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Abstract

This paper asks which aspects of a structural Nonparametric Instrumental Variables Regression

(NPIVR) can be identified well and which ones cannot. It contributes to answering this question

by characterizing the identified set of linear continuous functionals of the NPIVR under norm con-

straints. Each element of the identified set of NPIVR can be written as the sum of a common

“identifiable component” and an idiosyncratic “unidentifiable component”. The identified set for

any continuous linear functional is shown to be a closed interval, whose midpoint is the functional

applied to the “identifiable component”. The formula for the length of the identified set extends the

popular omitted variables formula of classical linear regression. Some examples illustrate the wide

applicability and utility of our identification result, including bounds and a new identification con-

dition for point-evaluation functionals. The main ideas are illustrated with an empirical application

of the effect of children on labor-market outcomes for women.
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1 Introduction

Consider a nonparametric instrumental variables (IV) setting, where the dependent variable Y is related

to the vector X through the equation

Y = g(X) + ε, (1)

where E[ε|Z] = 0, almost surely (a.s), for a vector of instruments Z. The nonparametric IV Regres-

sion (NPIVR) model (1) is different from the classical regression model in that X is allowed to be

endogenous, that is, E[ε|X] 6= 0 with positive probability, a condition that is likely to arise in many

economic applications. The setting in (1) allows for X and Z to have common components (i.e. some

variables to be exogenous). Suppose g ∈ G, where G is a Hilbert space of measurable functions of X

with values in R, equipped with the norm ‖·‖G ; see examples below. We consider the parameter space

Θ := {g ∈ G : ‖g‖G ≤ B}, for a positive constant B > 0. Identification of g in (1) (i.e. uniqueness of

a solution to (1) in Θ) requires far more stringent conditions in the nonparametric case investigated

here than in typical parametric settings; see Newey and Powell (2003).1 Furthermore, even when these

strong identification conditions hold, the best estimator of g, in a minimax rate sense, can have very

slow rates of convergence.2 These arguments motivate us to investigate identification of aspects of g,

rather than g itself, in the form of Lg, where L is a generic linear continuous functional on (G, ‖·‖G).

Numerous examples of linear functionals are provided below, including the point-evaluation functional

Lg = g(x0), for some x0 in the support of X, which shows the wide applicability of our approach. In

this paper, we characterize the sharp identified set for Lg, where g satisfies (1) and g ∈ Θ.

Parameter spaces with norm constraints have been routinely used in the context of (1) for various

choices of ‖·‖G ; see Newey and Powell (2003), Blundell, Chen and Kristensen (2007), Horowitz (2011)

and Santos (2012), among many others. These constraints are often applied with norms ‖·‖G that in-

volve derivatives, so that highly variable solutions g are ruled out. Under point identification of g, norm

constraints do not play any role in inference, provided the point identified function g satisfies ‖g‖G < B.

However, under partial identification, norm constraints play a fundamental role in identification and

inference, as we show in this paper. In particular, we investigate the impact of B on inferences under

partial identification, and show that the midpoint of the identified set for Lg is independent of B.

Moreover, we find necessary and sufficient conditions under which set inferences are insensitive to B.

The nonparametric IV model in (1) has been a subject of much recent research in econometrics.

The literature has mainly focused on conditions for point identification and estimation under point

identification; see the aforementioned references. An exception to requiring point identification is

Santos (2012), who discusses nonparametric inference under partial identification of g. Our focus here

is on semiparametric aspects of g, rather than nonparametric ones. The papers most closely related

to ours are those by Severini and Tripathi (2006, 2012), Santos (2011) and, more recently, Freyberger

and Horowitz (2013). Severini and Tripathi (2006, 2012) provided necessary and sufficient conditions

1Essentially, it is required that any transformation of the instrument Z is a relevant instrument for any non-constant

transformation of X; see Lemma 2.1 in Severini and Tripathi (2006).
2See, for instance, Hall and Horowitz (2005), Blundell, Chen and Kristensen (2007), Darolles, Fan, Florens and Renault

(2011), Chen and Reiss (2011) and Chen and Pouzo (2012), to mention just a few.
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for identification of Lg, and a necessary condition for its
√
n-consistent estimation, where n is the

sample size. Furthermore, they also established the efficiency bounds for estimating Lg when it is

identified. Santos (2011) proposed a
√
n-asymptotically normal estimator for the point identified Lg.

These papers allow for partial identification of g, but assume Lg to be point identified. In contrast,

our paper focuses on a partially identified Lg. Recently and independently of our work, Freyberger and

Horowitz (2013) have investigated partial identification and estimation of Lg when observations have

a finite discrete support and when shape restrictions, such as monotonicity, hold. In this paper we

allow for continuous and/or discrete variables. Moreover, we analyze for the first time in the literature

the case where Lg is partially identified under norm constraints, and consider a general setting that

includes new examples such as, for instance, point-evaluation functionals. Traditional Hilbert spaces

considered in the literature cannot handle point-evaluation functionals because they are discontinuous

in the underlying topologies. To solve this problem, we use as G a Reproducing Kernel Hilbert Space

(RKHS), under which point-evaluation functionals are continuous, see for instance Chapters 13 to

15 of Parzen (1967). When the theory is specialized to this example, we obtain a new sufficient

condition for point identification of g(x0), and we relate this condition to the classical completeness

assumption. For the particular case of discrete variables, our results are complementary to existing

ones, as our norm constraints cannot be written as the linear inequality constraints considered by

Freyberger and Horowitz (2013). Thus, our results significantly complement and extend existing results,

characterizing the factors that determine the identified set of linear continuous functionals under general

norm constraints, introducing new examples and shedding some light on the impact of norm constraints

on inference under partial identification.

Based on our identification results, we introduce the concept of G−consistent estimation of g in

(1). We say a nonparametric estimator ĝ of g is G−consistent when Lĝ consistently estimates the

midpoint of the identified set for Lg, for all linear continuous functionals L : G → R.3 G−consistent

estimators are appealing because under point identification they are consistent for the parameter of

interest, and under partial identification they are consistent for the mean value of the parameter without

further information (i.e. with an uninformative prior on the identified set). See also Song (2013) for

an optimality theory of inference based on the midpoint. In some sense, G−consistent estimators

are robust to lack of point identification. This consistency concept can be extended to more general

situations with parameters that are identified in an interval; see Manski (2003, 2007), Tamer (2010)

and references therein for numerous examples. Our arguments below lead to natural candidates for

G−consistent estimators; see Section 3. Nevertheless, a companion paper to this paper will deal with

estimation of the identified set characterized here, and in particular, it will investigate G−consistent

estimators and their asymptotic properties.

