (ρ+z (s

′)) or bpz = infs′<s
p
z
u (ρ−z (s

′)).

If bpz = infs′>s
p
z
u (ρ+z (s

′)), then bpz ≥ u(ρ+z (sz, s
p
z)), which is a contradiction to u(ρ+(sz, s

p
z)) >

bpz. If b
p
z = infs′<s

p
z
u (ρ−z (s

′)), then notice the property of spz that, u (ρ−z (s
′)) > u (ρ+z (s

′)) for

all s′ < spz, and therefore infs′<s
p
z
u (ρ−z (s

′)) ≥ sups′<s
p
z
(ρ+z (s

′, spz)) ≥ u(ρ+z (sz, s
p
z)). Hence,

bpz ≥ u(ρ+z (sz, s
p
z)) which is a contradiction to the definition of sz that u(ρ

+
z (sz, s

p
z)) > bpz. �

Claim 3 If sp = sκR, ∃Z4 ∈ Z such that u(ρ+z (s, s
p
z))−bpz ≤ 0 for every s < spz, every z > Z4.

Proof: This is the case when prices may indeed reveal some information. We’ll start by

arguing that pooling bids converge to u(0).

The crucial observation in this case is that limz→∞ Pr(ω = L|pz = bpz, 1 wins with bpz) = 1.

The reason for the above limit calculation is the following. Fix an ǫ > 0. Then, limz→∞ Pr(Y
(κ−ǫ)z
z−1 >
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spz|ω = R) = 0. Therefore, limz→∞ Pr(pz = bpz, 1 wins with bpz|ω = R) ≤ ǫ
1−κ+ǫ

. Since this is

true for every ǫ > 0, it has to be that

(6) lim
z→∞

Pr(pz = bpz , 1 wins with bpz|ω = R) = 0.

On the other side limz→∞ Pr(pz = bpz|ω = L) = 1 because 1− F (sκR|ω = L) < κ. Therefore,

(7) lim
z→∞

Pr(ω = L|pz = bpz, 1 wins with bpz) > 0.

Combining equation 6 and inequality 7 delivers that

(8) lim
z→∞

Pr(ω = L|pz = bpz, 1 wins with bpz) = 1.

Along similar lines we argue that,

lim
z→∞

Pr(ω = L|pz = bpz, 1 wins with bpz)

Pr(ω = L|pz = bpz)
= ∞.

Now we’ll finish the argument that pooling bids converge to u(0). Our first observation is

that limz→∞ u (ρ−z (s, spz)) = u(0), which follows from equality 8. Examining the way bpz is

set, we have

max

{

inf
s<s

p
z

u
(

ρ−z (s, spz)
)

, u
(

ρ−z (spz)
)

}

≥ bpz

= min

{

inf
s<s

p
z

u
(

ρ−z (s, spz)
)

, inf
s>s

p
z

u
(

ρ+z (s, spz)
)

}

≥ min

{

inf
s<s

p
z

u
(

ρ−z (s, spz)
)

, inf
s>s

p
z

u
(

ρ−z (s, spz)
)

}

.

Since both expressions in the last term and both expressions in the first term have limits

equal to u(0), by the Sandwich theorem, the limit of the pooling bids is u(0), completing the

argument.

Suppose that ρ+(s, spz) < ρ∗. Note that, there is an ǫ > 0 such that lim infz→∞ ρ+(0, spz) > ǫ.

This is because, ρ+(s, spz) ≥ ρ∗ for every s > spz and because of the limited individual

information assumption on the signal distributions. Therefore, u(ρ+(s, spz)) < u(ρ+(0, spz)) <

u(0). Since we have shown that limz b
p
z = u(0), when z is sufficiently large, u(ρ+(s, spz)) < bpz,

proving the claim for this case.

Suppose that ρ+(s, spz) ≥ ρ∗ and suppose on the way to a contradiction that u(ρ+z (s, s
p
z)) >

bpz. It then follows that, bpz = infs<s
p
z
u(ρ−z (s, s

p
z)). Then, since u(ρ) is increasing in ρ and since
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ρ+z is increasing in its first argument, there is an ǫ > 0 such that u(ρ+z (s
′, spz)) > bpz + ǫ

for every s′ ≥ s. Since ρ+z is continuous in its second argument, then for some s′′ < spz,

u(ρ+z (s
′′)) > bpz + ǫ. Since u(ρ−z (s

′′′)) > u(ρ+z (s
′′′)) for every s′′′ < spz, u(ρ

−
z (s)) > bpz + ǫ for

every s ∈ (s′′, spz). However, this contradicts that b
p
z = infs<s

p
z
u(ρ−z (s, s

p
z)) = infs<s

p
z
u(ρ−z (s)).

