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Abstract

In the practice of program evaluation, choosing the covariates and the functional form of

the propensity score is an important choice for estimating treatment effects. This paper pro-

poses data-driven model selection and model averaging procedures that address this issue for

the propensity score weighting estimation of the average treatment effects for treated (ATT).

Building on the focussed information criterion (FIC), the proposed selection and averaging pro-

cedures aim to minimize the estimated mean squared error (MSE) of the ATT estimator in a

local asymptotic framework. We formulate model averaging as a statistical decision problem in

a limit experiment, and derive an averaging scheme that is Bayes optimal with respect to a given

prior for the localisation parameters in the local asymptotic framework. In our Monte Carlo

studies, the averaging estimator outperforms the post-covariate-selection estimator in terms of

MSE, and shows a substantial reduction in MSE compared to conventional ATT estimators. We

apply the procedures to evaluate the effect of the labor market program described in LaLonde

(1986).

Keywords: Treatment effects, Propensity score, Model selection, Focussed information criterion,

Model averaging.
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1 Introduction

A large body of empirical research in economics is concerned with estimation of the causal im-

pact of various social programs. When the exposure or participation to the policy program is

not randomized, researchers often use observational data in conjunction with the assumption that

treatment assignment is random once a set of observable pre-treatment covariates is conditioned

on (unconfoundedness). Several semi-parametric procedures that rely on the unconfoundedness as-

sumption have been proposed, including propensity score matching (Rosenbaum and Rubin (1983)

and Heckman, Ichimura, and Todd (1998)); covariate matching (Abadie and Imbens (2006)); re-

gression (Imbens, Newey, and Ridder (2005)); propensity score weighting (Hirano, Imbens, and

Ridder (2003)); and a combination of the latter two (Hahn (1998)). Imbens (2004) provides an

excellent review on these methods.

A common concern that arises when using such estimators is that the researcher has to choose

which covariates to include as confounders, and which functional form specification is used in

modelling the propensity score or/and the outcome equations. The literature on semiparametric

estimation has been rather silent on a formal treatment of this practical issue. As a result, empirical

researchers using these methods rarely provide formal justification for the chosen specification in

reporting the estimation results. Common practice is to conduct some informal sensitivity check

by seeing how the estimate changes over different specifications.

The main goal of this paper is to offer a data-driven procedure that gives a best causal effect

estimator for the average treatment effects for treated (ATT) in the presence of specification uncer-

tainty on the propensity score. We focus on propensity score weighting estimators. As a way to

handle specification uncertainty, this paper considers both model selection and model averaging.

Building on the idea of focussed information criterion (hereafter FIC) proposed by Claeskens and

Hjort (2003), our model selection procedure aims to select the specification of the propensity score

that minimizes the mean squared error (hereafter MSE) of the ATT estimator. Along the idea

of frequentist model averaging (Hjort and Claeskens (2003)), the model averaging of this paper

generalizes the FIC-based model selection. That is, instead of selecting one model and estimating

ATT based on the selected model, we consider constructing a point estimator for ATT in the form

of a weighted average of the point estimators over the candidate models, where the weights are

optimally chosen so as to minimize MSE for the ATT parameter.

The FIC based specification search procedure proposed in this paper works as follows. As an
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input of the procedure, the researcher provides a most complicated specification (largest model) of

the propensity score in the following parametric form,

Pr (D = 1|X) = G
(
W (X)′ γ

)
,

where D = 1 (treated) or D = 0 (control) is an indicator of the treatment status; X is the

set of all conditioning covariates considered by the researcher; W (X) is a vector of functions of

the regressors X that can contain interactions and nonlinear transformations of X; and G (·) is

a known link function such as the logit function. Candidates for the optimal specification are

given as submodels of the most complicated specification, where each submodel corresponds to

a subset vector of W (X) to be included in propensity score estimation. We assume that the

unconfoundedness assumption holds for the full set of covariates X, and that the ATT parameter

is identified and consistently estimated by a
√
n-asymptotically normal estimator in this largest

model. We assume that the candidate specifications are locally misspecified in the sense that

the true values of coefficients γ are in a n−1/2-neighborhood of zero with a radius governed by a

localization parameter δ. In this local asymptotic framework, we obtain the asymptotic MSE of

the ATT estimator in each candidate model. Then, the FIC is then defined as an estimate of the

asymptotic MSE of the ATT estimator in each candidate specification, where uncertainty on the

localization parameters are treated by either a plug-in manner or Bayesian manner. The procedure

yields a model (subvector of W (X)) that minimizes the FIC, and the ATT estimator computed in

the chosen specification can be reported as a post-selection point estimator for ATT.

As an estimator for the ATT in each candidate model, we employ the normalized propensity

score weight (hereafter NPW) estimator (Imbens (2004)). The NPW estimator for ATT has

several attractive features compared with the naive propensity score weighted estimator (as in

Wooldridge (2002), equation 18.22). The NPW estimator has a smaller asymptotic variance than

the simple ATT estimator when a parametric specification for the propensity score is employed.

The NPW estimator is simple to implement and simulation evidence suggests excellent finite sample

performance of the NPW estimator (Busso, DiNardo, and McCrary (2011)). The main reason that

we focus on the ATT rather than ATE closely relates to the fact that the semiparametric efficiency

bound for ATT can be improved if knowledge on a specification of the propensity score is available,

see Hahn (2004); Chen, Hong, and Tarozzi (2008); and Graham, de Xavier Pinto, and Egel (2011).

Using the local asymptotic approximation, the NPW estimator for the ATT in the parsimonious

specification can have a smaller asymptotic variance than in the largest model, due to the gain in

the efficiency bound for ATT by knowledge of parsimonious specification for the propensity score.

3



The parsimonious model, on the other hand, can be biased due to the local misspecification. As a

result, there is a bias-variance tradeoff, which the FIC-based selection procedure aims to optimally

balance out.

The second goal of this paper is to develop a model averaging estimator for ATT in the presence

of model uncertainty regarding propensity score specifications. Under the local misspecification

framework described above, we consider choosing the model weights so as to minimize the asymp-

totic MSE of the averaged ATT estimator. The asymptotic MSE to be minimized, however,

depends on the unknown localization parameters that cannot be consistently estimated. In order

to deal with the non-vanishing uncertainty for the localization parameters, we pose the problem

of choosing optimal weights as a statistical decision problem in the limit Gaussian experiment (see

e.g. Chapter 7 of van der Vaart (1998)). We then derive the optimal weights in the sense of

Bayes decision in the limit experiment with respect to a prior for the localization parameters. Our

approach to the optimal averaging weights leads to a weighting scheme that is different from the

plug-in based procedure and the inverse-FIC based weights of Hjort and Claeskens (2003), whose

treatment of the localization parameters, to the best of our knowledge, lacks a decision-theoretic

optimality argument.

We conduct Monte Carlo studies in order to examine the finite sample performance of the pro-

posed procedures. Our Monte Carlo results show that the model averaging estimator outperforms

in terms of MSE the FIC-based post-selection NPW estimator and the NPW estimators in any

of the candidate models including the MSE minimizing one. The MSE gain of implementing the

model averaging estimator can be substantial relative to a correctly specified large model; in our

Monte Carlo specification, the model averaging estimator improves the MSE of a correctly specified

largest model by 20-30%. To illustrate the use of our model selection and averaging procedures,

we apply them to the Lalonde’s (1986) data of a job-training program in the US.

1.1 Related Literatures

In contrast to the likelihood based model selection procedures such as AIC or BIC, the focussed

information criterion (FIC) aims to select a best model in terms of estimation accuracy for a

focussed parameter. Importance of this focussed view in model selection is also emphasized in

Hansen (2005) in the time series context. Several authors have extended the FIC idea to the

model selection problems in various semiparametric models; for instance, Hjort and Claeskens
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(2006), Claeskens and Carroll (2007), and Zhang and Liang (2011), among others. We believe that

the focussed viewpoint is particularly appealing for covariate selection in the program evaluation

context since many program evaluation studies have a well-defined parameter of interest. We

share this view with Vansteelandt, Bekaert, and Claeskens (2012), in which they propose a FIC-

based variable selection procedure for a parametric binary regression model with log-odds ratio as a

focussed parameter. This paper, in contrast, analyzes the variable selection problem for propensity

score estimation with a focussed parameter being the average treatment effects for treated, and our

approach does not require parametric specifications for the outcome regression equations.

The problem of specification choice in the semiparametric estimation procedure, using nonpara-

metric estimators of the propensity scores or/and the outcome regression equations, is reduced to

the problem of how to select smoothing parameters, such as the kernel bandwidth or the number of

terms in series regression. To our knowledge, Ichimura and Linton (2001) and Imbens et al. (2005)

are the only works that discuss the choice of smoothing parameters with focusing on minimizing the

MSE of the semiparametric ATE estimator. Compared with their approach, our approach is ”less

non-parametric”, in the sense that our approach imposes a parametric restriction on the propensity

score in the largest model. Positive consequences of the parametric specification are that we can

deal with multi-dimensional covariates in a simple manner, and that the proposed procedure does

not require a preliminary nonparametric estimate of unknown functions (cf. Ichimura and Linton

(2001)). On the other hand, our approach relies on a user-specified largest model, and is not free

from the arbitrariness concern in the choice of largest model. A similar concern would also arise in

the procedure of Imbens et al. (2005), in which a choice of basis functions as well as their ordering

are important inputs specified by the user.

The l1-penalized likelihood procedure (Lasso) proposed by Tibshirani (1996) is a powerful tool in

the variable selection context, especially when the number of candidate regressors is large. Belloni,

Chernozhukov, and Hansen (2013) recently develop the so-called double-selection lasso method for

covariate selection and post-selection inference for estimation of various treatment effects in the

presence of high-dimensional covariates. Our FIC approach to covariate selection differs from

their Lasso approach in terms of the scope for applications and the notion of optimality that these

procedures aim to achieve asymptotically. First, our FIC procedure mainly targets at the situations,

where the number of regressors is much smaller than the sample size, while, with employing the

sparsity restrictions, the Lasso approach can effectively handle the situations, where the number

of regressors is as many as or even larger than the sample size. Second, optimality of the FIC-
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based covariate selection and averaging hinges on a decision theoretic optimality in a limit Gaussian

experiment, while theoretical justification of the Lasso-based covariate selection approach invokes

the oracle property. Third, this paper mainly focuses on model selection and averaging for point

estimation, and provides little contribution to post-selection inference, whereas, as one of their

remarkable contributions, Belloni et al. (2013) demonstrate that post-selection inference with their

Lasso procedures yields a uniformly valid inference procedure for ATEs and ATTs.

The model averaging considered in this paper stands on the frequentist model averaging view-

point; the procedure aims to find an averaging weight that optimizes accuracy of the averaged

estimator in terms of the MSE criterion of the ATT parameter. The frequentist model averaging

targeted at the MSE for a focussed parameter is pursued by Hjort and Claeskens (2003) in gen-

eral parametric models. This paper extends their model averaging framework to the context of

semiparametric estiamtion of ATT. For variable selection problem in the least squares context,

frequentist model averaging with the MSE criterion of the entire regression function (integrated

MSE) is analyzed by Hansen (2007), Wan, Zhang, and Zou (2010), and Hansen and Racine (2012).