The following notations are used throughout the paper. Henceforth, A′, tr(A) and |A| := (tr(A′A))1/2

denote the transpose, trace and the Euclidean norm of a matrix A, respectively. The symbol := denotes

definitional relation. For a real-valued function h(x), denote by h(j)(x) := ∂jh(x)/∂xj its jth deriva-

3An extension of this concept allows for restricted classes of linear functionals. We say ĝ is L−consistent when Lĝ

consistently estimates the midpoint of the identified set for Lg, for linear continuous functionals L : G → R in the class L.

Hence, G−consistent estimators are L−consistent estimators with L equals the class of all linear continuous functionals.
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tive, with h(0)(x) := h(x). For a generic random variable W, L2(W ) denotes the space of real-valued

(measurable) functions of W that are square integrable, i.e. f(W ), such that ‖f‖2 := E
[
f2(W )

]
<∞.

L2(W ) is a Hilbert space with inner product 〈f, g〉 := E [f(W )g(W )] . Let SW denote the support of

W. Notice the abuse of notation, as ‖f‖ and 〈f, g〉 depend on the distribution of W. We hope this will

not cause confusion. We assume, for simplicity, G ⊂ L2(X) and denote by 〈f, g〉G the inner product

associated to ‖·‖G . For a linear operator K : G1→ G2 between two Hilbert spaces, denote the subspaces

R(K) := {f ∈ G2 : ∃s ∈ G1,Ks = f} (range of K) and N (K) := {f ∈ G1 : Kf = 0} (kernel of K). Let

D(K) denote the domain of definition of K. For a subspace V ⊂ G, V ⊥ and V denote, respectively, its

orthogonal complement and closure, with respect to (wrt) the norm topology, in G. Henceforth, for a

closed subspace V, PV denotes its orthogonal projection operator. We will extensively use basic results

from operator theory and Hilbert spaces. See Carrasco, Florens and Renault (2006) for an excellent

review of these results.

The remainder of the paper is organized as follows. Section 2 illustrates the general applicability

of our setting with some examples. Section 3 establishes our main result, the characterization of the

identified set for Lg. This result is discussed in the context of previous examples in Section 4. This

section also contains an empirical application of the effect of children on labor-market outcomes for

women, using data from Angrist and Evans (1998). Finally, Section 5 concludes and discusses further

extensions. Some tables and figures, as well as some asymptotic results for discrete variables, are

gathered in an Appendix.

2 Examples

Here we illustrate our theory with several examples. Some of these examples and further examples can

be found in, e.g., Stock (1989), Brown and Newey (1998), Ai and Chen (2003), Chen and Pouzo (2009,

2012), Severini and Tripathi (2006), Santos (2011) and Severini and Tripathi (2012).

Example 1 (Engel Curves): Let Y denote household’s expenditure share on food, let X be the

logarithm of the household’s total expenditures, and let Z be the logarithm of the household’s gross

earnings. Blundell, Chen and Kristensen (2007) considered an empirical application of (1) within this

setting, establishing rates of convergence for an estimator of g. They provided sufficient conditions

for point identification in the form of bounded completeness assumptions. Here, we complement their

analysis by discussing methods that are robust to potential identification failures. Let G be a subspace

of L2(X) of differentiable functions with integrable derivatives, and take ‖·‖G = ‖·‖. A functional of

interest is the average partial effect

Lg = E
[
g(1)(X)

]
.

In this application a natural bound is B = 1. Under mild conditions (see Powell, Stock, and Stoker

(1989), Lemma 2.1), L is a continuous functional on G. We will provide below sharp bounds for Lg. �

Example 2 (Consumer Surplus): Suppose a researcher aims to estimate the approximated consumer

surplus for a price change from a to b, where 0 < a < b < ∞. Take for example a market for fish,

4



as in Angrist, Graddy, and Imbens (2000). Here Y denotes demanded quantity of fish, X denotes its

price and g(·) represents the demand function. The instrument Z measures weather conditions at sea.

Approximated consumer surplus is computed as

Lg =

∫ b

a
g(x)dx.

See, e.g., Newey and McFadden (1994). The operator L is linear and continuous in G, the space of

square integrable functions on [a, b], and which are zero elsewhere. �

Example 3 (Best Linear Approximations): A linear functional of interest in applied work is the

Best Linear Approximation (BLA) functional in G = L2(X). Here, we focus on a linear combination of

the BLA coefficients

β ≡ β(g) = E[XX ′]−1E[Xg(X)],

i.e., Lg = α′β for some known α ∈ Rp, where p is the dimension of X. For instance, α = (1, 0, ..., 0)′

corresponds to the first component of β. It is well-known that β solves the problem

min
γ∈Rp

E[
(
g(X)− γ′X

)2
],

and hence, it contains important structural information. In the context of the application by Angrist

and Krueger (1991) on returns to schooling, Newey (2013) shows that under Gaussianity, β′X is the

part of g that can be estimated with certain precision, other aspects of g are subject to large sample

variability. �

Example 4 (Point-evaluation Functionals): To illustrate the wide applicability of our results,

consider the point-evaluation functional Lg = g(x0), for some x0 in the support of X. This functional

is not continuous in the usual Hilbert spaces considered in the literature, e.g. G = L2(X). However,

if we take as G a RKHS, see for instance Parzen (1967) and Wahba (1990), then L is continuous by

definition.4 For example, suppose X is univariate with SX = [a, b], and consider G as the Sobolev

Space

W 1
2 := {g : g is absolute continuous and g(1) ∈ L2[a, b]},

where L2[a, b] is the space of square integrable functions in [a, b]. The space W 1
2 is endowed with the

square norm

||g||2W 1
2

:=

∫ b

a
g2(x)dx+

∫ b

a

(
g(1)(x)

)2
dx.