This completes the proof of the claim. �

We have proven the lemma. Now we will argue that bidders with signals less than spz don’t

have profitable deviations to bid above spz. We start by arguing that, for s > spz, if ρ(s
′, pz =

b(s)) ≥ ρ∗, and if s′ < s, then u(ρ(s′, pz = b(s))) ≤ b(s). This is because, u(ρ) is increasing

in ρ when ρ ≥ ρ∗. Second, we observe that again if s > spz and if ρ(s′, pz = b(s)) < ρ∗, then

u(ρ(s′, pz = b(s))) < u(ρ−z (s
′, sbz). Since we have shown in the above lemma that for s′ < spz,

u(ρ−z (s
′, sbz) ≤ bpz, and since b(s) > bpz, we have that u(ρ(s′, pz = b(s))) < b(s). This proves

that, bidders with types less than spz don’t have a profitable deviation to any bid above bpz.

C. Proof of Theorem 1

Theorem 1. Suppose that Assumptions 1-4 hold. If Condition 1 and Condition 2 hold, then

there exists an equilibrium sequence b which reveals no information.

Proof: We will prove this theorem by using the same construction that we used to prove

Theorem 2. Notice that the assumption that ρ(0) ≥ ρ∗ facilitates that the hypothesis of

Theorem 2 is satisfied, and hence the constructed bidding strategies constitute an equilibrium

when z is sufficiently large.

We will now show that if u(0) > lim infs>sκ
R
u(ρ(s)), then the limit of the cutoff types as

z goes to infinity, which we denote by sp is strictly larger than sκR. The implication of this

inequality is that equilibrium prices become the pooling bid in both states of the world with

probabilities approaching one, and hence prices reveal no information as the market gets

arbitrarily large.

We have already proven in the proof of theorem 2 that any limit point of the cutoffs has

to be at least sκR. Thus it remains to show that sκR is not a limit point of the cutoff types

constructed in the sequence of bidding functions.

On the way to a contradiction, suppose our claim is not true, i.e., sκR is the limit point of

the cutoff types. Then as we argued in the proof of theorem 2, the pooling bid, bpz goes to

u(0) as z goes to ∞. On the other side, ρ+z (s, s
p
z) ≥ ρ∗ for s > spz by Remark 10. Moreover,

ρ+z (s, s
p
z) < ρ(s). Therefore, infs>s

p
z
u(ρ+(s, spz)) < infs>s

p
z
u(ρ(s)) and infs>s

p
z
u(ρ+(s, spz)) ≥

bpz. If s
κ
R is a limit point of spz, then along the sequence where sκR is the limit of the sequence,

we conclude that infs>sκ
R
u(ρ(s)) ≥ limz→∞ bpz = u(0). This contradicts our initial hypothesis

that u(0) > infs>sκ
R
u(ρ(s)). �
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D. Proof of Lemma 1

Lemma 1. Suppose that Assumptions 1-4 hold. Every equilibrium bidding function b that is

nondecreasing satisfies the following conditions:

(i) There is a cutoff signal sp ∈ [0, 1] and a pooling bid bp such that b(s) = bp for every

s < sp, and b(s) > bp for every s > sp.

(ii) The bidding function b(s) is strictly increasing in the range (sp, 1].

(iii) If sp ∈ (0, 1), then the equilibrium action is a(s, b(s), bp) = r for s > sp; and it is

a(s, b(s), p) = r for every p ∈ (bp, b(s)] for which there exists an s′ ∈ S such that

b(s′) = p.

(iv) For s ∈ [0, sp), a(s, b(s), bp) = l.

Proof: There are two cases to consider, either b is strictly increasing or there is an atom

in the bid distribution.

Case 1: If b is strictly increasing, then the first part of the lemma is true by picking sp = 0.

The second part of the lemma for this case claims that b is a la ? (abbreviated as PS in the

following). This is a slight modification of the arguments in PS, the second part of ‘proof of

proposition 1’ in page 1272.

