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Abstract

We consider testing for weak instruments in a model with multiple endogenous
variables. Unlike Stock and Yogo (2005), who considered a weak instruments prob-
lem where the rank of the matrix of reduced form parameters is near zero, here
we consider a weak instruments problem of a near rank reduction of one in the
matrix of reduced form parameters. For example, in a two-variable model, we con-
sider weak instrument asymptotics of the form π1 = δπ2 + c/

√
n where π1 and π2

are the parameters in the two reduced-form equations, c is a vector of constants
and n is the sample size. We investigate the use of a conditional first-stage F-
statistic along the lines of the proposal by Angrist and Pischke (2009) and show
that, unless δ = 0, the variance in the denominator of their F-statistic needs to be
adjusted in order to get a correct asymptotic distribution when testing the hypoth-
esis H0 : π1 = δπ2. We show that a corrected conditional F-statistic is equivalent
to the Cragg and Donald (1993) minimum eigenvalue rank test statistic, and is
informative about the maximum total relative bias of the 2SLS estimator and the
Wald tests size distortions. When δ = 0 in the two-variable model, or when there
are more than two endogenous variables, further information over and above the
Cragg-Donald statistic can be obtained about the nature of the weak instrument
problem by computing the conditional first-stage F-statistics.
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1 Introduction

Following the work of Staiger and Stock (1997) and Stock and Yogo (2005), testing for

weak instruments is now commonplace. For a single endogenous variable model, the

standard first-stage F-statistic can be used to test for weakness of instruments, where

weakness is expressed in terms of the size of the bias of the IV estimator relative to that

of the OLS estimator, or in terms of the magnitude of the size distortion of the Wald

test for parameter hypotheses. Stock and Yogo (2005) tabulated critical values for the

standard F-statistic that have been incorporated in software packages.

For multiple endogenous variables, inspection of the individual first-stage F-statistics

is no longer suffi cient. The Cragg-Donald (1993) statistic can be used to evaluate the

overall strength of the instruments in this case, and Stock and Yogo (2005) have tabu-

lated critical values of the minimum eigenvalue of the Cragg-Donald statistic for testing

weakness of instruments. They derive the limiting distributions under weak instrument

asymptotics where the reduced form parameters are local to zero in each reduced form

equation, and obtain critical values that are conservative in the sense that they are re-

jecting the null of weak instruments too infrequently when the null is true.

In this paper, we are interested in analysing tests for weak instruments in a model with

multiple endogenous variables in a setting where the reduced form parameters are not

local to zero, but where the reduced form parameter matrix is local to a rank reduction

of one. In this case, the values of the F-statistics in each of the first-stage equations can

be high, but the identification of (some of) the model parameters is weak. We will focus

initially on a model with two endogenous variables. The weak instrument asymptotics

we consider are local to a rank reduction of one, of the form

π1 = δπ2 + c/
√
n,

where π1 and π2 are the parameters in the two reduced-form equations, c is a vector of
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constants and n is the sample size. We call these asymptotics LRR1 weak instrument

asymptotics.

We will focus solely on the properties of the 2SLS estimator. We investigate the

use of a conditional first-stage F-statistic along the lines of the proposal by Angrist

and Pischke (2009) and show that the variance formula in the denominator of their F-

statistic needs to be adjusted in order to get a correct asymptotic distribution when

testing the null hypothesis, in the two-variable model, H0 : π1 = δπ2. We further

show that the resulting new conditional F-statistic is equivalent to the Cragg-Donald

minimum eigenvalue statistic. Using our weak instrument asymptotics we show that this

conditional F-statistic cannot be used in the same way as the Stock and Yogo (2005)

procedure for a single endogenous variable to assess the magnitude of the relative bias of

the 2SLS estimator of an individual structural parameter. This is because the OLS bias

expression contains additional terms such that the expression for the bias of the 2SLS

estimator relative to that of the OLS estimator does not have the the simple expression

as in the one-variable case. However, the total relative bias can be bounded as can the

size distortions of Wald tests on the structural parameters.

In a two-endogenous-variable model the conditional F-statistics for each reduced form

are equivalent to each other and to the Cragg-Donald minimum eigenvalue statistic under

our LRR1 weak instrument asymptotics. This holds unless δ = 0, in which case the local

rank reduction is due to the fact that π1 is local to zero and the first-stage F-statistic

for x1 will be small and that for x2 will be large. In this case, both the Angrist-Pischke

F-statistic and our conditional F-statistic for x1 can be assessed against the Stock-Yogo

critical value, and the 2SLS estimator for the structural parameter on x2 is consistent.

Additional information can also be obtained from our conditional F-statistics when there

are more than two endogenous variables, as they will identify which variables cause the

near rank reduction. For example, if in a three variable model the near rank reduction
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is due to the reduced form parameters on two variables only, the conditional F-statistic

for the third variable will remain large giving the researcher valuable information about

the nature of the problem and directions for solving it. We also show that the 2SLS

estimator for the structural parameter of the third variable is consistent in that case.

The paper is organised as follows. In Section 2 we introduce the linear model with one

endogenous variable and summarise the Staiger and Stock (1997) and Stock and Yogo

(2005) results for testing for weak instruments. Section 3 considers weak instrument test

statistics for the linear model with two endogenous explanatory variables and introduces

the new conditional F-tests. Section 4 considers the relative bias and Wald test size

distortions for the 2SLS estimator under the LRR1 weak instrument asymptotics as

outlined above and presents some Monte Carlo results for the two-variable model. Section

4 also shows the usefulness of the conditional F-test statistics in a model with more than

two endogenous variables. Finally, Section 5 concludes.

2 Weak Instrument Asymptotics in One-VariableModel

In this section we follow the basic Staiger and Stock (1997) and Stock and Yogo (2005)

setup. The simple model is

y = xβ + u (1)

where y, x, and u are n × 1 vectors, with n the number of observations. There is

endogeneity, such that E (u|x) 6= 0. The reduced form for x is

x = Zπ + v, (2)

where Z is a n× kz matrix of instruments and v is n× 1. For ui and vi we assume,(
ui
vi

)
∼ (0,Σ)

Σ =

(
σ2u σuv
σuv σ2v

)
.
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The 2SLS estimator is given by

β̂2SLS =
x′PZy

x′PZx
= β0 +

x′PZu

x′PZx

where PZ = Z (Z ′Z)−1 Z ′.