Magnus, Powell, and Prüfer (2010) proposes a way of designing a prior in the Bayesian model

averaging based on the frequentist considerations of the mean squared errors. See also Hjort and

Claeskens (2008) for an overview of model averaging and further references. DiTraglia (2013) and

Sueishi (2013) extend the parametric framework of Hjort and Claeskens (2003) to semiparametric

models defined by a set of moment conditions, and develop the FIC and FIC-based model averag-

ing for generalized method of moment estimators, with primary applications to linear instrumental

variable models. Lu (2013) considers averaging semiparametric estimators for ATE or ATT in a

manner similar to the frequentist model averaging of Hjort and Claeskens (2003), where the estima-

tor in each model uses nonparametrically estimated regression or propensity score functions with

a different set of conditioning covariates. In contrast to the approach of Lu (2013), our approach

concerns not only a choice of covariates, but also a functional form specification of the propensity

scores.

Being different from the Hjort and Claeskens’s proposal of the plug-in based averaging weights,

our derivation of the optimal averaging weights solves a Bayes optimal statistical decision in a

limit normal experiment. In econometrics, decision-theoretic analyses in limit experiments are

conducted in various contexts; see Hirano and Porter (2009) for the treatment choice problem, and

Song (2013) for point estimation problem for intervally-identified models.
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1.2 Plan of the Paper

In Section 2, we introduce the local misspecification framework in the ATT estimation, and derive

the asymptotic MSE of the candidate models. We also examine the variance-bias trade-offs between

large and parsimonious models through the analytical expression of the asymptotic MSE. In Section

3, we derive the FIC and propose the FIC based covariate selection procedure. We also extend the

FIC-based model selection analysis to model averaging. Monte Carlo studies are provided in Section

4 to examine the performance of the proposed model selection and model averaging procedures.

Section 5 applies our model selection and averaging procedure to the Lalonde’s (1986) data set

on the National Supported Work Demonstration job-training program. Section 6 concludes. All

proofs of the proposition and auxiliary lemmas are collected in Appendix A.

2 Semiparametric Estimation of ATT with Local Misspecification

Let {(Yi, Di, X
′
i) : i = 1, . . . , n} be a size n random sample where an observation consists of a scalar

observed outcome Yi ∈ R, a binary treatment status Di ∈ {0, 1}, and a (column) vector of covariates

Xi ∈ X. Suppose that we have L predetermined covariates available for every individual in the

sample, X ′i = (Xi1, . . . , XiL). Each covariate can be either discrete or continuous. We denote

the potential outcomes corresponding to each treatment status as Yi (1) and Yi (0). The observed

outcome Yi is linked to the potential outcomes through Yi = DiYi (1)+(1−Di)Yi (0). The estimand

of interest focussed in this paper is the population average treatment effects for treated (ATT),

τ = E (Y (1)− Y (0)|D = 1).

The specification selection procedure to be proposed in this paper first asks the researcher

to specify a most complicated specification for the propensity score function. We refer to the

model with this most complicated specification of the propensity score as the largest model. Let

W (X) ∈ RK be a vector of regressors with length K that is to be included in the propensity

score estimation in the largest model. W (X) includes an intercept, and may contain interactions

and nonlinear transformations of X. In the subsequent asymptotic analysis, we will not let its

dimension K grow with the sample size. In practical terms, the fixed dimension of W (X) means

that the number of regressors in the largest model is specified to be relatively small compared to

the sample size. We use a short-hand notation, Wi = W (Xi) , as far as no confusion arises.

Let P be the set of distributions of (Yi (1) , Yi (0) , Di, Xi) that contains the true data generating

process. We impose the following set of assumptions concerning the set of population distributions
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P.

Assumption 2.1:

(i) (Unconfoundedness) For every P ∈ P, the potential outcomes (Y (1) , Y (0)) are conditionally

independent of treatment status D ∈ {1, 0} given the full set of covariates X ∈ RL.

(ii) (Correct specification of propensity score) For every P ∈ P, there exists a unique γ (P ) ∈

RK such that P (D = 1|X) = G
(
W (X)′ γ (P )

)
for a known monotone twice continuously

differentiable link function G (·) common to all P ∈ P.

(iii) (Strict overlap) There is κ > 0 such that κ ≤ G
(
W (X)′ γ (P )

)
≤ 1− κ < 1 holds for all X

in the support of X, uniformly over P ∈ P.

The first part of Assumption 2.1 combined with the overlap condition ensures that the ATT

is identifiable in the largest model. Since the unconfoundedness assumption is not testable, the

covariate selection procedure of this paper is unable to assess validity of the unconfoundedness

assumption. The second part of Assumption 2.1 states that the propensity score has a parametric

single index structure with a known link function. The literature of semiparametric estimation

of ATT commonly introduces nonparametric propensity scores (e.g., Hahn (1998), Hirano et al.

(2003)), while we restrict our analysis to the case with parametric propensity scores. This assump-

tion may appear restrictive at a theoretical level, but does not bind much in empirical practice,

since, with a finite number of observations, implementation of nonparametric estimation of propen-

sity score using series estimation can be seen as estimating the propensity score parametrically

with a rich and flexible specification of the regressor vector. In such a context, Assumption 2.1 (ii)

excludes cases with a number of series term comparable with the sample size. Note that the strict

overlap assumption (Assumption 2.1 (iii)) is stronger than the usual one imposed for estimability

of ATT parameter at
√
n-rate, which only assumes that G (·) is bounded away only from one. We

assume G (·) bounded away also from zero by a technical reason; to ensure a uniform convergence

property necessary in the subsequent local asymptotic analysis. Imposing the strict overlap as-

sumption is standard in the literature, although the limited overlap can be a concern in empirical

applications (see Crump, Hotz, Imbens, and Mitnik (2008) and Khan and Tamer (2010) for further

discussion.)

Following the original analysis of FIC by Claeskens and Hjort (2003), we consider approximating

the finite sample bias-variance trade-offs between parsimonious and complicated models by adopting
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a local misspecification framework. For this purpose, let {Pn : n ∈ N} ⊂ P be a drifting sequence

of population distributions, which weakly converges to a fixed P0 ∈ P. Along {Pn : n ∈ N}, let

{γn = γ(Pn)} be a sequence of the coefficient vector of W , where γ(·) is as defined in Assumption

2.1(ii). Under Assumption 2.1, the ATT parameter τn satisfies the following moment condition:

at every n,

EPn

[
DiYi
Qn
− G (W ′iγn) (1−Di)Yi

Qn (1−G (W ′iγn))
− τn

]
= 0,

where EPn is the expectation with respect to Pn, and Qn ≡ Pn (D = 1).

Let γ̂ be the maximum likelihood estimator for γn obtained from the parametric binary choice

regression, and Q̂ = 1
n

∑n
i=1Di. The normalized propensity score weight (NPW) estimator for

ATT (Imbens (2004)) in the largest model estimates ATT by

τ̂ =
1

n

n∑
i=1

(
DiYi

1
n

∑n
i=1Di

− G (W ′i γ̂) (1−Di)

(1−G (W ′i γ̂))
Yi

/
1

n

n∑
i=1

G (W ′i γ̂) (1−Di)

(1−G (W ′i γ̂))

)
, (2.1)

where the summation terms, 1
n

∑n
i=1Di and 1

n

∑n
i=1

G(W ′i γ̂)(1−Di)
(1−G(W ′i γ̂))

that appear in the denomina-

tors are to guarantee that the weights for Yi sum up to one. This normalization improves the

asymptotic variance of the naive ATT estimator when a parametric propensity score estimate is

used. The NPW estimator is simple to implement, and simulation evidence of Busso et al. (2011)

suggests that its finite sample performance is excellent, compared to other estimators relying on

the unconfoundedness assumption. Therefore, in what follows, we will restrict our focus to the

NPW estimator.

In order for τ̂ to have an asymptotic distribution in the local asymptotics along {Pn} , we

impose a set of regularity conditions on a set of data generating processes P, which are collected in

Assumption A.1 of Appendix A. In what follows, T
Pn→ c, or, equivalently, T − c = oPn (1) means

statistic T converges in probability to c along {Pn}, i.e., limn→∞ Pn (|T − c| > ε) = 0 for any ε > 0.

We use T
Pn N (µ.Σ) to mean that statistic T converges in distribution to Gaussian along sampling

sequence {Pn}.

Each candidate specification for the propensity score corresponds to a subvector of W (X) used

in the propensity score estimation. Let S index a selection of covariates of W to be used in the

estimation of the first stage maximum likelihood for the propensity scores. The number of covari-

ates included in specification S is denoted by |S|. We denote the set of candidate specifications by
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M. M does not have to exhaust all the possible subset vectors of W (X), and some regressors can

be included in all the specifications in M if they are believed to be important in predicting one’s

treatment status. Let S = ∩{S : S ∈M} be the set of covariates that appear in every candidate

model. The number of candidate models is denoted by |M|. We assume that |M| is fixed and

does not grow with the sample size. The subset of covariates to be excluded from S is indexed

by its complement, Sc. Hence, Sc represents the set of covariates that can be excluded in some

candidate model. |S| × 1 subvectors of W and γ, corresponding to the selected covariates are

denoted by WS and γS , respectively. We define |S| ×K matrix πS such that pre-multiplying πS

to a K × 1 vector yields the subvector corresponding to selection S,

πSW = WS , πSγ = γS .

Given a selection of covariates S, let τ̂S be the NPW estimator for τ when WS is included in the

estimation of the parametric propensity score, i.e.,

τ̂S =
1

n

n∑
i=1

 DiYi
1
n

∑n
i=1Di

−
G
(
W ′S,iγ̂S

)
(1−Di)(

1−G
(
W ′S,iγ̂S

)) Yi

/
1

n

n∑
i=1

G
(
W ′S,iγ̂S

)
(1−Di)(

1−G
(
W ′S,iγ̂S

))
 ,

where γ̂S is the maximum likelihood estimator for γS obtained in the first stage propensity score

regression of Di on WS,i.
1

Following the original analysis of FIC of Claeskens and Hjort (2003), we consider a sequence of

DGPs, along which the largest model shrinks to the submodels in the following sense.

Assumption 2.2: Along a sequence of data generating processes {Pn} ∈ P converging weakly

to P0 ∈ P, the sequence of coefficients of W , {γn ≡ γ(Pn)}, converges to the benchmark value

γ0 ≡ γ(P0) ∈ RK at n−1/2-rate

γn − γ0 =
1√
n
δ, δ ∈ R̄K ,

where we assume γ0,Sc ≡ πScγ0 = 0, i.e., the benchmark coefficients of the regressors that can be

excluded in some candidate models are zeros.
1As an alternative NPW estimator for ATT in model S, we may consider an overidentified GMM estimator for

τ . Using the moment conditions mi(θ) to be defined in Section 3 and an optimal choice of weighting matrix Ω, a

GMM estimator for τ in model S minimizes
(
1
n

∑
mi(θ)

)′
Ω
(
1
n

∑
mi(θ)

)
subject to γSc = 0. Although this GMM

estimator has a smaller asymptotic variance than τ̂S considered in this paper, its computation is not as simple as τ̂S .

We therefore do not consider such overidentified GMM estimators in our analysis.
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The localization parameter δ ∈ R̄K measures the local deviation of the true coefficient values

from the benchmark coefficient γ0. The value of δ controls the asymptotic bias of the NPW

estimator of each submodel, as will be shown below. Since the procedures to be proposed do not

depend on the benchmark values for the coefficients that appear in every candidate model, we do

not have to assume the value of γ0,S .

Let EP0 (·) and V arP0 (·) be the expectation and variance defined at probability law P0 ∈ P.

In what follows, we use the following notation:

G = G
(
W ′γ0

)
, g = g

(
W ′γ0

)
=
dG (z)

dz

∣∣∣∣
z=W ′γ0

, Q = P0 (D = 1) .