Then, it is known that W 1
2 is a Hilbert space and Lg = g(x0) a continuous functional on it; see, e.g.,

Adams (1975). Newey and Powell (2003), Blundell, Chen and Kristensen (2007), Horowitz (2011),

Santos (2012), among many others, have used related spaces in the context of NPIVR under norm

constraints. This setting can be easily modified to allow for point-evaluation functionals of derivatives

4RKHS are exactly defined as Hilbert spaces where the evaluation functionals are continuous. So, the concept RKHS

is exactly the right tool to use to handle point-evaluation functionals by standard Hilbert space methods.
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of g, multivariate covariates and unbounded supports. Readers are referred to Berlinet and Thomas-

Agnan (2004) for numerous examples of RKHS and their properties. �

Example 5 (Discrete Variables): Our results can be applied to discrete variables. To illustrate

this in a specific example, consider the application of Angrist and Evans (1998), where Y is number

of weeks a woman works in a year, X is the number of children a woman has (2,3,4 or 5), and the

instrumental variable Z is binary with Z = 1 indicating the woman’s first two children have the same

sex and Z = 0 otherwise. This is also the application considered in Freyberger and Horowitz (2013).

Suppose one is interested in the increment functional L23g = g(3)− g(2) or in the probability-weighted

increment functional LP23g = P (X = 3)g(3) − P (X = 2)g(2). All linear functionals have the form

Lg = c′g, where here we identify g with the vector g = (g(2), ..., g(5))′ and c = (c1, ..., c4)
′ ∈ R4 is an

arbitrary vector. In this application, G = R4, endowed with the usual Euclidean norm, and we can

take B = 104 (= 52 ×
√

4). Below, we provide bounds and inference for Lg incorporating the bound

|g| ≤ B. The example can be easily extended to any situation where the cardinality in the discrete

support of X, say d(X), is larger than the cardinality of the support of Z, say d(Z), which is common in

applications. See, for instance, Angrist and Krueger (1991), Bronars and Grogger (1994), Card (1995)

and Lochner and Moretti (2004), among many others, for empirical applications where d(X) > d(Z).

In such situations g is not identified; see Newey and Powell (2003) and Freyberger and Horowitz (2013).

It is straightforward to prove that the dimension of the space of linear functionals that are identified

is d(Z) under strong instruments, which can be much smaller than d(X). �

3 Identification

Let T : G → L2(Z) be the linear operator Tg(z) := E[g(X)|Z = z]. Henceforth, we assume T

is continuous wrt ‖·‖G .5 Define r(z) := E[Y |Z = z], which is assumed to exist and satisfy r ∈
R(T ) ⊂ L2(Z). Then, the identified set for g is G0 ∩ Θ, where recall Θ =

{
g ∈ G : ‖g‖G ≤ B

}
, and

G0 := {g ∈ G : Tg = r} . That is, G0 ∩ Θ is the set of functions in the parameter space Θ that are

compatible with the exogeneity conditions of Z. We will assume that the model is correctly specified

(i.e. the identified set is nonempty) and allow T to be non-injective, so partial identification of g

is permitted. Therefore, G0 is not a singleton if N (T ) 6= {0}. Since N (T ) plays a key role in the

identification of g and Lg, we provide some intuitive interpretation for this set. Informally speaking,

N (T ) consists of transformations h(X) ∈ G that, although related to Y, are completely unrelated to

the instrument Z, in the sense that variation in the instruments does not recover any information on

h(X) (by definition E[h(X)|Z = z] = 0 a.s, so h(X) is uncorrelated with any measurable function of

Z).

The main result of this paper characterizes the identified set L0 := {Lg : g ∈ G0 ∩Θ} , which is

assumed to be non-empty. Since L is continuous wrt ‖·‖G , by the Riesz Representation theorem,

Lg = 〈g, `〉G , for some ` ∈ G and all g ∈ G. The function ` is called the Riesz representer of L. Define

5If ‖·‖G = ‖·‖ , then T is clearly continuous, as ‖Tg‖2 = E[(E(g(X)|Z))2] ≤ E[E(g(X)2|Z)] = ‖g‖2.
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g0 := arg ming∈G0 ‖g‖G and assume ‖g0‖G ≤ B. It is well-known that g0 is uniquely defined.6 It is also

known that g0 = T †r, where T † denotes the Moore-Penrose pseudoinverse of T (see Engl, Hanke and

Neubauer (1996), p. 33).7 The function g0 has an important structural interpretation. For any g ∈ G0,
g0 = PN (T )⊥g, so that

g = g0︸︷︷︸
Identified

+ PN (T )g︸ ︷︷ ︸
Unidentified

.

Following Severini and Tripathi (2006), we call g0 the “identifiable part” of g and PN (T )g the “uniden-

tifiable part”. As we will show, the function g0 plays a fundamental role in the partial identification of

linear structural functionals. Figure 1 in the Appendix illustrates the geometry of the problem. The

set G0 is a linear variety (an affine hyperplane), g0 is the orthogonal projection of the origin onto G0.
In this plot, G0 intersects ‖g‖G = B in the points gmin and gmax, respectively, and these points are

such that Lgmin = ming∈G0,‖g‖G≤B Lg and Lgmax = maxg∈G0,‖g‖G≤B Lg. The identified set for Lg is

the interval [Lgmin, Lgmax] and Lg0 its midpoint. It is evident from this plot that the only identified

functional is that where ` is collinear with g0, i.e. orthogonal to N (T ). Any other case leads to partial

identification of Lg. The following theorem formally characterizes L0.

Theorem 3.1 Assume T is continuous wrt ‖·‖G , ‖g0‖G ≤ B and that (1) holds. Then, the identified

set L0 is a closed interval with midpoint Lg0 and radius

ρ :=
(
B − ‖g0‖G

)
||PN (T )`||G .