The concentration parameter is given by

CP =
π′Z ′Zπ

σ2v

and is a measure of the strength of the instruments, see Rothenberg (1984). A small

concentration parameter is associated with a bias of the 2SLS estimator and deviations

from its asymptotic normal distribution.

A simple test whether the instruments are related to x is of course a Wald or F-test

for the hypothesis H0 : π = 0. The Wald test is given by

Wπ =
π̂′Z ′Zπ̂

σ̂2v
=
x′Z (Z ′Z)−1 Z ′x

σ̂2v

where π̂ = (Z ′Z)−1 Z ′x is the first-stage OLS estimator, and σ̂2v = x′MZx/n, where

MZ = I − PZ . Under the null, Wπ
d−→ χ2kz . The F-test is given by F = Wπ/kz. Note

that we refrain from a degrees of freedom correction in the variance estimate. Also, note

that the analyses here and further below extend to a model with additional exogenous

regressors, as we can replace y, x and Z everywhere by their residuals from regressions

on those exogenous regressors.

Staiger and Stock (1997) introduce weak instrument asymptotics as a local to zero

alternative,

π =
c√
n
,

which ensures that the concentration parameter does not increase with the sample size

CP =
π′Z ′Zπ

σ2v

p−→ c′QZZc

σ2v
,

where QZZ = plim (n−1Z ′Z).
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Assuming that conditions are fulfilled, such that(
1√
n
Z ′u

1√
n
Z ′v

)
d−→
(
ψZu
ψZv

)
∼ N (0,Σ⊗QZZ) ,

and kz ≥ 3 when assessing relative bias. Then under weak instrument asymptotics,

β̂2SLS − β =
x′Z (Z ′Z)−1 Z ′u

x′Z (Z ′Z)−1 Z ′x

d−→ σu
σv

(λ+ zv)
′ zu

(λ+ zv)
′ (λ+ zv)

.

where

λ = σ−1v Q
1/2
ZZc; zv = σ−1v Q

−1/2
ZZ ψZv; zu = σ−1u Q

−1/2
ZZ ψZu.

The bias of the OLS estimator is given by

β̂OLS − β =
x′u

x′x
=

(Zπ + v)′ u

(Zπ + v)′ (Zπ + v)
=

n−1
(
n−1/2c′Z ′u+ v′u

)
n−1 (n−1c′Z ′Z ′c+ 2n−1/2c′Z ′v + v′v)

p−→ plimn−1v′u

plimn−1v′v
=
σuv
σ2v

=
σu
σv
ρ,

where ρ = σuv
σuσv

.

As a measure of relative bias, Stock and Yogo (2005) propose

B2
n =

E
[
β̂2SLS

]
− β

E
[
β̂OLS

]
− β

2

.

From the derivations above, and as E [zu|zv] = ρzv, it follows that

B2
n =

(
E

[
(λ+ zv)

′ zv

(λ+ zv)
′ (λ+ zv)

])2
,

or

Bn =

∣∣∣∣E [ (λ+ zv)
′ zv

(λ+ zv)
′ (λ+ zv)

]∣∣∣∣ ,
which is also the maximum possible relative bias in this case, where the maximum is over

all values of ρ.

Using weak instrument asymptotics, Stock and Yogo (2005) are therefore able to assess

the size of the relative bias in relation to the first-stage F-statistic. As zv ∼ N (0, Ikz),

Bn is determined by the values of λ and kz. Let

l = λ′λ/kz =
1

kz

c′QZZc

σ2v
,
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then using Monte Carlo simulation, i.e. draws of zv ∼ N (0, Ikz), Stock and Yogo (2005)

find the values of l such that Bn is a certain value, say 0.1, for different values of kz.

For example, when kz = 4 and using 100,000 Monte Carlo draws, we obtain a relative

expected bias E
[

(λ+zv)
′zv

(λ+zv)
′(λ+zv)

]
= 0.1 for l = 4.98. When kz = 8, we find l = 7, again for

Bn = 0.1.

Using weak instrument asymptotics, Staiger and Stock (1997) derive the asymptotic

distribution for the first-stage F-statistic, which is given by

F
d−→ χ2kz (kzl) /kz,

where χ2kz (a) is the non-central chi-squared distribution with non-centrality parameter

a. The F-test statistic can therefore be used to test the hypothesis

H0 : CP/kz ≤ lb vs H1 : CP/kz > lb,

where lb is the value for l determined above such that the Bn = b. For b = 0.1, we find

from the scaled non-central chi-squared distribution a critical values of 10.20 when kz = 4

and 11.38 when kz = 8. In comparison, Stock and Yogo (2005), henceforth SY, find very

similar critical values of 10.27 and 11.39 for these two cases respectively.

As an illustration, we performed a small simulation. The model is as in (1) and (2),

with β = 1; (
ui
vi

)
∼ N

((
0
0

)
,

(
1 0.5

0.5 1

))
;

the instruments in Z are four independent standard normally distributed random vari-

ables and π =
(
c c c c

)′
/
√
n, with c chosen such that the relative bias Bn for

n→∞ is equal to 0.1, or 10%. We set the sample size n = 10, 000 and show the results

in Table 1 for 10, 000 Monte Carlo replications. The results are clearly in line with the

theory. The observed relative bias is just over 10% and the rejection frequency of the

F-test using the SY weak instrument critical value is 5% at the 5% nominal level.

7



Table 1. Estimation and relative bias results for one-variable model
mean st dev rel bias SY rej freq

β̂OLS 1.4989 0.0086
β̂2SLS 1.0529 0.2173 0.1060
F 5.97 2.36 0.0502
Notes: sample size 10,000; 10,000 MC replications; β = 1;
F is the first-stage F-statistic for x; rel bias is the relative bias of the 2SLS
estimator, relative to that of the OLS estimator; SY rej freq uses the 5%
Stock-Yogo critical value for the F-test for a 10% relative bias.

The Wald test for testing the restriction H0 : β = β0 is given by

W =

(
β̂2SLS − β0

)2
(x′PZx)

σ̂2u
,

where σ̂2u =
(
y − xβ̂2SLS

)′ (
y − xβ̂2SLS

)
/n. Staiger and Stock (1997) show that, under

weak instrument asymptotics,

W
d−→ ν22/ν1

1− 2ρν2/ν1 + (ν2/ν1)
2 ,

where

ν1 = (λ+ zv)
′ (λ+ zv)

ν2 = (λ+ zv)
′ zu.