µ1 (X) = EP0 [Y (1) |X] , µ0 (X) = EP0 [Y (0) |X] , ∆µ (X) = µ1 (X)− µ0 (X) ,

α0 = EP0 [Y (0) |D = 1] , τ0 = EP0 [Y (1)− Y (0) |D = 1] ,

σ21 (X) = V arP0 (Y (1) |X) , σ20 (X) = V arP0 (Y (0)|X) ,

h =
D −G

G (1−G)
gW ,

where h ∈ RK is the K × 1 score vector in the first stage maximum likelihood estimation for γ

evaluated at γ = γ0, i.e., EP0 (h) = 0 holds.

In the next proposition, we derive the asymptotic distribution of each submodel NPW estimator

along a DGP sequence of Assumption 2.2.

Proposition 2.1 Suppose Assumption 2.1 and the regularity conditions stated in Assumption A.1

in Appendix A hold for a class of data generating processes P, and Assumption 2.2 holds for a

sequence of data generating processes {Pn} ⊂ P. For each S ∈ M, let hS be a subvector of the

score vector h defined by

hS ≡ πSh =
(D −G (W ′γ0))g (W ′γ0)

G (W ′γ0) (1−G (W ′γ0))
WS .

At the data generating process P = P0, we define L {h1|h2} as the linear projection of a random

variable h1 onto a random vector h2 and L⊥ {h1|h2} as its orthogonal complement, i.e., L {h1|h2} =

EP0 (h1h
′
2)EP0 (h2h

′
2)
−1 h2 and L⊥ {h1|h2} = h1 − L {h1|h2} .

The limiting distribution of τ̂S along {Pn} converging weakly to P0 is

√
n (τ̂S − τn)

Pn N
(
0, ω2

S

)
+ biasS (δ) ,

11



ω2
S = SEBτ,S +

1

Q2
EP0

[
L⊥
{

(D −G)

[
∆µ (X)− τ0 +

1− 2G

1−G
(µ0(X)− α0)

]∣∣∣∣hS}2
]
,

(2.2)

biasS (δ) =
1

Q
EP0

[
L⊥
{(

D −G
1−G

)
[µ0 (X)− α0]

∣∣∣∣hS}h′Sc] δSc . (2.3)

where SEBτ,S is the semiparametrically efficient variance bound for τ under a priori restriction

such that the propensity score is parametric and the relevant regressors are WS, i.e., P (D = 1|X) =

G(W ′SγS),

SEBτ,S = EP0

[(
G

Q

)2{σ21 (X)

G
+
σ20 (X)

1−G
+ (∆µ (X)− τ0)2

}]
+

1

Q2
EP0

[
L {(D −G) [∆µ (X)− τ0] |hS}2

]
. (2.4)

Proof. See Appendix A.

Before arguing analytical insights out of this proposition, it is worth clarifying the motivation of

the local asymptotic analysis in the current context. The ultimate goal of the analysis is to obtain

an estimator for the ATT that optimally balances out the finite sample variance-bias tradeoffs across

small to large models. For this purpose, a sequence of DGPs as defined in Assumption 2.2 is used

as a device for deriving a class of δ-indexed sampling distributions of the NPW estimators, in which

the variance and bias of the estimators can be analyzed at the same stochastic order.2 Hence,

if a value of δ that can give accurate approximation of the actual sampling distributions of the

NPW estimators were given, we could obtain an MSE minimizing optimal specification. However,

a value of δ that gives accurate MSE approximation in a given situation remains unknown even in

large n, so, unless one model dominates the others uniformly over δ, a data-driven selection of the

optimal model involves the non-trivial step of handling uncertainty for δ, as discussed in Section 3.

Based on the analytical expressions for the variance and bias, the following remarks summarize

some useful insights on the variance-bias tradeoffs in the ATT estimation.

Remark 2.1 The variance expression of the submodel NPW estimator (2.2) consists of two terms

that both depend on the selection of regressors. The first term corresponds to the semiparamet-

ric efficiency bound for τ constructed with a priori knowledge that the parametric propensity score

2In contrast, if we consider a type of asymptotics where n increases to infinity with a fixed DGP, we would obtain

any nonzero bias of a submodel estimator τ̂S to have stochastically larger order than the variance irrespective of the

size of misspecification. This asymptotics may well provide a poor approximation for the finite sample MSEs, when

a small model is misspecified only slightly.
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depends only on the selected regressors. See Graham, de Xavier Pinto, and Egel (2012) for a

derivation of this variance bound. This variance bound depends on S through the variance of the

linear projection of (D −G) [∆µ (X)− τ0] onto hS the score vector of the parametric propensity

score estimation with regressor vector WS. The fact that the dimension of hS equals to the dimen-

sion of WS implies that SEBτ,S weakly monotonically increases as more regressors are included in

the propensity score, i.e., SEBτ,S ≤ SEBτ,S′ whenever S ⊂ S′.

The second term of (2.2) captures the inefficiency of the NPW estimators relative to the semi-

parametric variance bound with the knowledge that model S is correctly specified. This rela-

tive inefficiency term is represented as the variance of the linear projection residuals of (D −

G)
[
∆µ (X)− τ0 + 1−2G

1−G (µ0(X)− α0)
]

onto hS . Therefore, in contrast to SEBτ,S, the second

term weakly decreases with the dimension of WS.

As a whole, whether having more regressors in the propensity score inflates the variance of

τ̂S or not depends on which of the two effects (inflation of SEBτ,S versus the reduction of rel-

ative inefficiency) dominates. In the special case where the treatment effects are homogeneous,

i.e.,∆µ(X) = τ0 for all X, the first component in the variance expression SEBτ,S no longer de-

pends on S, so that adding more regressors never inflates the variance of the NPW estimator. In

contrast, if treatment effects are heterogeneous, a smaller model can have an NPW estimator with

a smaller variance than that of bigger models. For an example, see the Monte Carlo specification

of Section 4.1.

Remark 2.2 The bias term shown in (2.3) is the inner product of the local misspecification param-

eter vector for excluded regressors δSc and the correlation vector of hSc and the linear projection

residual of
(
D−G
1−G

)
[µ0 (X)− α0] onto hS. Clearly, the bias of a submodel NPW estimator is zero

if δSc is the zero vector. Even when δSc is a nonzero vector, the bias of a submodel NPW estimator

can become zero if these two vectors are orthogonal. This implies that, depending on the value

of the local misspecification parameters, we can reduce the bias of a submodel NPW estimator by

dropping some covariates that are useful to predict treatment status. Thus, there is no general

monotonic relationship available between the squared bias and the number of included regressors.

Remark 2.3 As indicated by the relative inefficiency term appearing in (2.2), the NPW estimator

is not semiparametrically efficient even when the propensity score specification in the submodel is

correct. Recently, Graham et al. (2011) propose the Auxiliary-to-Study Tilting (AST) estimator

for the ATT, that has a smaller asymptotic variance than the NPW estimator, and can achieve
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SEBτ,S under the assumption that µ1(X) and µ0(X) are linear in a prespecified set of covariate

vector used in the tilting step. The current local asymptotic analysis can be applied to the AST

estimators, and the model selection and averaging for the AST estimators can be developed along

the same line of analysis given in the next section. In this paper, however, we exclusively focus on

the NPW estimator since the NPW estimator is easier to implement and numerically more stable

than the AST estimator.3

3 Focussed Information Criterion and Model Averaging for ATT

estimation

The analytical results of Section 2 show that, in the presence of treatment effect heterogeneity (i.e.,

∆µ(X) is not a constant), the MSEs of the NPW estimator approximated by the local asymptotics

lead to nontrivial variance-bias tradeoffs between the small and large models, and an optimal

selection of regressors that minimizes the MSE of τ̂S can be a proper subset of the regressors in the

largest model. Since the localization parameter δ remains unknown even for large n, estimation of

MSEs and selection of optimal specification crucially hinges on how the non-vanishing uncertainty

of δ is dealt with.

In this section, we consider two ways estimate the MSEs: one is the unbiased estimation for

MSEs along the same line as in the focussed information criterion (FIC) of Claeskens and Hjort

(2003); another is a posterior estimation for MSEs that leads a model selection to a Bayes decision

in the limit experiment. As a smoothed version of model selection and post-selection estimation,

we subsequently consider how to optimally average the NPW estimators over the candidate models

(model averaging).

3.1 MSE Minimizing Covariate Selection with FIC

Estimation of the MSE of each submodel NPW estimator is most easily formulated by focusing on

the set of moment conditions that yields the NPW estimator in the largest model,

EPn [mi (θn)] = 0,

3In the Monte Carlo study of Section 4, we tried to implement the covariate selection procedure based the AST

estimator. In many Monte Carlo samples, however, we failed to compute the AST estimator apparently due to the

lack of an interior solution in the tilting step. Busso et al. (2011) also remarks on such numerical instability of the

AST estimator.
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where θn = (γ′n, αn, τn)′ and

mi (θ) =


(Di−G(W ′iγ))

G(W ′iγ)[1−G(W ′iγ)]
g (W ′iγ)Wi[

Di + (1−Di)

(
G(W ′iγ)

1−G(W ′iγ)

)]
(Yi − τDi − α)[

Di + (1−Di)

(
G(W ′iγ)

1−G(W ′iγ)

)]
(Yi − τDi − α)Di

 .

These moment conditions are in the form of weighted least squares with weights

[
Di + (1−Di)

(
G(W ′iγ)

1−G(W ′iγ)

)]
,

and have been used in Busso et al. (2011). Let

M = EP0

[
∂

∂θ′
mi (θ)

∣∣∣∣
θ=θ0

]
,

Σ = EP0

[
mi (θ0)mi (θ0)

′] ,
which are consistently estimated by

M̂ =
1

n

n∑
i=1

∂

∂θ′
mi

(
θ̂
)
,

Σ̂ =
1

n

n∑
i=1

mi

(
θ̂
)
mi

(
θ̂
)′
,

where θ̂ = (γ̂′, α̂, τ̂) is the estimator for θ in the largest model. See Lemma A.1 in Appendix A for

these consistency claims. Using the selection matrix,

ΛS
(|S|+2)×(K+2)

=


πS O

1

O 1


the asymptotic variance and the squared bias terms of

√
n (τ̂S − τn) can be written as

ω2
S = the final element in the bottom row of (3.1)(

ΛSMΛ′S
)−1

ΛSΣΛ′S
(
ΛSM

′Λ′S
)−1

,

bias2S (δ) = b′SδScδ
′
ScbS , (3.2)

b′S = the first |Sc| elements of the row vector in the bottom row of(
ΛSMΛ′S

)−1
ΛSMΛ′Sc .
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By plugging in M̂ and Σ̂, we obtain consistent estimators for ω2
S and bS , while the squared bias

term involves the square of the local misspecification parameters δScδ
′
Sc , for which a consistent

estimator is not available.

The first method estimates MSEs by plugging in an asymptotically unbiased estimator for

δScδ
′
Sc . Note that

√
n (πSc γ̂ − γ0,Sc)

Pn N
(
δSc , πScI−1γ π′Sc

)
, (3.3)

where Iγ = EP0 (hh′) is the Fisher information for γ in the full model, which can be consistently

estimated by

Îγ =
1

n

n∑
i=1

g2 (W ′i γ̂)

G (W ′i γ̂) [1−G (W ′i γ̂)]
WiW

′
i .

Since γ0,Sc = 0 under Assumption 2.2, the maximum likelihood estimator for δSc in the limit

normal experiment of (3.3) is given by δ̂Sc =
√
nπSc γ̂. Since EPn

(
δ̂Sc δ̂

′
Sc

)
→ δScδ

′
Sc + πScI−1γ π′Sc

as n→∞, an asymptotically unbiased estimator for δScδ
′
Sc can be constructed as

δ̂Scδ′Sc = πSc
[
nγ̂γ̂′ − Î−1γ

]
π′Sc .

