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Abstract

This paper introduces average treatment effects conditional on the outcome variable

in an endogenous setup where outcome Y , treatment X and instrument Z are continuous.

These objects allow to refine well studied treatment effects like ATE and ATT in the

case of continuous treatment (see Florens et al (2008)), by breaking them up according to

the rank of the outcome distribution. For instance, in the returns to schooling case, the

outcome conditioned average treatment effect on the treated (ATTO), gives the average

effect of a small increase in schooling on the subpopulation characterized by a certain

treatment intensity, say 16 years of schooling, and a certain rank in the wage distribution.

We show that IV type approaches are better suited to identify overall averages across the

population like the average partial effect, or outcome conditioned versions thereof, while

selection type methods are better suited to identify ATT or ATTO. Importantly, none of

the identification relies on rectangular support of the errors in the identification equation.

Finally, we apply all concepts to analyze the nonlinear heterogeneous effects of smoking

during pregnancy on infant birth weight.
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1 Introduction

Motivation: Unobserved heterogeneity in preferences and other complex unobservable objects

arises naturally if microeconomic models are taken to the data. Moreover, when determining

the causal effect of one variable of interest X ∈ X ⊆ R on an outcome Y ∈ Y ⊆ R, these unob-

servable determinants A ∈ A ⊆ R∞, are commonly correlated with X, even after controlling for

all observable determinants S ∈ S ⊆ RK . Given that unobserved heterogeneity is so pervasive

and leads to fundamentally different outcomes, it is natural to consider analyzing causal effects

separately for different level of the outcome variable, which has lead to the great popularity of

quantile regression and other distributional methods. This paper presents a framework to ana-

lyze causal effects largely using quantiles in a setup with an endogenous continuous explanatory

variable X.

To allow for sufficient generality, we follow the recent econometric literature by modeling

the relationship of interest through a nonseparable model, i.e., we let

Y = g(X,S,A), (1.1)

where g is smooth in x. Throughout this paper, we think of X as a continuous variable the

individual chooses as part of a second economic decision which involves observable exogenous

factors (instruments), denoted Z, and unobservable factors, denoted V . Logically, this second

decision is chosen in a first stage (henceforth abbreviated FS), because there is no effect of Y

on this decision, i.e., there is no simultaneity. In addition to the excluded factor Z, this first

stage could also depend on S, however, we suppress the dependence on S in what follows.

Parameters of Interest: To define the causal effects, it is useful to consider the well

studied case when X is binary, i.e., classical treatment effects. Without loss of generality, we

can rewrite the model to be a linear random coefficient model, i.e.

Y = α(A) + β(A)X. (1.2)

The object of interest is then the treatment effect β(A) = g(1, A) − g(0, A), usually denoted

Y1 − Y0. In the absence of any structure on the complex unobservable A, this object is not

identified. Instead, the aim of the binary treatment literature is to identify average effects.
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Specifically, interest centers on

E [β(A)|F ] = E [Y1 − Y0|F ] = E [g(1, A)− g(0, A)|F ] ,

where F is frequently either the trivial sigma algebra (i.e., F = {∅,Ω}), in which case we obtain

the average treatment effect (ATE), E [g(1, A)− g(0, A)], or 2. F = σ(X), and X = 1, in which

case we obtain the average treatment on the treated (ATT), E [g(1, A)− g(0, A)|X = 1].

In this paper, we focus mainly on the case where X and Z are continuously distributed as

has been common in the literature on nonseparable models (e.g., Altonji and Matzkin (2005),

Chesher (2003), Florens, Heckman, Meghir and Vytlacil (2008, FHMV henceforth), Hoderlein

and Mammen (2007), Imbens and Newey (2009, IN henceforth). If X is continuous, we may

view the value of the regressor X as a chosen level of intensity of treatment, e.g., the choice

of duration of participation in a training program, total length of schooling, the amount of

nicotine or drug intake, the price of a good, etc. A natural parameter of interest is a natural

generalization of the binary treatment setting: It is ∂xg(x, a), the partial effect of a marginal

change in x, which we denote β(x, a) = ∂
∂x
g(x, a), to emphasize the parallels to the random

coefficients case. One can think of this quantity as the policy experiment of changing x to

x+ h, for small h. In this experiment, β(x, a)h represents the (approximate) magnitude of the

implied change in Y ; hence our focus on β(x, a). A very commonly analyzed marginal effect is,

e.g., a demand or labor supply elasticity with respect to price, resp. the wage rate.

Due to the high dimensionality of A, like in the binary treatment effect literature, β(x, a) is

not identified. Therefore, we focus again on mean causal effects of a treatment. Starting with

work by Chamberlain (1984), an analog to the ATE is the average partial effect (APE), i.e.,

E [β(X,A)] ,which extends the notion of average derivative studied extensively in the semipara-

metric literature by averaging across unobserved heterogeneity as well. In the special case of a

(correlated) linear random coefficients structure, i.e., β(x, a) = β(a), this parameter becomes

the average random coefficient E [β(A)], an object extensively studied in the recent panel data

literature, see e.g., Graham and Powell (2012).

However, there are many instances where the overall average marginal effect may not be

the only parameter of interest, and where one would like to fix the position x, at which the

effect of interest is analyzed, and study this effect at different values, say, x1, .., xk, to obtain
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an idea about heterogeneity in responses depending on the level of X chose. Formally, we are

interested in:

E [β(x,A)|X = x] =

∫
β(x, a)fA|X(a|x)da,

where, for simplicity, we assume that fA|X is a density. In this setup, it is natural to condition

on the level of treatment intensity X = x, and obtain the average structural marginal effect

of a treatment for individuals with treatment intensity X = x. We emphasize at this point

that X = x is kept fixed, as it characterizes the subpopulation, while β(x,A) is the effect of

interest. It is instructive to think of this object in terms of an economic example: Suppose

X were schooling (stylized, since we are talking about continuous quantities), and A were

ability. Then, β(10, a) would be the effect of an exogenous marginal increase in schooling for

individuals having attended 10 units of schooling, and having ability A = a. fA|X(a|10) in turn

gives the density of ability given 10 years of schooling. Since ability and schooling are believed

to be correlated, fA|X(a|x) ̸= fA(a). E [β(x,A)|X = x] is then the average marginal effect of

an exogenous marginal increase in schooling for individuals having attended 10 years (units)

of schooling, weighted with the density of ability of those individuals who attend ten years of

schooling. This the subpopulation directly affected by the exogenous policy change.

This effect is considered by FHMV (2008), Altonji and Matzkin (2005), and Hoderlein

and Mammen (2007), amongst many others. FHMV (2008) call this effect the ATT, because

of the obvious parallel with the treatment effects literature, and we adapt this terminology1.

1Other weighting schemes are imaginable. For instance, following Blundell and Powell (2004), one could

form

EA [β(x,A)] =

∫
β(x, a)fA(a)da,

which gives the average marginal effect, the derivative of the ASF, of an exogenous marginal increase in schooling

for individuals having attended 10 years of schooling, weighted by the density of ability of all individuals

(such an approach was recently advocated by Kasy (2013) in a related setup that unlike us does not assume

monotonicity in the unobservable in the selection equation, but assumes monotonicity in the instrument). We,

however, focus on the LAR for the following reason: suppose a policy maker were able to perform such an

exogenous marginal increase for everybody who has attended 10 years of schooling. Then it seems that she

should primarily be concerned with the average effect on this subpopulation. Put reversely, there are many

individuals, presumably with lower ability, whose unobserved ability is such that they will never reach 10 years

of schooling. The natural question is then why these people should be included in the averaging, if they are
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Causal effects conditional on a continuous covariate S = s are also analyzed in the regression

discontinuity approach, specifically, E [Y1 − Y0|S = s] , where s is the threshold at which the

discontinuity appears, see any standard textbook, e.g., Wooldridge (2002). Finally, observe

that the overall APE is a weighted average of the subpopulation X = x specific ATT, weighted

with their density fX(x).

While we present some new results for APE and ATT in this setup, the main innovation

in this paper is to present outcome conditioned treatment effects. To stay in the returns-to-

schooling example, a policy maker may want to focus in his decision not just on different levels

of X, say, high school drop-outs, but also on levels of Y , say, low wage individuals. In this

paper, we therefore introduce outcome conditioned treatment effects. In particular, we propose

natural generalizations of the APE and ATT. The first generalization is the average partial

effect conditional on the outcome, abbreviated APEO, and defined formally through

E [β(X,A)|Y = y] =

∫
β(x, a)fAX|Y (a, x|y)dadx,

and the second generalization is the average treatment effect on the treated conditional on the

outcome, abbreviated ATTO,

E [β(x,A)|X = x, Y = y] =

∫
β(x, a)fA|XY (a|x, y)da,

Both effects allow the policy maker to split the overall population, respectively the subpopula-

tion defined by the treatment intensity X = x, according to the values of the outcome variable

Y . In the special case where X = 10 denotes 10 years of schooling and Y = y is subsequent

wage, say, y is half median wage, a typical measure of poverty, fA|XY (a|x, y) gives the density

of ability A given 10 years of schooling and half median wage. Note that β(x, a) is still the

(heterogeneous) exogenous causal effect of a marginal increase in schooling for individuals hav-

ing attended 10 units of schooling, and having ability A = a. The weighting with fA|XY (a|x, y),

however, reflects now the different objective of the policy maker, who wants to focus on the

subpopulation with ten years of schooling and low subsequent wages y.