The Wald size distortion is maximised for ρ = 1, and SY find the critical values for

the F-test such that the maximal size of the Wald test is a certain value, say 10%, at a

nominal 5% level. For the Monte Carlo example above, we set ρ = 1 and choose c such

that the maximal size distortion of the Wald test is 10%, in which case the value of l

is given by 16.415. The SY critical value in this case is given by 24.58. The results are

given in Table 2, and confirm that the size of the Wald test is 10% and the rejection

frequency of the F-test using the SY critical values is indeed 5%.
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Table 2. Estimation and Wald test results for one-variable model
mean st dev rej freq SY rej freq

β̂OLS 1.9935 0.0008
β̂2SLS 1.0318 0.1184
W 1.42 2.52 0.0994
F 17.45 4.11 0.0501
Notes: sample size 10,000; 10,000 MC replications; β = 1, ρ = 1;
W is the Wald test for testing H0: β = 1; rej freq uses 5% critical value of χ21; SY rej freq
uses the 5% Stock-Yogo critical value for the F-test, for a maximal 10% size of W .

3 Two Variable Model

Following the exposition in Angrist and Pischke (2009), we first consider the following

two-variable model

y = x1β1 + x2β2 + u (3)

x1 = Zπ1 + v1

x2 = Zπ2 + v2

where y, x1, x2, u, v1 and v2 are n× 1 vectors, with n the number of observations. Z is

an n× kz matrix of instruments, with kz ≥ 2 (kz ≥ 4 when assessing relative bias), and

π1 and π2 are kz × 1 vectors. For an individual observation i,

 ui
v1i
v2i

 ∼ (0,

(
σ2u σ′V u
σV u ΣV

))

ΣV =

(
σ21 σ12
σ12 σ22

)
;

Equivalently, we can write

y = Xβ + u

X = ZΠ + V

where β = (β1, β2)
′; X =

(
x1 x2

)
; Π =

(
π1 π2

)
and V =

(
v1 v2

)
. Further, let

x = vec(X), π = vec (Π) and v = vec (V ).
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The OLS estimates for πj are denoted π̂j = (Z ′Z)−1 Z ′xj, j = 1, 2, and the estimated

variances are given by

Σ̂V =

(
σ̂21 σ̂12
σ̂12 σ̂22

)
=

1

n
V̂ ′V̂ =

1

n

(
v̂′1v̂1 v̂′1v̂2
v̂′1v̂2 v̂′2v̂2

)
where V̂ = X − ZΠ̂.

The first-stage F-statistics are given by

Fj =
π̂′jZ

′Zπ̂j

kzσ̂
2
j

=
x′jZ (Z ′Z)−1 Z ′xj

kzσ̂
2
j

; j = 1, 2,

and kzFj converges in distribution to a χ2kz distribution under the null H0 : πj = 0.

Significant first-stage F-statistics are clearly necessary, but not suffi cient, for identification

of β. For example, if π1 = δπ2 6= 0, both first-stage F-statistics will reject their null in

large samples, but the model is clearly underidentified.

Staiger and Stock (1997) and Stock and Yogo (2005) consider weak instrument as-

ymptotics where all reduced form parameters are local to zero, i.e. Π = C/
√
n. The

Wald test for H0 : π = 0 is given by

Wπ = π̂′
(

Σ̂−1V ⊗ Z ′Z
)
π̂

which is identical to the trace of the Cragg-Donald (1993) statistic

CD = Σ̂
−1/2
V Π̂′Z ′ZΠ̂Σ̂

−1/2
V .

However, this Wald test statistic on the reduced form cannot be used in an equivalent way

to assess relative bias and 2SLS Wald test size distortions as in the one-variable model

above, because these are determined largely by the minimum eigenvalue of CD, τmin. In

other words, relative bias and Wald size distortions can be large if tr (CD) is large but

τmin is small. In a general setting with g endogenous explanatory variables,Wπ = tr (CD)

is a test for H0 : rank (Π) = 0, whereas τmin is a test for H0 : rank (Π) = g−1, with g the

number of endogenous explanatory variables. SY derive critical values for τmin/kz under
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the local to zero weak instrument asymptotics for maximal total relative bias and Wald

test distortions, where the total relative bias is given by

B2 =

(
Eβ̂2SLS − β

)′
ΣX

(
Eβ̂2SLS − β

)
(
Eβ̂OLS − β

)′
ΣX

(
Eβ̂OLS − β

) ,
with ΣX = plim (n−1X ′X). In this case, as τmin is not the test statistic for H0 : π = 0,

unlike in the case of one endogenous variable, the correspondence is not exact and use

of the SY critical values results in a conservative test in the sense that the null of weak

instruments is rejected too infrequently when the null is true. This is not altogether an

undesirable feature of the test, as a researcher can be quite confident that instruments

are not weak when τmin/kz is larger than the SY critical value.

3.1 Conditional F-test

Angrist and Pischke (2009) propose an alternative conditional first-stage F-statistic for

the case of multiple endogenous variables by reformulating the estimation problem to

a one-variable model after replacing the other endogenous variables with their reduced

form predictions. For instance, for the two-variable model, the 2SLS estimator for β1 is

obtained by 2SLS in the model

y = x1β1 + x̂2β2 + u∗, (4)

where x̂2 = Zπ̂2 = PZx2, using Z as the instruments, and hence

β̂1 = (x′1Mx̂2PZMx̂2x1)
−1
x′1Mx̂2PZy.