Based on this unbiased estimate of δScδ
′
Sc , we estimate the squared bias term by

̂bias2S (δ) = max
{
b̂′SπSc

[
nγ̂γ̂′ − Î−1γ

]
π′Scb̂S , 0

}
, (3.4)

where the max operators in these expressions are used to modify the negative estimates for the

squared bias. With summing up the consistent variance estimator and the approximately unbiased

estimator for the squared bias, we obtain FIC for specification S,

FIC(S) = ω̂2
S + ̂bias2S (δ).

The second method estimates MSEs based a posterior distribution for δScδ
′
Sc formed in the limit

Gaussian experiment. This Bayesian way of making use of data is considered in Claeskens and

Hjort (2003, Section 7), and the same idea can apply to the current context as well. Let µ
(
δSc
)

be

a prior distribution for δSc ∈ RK−|Sc|, that either reflects user’s prior opinion about which δSc are

more likely than others, or represents degrees of importance over the parameter space regaring the

model selection performance. We update this prior based on the sufficient statistics for δSc in the
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limit Gaussian experiment, δ̂Sc =
√
nπSc γ̂ ∼ N(δSc , πScI−1γ π′Sc). We then estimate the squared

bias term of the NPW estimator in model S by plugging in b̂S and the posterior mean of δScδ
′
Sc ,

EδSc |δ̂Sc
(
bias2S (δ)

)
= b̂′SEδSc |δ̂Sc

(
δScδ

′
Sc
)
b̂S

= b̂′SπSπ
′
ScEδSc |δ̂Sc

(
δScδ

′
Sc

)
πScπ

′
Sb̂S ,

where EδSc |δ̂Sc (·) is the expectation with respect to the posterior distribution of δSc . A convenient

specification for µ
(
δSc
)

is a conjugate normal prior with mean φ and variance matrix Φ, with which

the closed-form expression for EδSc |δ̂Sc
(
bias2S (δ)

)
is obtained as

EδSc |δ̂Sc
(
bias2S (δ)

)
= b̂′SπScπ

′
Sc

(
δScδ

′
Sc +

((
πSc Î−1γ π′Sc

)−1
+ Φ−1

)−1)
πScπ

′
Scb̂S ,

where δSc is the posterior mean of δSc , δSc =

((
πSc Î−1γ π′Sc

)−1
+ Φ−1

)−1((
πSc Î−1γ π′Sc

)−1
δ̂Sc + Φ−1φ

)
.

If the improper uniform distribution is used as a non-informative prior for δSc , the posterior mean

of the squared bias has the following simple form,

EδSc |δ̂Sc
(
bias2S (δ)

)
= b̂′SπSc

(
nγ̂γ̂′ + Î−1γ

)
π′Scb̂S . (3.5)

We refer to the MSE estimate formed via a posterior of δSc as Bayesian FIC (BFIC),

BFIC(S) = ω̂2
S + EδSc |δ̂Sc

(
bias2S (δ)

)
,

where ω̂2
S is the consistent variance estimator as used in the construction of FIC(S).4

The implementation of the covariate selection procedure is summarized as follows, regardless of

whether the researcher decides to use FIC or BFIC:

FIC/BFIC based covariate selection for ATT estimation.

(Step 1) Specify a largest model (regressor vector W ), in which Assumption 2.1 (ii) and (iii) are

believed to be reasonable.

(Step 2) Run NPW estimation with the full regressor vector W , and, based on the parameter

estimates in the largest model, obtain M̂ , Σ̂, γ̂γ̂′, and Îγ .

4If the improper uniform prior for δSc is used, EδSc |δ̂Sc

(
bias2S (δ)

)
− ̂bias2S (δ) = 0 holds for any realization of δ̂Sc .

This implies that, compared with FIC, BFIC (with the uniform prior) results inestimating the squared bias to be

bigger.
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(Step 3) Compute the FIC, or BFIC (with a give prior for δSc) for each candidate model. Find

the optimal selection of regressors, S, that minimizes FIC (S) or BFIC (S).

(Step 4) Using the optimal selection of regressors obtained in Step 3, we compute the NPW

estimator for τ , and report it as a post-selection point estimator for τ .

3.2 MSE Minimizing Model Averaging

In this section, we consider an estimator for ATT in the following average form,

τ̂avg =
∑
S∈M

cS

(
δ̂Sc
)
τ̂S , (3.6)

where cS

(
δ̂Sc
)

are weights summing up to one,
∑

S∈M cS

(
δ̂Sc
)

= 1. τ̂avg is the weighted sum

of the NPW estimators calculated in the candidate specifications, and the goal of model averaging

is to choose the averaging weight so as to minimize the MSE of τ̂avg.
5 The argument of cS

(
δ̂Sc
)

indicates that we specify weights to depend on data only through the sufficient statistics for the

local misspecification parameter δSc in the limit experiment. Note that we allow some cS

(
δ̂Sc
)

to

be negative since, by doing so, we can obtain optimal weights as an interior solution, whose closed

form expression is available. In addition, we can potentially lower the asymptotic MSE of τ̂avg by

relaxing the nonnegativity constraints of the weights.

Let t̂n be a |M| × 1 column vector consisting of {
√
n (τ̂S − τn) : S ∈M}. By noting that the

bias expression obtained in (2.3) can be written as b′SπScπ
′
ScδSc , we can express the asymptotic

distribution of
(
δ̂Sc , t̂n

)
asδ̂Sc

t̂n

 Pn N

 δSc

BδSc

 ,

Ω11 Ω12

Ω21 Ω22

 , (3.7)

where B is a |M| × |Sc| matrix, whose row vector corresponding to model S is b′SπScπ
′
Sc . The

covariance matrix

Ω11 Ω12

Ω21 Ω22

 is the limit covariance matrix of the moment conditions,

 (
−πScI−1γ 0 0

)
T

mi (θ0) ,

5As an alternative class of averaging estimators for ATT, we can consider NPW estimators for ATT with averaged

propensity scores plugged-in. Analysing optimal averaging weight for this class of ATT estimator is beyond the

scope of this paper.
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where T is a |M|×(K + 2) matrix with each row vector corresponding to model S being the bottom

row vector of − (ΛSMΛ′S)−1 ΛS . Note that Ω11 is a submatrix of the asymptotic variance matrix

of the first stage MLE, Ω11 = πScI−1γ π′Sc . For a short-hand notation, denote averaging weights by

|M| × 1 column vector c
(
δ̂Sc
)

=
(
cS

(
δ̂Sc
)

: S ∈M
)

. Given that cS

(
δ̂Sc
)

is continuous in δ̂Sc ,

the asymptotic MSE of
√
n (τ̂avg − τn) under the local asymptotics is obtained as

MSE
(√
n (τ̂avg − τn)

)
→ Eδ̂Sc |δSc

[
c
(
δ̂Sc
)′
K
(
δ̂Sc , δSc

)
c
(
δ̂Sc
)]
, as n→∞, (3.8)

where Eδ̂Sc |δSc is the expectation with respect to δ̂Sc ∼ N
(
δ
Sc
,Ω11

)
, and K

(
δ̂Sc , δSc

)
is an

|M| × |M| symmetric and positive-semidefinite matrix,

K
(
δ̂Sc , δSc

)
= Ω22 − Ω21Ω

−1
11 Ω12

+
(
B − Ω21Ω

−1
11

) (
δ
Sc
− δ̂Sc

)(
δ
Sc
− δ̂Sc

)′ (
B − Ω21Ω

−1
11

)′
+
(
B − Ω21Ω

−1
11

) (
δ
Sc
− δ̂Sc

)
δ̂′ScB

′ +Bδ̂Sc
(
δ
Sc
− δ̂Sc

)′ (
B − Ω21Ω

−1
11

)′
+Bδ̂Sc δ̂

′
ScB

′.

See Appendix A for a derivation of (3.8).

By viewing the asymptotic MSE (3.8) as risk,the Bayes optimal averaging weights c∗ (·) with

respect to prior µ
(
δSc
)

is defined as,

c∗ (·) = arg min
c(·):

∑
S cS(·)=1

ˆ
Eδ̂Sc |δSc

[
c
(
δ̂Sc
)′
K
(
δ̂Sc , δSc

)
c
(
δ̂Sc
)]
dµ
(
δSc
)
. (3.9)

We refer to the resulting averaging estimator as BayesLE. Since solving for the Bayes optimal

weights is equivalent to minimizing the posterior risk, we obtain the following closed form expression

of the Bayes optimal weights.

Proposition 3.1 Let µ
(
δSc
)

be a proper prior, and let Kpost

(
δ̂Sc
)

be the posterior expectation of

K
(
δ̂Sc , δSc

)
given δ̂Sc ∼ N (δSc ,Ω11),

Kpost

(
δ̂Sc
)
≡ EδSc |δ̂Sc

[
K
(
δ̂Sc , δSc

)]
If Kpost

(
δ̂Sc
)

is nonsingular almost surely in δ̂Sc, the Bayes optimal action for model averaging

weight c∗
(
δ̂Sc
)

is unique almost surely in δ̂Sc, and is given by

c∗
(
δ̂Sc
)

=

[
1′Kpost

(
δ̂Sc
)−1

1

]−1 [
Kpost

(
δ̂Sc
)−1

1

]
, (3.10)
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where 1 is the vector of ones with length |M|.

Proof. See Appendix A.

If µ
(
δSc
)

is specified to be conjugate normal with mean φ and variance Φ, then the conjugate

normal posterior, δ
Sc
|δ̂Sc ∼ N

(
δ,
(
Ω−111 + Φ−1

)−1)
, yields

Kpost

(
δ̂Sc
)

= Ω22 − Ω21Ω
−1
11 Ω12

+
[(
B − Ω21Ω

−1
11

)
δSc + Ω21Ω

−1
11 δ̂Sc

] [(
B − Ω21Ω

−1
11

)
δSc + Ω21Ω

−1
11 δ̂Sc

]′
(3.11)

+
(
B − Ω21Ω

−1
11

) (
Ω−111 + Φ−1

)−1 (
B − Ω21Ω

−1
11

)′
.

We accordingly obtain the optimal weights by plugging in consistent estimates of Ω’s and B into

Kpost

(
δ̂Sc
)

, and apply formula (3.10).

Remark 3.1 The main reason that Proposition 3.1 assumes proper µ
(
δSc
)

is to guarantee that the

Bayes risk (3.9) is bounded, and hence the minimization problem (3.9) has a well defined solution.

In practice, however, forcing the researcher to have a proper prior may be restrictive if she/he does

not have a credible prior opinion for δSc, or she\he wishes to apply a non-informative prior for the

purpose of reporting a default averaging estimate. If we specify µ
(
δSc
)

to be uniform (Jeffreys’

prior for the Gaussian means), Kpost

(
δ̂Sc
)

is well defined,

Kpost

(
δ̂Sc
)

= Ω22 − Ω21Ω
−1
11 Ω12 +

(
B − Ω21Ω

−1
11

)
Ω11

(
B − Ω21Ω

−1
11

)′
+Bδ̂Sc δ̂

′
ScB

′, (3.12)

and the posterior risk has a well defined minimizer, as given by (3.10), despite that the resulting

Bayes risk is unbounded.6 In Monte Carlo studies and an empirical application below, we examine

performance of the averaging weights corresponding to the uniform prior.

Remark 3.2 Hjort and Claeskens (2003, Sec. 5.4) propose the following way of obtaining weights.

Given localization parameter δ
Sc

and weight vector c, the asymptotic MSE of
√
n (τ̂avg − τn) is

6One way to justify this averaging scheme would 1be to claim that the averaging weights corresponding to the

uniform prior is obtained by a limit of the Bayes optimal weights with respect to a sequence of proper priors.