Proof. Continuity of T implies that its kernel N (T ) is a closed subspace. In this proof, we take N to

mean N (T ). Notice also G0 = g0 +N , so G0 is a closed linear variety. The existence and uniqueness of

g0 is guaranteed by Theorem 1 in Luenberger (1997) p. 64. We then can write

sup
g∈G0,‖g‖G≤B

Lg = Lg0 + sup
g∈N ,‖g0+g‖G≤B

Lg

= Lg0 + sup
g∈N ,‖g‖G≤B−‖g0‖G

Lg

= Lg0 + (B − ‖g0‖G) sup
g∈N ,‖g‖G≤1

Lg

= Lg0 + (B − ‖g0‖G) min
h∈N⊥

‖`− h‖G .

The third equality holds by Pythagorean theorem and the fact that g0 orthogonal to N (Luenberger

(1997) p. 64). The last equality holds by Theorem 2 in Luenberger (1997) p. 121. Similarly, following

the fact that

inf
g∈N ,‖g‖G≤B

Lg = − sup
g∈N ,‖g‖G≤B

L(−g)

6In the mathematical literature g0 is called the best-approximate solution to Tg = r, typically allowing for misspecifi-

cation. See Engl, Hanke and Neubauer (1996).
7For other equivalent representations of g0 see the Table 1 in the Appendix.
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we have

inf
g∈G0,‖g‖G≤B

Lg = Lg0 − (B − ‖g0‖G) min
h∈N⊥

‖`− h‖G .

Finally, we show that the supremum and infimum can be attained. Since T is continuous, G0 in fact is

a closed hyperplane and therefore it is convex. Together with the fact that {g : ‖g‖ ≤ B} is convex,

closed and bounded, we have G0 ∩{g : ‖g‖ ≤ B} is convex, closed and bounded. By Mazur’s Theorem,

this set is also weakly closed (i.e, closed in weak topology). Since L is a continuous linear functional, it

is clearly weakly (sequentially) upper and lower semicontinuous. Therefore L can attain its maximum

and minimum over G0 ∩ {g : ‖g‖ ≤ B} (Theorem 7.3.5 in Kurdila and Zabrankin (2005)).

Theorem 3.1 emphasizes the importance of g0 in partial identification; functionals of this function

correspond to the midpoint of the identified set. The length of the identified set for Lg depends on

two factors: the magnitude of g0 relative to B; and a factor that depends on the relevance of the

unidentified factors N (T ) in predicting `. The first factor B − ‖g0‖G is independent of the functional

L. In particular, in the extreme case, B = ‖g0‖G is a sufficient condition for point identification of any

continuous functional, a result implicit in Santos (2012). This factor formalizes the intuition that the

larger is the identifiable part of g, the more information we have. The presence of the second factor

confirms previous results in the literature and it is specific to the functional considered. This factor

is independent of the norm constraints. Moreover, ∂ρ/∂B = ||PN (T )`||G . Therefore, this second factor

measures the sensitivity of the identified set (specifically, the radius) wrt B, and as such, it provides

useful information in applications where there is no natural choice of B. Point identification holds if

` ∈ N (T )⊥, a result given first by Severini and Tripathi (2006). Also, when B = ∞, we see that,

except in the latter case, there is no information on the linear functional Lg, which is consistent with

a similar finding in the discrete case by Freyberger and Horowitz (2013). One can also see that the

condition N (T ) = {0} simply reiterates the fact that point identification of g is equivalent to point

identification of Lg for all L, when ‖g0‖G < B. To provide some intuition for the second factor, write

g = PN (T )⊥g + PN (T )g ≡ g0 + gu and ` = PN (T )⊥` + PN (T )`. Then, Lgu = 〈gu, PN (T )`〉G represents

the identification bias Lg − Lg0, and, subject to the normalization ‖gu‖G = 1, this bias attains the

maximum absolute value of ||PN (T )`||G . This identification bias formula generalizes the omitted variable

bias of classical linear regression, see Example 3 below. From these arguments, we easily obtain the

bound |Lg − Lg0| ≤
(
B − ‖g0‖G

)
||PN (T )`||G by Cauchy-Schwartz inequality. The equality is attained

at elements in the identified set G0 with ‖g‖G = B and which are collinear with PN (T )`. The set is

sharp, as shown in Theorem 3.1.

The midpoint of the interval is given by Lg0 and is independent of B. We provide an alternative

characterization of Lg0 that has important implications for estimation. Assume ‖·‖G = ‖·‖ and consider

the following least squares problem where ` ∈ R(T ∗) +R(T ∗)
⊥

and θ0 satisfies

||T ∗θ0 − `|| = inf
θ∈L2(Z)

‖T ∗θ − `‖ . (2)

Here T ∗ denotes the adjoint operator of T, i.e. T ∗θ(x) := E[θ(Z)|X = x]. It is well-known that
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T ∗θ0 = PR(T ∗)`.
8 Define the prediction error u = T ∗θ0−`, which is non-zero under ` /∈ R(T ∗) = N (T )⊥,

i.e., under partial identification of Lg if ‖g0‖G < B. Then, we have

E[Y θ0(Z)] = E[g0(X)θ0(Z)]

= E[g0(X)T ∗θ0(X)]

= E[g0(X)`(X)] + E[g0(X)u(X)]

= E[g0(X)`(X)]

= Lg0,

where the fourth equality follows from g0 ∈ N (T )⊥ and u ∈ R(T ∗)
⊥

= N (T ). Hence, an alternative

representation of Lg0 when ` ∈ R(T ∗) + R(T ∗)
⊥

is E[Y θ0(Z)]. This representation was used first

by Santos (2011) to construct an estimator for Lg under point identification, and our arguments

above show that it is valid more generally for estimating Lg0 under partial identification provided

` ∈ R(T ∗) + R(T ∗)
⊥

. One advantage of following this program is that in estimating Lg0 one also

estimates ||PN `||, as the latter is the objective function in (2), i.e. ||PN `|| = ||u||.
We remark now on further implications of our Theorem 3.1 for estimation. Our theorem justifies

inference based on functionals of g0, as they correspond to the parameter of interest under point

identification and the midpoint of the identified set under partial identification. We call nonparametric

estimators of g0 under partial identification G−consistent estimators. Note that some of the proposed

procedures for estimating g under point identification are G−consistent. Specifically, procedures that

regularize the problem by penalization on the norm ‖g‖G are well suited for estimation of g0 even under

partial identification; see e.g. the Tikhonov regularization estimation approach in Hall and Horowitz

(2005) and Darolles, Fan, Florens and Renault (2011). See also Carrasco, Florens and Renault (2006),

Florens, Johannes and Van Bellegem (2011) and Gagliardini and Scaillet (2012) for further motivation.