Therefore, β̂1 can be seen as the 2SLS estimator in the one-variable model

y = Mx̂2x1β1 + ξ, (5)

where the residual Mx̂2x1 = x1− x̂2δ̃, with δ̃ = (x̂′2x̂2)
−1 x̂′2x1, is instrumented by Z. The

reduced form is then

Mx̂2x1 = Zκ+ ε (6)
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and the Angrist-Pischke F-statistic is testing the hypothesis H0 : κ = 0, given by

FAP =
κ̂′Z ′Zκ̂

(kz − 1) σ̂2ε
=
x′1Mx̂2PZMx̂2x1

(kz − 1) σ̂2ε
, (7)

where κ̂ is the OLS estimator of κ,

κ̂ = (Z ′Z)
−1
Z ′Mx̂2x1

= (Z ′Z)
−1
Z ′
(
x1 − x̂2δ̃

)
= π̂1 − π̂2δ̃;

and σ̂2ε = ε̂′ε̂/n, with ε̂ = Mx̂2x1−Zκ̂. The degrees of freedom correction follows because

x̂2 has been predicted using the same instruments Z. If we partition Z =
[
z1 Z2

]
with

Z2 a (kz − 1)× n matrix, then the instrument set for (4) could equivalently be written

as
[
x̂2 Z2

]
.

As the problem seems to have been reduced to a one-endogenous variable model,

FAP has been proposed to determine instrument strength for identification of individual

structural parameters, like β1 in the above derivation, and Stock and Yogo (2005) weak

instrument critical values used to determine maximum relative bias of the IV estimator,

relative to the OLS estimator for the single parameter. There are some issues with

this, however, that seem to invalidate such an approach. Under the null that κ =

0, (kz − 1)FAP does not follow an asymptotic χ2kz−1 distribution, unless π1 = 0. An

alternative F-statistic is easily derived that corrects for this, but the relative bias results

as described in the previous section for the one-variable model do not carry over to the

individual parameters in this multiple endogenous variables model.

To consider the asymptotic distribution, for any given value of δ we have that

x1 − x̂2δ = x1 − x2δ + (x2 − x̂2) δ

= Z (π1 − δπ2) + v1 − δv2 + δMZv2

= Z (π1 − δπ2) + v1 − δPZv2.
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Clearly, the OLS estimator for κδ in the model

x1 − x̂2δ = Zκδ + ε∗ (8)

is given by

κ̂δ = (Z ′Z)
−1
Z ′ (x1 − x̂2δ) = (Z ′Z)

−1
Z ′ (x1 − x2δ)

= π̂1 − δπ̂2 = π1 − δπ2 + (Z ′Z)
−1
Z ′ (v1 − δv2)

and hence the variance of the OLS estimator is given by

V ar (κ̂δ) =
(
σ21 − 2δσ12 + δ2σ22

)
(Z ′Z)

−1
. (9)

The F-statistic for testing H0 : κδ = 0 in (8) is

Fδ =
κ̂′Z ′Zκ̂

kz
(
σ̂21 − 2δσ̂12 + δ2σ̂22

) ,
and kzFδ converges in distribution to a χ2kz distribution under the null that κδ = 0, or

π1 = δπ2. However, computing the standard F-test statistic in (8) as

Fs =
κ̂′Z ′Zκ̂

kzσ̂
2
ε∗

does not result in Fδ as

ε̂∗′ε̂∗ = (x1 − x̂2δ)′MZ (x1 − x̂2δ) = x′1MZx1 = v̂′1v̂1

and hence

Fs =
κ̂′Z ′Zκ̂

kzσ̂
2
1

.

Therefore the denominator of Fs does not estimate the variance as in (9) correctly and

kzFs does not converge to a χ2kz distribution under the null, unless δ = 0. The correct

F-statistic would be obtained by the standard F-test if the dependent variable in (8) was

x1 − δx2 instead of x1 − δx̂2.
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The Angrist-Pischke approach does replace δ by an estimate δ̃. By developing a

formal testing framework we show that the same issues arise and that (kz − 1)FAP does

not have an asymptotic χ2kz−1 distribution under the null that π1 = δπ2, unless δ = 0.

Partition Z =
[
z1 Z2

]
. We can write the reduced from for x1 as

x1 = Zπ1 + v1 (10)

= Zπ2 + Z (π1 − π2) + v1

= Zπ2δ + Z2 (π12 − π22δ) + v1

= x2δ + Z2 (π12 − π22δ) + v1 − δv2

where π1 and π2 are partitioned as
[
π11 π′12

]′
and

[
π21 π′22

]′
respectively; δ =

π11/π21, implicitly assuming that π21 6= 0. Hence a test for underidentification is a test

for H0 : γ = 0, in the model

x1 = x2δ + Z2γ + v∗, (11)

where v∗ = v1 − δv2. Clearly, x2 is an endogenous variable in (11), but we can estimate

the parameters δ and γ by IV, using Z as instruments. The 2SLS estimators for δ and γ

are given by

δ̂ = (x̂′2MZ2x̂2)
−1
x̂′2MZ2x1

γ̂ = (Z ′2Mx̂2Z2)
−1
Z ′2Mx̂2x1

and

V ar (γ̂) = σ2v∗ (Z ′2Mx̂2Z2)
−1
,

with σ2v∗ = σ21 − 2δσ12 + δ2σ22. The F-test statistic for testing H0 : γ = 0 is therefore

given by

Fγ =
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2x1
(kz − 1) (v̂∗′v̂∗/n)
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with

v̂∗ = x1 − x2δ̂ − Z2γ̂

= Zπ̂1 + v̂1 − Zπ̂2δ̂ − δ̂v̂2 − Z2γ̂

= v̂1 − δ̂v̂2,

as the IV estimates are given by

δ̂ =
π̂11
π̂21

; γ̂ = π̂12 − π̂22δ̂.

Hence,

σ̂2v∗ =
1

n
v̂∗′v̂∗ = σ̂21 − 2δ̂σ̂12 + δ̂

2
σ̂22

is a consistent estimator of σ2v∗.

The Angrist and Pischke (2009) F-statistic as described above is related to Fγ, as

FAP =
x′1Mx̂2Z (Z ′Z)−1 Z ′Mx̂2x1

(kz − 1)
(
ε̂′ε̂/n

) =
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2x1

(kz − 1) σ̂21
,

because

x′1Mx̂2PZMx̂2x1 = x′1PZMx̂2PZx1 = x̂′1Mx̂2x̂1

= γ̂Z ′2Mx̂2Z2γ̂ = x′1Mx̂2Z2 (Z ′2Mx̂2Z2)
−1
Z ′2Mx̂2x1,

and the sum of squared residuals is given by

ε̂′ε̂ = x′1Mx̂2MZMx̂2x1 = x′1MZx1 = v̂′1v̂1

and hence ε̂′ε̂/n = σ̂21. Therefore, whilst the numerators are the same in FAP and Fγ, the

denominators are different. (kz − 1)FAP is therefore not asymptotically χ2kz−1 distributed

under the null, H0 : π1 = δπ2, unless δ = 0 and hence π1 = 0.