Contributions: Since the focus of this paper is on the introduction of two causal effects, we

separate the paper accordingly. We are first concerned with obtaining the APE and the APEO.

never affected by this measure. Of course, there may be other applications for which the unconditional average

may be more sensible. Note that in either of these approaches, one could condition on observables S as well.
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We will consider a local instrumental variable (LIV) approach to identification analogously to

Heckman and Vytlacil (1999, 2005, 2007, henceforth HV)) in the binary choice case that is

based on mean regression. Interestingly, the LIV ceases to identify the MTE in the continuous

case, i.e., a causal effect conditional on a first stage unobservable. Instead, we establish that the

LIV identifies an average structural causal effect, E [β(X,A)|Z = z], which allows to obtain the

overall APE by integrating with respect to FZ(z). This results in sample counterpart estimators

that are averages, and hence sensitive to large values, however, it does not require that we have

an instrument that has large support in that it pushes the selection probabilities all the way to

one or zero. Surprisingly, if we replace mean by quantile regressions, the same principle allows

to identify the APEO under similar unrestrictive support conditions.

After having established identification for APEs, we turn to the question under which con-

ditions ATT and ATTO are identified We start out by establishing that straightforward mean

regression based generalizations of the MTE are point identified. This is very similar to FHMV

(2008), and extends Heckman and Vytlacil (2007). We then show that we can generalize these

results further, using distributional information as embodied in regression quantiles, to obtain

averages which also involve the dependent variable Y , i.e., E [β(x,A)|X = x, Y = y]. These

effects can be derived from a general identification theorem that can be seen as s generalization

of the Heckman (1979) selection principle.

Relationship to the Literature: This work aims at integrating two different strands

of literature: The literature on binary treatment effects, and the literature on nonseparable

models. As already discussed, close in terms of the mathematical structure in the former

literature is in particular the work of Heckman and Vytlacil (1999, 2005, 2007), due in particular

to the continuity of the instrument Z. Our approach is also related to the LATE framework

of Imbens and Angist (1994), in particular to Angrist, Grady and Imbens (2000), though to a

lesser degree because of the discreteness of Z. Unlike Imbens and Angrist (1994), we do not

assume monotonicity of the FS equation in Z. Also, Abadie et al (2002) consider identification

of quantiles under similar assumptions as Imbens and Angrist (1994); the same remark applies.

Moreover, instead of a simultaneous equation model as in Angrist, Grady and Imbens (2000)

we consider a triangular structure.
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The literature on nonseparable models is generally related. We are rather closely related to

models that do not assume monotonicity in a scalar unobservable in the outcome equation, and

allow for continuous endogenous regressors. This is in particular Altonji and Matzkin (2005),

Florens, Heckman, Meghir, and Vytlacil (2008), Imbens and Newey (2009) and Hoderlein and

Mammen (2007). The first reference in this list focuses largely on panel data, but introduces

control functions to obtain APEs. From Hoderlein and Mammen (2007, 2009), we adopt the

notion that quantile derivatives identify average marginal effects. Less closely related to our

work is Chesher (2003) who assumes triangularity as well as monotonicity in the outcome

equation.

Other recent work that exploits distributional assumptions includes Chernozhukov and

Hansen (2005), who propose estimation of a quantile IV model based on moment restrictions

that assume that the individuals have either the same unobservable in both the treatment and

the control group, or assume a stationarity assumption on the distribution of unobservables that

is difficult to motivate economically. Abadie et al. (2002) consider the effect of the treatment

on the quantile, but do not relate it to complex unobservables. Finally, Chernozhukov, Imbens

and Newey (2007) base their estimator for nonseparable models with a scalar unobservable

under endogeneity on a moment restriction. None of these papers relate quantile structures to

causal effects if the unobservables in the outcome equation are multivariate, as is also the case

in the related work by Torgovitsky (2011), and D’Haultfoeuille and Février (2011).

As already mentioned, like us FHMV (2008) consider continuous endogenous regressors,

but unlike us impose structure on the outcome equation and do not impose structure on the

selection equations. As such, their model is different than ours, and more closely related to

random coefficient models. An older reference is the work of Garen (1984), but this work is

parametric in nature.

In our application, we have some overlap with Evans and Ringel (1999), whose essential

economic argument for the validity of the instruments we follow. However, we extend their work

in the several dimension that are in the focus of our paper: In our nonparametric setup, we

consider policy relevant effects with high dimensional unobservables, using both mean regression

and quantile regression tools. More widely related are Rosenzweig and Shultz (1983), and Lien
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and Evans (2005), as detailed below in the application.

Organization of the Paper: The second section outlines the model and some basic

assumptions, and then establishes that identification of APE and APEO through integrated

local IV methods. In the third section, we focus on the treatment on the treated parameters,

i.e., ATT and ATTO, and we show how regressions on X and Z serve to identify this object.

Finally, to illustrate our results, we apply all concepts to data from health economics. In

particular, we consider the effect of smoking on the birth weight of a child. A summary and an

outlook conclude.

2 The Local Instrumental Variable Estimator

Throughout this paper, we assume to observe variables (Y,X,Z) ∈ R3, where Y is the outcome

of interest, X is the endogenous first-stage choice that causally affects Y , and Z is an instrument

that causally affects X. Without further mentioning, we will assume that they are defined on a

complete probability space, (Ω,F , P ), and that there exist an absolutely continuous derivative

of the measure P with respect to Lebesgue measure, with the density fY XZ its Radon Nikodym

derivative, i.e., all variables are continuous. Finally, by QY |K(τ | k) := inf{y | FY |K(y | k) > τ}

we denote the τ -th quantile regression of Y on K.

To provide examples, in our application Y is birth weight of a child, X is nicotine intake, and

Z denotes exogenous factors that determine this intake, e.g., the tax rate on tobacco. In labor

economics, Y could be log wages, X total duration of schooling, and Z exogenous cost factors

that affect school duration. In consumer demand, Y could be the quantity of fish consumed,

X could be the own price, and Z supply side instruments, e.g., the maritime weather. In all

of these examples, the exogenous factors Z drive X, but they are excluded from affecting Y

through any other channel than through X, and they are also unrelated to any unobservable

factor that affects Y .

This structure leads to the general class of causal models defined by

Y = g(X,A), (2.1)

X = h(Z, V )
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where h is a smooth function that relates the choice of treatment intensity X, to the observed

instruments Z, and unobservables V . In the same vein, g is smooth function that relates Y to X

and an infinite dimensional vector of unobservables A. The unobservables (A, V ) characterize

the individual; all functions could depend on a set of observable exogenous covariates S as well,

but we suppress them for transparency of exposition. The instruments Z represent external

factors that an individual with (A, V ) takes as given when making their first stage choice of

treatment intensity, and subsequently, given this first stage choice, chooses or obtains Y .

As discussed above, our interest centers on averages of the structural marginal effect β(x, a) :=

∂
∂x
g(x, a) across a heterogeneous population. A natural candidate to identify average effects is

the LIV, i.e.,
∂
∂z
E [Y |Z = z]

∂
∂z
E [X|Z = z]

, (2.2)

which identifies causal effects in both the classical linear model with endogenous regressors,

and in the endogenous binary treatment model with heterogeneous effects. Surprisingly, in the

endogenous continuous treatment case, the LIV itself does not turn out to identify interesting

causal effects, and it is only integrals of these quantities that identify interesting causal effects.

We require an instrument independence assumption, i.e.,

Assumption 1 (Instrument Independence). (i) A ⊥⊥ Z | V . (ii) V ⊥⊥ Z.