Specifically, by noting that Kpost

(
δ̂Sc

)
of (3.11) converges to (3.12) as the prior variance matrix diverges to infinity,

the averaging weights corresponding to the uniform prior can be obtained as the limit of the Bayes optimal weights

along a sequence of conjugate priors with diverging prior variances.
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written as c′Eδ̂Sc |δSc

[
K
(
δ̂Sc , δSc

)]
c = c′

(
Ω22 −BδSc δ′ScB

′
)
c. The weights proposed by Hjort

and Claeskens minimize asymptotically unbiased estimator of this MSE,

cHC

(
δ̂Sc
)

= arg min
c

c′
(

Ω22 −B
(
δ̂Sc δ̂

′
Sc − Ω11

)
B′
)
c,

which leads to

cHC

(
δ̂Sc
)

=

[
1′
(

Ω22 +B
(
δ̂Sc δ̂

′
Sc − Ω11

)
B′
)−1

1

]−1 [(
Ω22 +B

(
δ̂Sc δ̂

′
Sc − Ω11

)
B′
)−1

1

]
,

Note that cHC

(
δ̂Sc
)

can be shown to be different from the Bayes optimal weights of (3.11) for any

of the conjugate normal priors, as well as the weights corresponding to the uniform prior presented

in Remark 3.1.

4 Monte Carlo Study

In this section, we perform a simulation experiment to study the behavior of the estimators discussed

in Sections 2 and 3. We show that a bias-variance trade-off exists, and find MSE gains for the model

averaging estimators proposed in Section 3. The results are especially favorable for the BayesLE

estimator introduced in Proposition 3.1. We first consider a toy example that contains only one

covariate in an oversimplified setting. Then, we consider a more realistic setting with an extensive

set of simulations.

4.1 A Simplest Model

Suppose there is only one Bernoulli covariate X ∈ {0, 1} with P (X = 1) = pX There are two

candidate models. The large model has regressors W = (1, X)′ and the small model has only the

intercept. In this simple setup, the propensity score can be specified as

P (D = 1|X) = G(W ′γ) = γ0 + γ1X.

We will introduce the local asymptotics by letting γ1 = δ/
√
n → 0 as n → ∞. At P0, γ

1 = 0,

we have G (X) = γ0 so that D is independent of X. For simplicity, we normalize the regression

functions of the potential outcomes by setting µ1(1) = µ1(0) = µ0(1) = 0, so that the only non-zero

mean occurs for the control outcome with X = 0, i.e. µ0(0) = −µ. In this simple setupthe average

treatment effect for the treated is
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ATT = ATE(1)P (X = 1|D = 1) + ATE(0)P (X = 0|D = 1) = −q1µ+ 0. (4.1)

It is straightforward to show that the NPW estimator from the small model is

τ̂∅ =
1

n0

n∑
i=1

(1−Di)Yi

with n0 =
∑

i (1−Di) and that the NPW estimator from the full model is

τ̂f = −q̂1µ̂

where µ̂ is the sample analog of µ = E(Y |D = 0, X = 0), and q̂1 is the sample analog estimator for

q1 = P (X = 1|D = 1).

The previous expressions suggest that a bias-variance tradeoff may exist in this case. The small

model estimator computes one sample analog using n0 observations. The full model estimator

uses a smaller number of observations for µ and requires the estimation of an additional term. To

formalize this in a local asymptotic framework, we let

γ1 = P (D = 1|X = 1)− P (D = 1|X = 0) = δ/
√
n

and refer the reader to Appendix B, where we show that the MSE in the small model minus the

MSE in the large model is given by

2γ0 − 1

γ0(1− γ0)
pX(1− pX)µ2 +

(
pX(1− pX)

γ0(1− γ0)
µδ

)2

. (4.2)

Hence, if γ0 < 1/2, we can derive the range of δ =
√
nγ1, in which the small model has a smaller

MSE:

−
√

(1− 2γ0)γ0(1− γ0) ≤ δ ≤
√

(1− 2γ0)γ0(1− γ0).

Figure 1 presents the results for this case, assuming pX = 1/2 and γ0 = 0.3. First, there is a clear

bias-variance tradeoff which leads the small estimator to be preferred for a range of δ around 0.

Second, the averaging estimator dominates the small estimator, and outperforms the full estimator

over a larger range of δ, while the MSE improvement relative to the large model is not uniform over

δ. The range of γ1 for which the BayesLE estimator outperforms the full estimator is approximately

(−0.12, 0.12), based on the simulations underlying Figure 1.
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Figure 1: Analytical and simulations results for the simplest model with pX = q0 = 1/2, n = 100.

The MSE is on the vertical axis, and δ is on the horizontal axis. Black: full model. Red: small

model. Blue: BayesLE estimator. Dotted lines are based on analytic expressions, solid lines are

based on simulations.
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Parameter Description Value

n Number of observations 300

K Number of regressors 4

c Correlation in covariates 0.7

γ1 = β11 = β01 Effect of X1 1

α0, α1, αD Constant terms 1; 2; 1

γk = β1k, k > 1 Effect of Xk, k > 1 on D,Y (1) 0.1

β0k, k > 1 Effect of Xk, k > 1 on Y (0) 0

σ0 = σ1 Conditional st. dev. Yi (0) , Yi (1) 0.1

Table 1: Parameter values for the simulations in Section 4.2.

4.2 A More Realistic Model

For the purposes of this simulation study, we use the following model:

Y (0) = α0 +X
′
β0 + u0,

Y (1) = α1 +X
′
β1 + u1,

P (D = 1|X) = Λ(αD +X
′
γ),

X ∼ NK
(

0K , cIK + (1− c)ιKι
′
K

)
,

where Λ is the logistic function, and we assume that the error terms uj are independent of the

K explanatory variables X, and have a normal distribution with mean 0 and variances σ2j . The

regressors follow a multivariate normal distribution, and the probability of treatment takes a logit

form, assumed to be linear in the covariates. The parameter c controls the covariance structure of

the regressors: c = 1 means that the regressors are independent; collinearity corresponds to c = 0.

For the purpose of these simulations, we assume that the potential outcome equations are linear in

the covariates. As can be seen from the list of benchmark parameter values in Table 4.2, we set the

coefficients of X1 in the propensity score equation and in the potential outcome equations equal to

γ1 = β11 = β01 = 1. We introduce treatment effect heterogeneity by setting the the coefficients for

all other covariates equal to 0.1 for the treatment outcome, and 0 for the control outcome. Note

that the first regressor (X1) is very important, and should probably be included in estimation, but

there may be a bias-variance tradeoff for the other covariates.

Given a number of regressors K, we either consider all 2K − 1 submodels, or the 2K−1 − 1
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submodels that include a constant term and the important regressor X1. The model selection and

model averaging estimators depend on estimators of the local misspecification parameter δ, and on

the matrices B and Ω in equation (3.7). Estimators for δ and B are obtained from the full model,

and the asymptotic covariance matrix Ω is estimated using the bootstrap (1000 bootstrap samples).

We will refer to the “full model” as the model with all regressors, and to the “small model” as

the model that only includes X1 and a constant term. On top of the submodel estimators, we study

the following five estimators: (1) the “Best submodel” estimator, which is the submodel estimator

with the lowest MSE across simulations; (2) the “BayesLE” estimator, described in Proposition

3.1; (3) the “HC” estimator, proposed by Hjort and Claeskens, described in Remark (3.2); (4)

the “Selection” estimator, which chooses the estimator with the lowest estimated MSE; (5) the

“invFIC” estimator, which weighs each submodel estimator by the inverse of its estimated MSE.

The invFIC estimator is a naive weighting estimator that does not take into account the correlation

between submodel estimators. Results for each model are based on 4000 replications.

The results for the benchmark simulations can be found in Table 4.2. We consider two scenarios:

in the first one (“All submodels”), a researcher considers all submodels; in the second one (“Sub-

models with X1”), the researcher has prior knowledge that the covariate X1 is very important, and

only considers models that include X1. In the bottom row, we report the relative efficiency, which

is defined as the MSE of the BayesLE estimator divided by the MSE of the estimator in the full

model.

Several findings are worth noting. First, note that all the estimators that leave out the relevant

regressor X1 have poor performance due to omitted variable bias. Second, there is a clear bias-

variance tradeoff: the small model (only X1) outperforms the full model (all regressors). Third,

the full model estimator has the lowest bias. Fourth, the BayesLE estimator seems to have the

best overall performance, in terms of MSE. Finally, the performance of the selection procedure

seems unaffected by the inclusion of poorly performing models (i.e. models without X1), whereas

including these poorly performing models improves the performance of the averaging estimators,

and the BayesLE estimator in particular. This translates into the higher relative efficiency in the

first scenario. In conclusion, the simulation results provide evidence in favor the BayesLE estimator,

and suggest that it is robust against the inclusion of poorly performing models.

Sensitivity analysis. We now check whether the conclusions from the main results are robust

to changes in the design parameters, and investigate the role of the design on the relative perfor-

mance of the estimators. The results are summarized in Table 4.2. We consider seven designs. In
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All submodels Submodels with X1

Estimator Bias Var MSE Bias Var MSE

{X1} 2.13 3.07 3.11 2.29 3.04 3.06

{X1, X2} 2.05 3.18 3.22 2.23 3.18 3.23

{X1, X2, X3} 1.94 3.33 3.37 2.19 3.27 3.32

{X1, X2, X3, X4} 1.94 3.40 3.43 2.22 3.36 3.40

{X1, X2, X4} 2.04 3.26 3.30 2.26 3.28 3.33

{X1, X3} 2.02 3.24 3.28 2.25 3.12 3.17

{X1, X3, X4} 2.03 3.30 3.34 2.29 3.22 3.28

{X1, X4} 2.13 3.16 3.20 2.33 3.13 3.18

{X2} 80.10 1.46 65.61 - - -

{X2, X3} 75.22 1.55 58.13 - - -

{X2, X3, X4} 72.07 1.60 53.55 - - -

{X2, X4} 75.20 1.52 58.06 - - -

{X3} 80.09 1.48 65.62 - - -

{X3, X4} 75.24 1.53 58.13 - - -

{X4} 80.06 1.45 65.54 - - -

Best submodel 2.13 3.08 3.11 2.29 3.04 3.06

Selection 3.18 3.06 3.16 3.46 3.01 3.13

BayesLE 3.90 2.09 2.24 4.56 2.87 3.08

HC 3.07 2.92 3.01 4.52 2.89 3.09

invFIC 4.67 2.61 2.83 2.45 3.11 3.17

Relative MSE Improvement 65% 90%

Table 2: Simulation results for the benchmark setup. All values were multiplied by 100. Relative

efficiency is the ratio of the BayesLE estimator’s MSE to the MSE of the full model.
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design (1), we lower the sample size to 150. In design (2), we increase the sample size to 1000. In

design (3), we consider a model with only two regressors. In design (4), we consider uncorrelated

regressors. In design (5), we decrease the effect of the regressors in the selection and outcome

equations by setting the coefficients to zero. In design 6, we increase the coefficients to 0.3, making

the non-X1 regressors more relevant.

The conclusions from the benchmark setup are unchanged. Some findings are worth pointing

out. First, the lowest MSE for any design is achieved by the BayesLE estimator, except in design

(3). Second, although the naive averaging estimator (“invFIC”) provides an improvement over

all submodel estimators and the selection estimator, it is generally outperformed by the BayesLE

estimator.

Changes in the parameters of the design can have an impact on the absolute and relative

performance of the estimators. First, it can be seen from the simulation output for designs (1)

and (2) that increasing the sample size reduces the bias and variance for all estimators, without

affecting the relative efficiency. Second, reducing the number of regressors in the full model leads to

more precise estimators. There seems to be a lower relative efficiency from selection and averaging,

as there is less of a bias-variance tradeoff. Third, reducing the correlation between the regressors

reduces the variance of the estimates, but there seems to be no change in relative efficiency from

model averaging. Fourth, increasing the importance of regressors (X2, · · · , XK) relative to X1

reduces the precision of the estimators.