Case 2: Suppose that the bid function has an atom at some bid bp. Then the monotonicity

of the bidding function implies that b(s) = bp for an interval of signals, S(bp) = (s′, sp) with

s′ < sp and b(s) = bp for every s ∈ S(bp) and b(s) > bp for every s > sp. In steps 1, 2 and

3 below we will show that there can be at most one atom in the bid distribution and that

s′ = 0.

Step 1: The first step is to show that ρ(s1 = sp, p = bp, 1 wins with bp) < ρ∗. On the way

to a contradiction, suppose that it’s not true. Then due to winner’s and loser’s curse (see

PS, page 1272), types in S(bp) would deviate and bid slightly above bp. This follows from

the monotonicity of the bidding function b.

Step 2: We will now argue that

ρ(s1 = s, p, 1 wins with b(s)) < ρ∗

for every s < sp and p ≤ b(s). We first claim that the following is true for every p′ < bp

which is in the range of b.

ρ(s1 = s, p′) < ρ(s1 = s, p = bp, 1 wins with bp).
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This is a non-trivial claim and the proof is in Lemma 7. Moreover,

ρ(s1 = s, p, 1 wins with p) ≤ ρ(s1 = s, p).

This inequality is a standard argument from lemma 7 of PS, at page 1272. Combining the

two inequalities in this step with the result in step 1 delivers the claim.

Step 3: We will now argue that all types below sp bid bp.

On the way to a contradiction, assume that a positive measure of types bid strictly below

bp and let s′′ < s′ be such a type. By lemma 7, the probability that type s′′ puts on state L

were she to bid bp and the price is any price between her bid and bp is weakly higher than

that of types who are bidding bp. Formally, for any p′ ≤ bp that is in the range of b, the

following holds:

Pr(ω = L|s1 = s′′, p′, 1 wins by bidding bp) ≥ Pr(ω = L|s1 = s′, p′, 1 wins by bidding bp).

Since bidding slightly below bp is a feasible strategy, we have that,

u(ρ(s1 = s′, bp, 1 wins by bidding bp)) ≤ bp.

Therefore, bp is weakly less than the value of the object to types who bid bp conditional

on the price being bp and they winning the object. Since this value is strictly less than the

value when the price is strictly lower than bp, these types make strictly positive profits when

the price is strictly less than bp. And finally, the bid of s′′ cannot be an atom because the

value of the object conditional on losing when the price is her bid is strictly larger than the

value if the price was strictly above her bid but not higher than bp, which contradicts her

bid being an atom (This is a completely symmetric argument as lemma 7). More precisely,

for any p′ ∈ (b(s′′), bp] such that b(s) = p′ for some s ∈ (s′′, sp),

Pr(ω = L|s1 = s′′, p = b(s′′), 1 loses by bidding b(s′′)) ≥ Pr(ω = L|s1 = s, p′, 1 wins by bidding p′)

Therefore,

u(ρ(s1 = s′′, p = b(s′′), 1 loses by bidding b(s′′))) ≥ u(ρ(s1 = s, p′, 1 wins by bidding p′)) ≥

p′ > b(s′′).

Therefore, type s′′ would have an incentive to bid strictly above b(s′′), yielding a contradiction

to b(s′′) being an atom. Since b(s′′) is not an atom, s′′ has a strict incentive to bid bp, yielding

the contradiction.
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Step 4: Now we consider bids above bp and will show that

ρ(s1 = sp, p = bp) > ρ∗

Since we have shown that there can be at most one atom, b does not have a constant part

above sp. Therefore, it should be that ρ(s1 = sp, p = bp) > ρ∗. This follows from monotonicity

of b and the winner’s curse. The reason is that otherwise signals lower and arbitrarily close

to sp would have a provitable deviation to bid above bp (see PS, page 1272 again). Moreover

ρ(s1 = s, p = b(s′)) > ρ∗ for s, s′ > sp from Weak MLRP.

We now conclude that b has to be a la PS for types above sp, i.e., for s > sp, b(s) =

u(ρ(s1 = s, Y k
n−1 = s)). This follows from PS, because the value of the object is strictly

increasing in the probability that the bidder assigns to state R for types above sp. �

E. Miscallenous Results

Lemma 5 There is a unique signal s∗ which is a limit point of the cutoffs {spz}z≥0. Moreover

either s∗ = sκR or s∗ is the unique signal with the property that for ρ̄(s) := ρ(s)κ−(1−F (s|R)))
F (s|R)

F (s|L)
κ−(1−F (s|L)))

,

u(ρ̄(s))− u(ρ(s)) < (>)0 for s < s∗(s > s∗).