If we combine both parts of this assumption, we obtain (A, V ) ⊥⊥ Z, i.e., that joint in-

dependence of the instruments from all unobservables in the system holds. This is some-

what stronger than, but similar in spirit to, traditional treatment effects assumptions. E.g.,

consider the typical assumption that (Y1, Y0, V ) ⊥⊥ Z, in the setup where X is binary, and

X = 1 {π(Z) > V }, see e.g., Heckman and Vytlacil (2007). Since Yj = g(j, A) in this setup,

(Y1, Y0, V ) = (g(1, A), g(0, A), V ), and obviously (A, V ) ⊥⊥ Z implies the weaker conditions

(Y1, Y0, V ) ⊥⊥ Z. This stronger full independence condition has been assumed in the recent

work of Torgovitsky (2011), and Fevrier and d’Haultfoeuille (2011) on the continuous treat-

ment case. However, the continuous case allows to weaken the full joint independence. While

(i) A ⊥⊥ Z | V is retained throughout this paper, in some of our results we may in particular

weaken (ii) V ⊥⊥ Z to a location normalization like E [V |Z] = 0.
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We next provide an equivalent to a rank condition, which is formulated for an arbitrary

fixed position z ∈ Z; if interest centers later on averages like the APE, they would have to hold

for every point z ∈ Z, except possibly on a set of measure zero :

Assumption 2 (Local Rank Condition for LIV). d
dz
E[X | Z = z] ̸= 0.

Assumption 2 is a generalization of the conventional rank condition. In the linear model

where X = γ + δZ + V , for instance, this holds iff δ ̸= 0. These two assumptions, however, are

not sufficient to point identify the effect of interest, and we have to add a condition on the way

the errors enter:

Assumption 3 (Separable First Stage). h(z, v) = π(z) + v.

In addition to this set of structural assumptions, we use the following set of regularity

conditions for our analysis:

Assumption 4 (Regularity). The distributions of the random variables are absolutely contin-

uous. The structural and density functions are continuously differentiable, and are dominated

in absolute value by functions with finite first moments (L1 domination).

Under these assumptions, we obtain the first main theorem in this paper. It discusses the

identification of APE

Theorem 1 (APE). (i) Suppose that Assumptions 1, 3 and 4 are satisfied for the model (2.1).

If in addition Assumption 2 hold for the model (2.1) [FZ ]-a.s., then the average partial effect

(APE) is given by

APE = E [β(X,A)] =

∫
Z

∂

∂p
E [Y |P = p]

∣∣∣∣
p=π(z)

fZ(z)dz.

(ii) If π is continuously differentiable and Assumption 2 is satisfied for all z in the support

of Z | Y = y0, then the average partial effect conditional on outcomes (APEO) is given by

APEO(y0) = E [β(X,A)|Y = y0] =

∫
Z

∂

∂p
QY |P (FY |Z(y0 | z) | p)

∣∣∣∣
p=π(z)

fZ|Y (z|y0)dz.

Discussion of theorem 1 : 1. This theorem provides equalities that equate APE and

APEO to quantities on the right hand side that are directly estimable from data. Both objects
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take the form of average derivatives, weighted by a density. Observe the differences in these

results, in particular the fact that the former uses mean regression where the latter uses quan-

tile regressions, and that integration is with respect to the unconditional, resp. conditional,

distribution of Z. These differences are owed to the fact that APEO considers the effect around

y0 only, and hence it uses the rank associated with y0, i.e., FY |Z(y0 | z), for every z, as well as

the conditional distribution fZ|Y (z|y0) at y0. Note that we can relax the rank condition A 2 in

the latter case, too, because we are only concerned with the subpopulation for which Y = y0.

2. This right hand side structures admit natural sample counterparts estimators, i.e.,

Ê [β(X,A)] = n−1
∑
i

∂

∂p
m̂Y |P (π̂(Zi)),

Ê [β(X,A)|Y = y0] = n−1
∑
i

∂

∂p
Q̂Y |P (F̂Y |Z(Yi, Zi), π̂(Zi))f̂Y (Yi)

−1Kh(Yi − y0)

where the hats denote nonparametric estimators, e.g., kernel based local polynomials, and Kh

is a standard kernel.

3. Support conditions: since we are integrating with respect to the conditional distribution

of Z, we are not subject to identification at infinity. Also, we do not place any restrictions on

the support of the first stage unobservable V ; in particular, we are not assuming rectangular

support, or any comparably restrictive assumption.

4. Assuming additivity and full independence of (A, V ) from Z together, i.e., Assumptions

1, and 3, is quite restrictive. However, both assumptions may be weakened. In the next section,

we show an alternative way to obtain APE and APEO that only requires monotonicity in a

scalar error term, but retains full independence. If, on the other side, additivity in the first stage

equation is acceptable, but heteroskedasticity is suspected, the full independence assumption

1 (ii) can be weakened to a location restriction, e.g., mean independence E[V |Z = z] = 0. In

this case, we obtain that

APE = E [β(X,A)] =

∫
Z

∂

∂p
E [Y |P = p]

∣∣∣∣
p=π(z)

fZ(z)dz −
∫
Z
E [Y S|P = p]|p=π(z) fZ(z)dz,

where S is the score ∂
∂p

log fV |P (V ; p). In this expression, the second term corrects for the bias

that arises from the fact that V and Z are not fully independent. A similar expression can

be obtained for APEO in this case. Straightforward sample counterpart estimation is again

possible, and the support conditions are similarly unrestrictive.
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3 Average Treatment Effect on the Treated

As mentioned above, in this section we show that we can identify the average treatment effect

on the treated (ATT, see FHMV (2008)) E [β(x,A)|X = x] , and the outcome conditioned av-

erage treatment effect on the treated (ATTO), i.e., E [β(x,A)|X = x, Y = y] , which is one of

the major innovations in this paper. We obtain these quantities by objects that much closer

resemble integrating a “selection” structure, where the second term is akin to a selection cor-

rection. We establish in particular that a similar approach can also be pursued using the entire

distribution of Y , and in our mind is even preferable to existing methods as it allows combining

high dimensional unobservables in the outcome equation with distributional information. We

replace Assumptions 2 and 3 by the following more general assumptions. They hold again for

almost all z ∈ Z. The first assumption replaces the additive separability assumed in section 2.

Assumption 5 (Invertibility). h(z, · ) is invertible in its second argument Z-a.s, and υ(z, · )

denotes the inverse.

This obviously contains assumption 3 as special case, and will play an equally prominent

role in our analysis. Similar to before, we require a rank condition, which comes in the following

form:

Assumption 6 (Local Rank Condition for MTE). ∂
∂z
υ(z, x) ̸= 0 for all x ∈ X , Z-a.s.

Observe that this is a stronger condition, as it now requires z to be informative at all

values of x, however, this condition is satisfied in the standard specifications like linear IV. To

illustrate the content of this assumption, we provide three examples: 1. structural models, 2.

mean regression, 3. quantile regression

Example 1: Suppose that Y = g(X,A) models the demand for a single good Y as a function of

wealth X and preferences A . Wealth X can be taken to be within-period log total expenditure,

which is justified under separability restrictions on preferences (see Lewbel, (1999)). The first-

stage endogenous choice X = h(Z, V ) is modeled as a result of optimizing behavior: given a

life cycle income stream, individuals first decide on how much to allocate to period t. Then

they decide on how much to spend for the single good in question.
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More formally, suppose that the dynamic consumption decision of economic agent at time

t is given by

max
{Xt+τ}T̄−t

τ=0

Et

[
T̄−t∑
τ=0

βτu(Xt+τ ; θ)

]
s.t. Mt+1 = (Mt −Xt)R + Zt+1

where u(·; θ) is the CARA utility function with parameter θ, Zt is the consumer’s idiosyncratic

labor income, T̄ is the terminal period, Mt denotes assets, and R is the interest factor which,

for simplicity, is fixed and deterministic. If the growth of Zt is stochastic, with iid Gaussian

innovations having variance σ2, then the first-stage function for individuals with no initial assets

is given by

Xt = log

(
δ(T̄ − t)Zt −

σ2θ

2β

)
,

where individuals have heterogeneous structural parameters (β, θ), and δ (·) is a known function

of the remaining life span. In this case, V = (2β)−1σ2θ, and Assumption 5 is trivially satisfied.

Moreover, if δ(T̄ − t) ̸= 0, which is satisfied under mild conditions, Assumption 6 is satisfied as

well.

Example 2: Suppose that the first-stage model is a nonparametric mean regression of the

form

h(z, v) = π(z) + v where E[V | Z] = 0.

In this case, Assumption 5 is trivially satisfied. Furthermore, the traditional local rank condition

π′(z) ̸= 0 satisfies Assumption 6.

Example 3: Another important special case is when the first-stage model can be represented

by a nonparametric quantile regression. This is the case when we assume to have a model of

the form

h(z, v) = QX|Z(v | z) where Z ⊥⊥ V,

which happens for instance if h is strictly monotonic in a scalar unobservable, w.l.o.g. nor-

malized to be U [0, 1]. In this case, Assumption 5 is satisfied if X | Z = z is continuously

distributed. Furthermore, the commonly assumed local rank condition ∂
∂z
FX|Z(x | z) ̸= 0

satisfies Assumption 6.
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We now provide the results for the average treatment effect on the treated, for a given level

of treatment intensity X = x0. For these results, we can weakend the above conditions to hold

only locally; however, their economic interpretation remains materially unchanged.

Assumption 7. The following conditions hold at X = x0:

(i) h(z, ·) is invertible in its second argument for a.s. z in the support of Z | X = x0.