For a general estimation method in ill-posed problems with penalization see Chen and Pouzo (2012).

These existing results can be used to obtain G−consistent estimators. These and other issues pertaining

to estimation are beyond the scope of this paper and will be investigated in a companion paper.

4 Examples Revisited

Example 1 (Engel Curves, cont.): Let f(x) denote the Lebesgue density of X. Assume that

f is continuously differentiable and that it vanishes at the boundary of its support. Define the score

function s(X) := f (1)(X)/f(X), and assume s ∈ L2(X). Then, for the average partial effect functional,

`(x) = −s(x) = −ḟ(x)/f(x). Then, the identified set will be small if ‖g0‖ is close to 1 or if ||PN (T )s||
is small. If the smallest of the observationally equivalent Engel curves has sufficient variation (as

measured by ‖g0‖), then the identified set will be small. Informally speaking, we expect this to be the

case if a large amount of consumers spend large shares in food.

8Note that in general R(T ∗) is not closed. If ` ∈ R(T ∗)\R(T ∗) +R(T ∗)
⊥

, this equality does not hold.
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In their application, Blundell, Chen and Kristensen (2007) consider norm constraints with

||g||2G :=

∫ 1

0
g2(x)f(x)dx+

∫ 1

0

(
g(2)(x)

)2
dx. (3)

Under point identification of g these constraints do not play any role in the asymptotic distribution

derived in Blundell, Chen and Kristensen (2007). However, we have shown here that they are important

under partial identification. An implication of our results is that the estimator proposed by Blundell,

Chen and Kristensen (2007) is G−consistent, where G is the subspace of g ∈ L2(X) with ||g||G < ∞,
and where || · ||2G is defined in (3). �

Example 2 (Consumer Surplus, cont.): With 〈f, g〉G =
∫ b
a f(x)g(x)dx, for the consumer surplus

functional ` = 1. The operator T is continuous wrt to || · ||G if, for instance, the following condition

holds

sup
a≤x≤b

f2X/Z=·(x) ∈ L2(Z),

where fX/Z=z(x) denotes the conditional density of X given Z, and evaluated at x and z, respectively.

The identified set for the consumer surplus is given by the interval

[〈1, g0〉G − ρ, 〈1, g0〉G + ρ],

where ρ =
(
B − ‖g0‖G

)
||PN (T )1||G , B is a bound on the quantity of the good (capacity constraint) and

g0 is the identified part of the demand. �

Example 3 (Best Linear Approximations, cont.): In this application, `(x) = α′E[XX ′]−1x,

with ‖·‖G = ‖·‖ . Different combinations of BLA coefficients lead to different sizes of the corresponding

identified sets. Define the matrix Q := E[XX ′]−1E[
(
PN (T )X

) (
PN (T )X

)′
]|E[XX ′]−1. Then, the second

factor in the radius, ||PN (T )`||G , is the square root of α′Qα. Note that if the unidentifiable components

are uncorrelated with X, i.e. PN (T )X = 0, then β is identified. Hence, PN (T )X = 0 can be understood

as a generalization of the classic omitted variable bias condition. Suppose we restrict the analysis to

α such that |α| = 1. Under this constraint, the maximum and minimum values of the second factor

are equal to
√
λmax and

√
λmin, respectively, where λmax and λmin are the maximum and minimum

eigenvalues of Q, and the corresponding normalized eigenvectors, αmax and αmin, are the coefficients.

In particular, α′minβ corresponds to the combination of coefficients with the smallest identified set. �

Example 4 (Point-evaluation Functionals, cont.): By the continuity of the point-evaluation

functionals and the Riesz Representation theorem, there exists a function k(·, x0) ∈ G such that h(x0) =

〈h, k(·, x0)〉G , for all h ∈ G and all x0 ∈ SX . This is the so-called reproducing property. The function

k(x, z) = 〈k(·, x), k(·, z)〉G is called the kernel of the RKHS. It is well-known that G = W 1
2 is a RKHS

with kernel9

k(x, z) =
1

2 sinh(b− a)
[cosh(x+ z − b− a) + cosh(|x− z| − b+ a)] ; (4)

9The Hyperbolic sine and cosine are given by sinhx = (ex − e−x)/2 and coshx = (ex + e−x)/2, respectively.
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see, e.g., Du and Cui (2008). Since k(·, x0) ∈ W 1
2 , the reproducing property implies that point-

evaluation functionals are continuous in W 1
2 , with the corresponding representer `(x) = k(x, x0). The

operator T is also continuous wrt to || · ||G . Hence, we have pointwise bounds for any element of the

identified set

g0(x0)− ρ ≤ g(x0) ≤ g0(x0) + ρ,

where ρ =
(
B − ‖g0‖G

)
||PN (T )k(·, x0)||G . There are several expressions for g0 available. Here, we

consider one given by Du and Cui (2008). Let {zi}∞i=1 denote a dense set in the support of Z. Then,

define the functions

ψi(x) := E[k(X,x)|Z = zi].

Then, let {ψ̄i} denote the Gram-Schmidt orthonormalization of {ψi}, say

ψ̄i(x) =
i∑

j=1

βijψj(x),

where βij are the coefficients of the Gram-Schmidt orthonormalization. Then, Theorem 3.2 in Du and

Cui (2008) shows that

g0(x) =

∞∑
i=1

i∑
j=1

βijr(zj)ψ̄i(x).

Alternative characterizations based on the Tihkonov functional

gλ = arg min
g∈G
‖Tg − r‖2 + λ‖g‖G ,

or empirical analogs of this are also available, see the important Representer Lemma in Wahba (1990).

Polynomial Spline estimators were historically motivated from this representation, and the convergence

from gλ to g0 as λ→ 0 has been extensively investigated in the mathematical literature; see, e.g., Engl,

Hanke and Neubauer (1996). These results based on the Tihkonov functional are valid for general

Hilbert spaces and not just for RKHS.