5 Empirical application

In this section, we apply the methods discussed in Sections 2 and 3 to the dataset analyzed in

LaLonde (1986) and Dehejia and Wahba (1999). These papers estimate the impact of the Na-

tional Supported Work Demonstration (NSW) on earnings. The NSW was implemented as a field

experiment. Candidates were randomized across treatment and control groups. Those who were

assigned to the treatment group benefitted from work experience, and some counselling. Due to the

experimental implementation, the difference in post-intervention earnings of treatment and control

groups is an unbiased estimator for the average effect of the NSW program on earnings. LaLonde

shows that linear regression, fixed effects, and selection models fail to reproduce the experimental

estimate, using as control group the members of the Panel Study on Income Dynamic (PSID) and

the Current Population Survey (CPS). Dehejia and Wahba (DW) show that estimates obtained
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Variable Description Always in? Treated CPS-1

age Age (years) Yes 25.82 33.23

education Years of schooling Yes 10.35 12.03

black 1 if black Yes 0.84 0.07

re74 1974 earnings ($) Yes 2096 14017

re75 1975 earnings ($) Yes 1532 13651

hispanic 1 if hispanic No 0.06 0.07

married 1 if married No 0.19 0.71

nodegree 1 if no high school No 0.71 0.30

age2
(both or neither) No

- -

re752 - -

Observations 185 15992

Table 4: Variables and transformation in our application. Column “Always in?” denotes whether

we choose to include these covariates in the propensity score specification for each submodel. The

last two columns report the sample means for the observations with Di = 1 and Di = 0, respectively.

using propensity score methods are closer to the experimental estimate.

A detailed description of the program and the data can be found in the aforementioned papers.7

As in DW, we focus on the 185 observations on male participants in the treatment group for which

pre-intervention incomes in both 1974 and 1975 are available. The non-experimental control group

that we use is CPS-1.8 Propensity score covariates and summary statistics are given in Table 4.

The experimental estimate for this subset is $1672 (standard error: $637), after a regression

adjustment for age, education, and race.9 Using stratification and matching on the estimated

propensity score, DW’s adjusted estimates are $1774 (standard error: $1152) and $1616 (standard

error: $751), respectively. DW do not provide an in-depth discussion of how the covariates for the

propensity score were chosen, but they describe that their results are sensitive to excluding higher

7The data is available from Raheev Dehejia’s website. Last accessed: June 1, 2013. Location:

http://users.nber.org/∼rdehejia/nswdata2.html.
8LaLonde (p. 611) provides details on the CPS-1 sample. We prefer the CPS over the PSID because of the larger

sample size (n = 15992).
9The unadjusted estimate is $1794 with a standard error of $633.
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Full model Small model

Variable SE γ̂ SE

age 72.66 2.93 −3.47 0.58

education −0.99 0.55 −6.21 1.56

black 0.10 0.01 0.09 0.01

hispanic 0.03 0.01

married −1.58 0.26

nodegree 0.29 0.06

re74 −1.23 0.57 −0.90 0.54

re75 −5.99 1.24 −4.28 0.70

age2 −18.25 2.31

re752 0.88 0.48

n 16177 16177

Table 5: Estimates and standard errors for the propensity score parameters in the full and small

model. For the ease of comparison on the importance of each regressor, each coefficient estmate is

multiplied by the standard deviation of the regressor.

order terms and to excluding 1974 earnings.10

We consider the set of variables and transformations in Table 4. Our choice of variables in the

large model is identical to that in DW. The treatment and control groups have sizeable differences

in terms of their observable characteristics, so a difference in means is unlikely to be unbiased for

the average treatment effect. We consider 16 submodels: (i) for each variable in (hispanic, married,

nodegree), we are unsure whether to include it in the propensity score or not; (ii) we are unsure

whether to include squares (for re75 and age). We use a logit form for the selection equation. Table

5 presents the output for the propensity score estimation in the full and the small model. Clearly,

omitting some of the covariates in the full model leads to biased estimation of γ, see for example

the changes in the coefficient estimate for education. On the other hand, the coefficients are more

10DW use trimming in their empirical application, by discarding observations in the control group that have an

estimated propensity that is lower than that the minimum estimated propensity score in the treatment group. We do

not trim any observations in our empirical illustration. Note that whether trimming or not trimming any observations

in the control group does not affect the estimand, as trimming is applied in the control group only, and the estimand

is the ATT.
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Figure 2: Estimates and their estimated mean squared errors. The vertical dotted line corresponds

to the experimental estimate. The vertical solid line corresponds to the averaging estimate. For

each submodel, the standard error is determined using 500 bootstrap replications. The radius of

the circle is proportional to the weight assigned by the BayesLE estimator.

precisely estimated in the small model.

Figure 2 visualizes the NPW estimates and standard errors from all submodels. In terms of their

standard errors, none of the submodel estimates gets close to the experimental estimate (horizontal

dotted line). Some of the estimates are closer to the experimental estimate than the full model

estimate, but this could be due to sampling error, as all the implied confidence intervals overlap.

Table 6 reports 95% confidence intervals for the experimental estimate, the full model estimate,

and the BayesLE estimate, using the procedure described in Hjort and Claeskens (2008, p. 211).

All confidence intervals are quite wide, which is consistent with the findings in Lalonde and DW.

Note that the averaging procedure does not lead to more precise inference than using the full model.

We want to stress that the objective of this paper is to come up with a point estimator that has

good performance. The procedure is known to be conservative (Hjort and Claeskens, 2008, p. 211),
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Method Estimate SE 95%-CI

Experimental 1672 637 [627, 2717]

Full model 1358 753 [123, 2593]

Bayes 1547 - [-56, 2686]

Table 6: Estimates and confidence intervals for three procedures.

but addressing this issue is beyond the scope of this paper.

6 Concluding Remarks

We proposed covariate selection and model averaging procedures for propensity score weighted esti-

mation of ATT by extending the framework of focussed information criterion and frequentist model

averaging to the semiparametric estimation of ATT. The aim of these procedures is to construct

a most accurate estimator for ATT in terms of MSE, provided that the unconfoundedness holds

and propensity scores are correctly specified in a most complicated specification provided by the

user. The resulting procedures are easy to implement, and can offer a reference estimate of the

ATT that takes into account the uncertainty in propensity score specifications. Our Monte Carlo

evidence shows that the proposed procedures, especially our model averaging scheme, significantly

outperform the ATT estimator constructed in each candidate specification. We therefore recom-

mend empirical researchers to report the model averaged estimate in the presence of specification

uncertainty for propensity scores.

There are several issues and concerns that are not covered in the current framework of the

analysis. First, the local asymptotic approximation becomes less precise as the number of regressors

is large relative to the sample size, so that the proposed procedures will not be suitable to a

situation, where the most complicated specification has too many regressors. Second, the normal

approximation obtained via the local asymptotics will not be precise when the overlap condition

is poorly satisfied. So, the performance of our selection/averaging procedure is questionable if

the supports of the propensity scores have limited overlap, Third, this paper only concerns point

estimation and does not consider precise post-selection/averaging inference for ATT. We leave

these important issues for future research.
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Appendix

A Proofs

We first introduce notations used throughout the appendix. For P ∈ P, let τ (P ) = EP (Y (1)− Y (0) |D = 1)

and α (P ) = EP (Y (0) |D = 1). Following Busso et al. (2011), we formulate the NPW estimation by the

following system of just-identified moment conditions; ,

EP [m (Zi, θ (P ))] = EP


(Di−G(W ′

iγ(P )))
G(W ′

iγ(P ))[1−G(W ′
iγ(P ))]

g (W ′iγ (P ))Wi[
Di + (1−Di)

(
G(W ′

iγ(P ))
1−G(W ′

iγ(P ))

)]
(Yi − τ (P )Di − α (P ))[

Di + (1−Di)

(
G(W ′

iγ(P ))
1−G(W ′

iγ(P ))

)]
(Yi − τ (P )Di − α (P ))Di

 = 0. (A.1)

where Zi = (Yi, Di,W (Xi)) is a random vector of observation whose probability law is induced by P ∈ P,

and θ (P ) =
(
γ (P )

′
, α (P ) , τ (P )

)′ ∈ RK+2 be a parameter vector solving these moment conditions when

DGP is given at P ∈ P. Note that the sample analogue of these moment conditions for the parameters

yields the NPW estimator for τ in the largest model.

In what follows, we use the following notations. Let θn ≡ θ (Pn) = (γ′n, αn, τn)
′

and θ0 ≡ θ (P0) =

(γ′0, α0, τ0)
′
. Let θ̂ = (γ̂′, α̂, τ̂)

′
be the method of moment estimator in the largest model that solves

n−1
∑n
i=1m (Zi, θ) = 0.

For each selection of covariates S ∈M , we define

γS = π′SπSγ + (I − π′SπS) γ0

θS =
(
γS′, α, τ

)′
, (A.2)

where πS is the selection matrix defined in the main text. γS is a (K × 1) vector obtained by replacing the

elements of γ that are not selected in S with their benchmark values γ0 (zeros by Assumption 2.2). In

particular, for parameter sequence {θn} corresponding to {Pn}, we denote

γSn = π′SπSγn + (I − π′SπS) γ0,

θSn =
(
γS′n , αn, τn

)′
.

For each S ∈M, define matrix

ΛS
(|S|+2)×K

=


πS O

1

O 1

 .

Let γ̂S be an (|S| × 1) vector of the MLE estimators obtained from the propensity score estimation with

regressors WS . Accordingly, we define a (K × 1) vector

γ̂S = π′S γ̂S + (I − π′SπS) γ0.
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The NPW estimator in model S, interpreted as a method of moment estimator for θ in a reduced set of

moment conditions, solves the following (|S|+ 2)-dimensional just-identifying sample moments,

ΛS

(
1

n

n∑
i=1

m
(
Zi, θ̂

S
))

= 0,

with

θ̂S =
(
γ̂S′, α̂S , τ̂S

)′
,

where τ̂S is the NPW ATT estimator in model S as defined in the main text, and α̂S is the corresponding

value of α solving the sample moments of (A.1). Let (γ̃n,S , α̃n,S , τ̃n,S) be the (|S|+ 2)-dimensional parameter

vector that solves the population analogue of this reduced set of moment conditions for model S, i.e.,

EPn

[
ΛSm

(
Zi, θ̃

S
n

)]
= 0,

where

θ̃Sn =
(

(π′S γ̃n,S + (I − π′SπS) γ0)
′
, α̃n,S , τ̃n,S

)′
. (A.3)

Note that θ̃Sn generally differs from θSn defined previously, while they will converge to the same limit θ0 under

the drifting sequence {Pn} converging weakly to P0, as will be shown in Lemma A.1.

Having introduced these notations, we now present a set of regularity conditions on a set of data gener-

ating processes P, which {Pn} and P0 belong to.

Assumption A.1:

(i) The parameter space Θ =
{
θ (P ) ∈ RK+2 : P ∈ P

}
is compact.

(ii) There exists a compact set in RK that contains the support of W (X) ∈ RK for every P ∈ P.

(iii) There exist λ > 2 such that EP

[
|Y (1)− EP (Y (1) |X)|λ |X

]
<∞ and EP

[
|Y (0)− EP (Y (0) |X)|λ |X

]
<

∞ hold uniformly over P ∈ P.