(ii) ∂
∂z
ν(z, x0) ̸= 0 for a.s. z in the support of Z | X = x0.

Moreover, by (i′) and (ii′) we denote the same conditions, but change the support to a.s. z

in the support of Z | Y = y0, X = x0.

Parts (i) and (ii) of this assumption are restatements of Assumptions 5 and 6, respectively,

at various locations of z in the support of Z | X = x0, and parts (i) and (ii) of the same

assumptions at various locations of z in the support of Z | Y = y0, X = x0. Equipped with

these assumptions and the notation ρ(z, x) :=
[
∂υ(z,x)

∂x

]
/
[
∂υ(z,x)

∂z

]
, we obtain the following

theorem, whose proof we delegate to the appendix:

Theorem 2 (ATT and ATTO). (i) Suppose that Assumptions 1 (i), 4, and 7 (i), (ii) are

satisfied for the model (2.1). Then, the average treatment effect on the treated at X = x0 is

given by

E [β(x0, A)|X = x0] =

∫
∂

∂ξ
E [Y |X = ξ, Z = z]

∣∣∣∣
ξ=x0

fZ|X(z|x0)dz

−
∫

ρ(z, x0)
∂

∂ζ
E [Y |X = x0, Z = ζ]

∣∣∣∣
ζ=z

fZ|X(z|x0)dz

In addition, if Assumption 7 (i), (ii) holds for a.s. x0 in the support of X, then the average

partial effect (APE) is given by integrating the right hand side with respect to fX .

(ii) Suppose that Assumptions 1 (i), 4, and 7 (i′),(ii′) are satisfied for the model (2.1). Then,

the outcome conditioned average treatment effect on the treated at (Y,X) = (y0, x0) (ATTO) is

given by

E [β(x0, A)|Y = y0, X = x0] =

∫
∂

∂ξ
QY |XZ(FY |XZ(y0 | x0, z) | ξ, z)

∣∣∣∣
ξ=x0

fZ|Y X(z|y0, x0)dz

−
∫

ρ(z, x0) ·
∂

∂ζ
QY |XZ(FY |XZ(y0 | x0, z) | x0, ζ)

∣∣∣∣
ζ=z

fZ|Y X(z|y0, x0)dz.
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If in addition Assumption 7 (i′),(ii′) is satisfied for a.s. x0 in the support of X | Y = y0, then

the outcome conditioned average partial effect (APEO) is given by integrating the right hand

side with respect to fX|Y (·|y0).

Discussion of Theorem 2 : 1. This theorem has a similar structure than theorem 1;

however, unlike theorem 1, the object of interest is a conditional effect, either the effect on the

treated subpopulation (with treatment intensity x0, say 10 years of schooling), or the effect

on the treated subpopulation with a certain level of the outcome variable, i.e., Y = y0, say,

individuals with 10 years of schooling, and income at the poverty line. Both objects take again

the form of average derivatives, weighted by a density. The differences in the results (i) and

(ii) are again that the former uses mean regression while the latter uses quantile regressions,

but now that integration is with respect to the distribution of Z conditional on X, resp., on

X and Y . Note that compared to theorem 1 we can relax the rank condition further in the

latter case, too, because we are only concerned with the subpopulation for which X = x0, resp.,

X = x0, Y = y0.

2. Similar to theorem 1, we can devise sample counterpart estimators. Let ∂
∂x
m̂Y |XZ(x, z)

denote a nonparametric estimator for the derivative with respect to x of the mean regression

of Y on X and Z at x, z, and analogously for ∂
∂z
. Let ∂

∂x
Q̂Y |XZ ,

∂
∂z
Q̂Y |XZ denote the analogous

objects for quantile regression, and let ρ̂ be a nonparametric estimator for ρ. Then, natural

estimators for right hand side structures are:

Ê [β(X,A)|X = x0] = n−1
∑
i

{
∂

∂x
m̂Y |XZ(Xi, Zi)− ρ̂(Zi, Xi)

−1 ∂

∂x
m̂Y |XZ(Xi, Zi)

}
×f̂X(Xi)

−1Kh(Xi − x0),

Ê [β(X,A)|X = x0, Y = y0] = n−1
∑
i

{
∂

∂x
Q̂Y |XZ(F̂Y |XZ(Yi|Xi, Zi)|Xi, Zi)

− ρ̂(Zi, Xi)
−1 ∂

∂x
Q̂Y |XZ(F̂Y |XZ(Yi|Xi, Zi)|Xi, Zi)

}
×f̂XY (Xi, Yi)

−1Kh(Xi − x0)Kh(Yi − y0)

where Kh is a standard kernel. Similar remarks apply again for the estimation of APE and

APEO under these assumptions. Section A.8 in the appendix provides more details of estima-

tion.
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3. Support conditions - as before: since we are integrating with respect to the conditional

distribution of Z, we are not subject to identification at infinity. Also, we do not place any

restrictions on the support of the first stage unobservable V ; in particular, we are not assuming

rectangular support.

4. Examples for different choices of ρ(z, x) and theorem 2. Example 2 (cont.): First, note

that theorem 2 does not require full independence between the instrument Z and the first-

stage unobservable V . Therefore, heteroskedasticity in the first stage, E[V 2 | Z] ̸= constant,

is admissible. Applying the result to this special case where ρ(z, x) = −1/[π′(z)] yields the

following result:

E [β(x0, A)|X = x0] =

∫
∂

∂ξ
E [Y |X = ξ, Z = z]

∣∣∣∣
ξ=x0

fZ|X(z|x0)dz

−
∫

π′(z)−1 ∂

∂ζ
E [Y |X = x0, Z = ζ]

∣∣∣∣
ζ=z

fZ|X(z|x0)dz,

and analogously for ATTO. Moreover, in the case of Example 3, ρ(z, x) = −
[

∂
∂z
QX|Z(v | z)

]−1

where v = FX|Z(x | z), and the results continue to hold with the obvious modifications.

5. From closer inspection of the proof, it is obvious that a key building block is a parameter

that is closely related to the marginal treatment effect (MTE) of Heckman and Vytlacil (2005,

2007). Consequently, one could use this quantity to construct policy relevant treatment effects

as in Heckman and Vytlacil (2005), see also the illuminating discussion in Heckman and Vytlacil

(2007). To keep the focus of this paper, we leave such an approach for future research.

4 Nonlinear Heterogeneous Effects of Smoking

Adverse effects of smoking during pregnancy on infant birth weights have been extensively

studied in the health economic literature (e.g., Rosenzweig and Schultz (1983); Evans and

Ringel (1999); Lien and Evans (2005)). Most papers, including those in the medical literature,

have suggested that the effect of smoking (as a binary variable) on infant birth weights ranges

from −200 grams to −400 grams. Given that the average number of cigarettes smoked by

smoking pregnant women is 12 between years 1989 and 1999, average effects of one cigarette on

infant birth weight thus ranges from −17 grams to −33 grams. The goal of our analysis is to
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provide a much more detailed assessment of the effect of smoking, in particular we consider the

heterogeneous marginal effects of a single cigarette as opposed to these coarse average effect of

smoking, in order to better assess potential effects of a policy that encourages pregnant woman

to reduce the number of cigarettes smoked per day by one.

To start out with, it is instructive to formulate hypotheses that specifies what one would

expect. Recall that the relationship of interest is Y = g(X,A), where Y denotes the outcome of

interest, in our case the birth weight, X denotes the number of cigarettes, and A denotes other

unobserved factors that affect the birth weight. Examples for A include such things as the

diet of the mother, overall health conditions, whether she consumes alcohol, how conducive her

social environment is, etc. Note that these variables are heavily correlated with X, individuals

who live a healthy lifestyle are less likely to smoke a lot during pregnancy. For fixed A = a,

we would expect cigarettes to have a negative effect, though probably with decreasing returns

to scale. If A = a is such that the birth weight is at the lower end of the distribution of birth

weights, we would expect the effect still to be negative, but perhaps less large in absolute value,

simple because there is not as much weight the newborn might be able to loose; i.e., in economic

terms we have decreasing returns to scale. Put differently, if the other factors have contributed

to a lot of harm already, the additional harm of a single cigarette might be less big. Conversely,

if A = a′ such that the other conditions are perfect for the optimal growth of the fetus, the

harm an additional (marginal) cigarette causes may be highest.