Proof: Let s∗ be a limit point of the sequence, and rename the original sequence so that

the limit is s∗. We have proven that s∗ ≥ sκR in claim 1 of proof of theorem 2. So now assume

that s∗ > sκR. We first note that, ρ−z (s
p
z) can be more conveniently expressed by the following

equality:

ρ−z (s
p
z) = ρ(spz)

E

[

ρz−(number of bids≥s
p
z)

z−(number of bids≥s
p
z)

|R

]

E

[

ρz−(number of bids≥s
p
z)

z−(number of bids≥s
p
z)

|L

]

Our first observation is that

number of bids ≥ spz
z

|ω →z→∞
in probability 1− F (s∗|ω)

Therefore as z → ∞,

E

[

ρz − (number of bids ≥ spz)

z − (number of bids ≥ spz)
|ω

]

→
κ− (1− F (s∗|ω))

F (s∗|ω)
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and hence,

E

[

ρz−(number of bids≥s
p
z)

z−(number of bids≥s
p
z)

|R

]

E

[

ρz−(number of bids≥s
p
z)

z−(number of bids≥s
p
z)

|L

] →

κ−(1−F (s∗|R))
F (s∗|R)

κ−(1−F (s∗|L))
F (s∗|L)

Therefore as z → ∞,

ρ−z (s
p
z) → ρ(s∗)

κ−(1−F (s∗|R))
F (s∗|R)

κ−(1−F (s∗|L))
F (s∗|L)

Since s∗ > sκR, as z → ∞,

ρ+z (s
p
z) → ρ(s∗)

Since each spz has the feature that u(ρ−z (s)) − u(ρ+z (s))
(>)
< 0 for s

(<)
> spz, and since for each

s > sκR,

ρ−z (s) → ρ(s)

κ−(1−F (s|R))
F (s|R)

κ−(1−F (s|L))
F (s|L)

we have that for s ∈ (sκR, 1),

∆(s) := u

(

ρ(s)

(

κ− (1− F (s|R)))

F (s|R)

F (s|L)

κ− (1− F (s|L)))

))

− u (ρ(s))
(≥)

≤ 0 for s
(≤)

≥ s∗.

The term ∆(s) is strictly decreasing in the interval (sκR, 1) and is strictly negative when s is

close to 1, therefore, there should be at most one signal s∗ that can be a limit point in the

range (sκR, 1).

Now suppose that sκR is a limit point. We will show that no signal s > sκR can be a limit

point. If sκR is a limit point of the sequence, then it should be that, for every s > sκR, ∆(s) < 0.

However, then no s > sκR can be a limit point since this contradicts the previous finding

that for a signal s to be a limit point, it has to be that for signals s′ ∈ (sκR, s), ∆(s) > 0.

Hence we have shown that if sκR is a limit point, then it is the unique limit point, and if

it is not, and if an s > sκR is a limit point, then it is unique. This completes the argument

that the sequence has a unique limit point. �

Lemma 6 If f(0|L) 6= f(0|R), then ρ−z (s) > ρ+z (s) for any s ∈ (0, 1). Moreover both of

these functions are strictly increasing in s.
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Proof: The first claim in this lemma is identical to the argument in Lemma 7 in ?, page

1272, and is called loser’s curse.

The claim that ρ+z (s) and ρ−z (s) are strictly increasing is standard and follows from the

MLRP assumption. Therefore the proof is omitted. �

Lemma 7 In an increasing equilibrium bidding function b, if there is an atom at bid bp,

then for any p < bp the following holds:

Pr(ω = L|s1 = s, p) > Pr(ω = L|s1 = s, p = bp, 1 wins with bp).

Proof: Let the interval of types who are bidding at the atom bid be (s′, s′′). Then Pr(ω =

L|s1 = s, p) > f(ω = L|s1 = s) Pr(ω = L|Y k
n−1 = s′). The term Pr(ω = L|s1 = s, p = bp, 1

wins with bp) is calculated using the following steps:

1− Ft(s
′, s′′|ω) :=

F (s′′|ω)− F (s′|ω)

F (s′′|ω)

Cn−1−i
j (ω) :=

(

n− 1− i

j

)

(1− Ft(s
′, s′′|ω))j (Ft(s

′, s′′|ω))
n−1−j

Di(ω) :=

(

n− 1

i

)