As for the second factor ||PN (T )k(·, x0)||G , suppose {hj}∞j=1 is an orthonormal basis of N (T ). Then,

by the reproducing property,

PN (T )k(·, x0) =

∞∑
j=0

〈hj , k(·, x0)〉Ghj

=
∞∑
j=0

hj(x0)hj ,

and hence,

||PN (T )k(·, x0)||G =

∞∑
j=0

h2j (x0).

Thus, point-identification of g(x0) holds if
∑∞

j=0 h
2
j (x0) = 0. Clearly this is the case under the com-

pleteness condition, which requires N (T ) = {0}, or
∑∞

j=0 h
2
j (x) = 0 for all x in the support of X. So, as
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one can see here, when applied to all x0, our identification condition is equivalent to the completeness

condition. Our identification assumption is well motivated when the interest is not on the value of

g at all points of its support, but rather at specific points. For instance, we might be interested in

estimating a demand function at new fixed prices, say p0, without the need to introduce assumptions

on the identification of demand at other prices different from p0.

The results presented in this example can be extended to other continuous linear functionals. A

convenient property of RKHS is that the Riesz representer for a continuous linear functional L has

the general expression `(x) = Lk(x, ·). In particular, the previous example can be extended to point-

evaluation functionals of derivatives. Consider, for instance, the Sobolev space

W 2
2 := {g : g, g(1) are absolute continuous and g(2) ∈ L2(R)},

where L2(R) is the space of square integrable functions in R. The space W 2
2 is endowed with the square

norm

||g||2W 2
2

:=

∫ ∞
−∞

g2(x)dx+
1

τ4

∫ ∞
−∞

(
g(2)(x)

)2
dx,

where the parameter τ > 0 allows for flexible penalization (different weights to the L2(X) and second

derivative norms). For a related space see Blundell, Chen and Kristensen (2007). It is well-known that

G = W 2
2 is a RKHS with kernel

k(x, z) =
τ

2
exp

(
−|τ(z − x)|√

2

)
sin

(
|τ(z − x)| 2√

2
+
π

4

)
; (5)

see p. 324 in Berlinet and Thomas-Agnan (2004). In G = W 2
2 the point-evaluation derivative functional

Lg = ∂g(x0)/∂x is continuous, with a Riesz representer

`(x) =
∂k(x, z)

∂z

∣∣∣∣
z=x0

, (6)

where k is given in (5). Hence, the results on the average partial effect in Example 1 can be extended

to heterogeneous partial effects ∂g(x0)/∂x using these tools. In particular, the derivative ∂g(x0)/∂x is

point identified if ||PN (T )`(x)||G = 0, with ` given in (6). �

Example 5 (Discrete Variables, cont.): The NPIVR in the discrete case is indeed parametric, and

hence, many of the complications of the nonparametric case disappear in the discrete case, e.g. the

ill-posedness. Yet, this is an important case given its practical relevance, and it also serves to illustrate

how the quantities involved in our partial identification result can be estimated from a sample.

In the context of the application in Angrist and Evans (1998) and Freyberger and Horowitz (2013),

let T be the 2×4 matrix whose (i, j) element is P (X = xj |Z = zi), where xj ∈ {2, 3, 4, 5} and zi ∈ {0, 1},
for i = 1, 2 and j = 1, 2, 3, 4; let r be the 2×1 vector obtained from stacking {E(Y |Z = zi)}{i=1,2} and

define g and c as before. Equation (1) is then equivalent to Tg = r. In this example g is not identified,

as this would require rank(T ) = 4. A linear functional Lg = c′g is identified if and only if c is generated

by the rows of T, denoted here by t1 and t2, respectively. This identification condition can be tested.

Assume the instrument is strong, so that t1 and t2 are linearly independent. Then, the dimension of
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the space of linear functionals that are identified is rank(T ) = 2. We will investigate in a practical

situation the identification of different linear functionals, such as, for example, L23g = g(3) − g(2)

and LP23g = P (X = 3)g(3) − P (X = 2)g(2), corresponding to c = (−1, 1, 0, 0)′ and c = (−P (X =

2), P (X = 3), 0, 0)′, respectively. Notice that in the latter c is unknown, but it can be estimated from

the data. Applying our results to the general example and using Theorem 2, p. 65 in Luenberger

(1997) to compute g0, we obtain

c′g0 − ρ ≤ c′g ≤ c′g0 + ρ,

where g0 = T ′(TT ′)−1r, (this is consistent with T † = T ′(TT ′)−1 = (T ′T )†T ′), and

ρ = (B − |g0|) |Ac| ,

where A is a 2 × 4 matrix with orthonormal rows, which are in turn orthogonal to t1 and t2. This

matrix is easily obtained from statistical packages.

We now apply these results to a subset of the sample used in Angrist and Evans (1998). The data

consist of 150,618 women who are 21-35 years old, have 2-5 children, and whose oldest child is between

8 and 12 years old. The sample data is a subsample of the 1980 Census Public Use Micro Samples

(PUMS), and it has been used in Freyberger and Horowitz (2013) to empirically illustrate the role of

shape restrictions in the identification of linear functionals Lg.

We proceed first by estimating g0 as follows. Let M denote the 2 × 4 matrix with (i, j) element

mij = P (X = xj , Z = zi), and let s denote the 2×1 vector with ith element si = E(Y |Z = zi)P (Z = zi).

Then, we estimate g0 from Mg0 = s, replacing M and s by the sample analogues in the expression

g0 = M ′(MM ′)−1s. That is, we obtain ĝ0 = M̂ ′(M̂M̂ ′)−1ŝ, where the (i, j) element of M̂ is given by

m̂ij = n−1(
∑n

k=1 I(Xk = xj)I(Zk = zi)) and the ith element of ŝ is given by n−1
∑n

k=1 YkI(Zk = zi).

In the Appendix, we consider a general and convenient method of proof to show that

√
n(ĝ0 − g0)→d N(0, V ),

where V is a positive definite matrix whose expression is given in the Appendix. From this result, we

obtain asymptotic 95% confidence intervals for g0 as well as for c′g0.