To isolate the causal effects of cigarettes on infant birth weight, we extend an idea of Evans

and Ringel (1999). We allow for arbitrary nonlinear, endogenous and heterogeneous effects of

smoking, and want to obtain APEO and ATTO. Evans and Ringel use cigarette excise tax

rate as source of exogenous variation to mitigate confounding factors in identifying the effects

of smoking. We follow this idea; in our framework tax rates hence play the role of Z, while

number of cigarettes per day and infant birth weight are X and Y , respectively. The causal

model is then given by 
Y = g(X,A)

X = h(Z, V )

where A captures other unobserved factors related to the physiological characteristics and the
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Variable Mean Std. Dev. Description

Birth Weight 3330 606 Infant birth weight measured in grams

Cigarette 1.75 5.51 Number of cigarettes smoked per day

Tax 30.4 15.5 Excise tax rate on cigarettes in percentage

Age 26.7 6.0 Maternal age

Drinks 0.04 0.75 Number of times of drinking per week

Births 1.97 1.00 Number of live births experienced

Table 1: Descriptive statistics of the data of the repeated cross sections from 1989 to 1999 from

the Natality Vital Statistics System of the National Center for Health Statistics.

lifestyle of the mother that impact the child’s birth weight, and V is a scalar summarizing

first stage factors that impact the choice of number of cigarettes. The relevant independence

restriction we use is Z ⊥⊥ (A, V ), but note that A and V are generally correlated, and cause

endogeneity of X. The structural features of interest are the APEO and ATTO, which, as we

established are identified under the conditions of Theorem 2.

In terms of data, we use a repeated cross section of the natality data from the Natality Vital

Statistics System of the National Center for Health Statistics. The main variables in the data

are summarized in Table 1. From this data set we extract a random sample in the time period

between 1989 to 1999.

Due to the point mass of the distribution of X at X = 0 which conflicts the assumption of

absolute continuity, we focus on the subsample with X > 0, and our analysis is hence about

the intensity of smoking, conditional on a pregnant mother being a smoker.

In terms of details of implementation: We use the straightforward sample-counterpart esti-

mators proposed in Section A.8 in the appendix, with standard normal kernels. We select the

bandwidth to be smaller than the cross validated bandwidth,2 to account for the fact that we

are integrating out Z. We report our results in graphs, as they summarize the gist of our result

in ways a numerical representation or table could not do. In addition to showing the results in

the original scale, due to the fact that some effects are close to zero and others are compara-

2For all the results to be presented, we use the bandwidths of hy = 250, hx = 5 and hz = 25 for the random

variables Y , X and Z, respectively. Perturbations of these values do not qualitatively change our results.
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bly large, we also plot the results on a logarithmic scale; more precisely, since the results are

negative, we show the negative logarithm of the absolute value.

When presenting the results, since the APEO can be obtained from ATTO by integrating out

X, we start with the latter. Estimates of the ATTO at X = 5, X = 10 and X = 20 are plotted

in Figure 1. Each graph should be read as a collection of average causal effects of subpopulations

defined by the value on abscissa, e.g., the subpopulation with birth weight Y = 3000. The three

dashed curves are the 2.5-th, 50-th, and 97.5-th percentiles of 500 bootstrap resampled estimates

of the ATTOs. Note first that the subpopulations may (and actually will) differ according to

their distribution of A, the subpopulation of newborns with Y = 2000 is very different from

the one with Y = 3500, as the mothers in the former subpopulation have, at least on average,

either worse health conditions or a exhibit a behavior that is much less conducive to healthy

child growth. In either case, the effect of an additional cigarette is as we would expect much

larger on the subpopulation that is more healthy, for the subpopulations with smaller than

average birth weight the effect gradually tapers off, until we observe that subpopulations with

Y = 2000 exhibit only a small effect of an additional cigarette. We would like to emphasize,

however, two things: First, in this case the damage has already been done by other factors

- recall in that respect also that the distribution of A may change. Second, a counterfactual

marginal reduction in smoking intensity would still improve birth weights for all levels of Y ,

as is evident from switching to the log scale This general reduction of the causal effect is true

regardless of the value of X, however, it is more pronounced for lower vales of X, i.e., when

mothers smoke less. Observe how heterogeneous the causal effects are, and that it is important

to have a tool that is able to disentangle these details.

This brings us to our second comparison: When comparing across the different values of X,

we see that the average effect of an additional cigarette is much stronger for X = 5. It implies

that counterfactually exposing pregnant mothers to an additional cigarette causes much more

harm if the actual smoking intensity is small; it is the first cigarettes that have the strongest

effect, and the effect tapers of gradually. If the fetus is already exposed to a lot of smoking, a

satiation effect kicks in. This is in accordance with the hypothesis that, in economic terms, that

cigarettes exhibit a negative, but diminishing marginal product in the birth weight production
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function. This effect gets smaller the more other factors have already contributed to low birth

weight. This means also that for these individuals, the policy maker must provide different

incentives: mothers living an unhealthy lifestyle should not just have to change their smoking

behavior, but also give up other unhealthy habits, while for the healthy mothers the effect of

(only) giving up smoking is much more pronounced, and should hence be at the focus of the

incentives.

Next, we repeat the same exercise, but condition in addition on different observed charac-

teristics to understand whether there are additional factors (denoted S above) that aggravate

the effect of smoking. First, we consider subgroups defined mother’s age, and distinguish be-

tween first and later births, to see whether there are some aspects of maturity or life cycle

planning visible. The top and bottom rows of Figure 2 show the ATTO of the first birth for

mothers in their teens and twenties, respectively, at X = 5. We do not see a major difference

in these results from the ATTO at X = 5 that used the entire sample. This suggests that the

outcome-conditioned partial effects are not heterogeneous across birth or and mother’s age.

We then repeat the exercise using the subpopulation of mothers who have regular alcohol

intake. Figure 3 shows the ATTO, again at X = 5, for the subpopulation of drinking mothers

giving their first births. We now see that the magnitudes of the outcome-conditioned partial

effects are somewhat larger than before, implying that alcohol and smokes are complementary

negative factors of the birth weight production function. The qualitative pattern of the ATTO

remains robust even with this subpopulation. A policy implication derived from this observation

is that it is even more effective to encourage drinking mothers to reduce the number of cigarettes

than non-drinking mothers, or, that the policy makers should encourage a healthy lifestyle

during pregnancy in general, not just a reduction in tobacco consumption.

The final step is to aggregate the ATTO, to obtain the APEO and APE. Recall that the

APEO can be obtained by integrating ATTO with the density fX|Y (·|y0). The density itself is

not a causal object, but it tends to weigh higher areas with high X and low Y, and vice versa,

as newborns who are exposed to a lot of smoking are much more likely to be underweight. Since

all individual ATTOs share, however, similar qualitative features, in particular much stronger

causal effects for large values of Y than for small values, the results for the APEO are not
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qualitatively different.

Estimates of the APEO are plotted in Figure 4 (a). The three dashed curves are again

the 2.5-th, 50-th, and 97.5-th percentiles of 500 bootstrap resampled estimates of the APEO.

Figure 4 (b) shows the same result in the log scale. We make the following two observations.

First, note that the APEO is significantly negative for any subpopulation Y = y. Second,

the magnitude of APEO is negligible when the actual birth weights are lower (< 2000 grams),

but becomes substantial when the actual birth weights are normal to high (> 3000 grams),

corroborating previous findings. Finally, the overall APE (integrated over y) is −11.82 grams,

in line with other results in the literature.3

5 Summary

In this paper we propose outcome conditioned treatment effects as an alternative object of

interest in the case of a continuous endogenous treatment. These effects use the entire distribu-

tion of the data, to obtain them we do not require assumptions like identification at infinity or

strong support conditions. Our focus is on the average partial effect, respectively the average

treatment effect on the treated, but both conditional on (levels of) the outcome variable. An

application to data on the effect of smoking on the birth weight of newborns shows that they

allow a detailed analysis that makes
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A Appendix

This appendix starts out by presenting auxilliary Lemmata that are used in the proofs of the

main results, alongside with all the proofs.
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A.1 LIV Lemma

The following lemma states that the assumptions intrdocued above are essential for LIV as

defined in formula (2.2) to identify a local average partial effect which we later integrate to

obtain the causal effects.

Lemma 1 (LIV: Necessary and Sufficient Condition). Suppose that Assumptions 1, 2, 3 and

4 are satisfied for the model (2.1). Then, the LIV identity

E [β(X,A)|Z = z] =
∂
∂z
E [Y |Z = z]

∂
∂z
E [X|Z = z]

holds. If h(z, v) = p+ v, where p = π(z), and E[V ] = 0, this specializes to

E [β(X,A)|P = π(z)] =
∂

∂p
E [Y |P = p]

∣∣∣∣
p=π(z)

.

Moreover, under the same set of assumptions

E
[
β(X,A)|Y = QY |P (τ |π(z)), Z = z

]
=

∂

∂p
QY |P (τ | p)

∣∣∣∣
p=π(z)

holds.