Clearly, δ̃ = (x̂′2x̂2)
−1 x̂′2x1 is an estimate of δ under the null that π1 = δπ2 and hence

γ = 0. Let ṽ∗ = x1 − x2δ̃ be the residual under the null, then the LM test for the null

H0 : γ = 0 is given by

LM =
ṽ∗′Z (Z ′Z)−1 Z ′ṽ∗

ṽ∗′ṽ∗/n

15



which converges to a χ2kz−1 distribution under the null. LM is equal to nR2 in the model

x1 − x2δ̃ = Zκ+ ξ. (12)

The F-test in (12), with appropriate degrees of freedom correction, is given by

F1|2 =
κ̂′Z ′Zκ̂

(kz − 1)
(
ξ̂
′
ξ̂/n
) (13)

=

(
π̂1 − δ̃π̂2

)′
Z ′Z

(
π̂1 − δ̃π̂2

)
(kz − 1)

(
σ̂21 + δ̃

2
σ̂22 − 2δ̃σ̂12

)
=

x′1Mx̂2Z2 (Z ′2Mx̂2Z2)
−1 Z ′2Mx̂2x1

(kz − 1)
(
σ̂21 + δ̃

2
σ̂22 − 2δ̃σ̂12

) ,

which is only different from Fγ through the estimate of δ in the denominator. In F1|2

this is invariant to which instrument has been excluded from Z in forming Z2, making it

therefore preferable to Fγ.

Analogous to (10), we can write for x2

x2 = x1δ
∗ + Z2 (π22 − π21δ∗) + v2 − δ∗v1

= x1δ
∗ + Z2γ

∗ + v∗∗

where δ∗ = π12/π22 = δ−1, γ∗ = −γ/δ and v∗∗ = v∗/δ. Clearly

F2|1 =

(
π̂2 − δ̃

∗
π̂1

)′
Z ′Z

(
π̂2 − δ̃

∗
π̂1

)
(kz − 1)

(
σ̂22 + δ̃

∗2
σ̂21 − 2δ̃

∗
σ̂12

) ,
where δ̃

∗
= (x̂′1x̂1)

−1 x̂′1x2, has the same asymptotic properties as F1|2 under H0 : π1 =

δπ2, but it is not identical to F1|2 as δ̃
∗
6= δ̃

−1
.

3.2 Relationship with Cragg-Donald Statistic

With g endogenous variables, the minimum eigenvalue of the Cragg-Donald statistic,

τmin, is a test for H0 : rank (Π) = g− 1 against the alternative H1 : rank (Π) = g. For the
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two-variable model, this null is of course equivalent to H0 : π1 = δπ2. The Cragg-Donald

test is based on the restricted estimates under the null, using the minimum-distance

criterion, (
δ, π2

)
= arg min

δ,π2

H (δ, π2) ,

with

H (δ, π2) =

((
π̂1
π̂2

)
−
(
δπ2
π2

))′ (
Σ̂−1 ⊗ Z ′Z

)(( π̂1
π̂2

)
−
(
δπ2
π2

))
.

The Cragg-Donald test statistic is then

τmin = H
(
δ, π2

) d−→ χ2kz−1

under the null. We show in the Appendix that

H
(
δ, π2

)
=

(
π̂1 − δπ̂2

)′
Z ′Z

(
π̂1 − δπ̂2

)
σ̂21 + δ

2
σ̂22 − 2δσ̂12

and hence the only difference between F1|2, F2|1 and τmin/ (kz − 1) is the estimate for

δ. Clearly, unlike the F-statistics, τmin is invariant to normalisation, as H
(
δ
∗
, π1

)
=

H
(
δ, π2

)
.

4 Local to Rank One Weak Instrument Asymptotics
in the Two-Variable Model

In the previous section, we have shown that (kz − 1)Fγ has a limiting χ2kz−1 distribution

under the null that γ = 0 in (11). We next investigate whether Fγ can be used to assess

whether instruments are weak for individual parameters as described in Section 2. We

focus in the derivation below on Fγ as the setup for this test is easier to use with our

weak instruments asymptotics, but results of course carry over directly to F1|2, F2|1 and

τmin.

We are interested in the case that the instruments are not weak for each equation,

but where the rank of Π approaches a rank reduction of one. We specify LRR1 weak
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instrument asymptotics as γ = c/
√
n, or

π12 = δπ22 + c/
√
n.

We can then write the reduced form of x1 as

x1 = Zπ2δ + Z2 (π12 − δπ22) + v1

= x̂2δ + Z2c/
√
n+ (v1 − δPZv2) .

The IV estimator for β1 is given by

β̂1,2SLS =
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2y

x′1Mx̂2Z2 (Z ′2Mx̂2Z2)
−1 Z ′2Mx̂2x1

and it follows that

β̂1,2SLS − β1 =
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2u

x′1Mx̂2Z2 (Z ′2Mx̂2Z2)
−1 Z ′2Mx̂2x1

asMx̂2x̂2 = 0,Mx̂2MZ =
(
I − PZx2 (x′2PZx2)

−1 x′2PZ
)
MZ = MZ , and hence Z ′2Mx̂2MZv2 =

Z ′2MZv2 = 0.

We assume that(
1√
n
Z ′2Mx̂2u

1√
n
Z ′2Mx̂2 (v1 − δv2)

)
d−→
(

ψZ∗2u
ψZ∗2 (v1−δv2)

)
= N (0,Ω⊗Q) ,

where

Ω =

(
σ2u σu1 − δσu2

σu1 − δσu2 σ21 + δ2σ22 − 2δσ12

)
Z∗2 = Mx̂2Z2

Q = plim
(
n−1Z∗′2 Z

∗
2

)
.

It is then easily shown that

x′1Mx̂2Z2 (Z ′2Mx̂2Z2)
−1
Z ′2Mx̂2x1

d−→ σ2v1−δv2

(
λ̃+ z̃v

)′ (
λ̃+ z̃v

)
18



and

x′1Mx̂2Z2 (Z ′2Mx̂2Z2)
−1
Z ′2Mx̂2u

d−→ σuσv1−δv2

(
λ̃+ z̃v

)′
z̃u

where

σv1−δv2 =

√
σ21 + δ2σ22 − 2δσ12;

λ̃ = σ−1v1−δv2Q
1/2c; z̃v = σ−1v1−δv2Q

−1/2ψZ∗2 (v1−δv2); z̃u = σ−1u Q−1/2ψZ∗2u.