(iv) θ is identified uniformly over {Pn} ⊂ P in the sense that, for every ε > 0, 0 = ‖EPn [m (Z, θn)]‖ <
inf{θ:‖θ−θn‖≥ε} ‖EPn

[m (Z, θ)]‖ holds for all Pn.

(v) In each model S ∈M, θ̃Sn defined in (A.3) is identified uniformly over {Pn} in the sense that for every

ε > 0, 0 =
∥∥∥EPn

[
ΛSm

(
Z, θ̃Sn

)]∥∥∥ < inf{θS :‖θS−θn‖≥ε}
∥∥EPn

[
ΛSm

(
Z, θS

)]∥∥ holds for all Pn, where θS

is as defined in (A.2).

The following lemmas are used to prove Proposition 2.1 and the consistency claims made in Section 3 of

the main text.
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Lemma A.1 Suppose P satisfies Assumption 2.1 and Assumption A.1. Let {Pn} ∈ P be a sequence of

data generating process converging weakly to P0 ∈ P.

(i)
∥∥∥θ̂ − θn∥∥∥ = oPn

(1) .

(ii) In addition, assume Assumption 2.2.
∥∥∥θ̂S − θn∥∥∥ = oPn

(1) for every S ∈M .

(iii) Let M = EP0

[
∂
∂θ′m (Zi, θ0)

]
.

1

n

n∑
i=1

∂

∂θ′
m
(
Zi, θ̂

)
−M = oPn

(1) ,

1

n

n∑
i=1

∂

∂θ′
m (Zi, θn)−M = oPn

(1) .

(iv) Let Σ = EP0

[
m (Zi, θ0)m (Zi, θ0)

′]
and Σn = EPn

[
m (Z, θn)m (Z, θn)

′]
.

1

n

n∑
i=1

m
(
Zi, θ̂

)
m
(
Zi, θ̂

)′
− Σ = oPn (1) ,

Σn − Σ = o (1) .

(v) 1√
n

∑n
i=1 m (Zi, θn)

Pn N (0,Σ).

Proof. Let mn (θ) = 1
n

∑n
i=1 m (Zi, θ). To prove (i), we first show that, under Assumption 2.1 and A.1,

uniform weak consistency of the moment conditions along {Pn} holds, i.e., supθ ‖mn (θ)− EPn [m (Z, θ)]‖ =

oPn (1). Let F ≡ {m (·, θ) : θ ∈ Θ} be the class of moment functions indexed by θ. Under the overlapping

assumption (Assumptions 2.1(iii)) and A.1 (i) and (ii), the moment conditions are Lipshitz continuous with

bounded variation F̃ (Z),∥∥∥m (Z, θ)−m
(
Z, θ̃

)∥∥∥ ≤ F̃ (Z)
∥∥∥θ − θ̃∥∥∥ for all θ, θ̃ ∈ Θ,

where F̃ (Z) = max {c1W ′W, c2 |Y | , 1} with some positive universal constants c1 < ∞ and c2 < ∞. Then,

the covering number of the class of functions, F = {‖m (Z, θ)−m (Z, θ∗)‖ : θ ∈ Θ} for a fixed θ∗ ∈ Θ, is

bounded above by

N
(
ε
∥∥∥F̃∥∥∥ ,F , ‖·‖) ≤ [2diam (Θ)

ε

]K+2

,

for arbitrary seminorm ‖·‖ defined on F (Theorem 2.7.11 of van der Vaart and Wellner (1996)). Note that F
has envelope F (Z) = F̃ (Z) diam (Θ), and the covering number of F when the radius is set at ε ‖F‖ satisfies

N (ε ‖F‖ ,F , ‖·‖) ≤
[

2

ε

]K+2

<∞
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for all ε > 0. This leads to the bounded entropy number condition for F . Furthermore, Assumption A.1

(ii) and (iii) assure the envelope is integrable uniformly over P,EP [F (Z)] < ∞ for all P ∈ P. Hence, by

Theorem 2.8.1 of van der Vaart and Wellner (1996), we obtain, for every {Pn} ∈ P,

sup
θ
‖mn (θ)− EPn

[m (Z, θ)]‖ = oPn (1) . (A.4)

The definion of θ̂ and the uniform convergence of the moment conditions implies

0 =
∥∥∥mn

(
θ̂
)∥∥∥ ≤ ‖mn (θn)‖ = ‖EPn

[m (Z, θn)]‖+ oPn
(1) .

Accordingly, by noting ‖EPn [m (Z, θn)]‖ −
∥∥∥EPn

[
m
(
Z, θ̂

)]∥∥∥ ≤ 0, we have∥∥∥mn

(
θ̂
)∥∥∥− ∥∥∥EPn

[
m
(
Z, θ̂

)]∥∥∥ ≤ ‖EPn
[m (Z, θn)]‖ −

∥∥∥EPn

[
m
(
Z, θ̂

)]∥∥∥+ oPn
(1) ≤ oPn

(1) .

Since, the left hand side quantity is oPn (1) by (A.4), we obtain

‖EPn
[m (Z, θn)]‖ −

∥∥∥EPn

[
m
(
Z, θ̂

)]∥∥∥ = oPn
(1) (A.5)

By Assumption A.1(iv), for every ε > 0, there exists λ > 0, such that ‖EPn
[m (Z, θn)]‖−‖EPn

[m (Z, θ)]‖ <
−λ holds for all Pn and ‖θ − θn‖ ≥ ε. Hence, we have

Pn(
∥∥∥θ̂ − θn∥∥∥ ≥ ε) 5 Pn (‖EPn

[m (Z, θn)]‖ −
∥∥∥EPn

[
m
(
Z, θ̂

)]∥∥∥ < −λ) ,
where the right hand side converges to zero by (A.5). This leads to

∥∥∥θ̂ − θn∥∥∥ = oPn
(1).

To show (ii), consider∥∥∥θ̂S − θn∥∥∥ ≤ ∥∥∥θ̂S − θ̃Sn∥∥∥+
∥∥∥θ̃Sn − θSn∥∥∥+

∥∥θSn − θn∥∥ . (A.6)

In what follows, we prove each term in the right hand side vanishes asymptotically.

By a procedure similar to the proof of (i), we have

0 =
∥∥∥ΛSmn

(
θ̂S
)∥∥∥ ≤ ∥∥∥ΛSmn

(
θ̃Sn

)∥∥∥ =
∥∥∥EPn

[
ΛSm

(
Zi, θ̃

S
n

)]∥∥∥+ oPn
(1) ,

where the second equality follows from the uniform convergence of (A.4). Therefore,∥∥∥ΛSmn

(
θ̂S
)∥∥∥−∥∥∥EPn

[
ΛSm

(
Zi, θ̂

S
)]∥∥∥ ≤ ∥∥∥EPn

[
ΛSm

(
Zi, θ̃

S
n

)]∥∥∥−∥∥∥EPn

[
ΛSm

(
Zi, θ̂

S
)]∥∥∥+oPn

(1) ≤ oPn
(1) .

By repeating the same argument as in the proof of (i), Assumption A.1(v) and (A.5) yield
∥∥∥θ̂S − θ̃Sn∥∥∥ =

oPn
(1) . Assumption 2.2 implies that the third term in the right hand side of (A.6) is o (1), because∥∥θSn − θn∥∥ ≤ ‖γn − γ0‖ = O

(
n−1/2

)
. In order to show that the second term in the right hand side of

(A.6) is o (1), consider applying the mean value expansion to m
(
Z, θSn

)
and take the expectation EPn (·) ,

EPn

[
ΛSm

(
Z, θSn

)]
= EPn

[ΛSm (Z, θn)] + EPn

[
ΛS

∂

∂θ′
m
(
Z, θ̄

)] (
θSn − θn

)
= ΛSEPn

[
∂

∂θ′
m
(
Z, θ̄

)] (
θSn − θn

)
,
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Since EPn

[
ΛS

∂
∂θ′m

(
Z, θ̄

)]
< ∞ by Assumptions 2.1 (iii) and A.1 (ii), and

∥∥θSn − θn∥∥ = o (1) as shown

above, we have EPn

[
ΛSm

(
Z, θSn

)]
= o(1). Accordingly, we have∥∥∥EPn

[
ΛSm

(
Z, θ̃Sn

)]∥∥∥− ∥∥EPn

[
ΛSm

(
Z, θSn

)]∥∥ = o (1) .

The identification assumption (Assumption A.1(v)) then implies
∥∥∥θ̃Sn − θSn∥∥∥ = o (1). Thus, we have shown

that the right hand side of (A.6) is oPn (1).

To show (iii), apply the triangular inequality to
(
1
n

∑n
i=1

∂
∂θ′m (Zi, θ)

)
kl

where (A)kl means (k, l)-element

of matrix A.∣∣∣∣∣
(

1

n

n∑
i=1

∂

∂θ′
m
(
Zi, θ̂

)
− EP0

(
∂

∂θ′
m (Zi, θ0)

))
kl

∣∣∣∣∣
≤

∣∣∣∣∣
(

1

n

n∑
i=1

∂

∂θ′
m
(
Zi, θ̂

)
− 1

n

n∑
i=1

∂

∂θ′
m (Zi, θ0)

)
kl

∣∣∣∣∣ (A.7)

+

∣∣∣∣∣
(

1

n

n∑
i=1

∂

∂θ′
m (Zi, θ0)− EPn

(
∂

∂θ′
m (Zi, θ0)

))
kl

∣∣∣∣∣
+

∣∣∣∣(EPn

(
∂

∂θ′
m (Zi, θ0)

)
− EP0

(
∂

∂θ′
m (Zi, θ0)

))
kl

∣∣∣∣ .
Note that Assumption A.1 (i) and (ii) imply that every element of the derivative matrix ∂

∂θ′m (Z, θ) is

Lipshitz continuous in θ,∣∣∣∣∣
(
∂

∂θ′
m (Z, θ)− ∂

∂θ′
m
(
Z, θ̃

))
ij

∣∣∣∣∣ ≤ fkl (Z)
∥∥∥θ − θ̃∥∥∥ for all θ, θ̃ ∈ Θ,

with EP (fij (Z)) <∞ for all P ∈ P. Hence, the first term of (A.7) is bounded by∣∣∣∣∣
(

1

n

n∑
i=1

∂

∂θ′
m
(
Zi, θ̂

)
− 1

n

n∑
i=1

∂

∂θ′
m (Zi, θ0)

)
kl

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

fkl (Zi)

)∥∥∥θ̂ − θ0∥∥∥ = oPn
(1) ,

where
∥∥∥θ̂ − θ0∥∥∥ ≤ ∥∥∥θ̂ − θn∥∥∥+‖θn − θ0‖ = oPn

(1) by Lemma A.1 (i) and Assymption 2.2, and
(
1
n

∑n
i=1 fkl (Zi)

)
=

EPn
(f (Zi)) + oPn

(1) by the weak law of large number for triangular arrays (e.g. Lemma 11.4.2 of Lehman

and Romano (2005)). Similarly, by the weak law of large number for triangular arrays, the second term in

the right-hand side of (A.7) is oPn
(1) as well. The final term in the right-hand side of (A.7) is o (1) since

Pn converges weakly to P0. Hence, we obtain 1
n

∑n
i=1

∂
∂θ′m

(
Zi, θ̂

)
Pn→ EP0

(
∂
∂θ′m (Zi, θ0)

)
. If we replace

θ̂ in (A.7) with θn, the same argument can apply, and yields the desired conclusion.

A proof of (iv) can be obtained by repeating the same argument as in the proof of Lemma A.1(iii), so

we omit the proof of (iv) for brevity.