It is instructive to observe two things about this result: First, the average effect which is

identified by LIV is defined for the subpopulation for which Z = z. This is different from the

binary result, in which case the causal effect is the MTE, and the subpopulation is defined by

first stage preference parameters V . This makes LIV in this setup subject to the critique that the

subpopulations for which statements can be made are specific to the instrument (e.g., the data

at hand and the experimental variation in question, cf. Heckman and Vytlacil (2007)). Second,

if we allow the second stage structural function g to take more general forms than the simple

linear coefficient model, the necessary and sufficient condition for identification of a causal effect

generally amounts to requiring separability for the first stage, i.e., h(z, v) = π(z)+v, in general.

A.2 Proof of Lemma 1

Using the definition (2.1) of the structural model, we have

E [Y |Z = z] =

∫ ∫
g(h(z, v), a)fAV |Z(a, v | z)dadv =

∫ ∫
g(h(z, v), a)fAV (a, v)dadv
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where the last equality is due to Assumption 1. Taking derivatives on the both sides produces

d

dz
E [Y |Z = z] =

∫ ∫
β(h(z, v), a)

[
∂

∂z
h(z, v)

]
fAV (a, v)dadv

=

∫ ∫
β(h(z, v), a)

[
∂

∂z
h(z, v)

]
fAV |Z(a, v | z)dadv

= E
[
β(X,A) · ∂

∂z
h(Z, V )

∣∣∣∣Z = z

]
= E [β(X,A)|Z = z] · E

[
∂

∂z
h(Z, V )

∣∣∣∣Z = z

]
+ Cov

(
β(X,A),

∂

∂z
h(Z, V )

∣∣∣∣Z = z

)
where the first equality is due to the differentiability of g and h with respect their first arguments

as well as the L1 dominance of the integrand, and the second equality is again due to Assumption

1. The instrument independence also yields

E
[
∂

∂z
h(Z, V )

∣∣∣∣Z = z

]
=

d

dz
E [X|Z = z] and

Cov

(
β(X,A),

∂

∂z
h(Z, V )

∣∣∣∣Z = z

)
= Cov

(
β(h(z, V ), A),

∂

∂z
h(z, V )

)
.

Substituting these equalities and rearranging terms under Assumption 2, we obtain

E [β(X,A)|Z = z] =
d
dz
E [Y |Z = z]− Cov

(
β(h(z, V ), A), ∂

∂z
h(z, V )

)
d
dz
E [X|Z = z]

Therefore, the desired equality holds if and only if Assumption 3 is true.

The last identifying equality in the lemma is proved as follows. We derive the following

three auxiliary equations. First,

Pr[g(X,A) 6 QY |P (τ | p+ δ) | P = p+ δ]− Pr[g(X,A) 6 QY |P (τ | p) | P = p+ δ]

= FY |P (QY |P (τ | p+ δ) | p+ δ)− FY |P (QY |P (τ | p) | p+ δ)

= δ

[
∂

∂p
QY |P (τ | p)

]
fY |P (QY |P (τ | p) | p+ δ) + o(δ) (A.1)

holds under the differentiability of FY |P and QY |P with respect to y and p, respectively. Second,

Pr[g(X,A) 6 QY |P (τ | p) | P = p+ δ]− Pr[g(X + δ, A) 6 QY |P (τ | p) | P = p]

= Pr[g(p+ δ + V,A) 6 QY |P (τ | p) | P = p+ δ]− Pr[g(p+ δ + V,A) 6 QY |P (τ | p) | P = p]

= Pr[g(p+ δ + V,A) 6 QY |P (τ | p)]− Pr[g(p+ δ + V,A) 6 QY |P (τ | p)] = 0, (A.2)
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where the second equality is due to Assumption 1. Third, using the short-hand notation

B = β(X,A), we have

Pr[g(X + δ, A) 6 QY |P (τ | p) | P = p]− Pr[g(X,A) 6 QY |P (τ | p) | P = p]

= Pr[QY |P (τ | p) < Y 6 QY |P (τ | p)− (g(X + δ, A)− Y ) | P = p]

−Pr[QY |P (τ | p)− (g(X + δ, p)− Y ) < Y 6 QY |P (τ | p) | P = p]

= Pr[QY |P (τ | p) 6 Y 6 QY |P (τ | p)− δB | P = p]

−Pr[QY |P (τ | p)− δB 6 Y 6 QY |P (τ | p) | P = p] + o(δ)

=

∫ ∞

QY |P (τ |p)

∫ −δ−1[y−QY |P (τ |p)]

−∞
fY B|P (y, b | p)dbdy

−
∫ QY |P (τ |p)

−∞

∫ ∞

−δ−1[y−QY |P (τ |p)]
fY B|P (y, b | p)dbdy + o(δ)

= −δ

∫ 0

−∞
bfY B|P (QY |P (τ | p), b | p)db− δ

∫ ∞

0

bfY B|P (QY |P (τ | p), b | p)db+ o(δ)

= −δE[B | Y = QY |P (τ | p), P = p] · fY |P (QY |P (τ | p) | p) + o(δ), (A.3)

where the second equality is due to the differentiability of g and FY |P with respect to x and

y, respectively, and the fourth equality is due to change of variables and integration by parts

(see Hoderlein and Mammen (2007) for details of this step of computation). Add these three

equations (A.1), (A.2) and (A.3) together to get

0 = δ

[
∂

∂p
QY |P (τ | p)

]
· fY |P (QY |P (τ | p) | p+ δ)

− δE[B | Y = QY |P (τ | p), P = p] · fY |P (QY |P (τ | p) | p) + o(δ).

Under the condition that fY |P is continuous in p, letting δ → 0 yields

E[β(X,A) | Y = QY |P (τ | p), P = p] =
∂

∂p
QY |P (τ | p).

Since Z = z and P = π(z) are the same events under Assumption 2, setting p = π(z) yields

the result.

A.3 Proof of Theorem 1

Proof. Part (i) of the theorem follows immediately from the second equation in Lemma 1. Part

(ii) of the theorem follows from the last equation in Lemma 1 through the following lines of
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argument. Given Assumption 2, applying Lemma 1 with τ = FY |Z(y0 | z) yields

E [β(X,A)|Y = y0, Z = z] =
∂

∂p
QY |P (FY |Z(y0 | z) | p)

∣∣∣∣
p=π(z)

for all z in the support of Z | Y = y0. Integrating both sides of this equality with respect to

FZ|Y (· | y0) yields

E [β(X,A)|Y = y0] =

∫
∂

∂p
QY |P (FY |Z(y0 | p) | z)

∣∣∣∣
p=π(z)

· FZ|Y (dz | y0)

as desired.

A.4 MTE Lemma

In this section, we show that we can identify causal effects of the form E [β(x,A)|X = x, Z = z]

and E [β(x,A)|X = x, Y = y, Z = z] , which involve all the conditioning variables (Z,X), re-

spectively the entire distribution of the data (X, Y, Z).

Lemma 2 (Mean MTE). Suppose that Assumptions 1 (i), 4, 5 and 6 are satisfied for the model

(2.1). Then, the MTE is given by:

E [β(x,A)|X = x, Z = z] =
∂

∂x
E [Y |X = x, Z = z]− ρ(z, x)

∂

∂z
E [Y |X = x, Z = z] ,

where v = υ(z, x).

The LAR relates this conditioning on unobservables to an observable conditioning set (X,Z).

Finally, the last equality relates the LAR to an object that is entirely a function of the joint

distribution of the data, thus permitting sample counterparts estimation. Note the structure

on the right hand side as the derivative of the mean regression ∂
∂x
E [Y |X = x, Z = z] , which

due to the correlation between A,X and Z is not equal to the structural effect of interest, and

a second term, which accounts for the selection distortion, as in Heckman (1979). Note that

this selection distortion crucially depends on ρ(z, x) =
[
∂υ(z,x)

∂x

]
/
[
∂υ(z,x)

∂z

]
, which relates X and

Z via the first stage structure.

The following lemma generalizes LAR and MTE by linking it similar structures as in the

previous lemma, but now involving the entire distribution of the data:
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Lemma 3 (Quantile MTE). Suppose that Assumptions 1 (i), 4, 5 and 6 are satisfied for the

model (2.1). Then, the quantile LAR is given by

E
[
β(x,A)|Y = QY |XZ(τ | x, z), X = x, Z = z

]
=

∂

∂x
QY |XZ(τ | x, z)−ρ(z, x)· ∂

∂z
QY |XZ(τ | x, z),

and the quantile MTE is

E
[
β(x,A)|Y = QY |XZ(τ | x, z), X = x, V = v

]
= E

[
∂

∂x
QY |XZ(FY |XZ(Y | X,Z) | x, Z)

∣∣∣∣
x=X

− ρ(Z,X) · ∂

∂z
QY |XZ(FY |XZ(Y | X,Z) | X, z)

∣∣∣∣
z=Z

∣∣∣∣Y = QY |XZ(τ | x, z), X = x, V = ν

]
,

where v = υ(z, x).