We are therefore in the same setup as Staiger and Stock (1997) and Stock and Yogo

(2005), and the distribution of the bias of β̂1,2SLS is given by

β̂1,2SLS − β1 =
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2u

x′1Mx̂2Z2 (Z ′2Mx̂2Z2)
−1 Z ′2Mx̂2x1

d−→ σu
σv1−δv2

(
λ̃+ z̃v

)′
z̃u(

λ̃+ z̃v

)′ (
λ̃+ z̃v

) ,
and

E
(
β̂1,2SLS

)
− β1 −→

σu1 − δσu2
σ21 + δ2σ22 − 2δσ12

E


(
λ̃+ z̃v

)′
z̃v(

λ̃+ z̃v

)′ (
λ̃+ z̃v

)
 .

One would therefore think that one could proceed as in the one-variable model as specified

above, with

l̃ = λ̃
′
λ̃/ (kz − 1) =

1

kz − 1

c′Qc

σ21 + δ2σ22 − 2δσ12

and the critical values from the non-central chi-squared distribution applied to

Fγ =
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2x1

(kz − 1)
(
σ̂21 + δ̂

2
σ̂22 − 2δ̂σ̂12

) .

However, in this case the bias of the OLS estimator of β1 in the model

y = x1β1 + x2β2 + u

is given by

β̂1,OLS − β1 =
x′1Mx2u

x′1Mx2x1
.
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As

x1 = x2δ + Z2c/
√
n+ (v1 − δv2) ,

we get that

plim
(
n−1 (x′1Mx2u)

)
= plim

(
n−1

(
c√
n
Z ′2Mx2u+ (v1 − δv2)′Mx2u

))
.

Further,

plim
(
n−1 (x′1Mx2x1)

)
= plim

(
n−1

(
c√
n
Z ′2Mx2Z2

c√
n

+ 2
c′√
n
Z ′2Mx2(v1 − δv2) + (v1 − δv2)′Mx2(v1 − δv2)

))
.

From these results we find that the bias of the OLS estimator converges to

plim
(
β̂1,OLS − β1

)
=

plim (n−1(v1 − δv2)′Mx2u)

plim (n−1(v1 − δv2)′Mx2(v1 − δv2))

=
σu1 − δσu2 − (σ12−δσ22)σu2

π′2QZZπ2+σ
2
2

σ21 + δ2σ22 − 2δσ12 − (σ12−δσ22)2
π′2QZZπ2+σ

2
2

(14)

and therefore, we now have that

Bn,1 =

∣∣∣E [β̂1,2SLS]− β1∣∣∣∣∣∣E [β̂1,OLS]− β1∣∣∣ 6=
∣∣∣∣∣∣∣E


(
λ̃+ z̃v

)′
z̃v(

λ̃+ z̃v

)′ (
λ̃+ z̃v

)

∣∣∣∣∣∣∣

and so the direct relationship between the relative bias of the individual parameter and

the value of the concentration parameter does not hold in this setting.1

1The one-variable model as described above was y =Mx̂2x1β1 + ξ.and so one could ask the question
whether the weak instrument relative bias could apply to the OLS estimator in this model instead. The
OLS estimator is given by

β̃1,OLS =
x′1Mx̂2y

x′1Mx̂2x1
= β1 +

β2x
′
1Mx̂2x2 + x

′
1Mx̂2u

x′1Mx̂2x1

and therefore

plim β̃1,OLS − β1 =
β2σ12 + σu1

σ21

and hence, again

B̃n,1 =

∣∣∣E [β̂1,2SLS]− β1∣∣∣∣∣∣E [β̃1,OLS]− β1∣∣∣ 6=
∣∣∣∣∣∣∣E


(
λ̃+ z̃v

)′
z̃v(

λ̃+ z̃v

)′ (
λ̃+ z̃v

)

∣∣∣∣∣∣∣ .
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However, we can get a result for the total relative bias. First of all, it is easily

established (see Appendix) that for the 2SLS estimator for β2 we find,

β̂2,2SLS − β2
d−→ −δ σu

σv1−δv2

(
λ̃+ z̃v

)′
z̃u(

λ̃+ z̃v

)′ (
λ̃+ z̃v

) ,
and hence, asymptotically,

E
(
β̂2,2SLS

)
− β2 = −δ

(
E
(
β̂1,2SLS

)
− β1

)
.

From this it follows that β̂2,2SLS is consistent when δ = 0, that is in the situation where

the instruments are strong for x2, but weak for x1 in the sense that π1 is local to zero.

We show in the Appendix that then

B2 =

(
Eβ̂2SLS − β

)′
ΣX

(
Eβ̂2SLS − β

)
(
Eβ̂OLS − β

)′
ΣX

(
Eβ̂OLS − β

) ≤ b2

where

b = E


(
λ̃+ z̃v

)′
z̃v(

λ̃+ z̃v

)′ (
λ̃+ z̃v

)
 .

From this it follows that we can use the SY critical values for τmin/ (kz − 1), F1|2 and

F2|1 to assess LRR1 weak instrument maximal total relative bias. These are the critical

values tabulated for the one-endogenous variable case with kz − 1 instruments.

We can also use the equivalent SY critical values for assessing the maximal size of the

individual 2SLS Wald tests. We get for the Wald test for the simple null H0 : β1 = β01

W1 =

(
β̂1,2SLS − β01

)2 (
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2x1
)

σ̂2u

=
σ2u
σ̂2u

((
λ̃+ z̃v

)′
z̃u

)2
(
λ̃+ z̃v

)′ (
λ̃+ z̃v

)
where

σ̂2u =
(
y − x1β̂1,2SLS − x2β̂2,2SLS

)′ (
y − x1β̂1,2SLS − x2β̂2,2SLS

)
/n.
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We find that

σ̂2u
d−→ σ2u

(
1− 2

σu1 − δσu2
σuσv1−δv2

ν̃2
ν̃1

+

(
ν̃2
ṽ1

)2)
,

where

ν̃1 =
(
λ̃+ z̃v

)′ (
λ̃+ z̃v

)
ν̃2 =

(
λ̃+ z̃v

)′
z̃u.