To show (v), note that the strict overlap assumption and Assumption A.1(ii) and (iii) assure that the

Lindberg condition holds for each moment condition in m (Zi, θ). Therefore, the Lindberg-Feller central

limit theorem for triangular arrays leads to

Σ−1/2n

(
1√
n

n∑
i=1

m (Zi, θn)

)
Pn N (0, IK+2) .
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By the assertion of Lemma A.1 (iv), Σ1/2Σ
−1/2
n → IK+2, so

1√
n

n∑
i=1

m (Zi, θn) = Σ1/2Σ−1/2n

(
1√
n

n∑
i=1

m (Zi, θn)

)
+ oPn (1)

Pn N (0,Σ) .

Proof of Proposition 2.1. The sample moment conditions that yield the NPW estimator in submodel

S can be written as

0 = ΛSmn

(
θ̂S
)
.

By the mean value expansion around θn, we have

0 = ΛSmn (θn) + ΛS

[
∂

∂θ′
mn

(
θ̄
)]

γ̂S − γn
α̂S − αn
τ̂S − τn



= ΛSmn (θn) + ΛS

[
∂

∂θ′
mn

(
θ̄
)]Λ′S


γ̂S − γn,S
α̂S − αn
τ̂S − τn

− Λ′Sc


γn,Sc − γ0,Sc

0

0


 ,

where θ is a convex combination of θ̂S and θn. Here, the second equality is obtained by plugging in

γ̂S = π′S γ̂S+π′Scγ0. By Lemma A.1(ii),
∥∥θ̄ − θn∥∥ = oPn (1). Then, Lemma A.1(iii) ensures ∂

∂θ′mn

(
θ̄
)
−M =

oPn
(1). Therefore, by Lemma A.1(v) and Assumption 2.2, the asymptotic distribution of


γ̂S − γn,S
α̂S − αn
τ̂S − τn

 is

obtained as

√
n


γ̂S − γn,S
α̂S − αn
τ̂S − τn

 = − (ΛSMΛ′S)
−1

ΛS
(√
nmn (θn)

)
+ (ΛSMΛ′S)

−1
ΛSMΛ′Sc


δSc

0

0

+ oPn
(1) .

Pn − (ΛSMΛ′S)
−1

ΛS ×N (0,Σ) + (ΛSMΛ′S)
−1

ΛSMΛ′Sc


δSc

0

0

 (A.8)

In order to compute the asymptotic variance of
√
n (τ̂S − τn), we focus on the variance of the bottom element

of − (ΛSMΛ′S)
−1

ΛSm (Zi, θ0) with Zi ∼ P0. The expectation of the derivative matrix of the full moment
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conditions at P0 is given by

M = EP0

(
∂

∂θ′
m (Zi, θ0)

)

=


−EP0 (hh′) 0 0

EP0

(
g

1−G (µ0 (X)− α)W ′
)
−2Q −Q

0′ −Q −Q

 ,

and its inverse is

M−1 =


−EP0

(hh′)
−1

0 0

− 1
QEP0

(
g

1−G (µ0 (X)− α)W ′
)
EP0

(hh′)
−1 −Q−1 Q−1

1
QEP0

(
g

1−G (µ0 (X)− α)W ′
)
EP0

(hh′)
−1

Q−1 −2Q−1

 .

Hence,(ΛSMΛ′S)−1 is obtained as

(ΛSMΛ′S)
−1

=


−EP0

(hSh
′
S)
−1

0 0

− 1
QEP0

(
g

1−G (µ0 (X)− α)W ′S

)
EP0

(hSh
′
S)
−1 −Q−1 Q−1

1
QEP0

(
g

1−G (µ0 (X)− α)W ′S

)
EP0

(hSh
′
S)
−1

Q−1 −2Q−1

 .

By noting identity EP0

(
g

1−G (µ0 (X)− α0)W ′S

)
= EP0

(
D−G
1−G (µ0 (X)− α0)h′S

)
, we can express the bottom

element of − (ΛSMΛ′S)
−1

ΛSm (Zi, θ0) as

− 1

Q
EP0

(
D −G
1−G

(µ0 (X)− α0)h′S

)
EP0

(hSh
′
S)
−1
hS,i (A.9)

− 1

Q

[
Di + (1−Di)

(
Gi

1−Gi

)]
(Yi − τDi − α0)

+
2

Q

[
Di + (1−Di)

(
Gi

1−Gi

)]
(Yi − τDi − α0)Di

=− 1

Q
L

{(
D −G
1−G

)
[µ0 (X)− α0]

∣∣∣∣hS}+
Di

Q
(Yi − µ1 (X))− 1−Di

Q

Gi
1−Gi

(Yi − µ0 (X)) (A.10)

+

(
D −G
Q

)[
µ1 (X)− α0 +

G

1−G
(µ0 (X)− α0)− τ0

]
+
G

Q
(∆µ(X)− τ0) .

The first term of (A.10) admits the following decomposition,

− 1

Q
L

{(
D −G
1−G

)
[µ0 (X)− α0]

∣∣∣∣hS}
=

1

Q
L {(D −G)(∆µ(X)− τ0)|hS} −

1

Q
L

{
(D −G)

[
µ1 (X)− α0 +

G

1−G
(µ0 (X)− α0)− τ0

]∣∣∣∣hS} .
Hence, we can express (A.10) as

1

Q
L {(D −G)(∆µ(X)− τ)|hS}+

1

Q
L⊥
{

(D −G)

[
µ1 (X)− α0 +

G

1−G
(µ0 (X)− α0)− τ0

]∣∣∣∣hS}
+
Di

Q
(Yi − µ1 (X))− 1−Di

Q

Gi
1−Gi

(Yi − µ0 (X)) +
G

Q
(∆µ(X)− τ0) .
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These five terms are mean zero and mutually uncorrelated, so the sum of their variances gives the asymptotic

variance of
√
n (τ̂S − τn).

Regarding the bias term, (A.8) suggests that it is given by the bottom element of the second term in the

right hand side of (A.8), which is calculated as

− 1

Q
EP0

[
D −G
1−G

[µ0 (X)− α0]h′S

]
EP0 (hSh

′
S)
−1
EP0 (hSh

′
Sc) δSc +

1

Q
EP0

[
D −G
1−G

[µ0 (X)− α0]h′Sc

]
δSc

=
1

Q
EP0

[{
D −G
1−G

[µ0 (X)− α0]− EP0

[
D −G
1−G

[µ0 (X)− α0]h′S

]
EP0

(hSh
′
S)
−1
hS

}
h′Sc

]
δSc

=EP0

[
1

Q
L⊥
{(

D −G
1−G

)
[µ0 (X)− α0]

∣∣∣∣hS}h′Sc

]
δSc .

Derivation of (3.8). The asymptotic MSE of
√
n (τ̂avg − τn) is given by the limit of

V arPn

(√
n (τ̂avg − τn)

)
+
[
EPn

(√
n (τ̂avg − τn)

)]2
.

Using the formula of conditional variance, we rewrite the MSE as

EPn

[
V arPn

(√
n (τ̂avg − τn) |δ̂Sc

)]
+ V arPn

[
EPn

(√
n (τ̂avg − τn) |δ̂Sc

)]
+
[
EPn

(√
n (τ̂avg − τn)

)]2
= EPn

[
V arPn

(√
n (τ̂avg − τn) |δ̂Sc

)]
+ EPn

[
EPn

(√
n (τ̂avg − τn) |δ̂Sc

)2]
.

That is, the unconditional MSE of
√
n (τ̂avg − τn) is equal to the mean of its conditional MSE given δ̂Sc . From

(3.7) and by noting
√
n (τ̂avg − τn) = c

(
δ̂Sc

)′
t̂n, the limit of the conditional MSE of

√
n (τ̂avg,NPW − τn)

given δ̂Sc is written as

c
(
δ̂Sc

)′ (
Ω22 − Ω21Ω−111 Ω12

)
c
(
δ̂Sc

)
+

{
c
(
δ̂Sc

)′ [
BδSc + Ω21Ω−111

(
δ̂Sc − δSc

)]}2

.

Hence, it follows the quadratic form expression in the expectation in (3.8) with the corresponding weighting

matrix K
(
δ̂Sc , δSc

)
.

Proof of Proposition 3.1. Solving the Bayes decision problem (3.9) is equivalent to solving the posterior

Bayes action for every possible realization of δ̂Sc . Hence, we let δ̂Sc be given by data, and consider minimizing

the posterior risk for c
(
δ̂Sc

)
subject to the normalization constraint,

min
c(δ̂Sc)

c
(
δ̂Sc

)′
EδSc |δ̂Sc

[
K
(
δ̂Sc , δSc

)]
c
(
δ̂Sc

)
,

s.t. c
(
δ̂Sc

)′
1 = 1,

If Kpost

(
δ̂
)

= Eδ̂Sc |δSc

[
K
(
δ̂Sc , δSc

)]
is nonsingular, this constrained optimization becomes a quadratic

minimization problem with a convex objective function. So, this has a unique solution and the standard
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Lagrangian optimization procedure yields c∗
(
δ̂Sc

)
of the proposition. Note that, with proper µ

(
δSc

)
, the

minimized Bayes risk is bounded, because, by considering weight that always assignes 1 to the largest model,

we have
ˆ
Eδ̂Sc |δSc

[
c∗
(
δ̂Sc

)′
K
(
δ̂Sc , δ

Sc

)
c∗
(
δ̂Sc

)]
dµ
(
δSc

)
5 ω2

largest

ˆ
dµ
(
δSc

)
= ω2

largest <∞,

where ω2
largest is the asymptotic variance of the NPW estimator in the largest model.

B Derivation of Equation (4.2)

We apply the formula of Proposition 2.1. Under the presented setup of Section 4.1, note that hS of the

small model is (D−G)
G(1−G) and that of the large model is (D−G)

G(1−G) (1, X)′.

First, we compute the MSE of the small model. In the small model, straightforward calculations yield

the following identities

L {(D −G) [∆µ (X)− τ0] |hsmall} = 0,

L⊥
{

(D −G)

[
∆µ (X)− τ0 +

1− 2G

1−G
(µ0(X)− α0)

]∣∣∣∣hsmall} =
(D −G)G

(1−G)
(X − pX)µ,

L⊥
{
D −G
1−G

(µ0(X)− α0)

∣∣∣∣hsmall} = − (D −G)

(1−G)
(X − pX)µ

Hence, by denoting the first term in the right hand side of (2.4) by ω2, the variance of the NPW estimator

in the small model is given by

ω2
small = ω2 +

1

G2
EP0

[(
(D −G)G

(1−G)
(X − pX)µ

)2
]

= ω2 +
G

1−G
pX(1− pX)µ2.

The bias term in the small model is

biassmall = − 1

G
EP0

[(
(D −G)2

G(1−G)2
X(X − pX)µ

)]
δ

= −pX(1− pX)

G(1−G)
µδ.

Thus, we obtain the MSE of the small model as

MSEsmall = ω2 +
G

1−G
pX(1− pX)µ2 +

[
pX(1− pX)

G(1−G)
µδ

]2
.

Next, consider the large model. We have

L {(D −G) [∆µ (X)− τ0] |hlarge} = (D −G)(X − pX)µ,

L⊥
{

(D −G)

[
∆µ (X)− τ0 +

1− 2G

1−G
(µ0(X)− α0)

]∣∣∣∣hlarge} = 0,
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where the second equality follows since (D − G)
[
∆µ (X)− τ0 + 1−2G

1−G (µ0(X)− α0)
]

is linear in (D − G)

and (D−G)X. The second equality and the zero bias in the large model imply that the MSE of the NPW

estimator in the large model equals to (2.4),

MSElarge = ω2 +
1

G2
EP0

[
(D −G)2(X − pX)2µ2

]
=

1−G
G

pX(1− pX)µ2.

Hence, MSEsmall −MSElarge as presented in (4.2) follows.
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