The first equality characterizes the LAR through an expression involving the entire distribu-

tion of the data. The LAR has not direct interpretation, because it depends on the exogenous

incentive Z. However, recall that by integrating out Z from the LAR we have previously

obtained an analogous effect to the average treatment effect on the treated (ATT). Likewise,

integrating out Z from the second object yields a quantile version of this effect. If we compen-

sate τ such that QY |XZ(τ | x, z) = y for any value of z, by integrating out Z we obtain the effect

E [β(x,A)|Y = y,X = x] . This is the ATT for the population choosing treatment intensity X,

and having, say, a large value of Y . Moreover, observe the parallels between this equality and

the right hand side of Lemma 2. This parallel is not trivial, and in our mind an expression of

the deep structure of the problem. It is not easily explained, because differentiating quantile

regressions does not directly transform into moments of derivatives, and the proofs follow very

different steps.

The second part of this lemma provides the MTE. It follows from the first part and the

fact that σ(X, Y, Z) ⊇ σ(X,Y, V ). In an ideal world, we would like to have β(x, a), i.e., know

A = a. However, due to the complex nature of A this effect is not available. However, parts

of A are given by V , and other parts of A may be obtained, if for various values of X, the

response Y is evaluated. As a simple example, suppose that Y = ϕ(X,A1, A2) and assume that

A1 = V . as well as A2 ⊥ X|V, A2 v U [0, 1], as well as ϕ strictly monotonic in V . Then,

E
[
β(x,A1, A2)|Y = QY |XZ(τ | x, z), X = x, V = v

]
= β(x, τ, v).

However, if A has more components, this will generally be an average.
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As with all lemmas in this paper, the main results equate an average structural derivative on

the left hand side with a statistical object on the right hand side. The first (and consequently

the second) equality is, to the best of our knowledge, novel. The right-hand side of the first

equation in Lemma 3 turns out to be similar to the equality

∂

∂x
QY |XV (τ | x, v) =

∂

∂x
QY |XZ(τ | x, z) +

∂
∂z
QY |XZ(τ | x, z)
∂
∂z
QX|Z(v | z)

(A.4)

derived by Imbens and Newey (2009; Theorem 2). In their model, it is directly the object

∂
∂x
QY |XV (y | x, v) which is of interest, whereas in our approach identifies a local average of the

structural objects β(x,A). Note that quantile partial effects do not generally represent struc-

tural partial effects unless rank invariance is assumed. Our result therefore adds a structural

interpretation to (A.4) in the case of a high dimensional structural unobservable.

A.5 Proof of Lemma 2

Proof. We derive the following two auxiliary equations. First,

∂

∂x
E[Y | X = x, Z = z] = ∂x

∫
g(x, a)fA|XZ(a | x, z)da =

∂

∂x

∫
g(x, a)fA|V Z(a | υ(z, x), z)da

= E[β(X,A) | V = υ(z, x), Z = z]

+
∂

∂x
υ(z, x) · E

[
g(X,A)

∂

∂v
log fA|V Z(A | V, Z)

∣∣∣∣V = υ(z, x), Z = z

]
,

where the second equality is due to Assumption 5 and the third equality is due to the differen-

tiability of g with respect to x as well as the L1 dominance of the integrand. Second, a similar

calculation yields

∂

∂z
E[Y | X = x, Z = z] =

∂

∂z
υ(z, x) · E

[
g(X,A)

∂

∂v
log fA|V Z(A | V, Z)

∣∣∣∣V = υ(z, x), Z = z

]
,

where the instrumental independence in model (2.1) was used to vanish ∂
∂z
fA|V Z . Combining

the above two equations and rearranging by Assumption 6 yield the desired result.

A.6 Proof of Lemma 3

Proof. Assumptions 5 and 6 provide the parameterized curve h 7→ (h, δz(h)) =: (δx, δz) that

solves the implicit function equation υ(z + δz, x + δx) − υ(z, x) = 0 of a smooth submanifold
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in a neighborhood of h = 0. Furthermore, δz(0) = 0 and (δx, δz) → 0 as h → 0. By these

properties, we have

δz
δx

= −
∂
∂x
υ(z, x)

∂
∂z
υ(z, x)

+ o(1) as h → 0. (A.5)

Next, we derive the following four auxiliary equations. First,

Pr[g(x+ δx, A) 6 QY |XZ(τ | x+ δx, z + δz) | X = x+ δx, Z = z + δz]

−Pr[g(x+ δx, A) 6 QY |XZ(τ | x, z + δz) | X = x+ δx, Z = z + δz]

= FY |XZ(QY |XZ(τ | x+ δx, z + δz) | x+ δx, z + δz)

−FY |XZ(QY |XZ(τ | x, z + δz) | x+ δx, z + δz)

= δx
∂

∂x
QY |XZ(τ | x, z)fY |XZ(QY |XZ(τ | x, z) | x+ δx, z + δz) + o(δx), (A.6)

where the last equality is due to the differentiability of QY |XZ and FY |XZ with respect to x and

y, respectively. Second, similar lines of calculations yield

Pr[g(x+ δx, A) 6 QY |XZ(τ | x, z + δz) | X = x+ δx, Z = z + δz]

−Pr[g(x+ δx, A) 6 QY |XZ(τ | x, z) | X = x+ δx, Z = z + δz]

= FY |XZ(QY |XZ(τ | x, z + δz) | x+ δx, z + δz)

−FY |XZ(QY |XZ(τ | x, z) | x+ δx, z + δz)

= δz
∂

∂z
QY |XZ(τ | x, z)fY |XZ(QY |XZ(τ | x, z) | x+ δx, z + δz) + o(δz), (A.7)

under the differentiability of QY |XZ with respect to z. Third,

Pr[g(x+ δx, A) 6 QY |XZ(τ | x, z) | X = x+ δx, Z = z + δz]

−Pr[g(x+ δx, A) 6 QY |XZ(τ | x, z) | X = x, Z = z]

= Pr[g(x+ δx, A) 6 QY |XZ(τ | x, z) | Z = z + δz, V = υ(z + δz, x+ δx)]

−Pr[g(x+ δx, A) 6 QY |XZ(τ | x, z) | Z = z, V = υ(z, x)]

= Pr[g(x+ δx, A) 6 QY |XZ(τ | x, z) | Z = z + δz, V = υ(z, x)]

−Pr[g(x+ δx, A) 6 QY |XZ(τ | x, z) | Z = z, V = υ(z, x)] = 0, (A.8)

where the first equality is due to Assumption 5, the second equality is due to the definition of

(δx, δz), and the last equality is due to Assumption 1 (i). Fourth, with the short-hand notation
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B := β(X,A), we have

Pr[g(x+ δx, A) 6 QY |XZ(τ | x, z) | X = x, Z = z]

−Pr[g(x,A) 6 QY |XZ(τ | x, z) | X = x, Z = z]

= Pr[QY |XZ(τ | x, z) < Y 6 QY |XZ(τ | x, z)− (g(x+ δx, A)− Y ) | X = x, Z = z]

−Pr[QY |XZ(τ | x, z)− (g(x+ δx, z)− Y ) < Y 6 QY |XZ(τ | x, z) | X = x, Z = z]

= Pr[QY |XZ(τ | x, z) 6 Y 6 QY |XZ(τ | x, z)− δxB | X = x, Z = z]

−Pr[QY |XZ(τ | x, z)− δxB 6 Y 6 QY |XZ(τ | x, z) | X = x, Z = z] + o(δx)

=

∫ ∞

QY |XZ(τ |x,z)

∫ −δ−1
x [y−QY |XZ(τ |x,z)]

−∞
fY B|XZ(y, b | x, z)dbdy

−
∫ QY |XZ(τ |x,z)

−∞

∫ ∞

−δ−1
x [y−QY |XZ(τ |x,z)]

fY B|XZ(y, b | x, z)dbdy + o(δx)

= −δx

∫ 0

−∞
bfY B|XZ(QY |XZ(τ | x, z), b | x, z)db

−δx

∫ ∞

0

bfY B|XZ(QY |XZ(τ | x, z), b | x, z)db+ o(δx)

= −δxE[B | Y = QY |XZ(τ | x, z), X = x, Z = z]fY |XZ(QY |XZ(τ | x, z) | x, z) + o(δx), (A.9)

where the second equality is due to the differentiability of g and FY |XZ with respect to x and

y, respectively, and the fourth equality is due to change of variables and integration by parts

(see Hoderlein and Mammen (2007) for details of this step of computation). Add the above

four equations (A.6), (A.7), (A.8) and (A.9) together to get

0 = δx
∂

∂x
QY |XZ(τ | x, z)fY |XZ(QY |XZ(τ | x, z) | x+ δx, z + δz)

+δz
∂

∂z
QY |XZ(τ | x, z)fY |XZ(QY |XZ(τ | x, z) | x+ δx, z + δz)

−δxE[B | Y = QY |XZ(τ | x, z), X = x, Z = z]fY |XZ(QY |XZ(τ | x, z) | x, z) + o(δx) + o(δz).