The Wald test is then, as in Staiger and Stock (1997) and Stock and Yogo (2005), equal

to

W1 =
ṽ22/ṽ1

1− 2ρ̃ν̃2/ν̃1 + (ν̃2/ν̃1)
2

where ρ̃ = σu1−δσu2
σuσv1−δv2

, and so we can again use the SY critical values for the F-statistic for

maximal size of the Wald-test, achieved when ρ̃ = 1. Clearly, we get the same results for

W2, the Wald test for H0 : β2 = β02.

4.1 Monte Carlo Illustration

To illustrate, we generate data from the model as specified above, with ui
v1i
v2i

 ∼ N

 0
0
0

 ,

 σ2u σu1 σu2
σu1 σ21 σ12
σu2 σ12 σ22

 .

The instruments are drawn independently from the standard normal distribution, with

kz = 4, and hence QZZ = I4. We set π2 = (−0.5, 0.5,−0.5, 0.5)′ and π1 = δπ2 +

(0, c, c, c)′ /
√
n. We have

Q = plim
1

n
Z ′2Mx̂2Z2

= plim
1

n

(
Z ′2Z2 − Z ′2x2

(
x′2Z (Z ′Z)

−1
Z ′x2

)−1
x′2Z2

)
= Ikz−1 −

π22π
′
22

π′2π2
,

where π2 =
[
π21 π22

]′
is partitioned commensurate with Z =

[
z1 Z2

]
.
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The limit of the concentration parameter for this specific configuration is given by

CPl =
c′Qc

σ21 + δ2σ22 − 2δσ12
=

3c2 − c2

4

σ21 + δ2σ22 − 2δσ12
.

We choose c such that the concentration parameter has the value for which the IV

estimator for β has a maximal total relative bias of 10%. We have further set the

parameters as follows: β1 = 0.5; β2 = −0.3; σ2u = σ21 = σ22 = 1; σu1 = 0.1; σu2 =

−0.7; σ12 = −0.7 and δ = 0.7. This design is such that the additional terms in the OLS

bias are important, with

σu1 − δσu2
σ21 + δ2σ22 − 2δσ12

σ21 + δ2σ22 − 2δσ12 − (σ12−δσ22)2
π′2QZZπ2+σ

2
2

σu1 − δσu2 − (σ12−δσ22)σu2
π′2QZZπ2+σ

2
2

= 3.5591.

i.e. the OLS bias for β1 is much smaller than
σu1−δσu2

σ21+δ
2σ22−2δσ12

. The results are given in

Table 3 for a sample size of 10, 000 observations. The individual standard F-statistics

are very large. As expected, the IV estimator of β1 has a large relative bias of 0.3441,

approximately equal to 3.56 ∗ 0.1, but the relative bias of β2 is much smaller at 0.0498.

The distributions of F1|2, F2|1 and τmin/ (kz − 1) are virtually identical, each with a mean

of 4.7 and rejection frequency of 4.6% at the 5% nominal level using the weak instrument

critical value. In comparison, the AP F-statistics are much larger in this case with the

mean of FAP,1 equal to 11.82, and that of FAP,2 equal to 22.93.

The total relative bias in this design is found to be equal to 7.6%, which is less

than 10%, as predicted by the theory above. The SY test for weak instruments for Π

local to 0 is conservative and has a rejection frequency of 2.6%. This test is given by

τmin/kz and the weak instrument critical value is derived for two endogenous variables

with kz instruments. In contrast, the weak instrument critical values for F1|2, F2|1 and

τmin/ (kz − 1) are those for one endogenous variable with kz−1 instruments. From Table

1 in SY, it is easily established that when τmin/kz is larger than its associated tabulated

critical value, then τmin/ (kz − 1) is also larger than its weak instrument critical value, so

23



we would always reject LRR1 weak instrument problems whenever we reject rank zero

weak instrument problems.

Table 3. Estimation results and relative bias for two-variable model
mean st dev rel bias SY rej freq

β̂1,OLS 0.5695 0.0070
β̂2,OLS -0.6506 0.0062
β̂1,2SLS 0.5239 0.1979 0.3441
β̂2,2SLS -0.3174 0.1419 0.0498
F1 1290 44
F2 2503 71
FAP,1 11.82 5.91 0.6256
FAP,2 22.93 11.46 0.9082
F1|2 4.70 2.35 0.0460
F2|1 4.71 2.36 0.0464
τmin/ (kz − 1) 4.70 2.35 0.0457
τmin/kz 3.52 1.76 0.0267
Notes: sample size 10,000; 10,000 MC replications; β1= 0.5; β2= −0.3;
Fj is the first-stage F-statistic for xj, j =1, 2;
FAP,j is the Angrist-Pischke F-statistic and F1|2 and F2|1 are the
conditional F-statistics as in (13); τmin is the Cragg-Donald minimum
eigenvalue statistic; rel bias is the relative bias of the 2SLS estimator, relative
to that of the OLS estimator; SY rej freq uses the 5% Stock-Yogo critical
values for a maximum 10% total relative bias

In Table 4 we present results for the Wald test statistics in a design with ρ̃ = 1, by

changing the variance parameters to σu1 = 0.755, σu2 = 0.35 and σ12 = −0.35, again

choosing c such that the size of the Wald tests is 10% at the 5% level. The simulations

confirm the analytical results. The rejection frequencies of the Wald tests are just over

10% and the rejection frequencies of F1|2, F2|1 and τmin/ (kz − 1) just over 5%. In this

case, the SY weak instrument test τmin/kz using the tabulated critical value for two

endogenous variables and four instruments is also just over 5%.
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Table 4. Estimation and Wald tests results for two-variable model
mean st dev rej freq SY rej freq

β̂1,OLS 1.4990 0.0007
β̂2,OLS 0.3899 0.0006
β̂1,2SLS 0.5257 0.1565
β̂2,2SLS -0.2827 0.1071
W1 1.47 2.86 0.1016
W2 1.46 2.87 0.1017
W12 2.61 3.58 0.1080
F1|2 14.85 4.40 0.0548
F2|1 14.93 4.45 0.0585
τmin/ (kz − 1) 14.84 4.40 0.0517
τmin/kz 11.13 3.30 0.0545
Notes: sample size 10,000; 10,000 MC replications; β1= 0.5; β2= −0.3
Wj is the Wald test for H0: βj= β0j ; W12 is joint Wald test;
F1|2 and F2|1 are the conditional F-statistics as in (13); τmin is the
Cragg-Donald minimum eigenvalue statistic; rej freq for Wald tests uses 5%
critical value of χ2 distribution; SY rej freq uses the 5% Stock-Yogo critical
values for a maximal 10% size of Wald tests.