Table 2 reports the results of inferences based on the midpoint g0 for several linear functionals of

g0. We provide the estimates ĝ0, the functionals Lkj ĝ0 = ĝ0(j) − ĝ0(k) and their probability-weighted

versions LPkj ĝ0 = π̂j ĝ0(j)− π̂kĝ0(k), for selected values of k and j, and where π̂j is the sample estimate

of P (X = j), with j, k = 2, 3, 4, 5. We also report their corresponding 95% confidence intervals based

on the asymptotic theory above. Inference based on g0 suggests a highly nonlinear behaviour of weeks

worked as a function of children. Having one more children after 2 leads to an expected reduction of 3

weeks of work, but going from 3 to 4 leads to an estimated decrease of 15 weeks. These results contrast

with those obtained from the standard linear IV model, which yield a constant negative effect of 5

weeks, see Angrist and Evans (1998). All the estimates based on ĝ0 are quite precise.

Table 3 reports the results of the set estimates. Point estimates for the radius ρ are provided in this

table, together with its factors and the estimated bounds for the linear functionals discussed above.

The norm |ĝ0| equals 30.379, so the first factor of ρ, which is common to all functionals, is estimated at
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73 (B = 104). Hence, norm constraints seem to provide little information for the global identification

of g0 in this application. However, as we will see, despite the large values of the first factor, there

are still functionals that are well identified and for which norm constraints become quite relevant.

The overall results suggest that the point-evaluation functionals and the linear functionals Lkj are not

well identified. Only for g0(2) and L23 the norm constraints provide some partial information, with the

former functional being particularly well identified. In many cases, the obtained bounds fall outside the

natural range of g, so in these cases we report the intersection of our bounds with the pointwise bounds

0 ≤ g ≤ 52. See also Blundell, Chen and Kristensen (2007) for a similar approach. Incorporating

prior information, such as the shape restrictions in Freyberger and Horowitz (2013), seems to be the

only available alternative to shrink the identified sets for the functionals Lkj . Using monotonicity and

concavity constraints, Freyberger and Horowitz (2013) found substantial reductions in the size of the

identified set for L23. Monotonicity seems a plausible assumption in the 80’s, with relatively low labor

participation for women and low rates of non-parental child care. Nevertheless, our wide identified sets

suggest that testing for this prior information might be hard, if not impossible.

In stark contrast to previous functionals, probability-weighted functionals lead to much smaller

identified sets. This is particularly the case for LP25, with an estimated radius of 1.36. These functionals

contain important structural interpretation. For instance, LP25 measures the relative (i.e. per-capita

over the whole population) aggregated difference of weeks worked for women with 5 children and those

with 2 children. Our results suggest an estimate of approximately -14 weeks for this effect. Accounting

for the relative sizes of the populations lead to more informative inference in this application.

In summary, this application highlights one of the main points of our identification result; some

functionals are relatively “well identified”, whereas others are not. This information can be assessed

from the data, by relatively simple tools when observations are discrete. Norm bounds are useful, since

without them there will be strictly no information on the linear functionals considered (cf. Theorem

3.1 with B =∞).

5 Conclusions and future research

In this paper, we have characterized the identified set of linear continuous functionals of the NPIVR

under norm constraints. We have determined the main factors driving the length of the identified set. A

major role is played by the “identifiable component” g0 of the structural function. A main implication

of our result is that inference based on g0 possesses certain robustness properties in our context. The

length of the identified set depends inversely on the norm of g0 relative to B, but also on the maximum

absolute bias arising from omitting normalized “unidentifiable components” in the computation of the

linear functional. The example to BLA shows how the formula of the length extends the popular

omitted variables formula of classical linear regression. Our theory is quite general. When applied

to RKHS, it leads to new results for the point-evaluation functionals, including a new identification

condition for g(x0) at a fixed x0. These results can be easily extended to derivatives.

We have illustrated the main ideas with an application to the effect of children on women’s weeks

of work, using a subsample of Angrist and Evans (1998). This is an example where g is known to
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be unidentified. It is also an example where asymptotic results can be developed using relatively

standard tools. We have shown how different functionals lead to different lengths in the corresponding

identified sets. A companion paper will investigate estimation for continuous variables, as well as other

aspects of set inference. The required tools are non-standard in the continuous case, given the infinite

dimensionality of the problem and the lack of identification. In particular, as shown by Severini and

Tripathi (2006, 2012), under some conditions, estimation of Lg0 cannot be obtained at a
√
n-rate.

Our results are geometric in nature and, as such, are also applicable to other settings where linear

inverse problems arise, and where the interest is in linear continuous functionals. For instance, the

distribution of random coefficients in many random coefficients econometric models satisfies a linear

inverse problem similar to that in (1), but with a known operator T ; see Ichimura and Thompson (1998),

Hoderlein, Klemela, and Mammen (2010), Gautier and Kitamura (2013) and Hoderlein, Nesheim and

Simoni (2012), among others. Our results can be applied to characterize, for instance, the identified

set for counterfactual effects which are linear functionals of the random coefficients’ distribution.

Another interesting extension of our identification results replaces the norm constraints with general

convex restrictions. That is, the constraint ‖g‖G ≤ B could be replaced by the restriction g ∈ C, where

C is a general convex, closed and bounded set of G, such that C ∩ G0 6= ∅. This setting is very general

and includes shape restrictions, such as monotonicity and concavity, consideration of pseudo-norms

‖·‖G rather than norms, and point-wise bounds a ≤ g(x) ≤ b for all x ∈ SX , among many others.