The desired result follows from this equation together with Equation (A.5), Assumption 5, and

the differentiability of fY |XZ with respect to the conditioning variables (x, z).

A.7 Proof of Theorem 2

Proof. Part (i) of the theorem follows immediately from Lemma 2. Part (ii) of the theorem

follows from Lemma 3 through the following lines of argument. Under Assumption 7 (i′) and
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(ii′), applying Lemma 3 with x = x0 and τ = FY |XZ(y0 | x0, z) yields

E [β(x0, A)|Y = y0, X = x0, Z = z]

=
∂

∂ξ
QY |XZ(FY |XZ(y0 | x0, z) | ξ, z)

∣∣∣∣
ξ=x0

− ρ(z, x0) ·
∂

∂ζ
QY |XZ(FY |XZ(y0 | x0, z) | x0, ζ)

∣∣∣∣
ζ=z

,

for a.s. z in the support of Z | Y = y0, X = x0. Integrating both sides of this equality with

respect to FZ|Y X(· | y0, x0) yields

E [β(x0, A)|Y = y0, X = x0] =

∫
∂

∂ξ
QY |XZ(FY |XZ(y0 | x0, z) | ξ, z)

∣∣∣∣
ξ=x0

· FZ|Y X(dz | y0, x0)

−
∫

ρ(z, x0) ·
∂

∂ζ
QY |XZ(FY |XZ(y0 | x0, z) | x0, ζ)

∣∣∣∣
ζ=z

· FZ|Y X(dz | y0, x0)

which proves the first equality in the theorem. The second equality immediately follows from

this result.

A.8 Estimation of the Outcome Conditioned Treatment Effects

We take the identification results of Theorem 2 (ii) to propose sample-counterpart estimators

of the outcome conditioned ATE and ATT. For simplicity, we specialize in the case of ρ(z, x) ≡

1/ ∂
∂ζ
QX|Z(FX|Z(x | z) | ζ)|ζ=z, but similar arguments continue to apply to other cases.

A.8.1 Estimation of the Outcome Conditioned ATT

First, consider the leave-one-out Nadaraya-Watson estimators

F̂Y |XZ(y0 | x0, Zi) =

∑
j ̸=i 1{Yj 6 y0}K

(
Xj−x0

hx

)
K

(
Zj−Zi

hz

)
∑

j ̸=iK
(

Xj−x0

hx

)
K

(
Zj−Zi

hz

) and

F̂X|Z(x0 | Zi) =

∑
j ̸=i 1{Xj 6 x0}K

(
Zj−Zi

hz

)
∑

j ̸=i K
(

Zj−Zi

hz

)
of the conditional CDF values FY |XZ(y0 | x0, Zi) and FX|Z(x0 | Zi) for each i. Given these

conditional CDFs, we in tern let B̂i, Ĉi, and b̂i denote estimators of

Bi =
∂

∂ξ
QY |XZ(FY |XZ(y0 | x0, Zi) | ξ, Zi)

∣∣∣∣
ξ=x0

,

Ci =
∂

∂ζ
QY |XZ(FY |XZ(y0 | x0, Zi) | x0, ζ)

∣∣∣∣
ζ=Zi

, and

bi =
∂

∂ζ
QX|Z(FX|Z(x0 | Zi) | ζ)

∣∣∣∣
ζ=Zi

(
=

1

ρ(Zi, x0)

)
,
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respectively. They can be consistently estimated by the leave-one-out local-linear quantile

regression estimators defined by(
Âi, B̂i, Ĉi

)
= arg max

(A,B,C)

∑
j ̸=i

K

(
Xj − x0

hx

)
K

(
Zj − Zi

hz

)
(Yj − A−BXj − CZj)×[

F̂Y |XZ(y0 | x0, Zi)− 1 {Yj − A−BXj − CZj < 0}
]

and (
âi, b̂i

)
= argmax

(a,b)

∑
j ̸=i

K

(
Zj − Zi

hz

)
(Xj − a− bZj)×[

F̂X|Z(x0 | Zi)− 1 {Xj − a− bZj < 0}
]

Using these local linear estimates, we can consistently estimate the outcome conditioned ATT

by the Nadaraya-Watson method:

Ê [β(x0, A) | Y = y0, X = x0] =

∑
i

[
B̂i − Ĉi

b̂i

]
K

(
Yi−y0
hy

)
K

(
Xi−x0

hx

)
∑

i K
(

Yi−y0
hy

)
K

(
Xi−x0

hx

) .

A.8.2 Estimation of the Outcome Conditioned ATE

Consider the leave-one-out Nadaraya-Watson estimators

F̂Y |XZ(y0 | Xi, Zi) =

∑
j ̸=i 1{Yj 6 y0}K

(
Xj−Xi

hx

)
K

(
Zj−Zi

hz

)
∑

j ̸=i K
(

Xj−Xi

hx

)
K

(
Zj−Zi

hz

) and

F̂X|Z(Xi | Zi) =

∑
j ̸=i 1{Xj 6 Xi}K

(
Zj−Zi

hz

)
∑

j ̸=i K
(

Zj−Zi

hz

)
of the conditional CDF values FY |XZ(y0 | Xi, Zi) and FX|Z(Xi | Zi) for each i. Given these

conditional CDFs, we in tern let B̂′
i, Ĉ

′
i, and b̂′i denote estimators of

B′
i =

∂

∂ξ
QY |XZ(FY |XZ(y0 | Xi, Zi) | ξ, Zi)

∣∣∣∣
ξ=Xi

,

C ′
i =

∂

∂ζ
QY |XZ(FY |XZ(y0 | Xi, Zi) | Xi, ζ)

∣∣∣∣
ζ=Zi

, and

b′i =
∂

∂ζ
QX|Z(FX|Z(Xi | Zi) | ζ)

∣∣∣∣
ζ=Zi

(
=

1

ρ(Zi, Xi)

)
,
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respectively. They can be consistently estimated by the leave-one-out local-linear quantile

regression estimators defined by(
Â′

i, B̂
′
i, Ĉ

′
i

)
= arg max

(A,B,C)

∑
j ̸=i

K

(
Xj −Xi

hx

)
K

(
Zj − Zi

hz

)
(Yj − A−BXj − CZj)×[

F̂Y |XZ(y0 | Xi, Zi)− 1 {Yj − A−BXj − CZj < 0}
]

and (
â′i, b̂

′
i

)
= argmax

(a,b)

∑
j ̸=i

K

(
Zj − Zi

hz

)
(Xj − a− bZj)×[

F̂X|Z(Xi | Zi)− 1 {Xj − a− bZj < 0}
]

Using these local linear estimates, we can consistently estimate the outcome conditioned ATE

by the Nadaraya-Watson method:

Ê [β(X,A) | Y = y0] =

∑
i

[
B̂′

i −
Ĉ′

i

b̂′i

]
K

(
Yi−y0
hy

)
∑

iK
(

Yi−y0
hy

) .

A.9 Figures
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ATTO at X = 5 Log-Scaled ATTO at X = 5

ATTO at X = 10 Log-Scaled ATTO at X = 10

ATTO at X = 20 Log-Scaled ATTO at X = 20

Figure 1: ATTO E[β(X,A) | Y = y,X = x] across y ∈ [1500, 5000] and x ∈ {5, 10, 20}. The

dashed curves represent the 2.5-th, 50-th, and 97.5-th percentiles of bootstrap estimates. The

left figures are plotted in raw values, whereas the right figures are plotted in the logarithmic

scale of the raw values.
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ATTO for Mothers in Teens Log-Scaled ATTO

ATTO for Mothers in Twenties Log-Scaled ATTO

Figure 2: ATTO E[β(X,A) | Y = y,X = x] across y ∈ [1500, 5000] and x = 5 for the

subpopulation of first births. The top and bottom rows restrict to mothers aged teens and

twenties, respectively. The dashed curves represent the 2.5-th, 50-th, and 97.5-th percentiles

of bootstrap estimates. The left figures are plotted in raw values, whereas the right figures are

plotted in the logarithmic scale of the raw values.
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ATTO for Drinking Mothers Log-Scaled ATTO

Figure 3: ATTO E[β(X,A) | Y = y,X = x] across y ∈ [1500, 5000] and x = 5 for the

subpopulation of first births and drinking mothers. The dashed curves represent the 2.5-th,

50-th, and 97.5-th percentiles of bootstrap estimates. The left figures are plotted in raw values,

whereas the right figures are plotted in the logarithmic scale of the raw values.

(a) APEO in Raw Values (b) APEO in Log Scale

Figure 4: APEO E[β(X,A) | Y = y] across y ∈ [1500, 5000]. The dashed curves represent

the 2.5-th, 50-th, and 97.5-th percentiles of bootstrap estimates. (a) is plotted in raw values,

whereas (b) is plotted in the logarithmic scale of the raw values.
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