(1− F (s′′|ω))i(F (s′′|ω))n−1−i
∑

n−1−i≥j≥k−i

Cn−1−i
j (ω)

k − i

j + 1

Pr(s1 = s, p = bp, 1 wins with bp|ω) = f(s|ω)
∑

0≤i≤k−1

Di(ω)

Pr(ω = L|s1 = s, p = bp, 1 wins with bp) =
f(s|L)

∑

0≤i≤k−1D
i(L)

f(s|R)
∑

0≤i≤k−1D
i(R)

Explanation: The probability that 1 wins with bp, the price is bp conditional on ω can be

calculated as the sum of the probabilities of winning in each of the following events, wi,j

where i ≤ k − 1 bidders bid above s′′, and k − i ≤ j ≤ n − 1 − i bidders bid the pooling

bid. The probability of winning conditional on event wi,j is k−i
j+1

, since there are k− i objects

remaining for the j+1 bidders bidding the pooling bid. The above expressions calculate the

probability of each event wi,j in each state and calculate the total winning probability in

each state.

Similarly the term f(ω = L|s1 = s) Pr(ω = L|Y k
n−1 = s′) is calculated using the following
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steps:

Pr(Y k
n−1 =s′|ω) =

(

n− 1

1

)

f(s′|ω)
∑

0≤i≤k−1

(

n− 2

i

)

(1− F (s′′|ω))i(F (s′′|ω))n−2−iCn−2−i
k−i−1 (ω)

f(ω =L|s1 = s) Pr(ω = L|Y k
n−1 = s′) =

f(s|L) Pr(Y k
n−1 = s′|L)

f(s|R) Pr(Y k
n−1 = s′|R)

.

We will now show the following

f(s|L) Pr(Y k
n−1 = s′|L)

f(s|R) Pr(Y k
n−1 = s′|R)

>
f(s|L)

∑

0≤i≤k−1D
i(L)

f(s|R)
∑

0≤i≤k−1D
i(R)

,

or equivalently the following,

(

n

1

)

f(s′|L)
∑

0≤i≤k−1

(

n−2
i

)

(1− F (s′′|L))i(F (s′′|L))n−2−iCn−2−i
k−i−1 (L)

(

n

1

)

f(s′|R)
∑

0≤i≤k−1

(

n−2
i

)

(1− F (s′′|R))i(F (s′′|R))n−2−iCn−2−i
k−i−1 (R)

>

∑

0≤i≤k−1D
i(L)

∑

0≤i≤k−1D
i(R)

.

We define the following notation before we proceed:

Ei(ω) :=

(

n− 1

1

)

f(s′|ω)

(

n− 2

i

)

(1− F (s′′|ω))i(F (s′′|ω))n−2−iCn−2−i
k−i−1 (ω).

We first present the following identity which requires minor algebra:

Di(ω) = Ei(ω)
(1− Ft(s

′, s′′|ω))F (s′′|ω)

f(s′|ω)

∑

k−i≤j≤n−i−1

(k − i)!(n− k − 1)!

(j + 1)!(n− j − i− 1)!

(

1− Ft(s
′, s′′|ω)

Ft(s′, s′′|ω)

)j+i−k

.

A second simplification of the above identity via a change of variables by letting u :=

j − k + i delivers the following:

Di(ω) = Ei(ω)
(1− Ft(s

′, s′′|ω))F (s′′|ω)

f(s′|ω)

∑

0≤u≤n−k−1

(k − i)!(n− k − 1)!

(k − i+ u+ 1)!(n− k − u− 1)!

(

1− Ft(s
′, s′′|ω)

Ft(s′, s′′|ω)

)u

.

We first observe that the following inequality is satisfied:

(1− Ft(s
′, s′′|L))F (s′′|L)

f(s′|L)
<

(1− Ft(s
′, s′′|R))F (s′′|R)

f(s′|R)
.

Our second observation is that for any fixed u ∈ {0, ..., n−k−1}, the term (k−i)!(n−k−1)!
(k−i+u+1)!(n−k−u−1)!

is strictly increasing in i.
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Our third observation is that the following inequality holds for any u:

(

1− Ft(s
′, s′′|L)

Ft(s′, s′′|L)

)u

<

(

1− Ft(s
′, s′′|R)

Ft(s′, s′′|R)

)u

.

This follows from the MLRP assumption.

Our final observation is that Ei(L)
Ei(R)

is strictly increasing in i. This observation also follows

from the MLRP assumption and a simple calculation.

These four observations yield the desired result. �
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