However, for this general case much of the simple geometrical symmetry of our case is lost, and an

identification analysis seems to require a case-by-case study. See, for instance, Hoderlein, Nesheim and

Simoni (2012) for the case of spaces of densities. There are natural extensions of g0 in this more general

setting, see Engl, Hanke and Neubauer (1996), p. 140. However, the extended version of g0 in general

loses much of its dominant role in the partial identified case, and its interest seems to be confined to

the point identified case. It can be shown that a general sufficient condition for identification of Lg

in this more general context is PN (T )∩span(C−g0)` = 0, where span denotes the closed linear span. The

proof of this follows the arguments given above for the norm bounded case. Whether or not this result

can be improved, and when the point identification condition fails, how the expression of the identified

set looks like is beyond the scope of this paper, and will be investigated in future research.
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6 Appendix

6.1 Figures and Tables

Figure 1: Geometrical illustration of partial identification
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Table 1: Different formulations of g0 in the literature

Formulations References and Comments

g0 = ming∈G0 ||g||G See, e.g., Engl, Hanke and Neubauer (1996).

g0 = T †r = (T ∗T )†T ∗r See, e.g., Engl, Hanke and Neubauer (1996).

g0 =
∑∞

i
1
λi
〈r, vi〉ui For T compact. {u}∞i is an orthonormal basis of N (T )⊥,

{v}∞i is an orthonormal basis of N (T ∗)⊥ and {λ}∞i is a

sequence of singular values for T . See, e.g., Engl, Hanke

and Neubauer (1996).

g0 = limλ gλ

gλ := arg ming∈G ||Tg − r||G + λ||g||G
See, e.g., Engl, Hanke and Neubauer (1996).

g0 = limλ gλ

gλ := arg ming∈G ||Tg − r||G + λ||Lg||G
L could be a differential operator. See, for instance, Engl,

Hanke and Neubauer (1996), Wahba (1990), Blundell, Chen

and Kristensen (2007) and Chen and Pouzo (2012).

g0 = PN (T )⊥g See, e.g., Severini and Tripathi (2006, 2012), Santos (2011).

g0(x) =
∑∞

i=1

∑i
j=1 βijr(zj)ψ̄i(x) Du and Cui (2008).

g0(x) = 〈T ∗r, T ∗Tk(·, x)〉Hk′ k(·, ·) is reproducing kernel for G and Hk′ is a RKHS with

kernel k′. See Saitoh (2007) for k′ and other details.

Table 2: Estimates of g0 and Lg0 and their 95% Confidence interval.

Lg0 Estimate 95% CI

g0(2) 22.749 22.746 22.751

g0(3) 19.633 19.572 19.693

g0(4) 4.391 4.108 4.674

g0(5) 0.788 0.667 0.909

L23g0 −3.115 −3.173 −3.058

L34g0 −15.241 −15.584 −14.898

L45g0 −3.603 −3.906 −3.300

L25g0 −21.960 −22.082 −21.839

LP23g0 −8.353 −8.369 −8.337

LP34g0 −5.497 −5.535 −5.460

LP45g0 −0.291 −0.310 −0.271

LP25g0 −14.142 −14.145 −14.140
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Table 3: Estimation of Lg

Lg B − ||g0|| ||PN`|| ρ [Lgmin, Lgmax]

g(2) 73.620 0.0113 0.835 21.913 23.584

g(3) 73.620 0.210 15.473 4.160 35.106

g(4) 73.620 0.978 72.011 −52.000 52.000

g(5) 73.620 0.999 73.581 −52.000 52.000

L23g 73.620 0.199 14.719 −17.834 11.603

L34g 73.620 1.186 87.328 −52.000 52.000

L45g 73.620 1.403 103.309 −52.000 52.000

L25g 73.620 1.005 74.045 −52.000 52.000

LP23g 73.620 0.055 4.105 −12.458 −4.248

LP34g 73.620 0.128 9.495 −14.993 3.997

LP45g 73.620 0.068 5.060 −5.352 4.769

LP25g 73.620 0.018 1.360 −15.503 −12.782

6.2 Asymptotics for the discrete case

To obtain the asymptotic distribution of ĝ0 = M̂ ′(M̂M̂ ′)−1ŝ, where the (i, j) element of the d(Z)×d(X)

matrix M̂ is given by m̂ij = n−1(
∑n

k=1 I(Xk = xj)I(Zk = zi)) and the ith element of the d(Z) × 1

vector ŝ is given by n−1
∑n

k=1 YkI(Zk = zi), we note that ŝ = M̂ ĝ0, and then

P̂ ĝ0 = 0,

where P̂ = I−M̂ ′(M̂M̂ ′)−1M̂ is a projection matrix. Similarly, Pg0 = 0, with P = I−M ′(MM ′)−1M.

Then, by simple algebra and the standard central limit theorem (CLT),

0 = P (ĝ0 − g0) + (P̂ − P )g0 + oP (n−1/2),

and hence, using that P is symmetric, idempotent and satisfies P †P = P ,

√
n(ĝ0 − g0) = −P

√
n(P̂ − P )g0 + oP (1)

= −(g′0 ⊗ P )
√
nvec(P̂ − P ) + op(1).

We then use the delta method to obtain the asymptotic distribution of
√
nvec(P̂ −P ). Write vec(P̂ ) =

φ(vec(M̂ ′)) and similarly vec(P ) = φ(vec(M ′)). We need to compute the Jacobian ∆(M) of φ at

vec(M ′). By Exercise 13.24 in Abadir and Magnus (2005),

∂vec(P )

(∂vec(M ′))′
= −(I +Kc)(M

′(MM ′)−1 ⊗ P ) =: ∆(M),

where Kc is the d(X)2×d(X)2 commutation matrix for an d(X)×d(X) matrix A such that KcvecA =

vec(A′). Therefore, by the delta method,

√
n(ĝ0 − g0) = (g′0 ⊗ P )(I +Kc)(M

′(MM ′)−1 ⊗ P )
√
n(vec(M̂ ′)− vec(M ′)).
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It is easy to show by a standard CLT argument that,

√
n(vec(M̂ ′)− vec(M ′))

d−→ N(0,Ω),

where Ω is given by

Ω =

(
Ω11 Ω12

Ω′12 Ω22

)
,

with

[Ω11](i,j) = 1(i = j)m1i −m1im1j ,

[Ω12](i,j) = −m1im2j ,

[Ω22](i,j) = 1(i = j)m2i −m2im2j ,

and where recall mij := P (X = xj , Z = zi). Let define

J := (g′0 ⊗ P )(I +Kc)(M
′(MM ′)−1 ⊗ P ).

Then
√
n(ĝ0−g0)

d−→ N(0, V ) where V := JΩJ ′. For a nonrandom c, clearly
√
nc′(ĝ0−g0)

d−→ N(0, c′V c).

For a random ĉ = (−P̂ (X = 2), P̂ (X = 3), 0, 0), we have
√
nĉ′(ĝ0 − g0) =

√
nc′(ĝ0 − g0) + op(1)

d−→
N(0, c′V c).
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