4.2 The case δ = 0

When δ = 0 , we have in the process above that π1 is local to zero, and hence the

instruments for x1 are weak, but not for x2. As shown above, β̂2,2SLS is in this case

consistent for β2, but β̂1,2SLS will suffer from a weak instrument bias. In Table 5, we

show the results for the bias of the 2SLS estimates, for when δ = 0 and where we have

further set σu1 = 0.8. All other parameters remain the same as for the results presented

in Table 3, and we have set the value of c again such that the maximum total relative

bias is 10%. As can be seen from the table, the results are as expected. The value of the

first-stage F-statistic for x1, F1 is now small, whilst that of F2 is large. The behaviour

of FAP,1 is now the same as that of F1|2, both rejecting the null of weak instruments 5%

of the time using the SY critical values for kz − 1 instruments. β̂2,2SLS is consistent, but

the total relative bias is at 9.7% only just below 10%.
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Table 5. Estimation results and relative bias for two-variable model, δ = 0

mean st dev rel bias SY rej freq
β̂1,OLS 1.2317 0.0067
β̂2,OLS -0.3976 0.0047
β̂1,2SLS 0.5776 0.3001 0.0776
β̂2,2SLS -0.3010 0.0103 -0.0010
F1 4.08 1.88 0.0044
F2 2503 70 1.0000
FAP,1 4.79 2.39 0.0515
FAP,2 2922 502 1.0000
F1|2 4.72 2.36 0.0474
F2|1 462 1184 0.8811
τmin/ (kz − 1) 4.72 2.36 0.0470
τmin/kz 3.54 1.77 0.0259
Notes: sample size 10,000; 10,000 MC replications; β1= 0.5; β2= −0.3
Fj is the first-stage reduced form F-statistic for xj, j =1, 2;
FAP,j is the Angrist-Pischke F-statistic and F1|2 and F2|1 are the
conditional F-statistics as in (13); τmin is the Cragg-Donald minimum
eigenvalue statistic; rel bias is the relative bias of the 2SLS estimator, relative
to that of the OLS estimator; SY rej freq uses the 5% Stock-Yogo critical
values for a maximum 10% total relative bias

4.3 More than Two Endogenous Variables

As is clear from the analyses above for the two-variable model, the use of F1|2 and F2|1

under our LRR1 weak instrument asymptotics do not reveal more information than the

Cragg-Donald statistic τmin/ (kz − 1), unless δ = 0. One possible advantage of F1|2 and

F2|1 is that these statistics are more easily made robust to general variance heteroskedas-

ticity than the Cragg-Donald statistic, although one could readily compute the robust

Kleibergen-Paap (Kleibergen and Paap, 2006) statistic instead. Robust tests will get the

right size under the null of a rank reduction of 1, but weak instrument critical values

for these robust tests have not been derived, see Bun and De Haan (2010). Olea and

Pflueger (2013) have proposed an alternative robust F-test type procedure, but applied

thus far to only one endogenous variable.

The derivations for the two-variable model easily extend to the general case of several
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endogenous variables. The computation of the individual conditional F-statistics could

then reveal further interesting patterns that the Cragg-Donald statistic will not be able

to. For example, consider a three-variable model, which has a local rank reduction of one

of the form

π1 = δ2π2 + δ3π3 + c/
√
n

but with δ3 = 0. The conditional F-statistics are in this case computed from

xj −X−j δ̃ = Zκ+ ξ,

whereX−j is the matrix of endogenous variables with xj excluded and δ̃ =
(
X ′−jX−j

)−1
X ′−jxj.

The conditional F-statistics are then

Fxj |X−j =
κ̂′Z ′Zκ̂

(kz − 2)
(
ξ̂
′
ξ̂/n
) . (15)

Table 6 presents some simulation results for this particular case for the following design
ui
v1i
v2i
v3i

 ∼ N




0
0
0
0

 ,


1 0.8 0.3 0.6

0.8 1 0.3 0.5
0.3 0.3 1 0.4
0.6 0.5 0.4 1


 ,

δ2 = 0.5; δ3 = 0; β1 = 0.5; β2 = −0.3; β3 = 0.7. The instruments are again drawn

independently form the standard normal distribution, with kz = 5, and c is again chosen

such that the total relative bias is less than 10%.

It is clear from the conditional F-statistics that the near rank reduction is due to

parameters in the reduced form equations for x1 and x2. From a straightforward extension

of the analytical results for the two-variable case in the Appendix we get that β̂3,2SLS

is consistent as δ3 = 0. This is confirmed by the simulation results. The total relative

bias in this case is equal to 8.8%, which is indeed less than 10%. It is clear that the

conditional F-statistics now provide important additional information that that provided

by the Cragg-Donald statistic.
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Table 6. Estimation results and relative bias for three-variable model
mean st dev rel bias SY rej freq

β̂1,OLS 1.1337 0.0068
β̂2,OLS -0.4581 0.0050
β̂3,OLS 0.9526 0.0055
β̂1,2SLS 0.5709 0.3086 0.1120
β̂2,2SLS -0.3361 0.1575 0.2285
β̂3,2SLS 0.6990 0.0161 -0.0040
F1 650 26
F2 2504 67
F3 902 32
F1|2,3 4.82 2.38 0.0514
F2|1,3 4.84 2.41 0.0531
F3|1,2 198.21 329.06 0.8779
τmin/ (kz − 2) 4.82 2.38 0.0513
τmin/kz 2.89 1.43 0.0156
Notes: sample size 10,000; 10,000 MC replications; β1= 0.5; β2= −0.3; β3= 0.7
Fj is the first-stage reduced form F-statistic for xj, j =1, 2, 3;
F1|2,3, F2|1,3 and F3|1,2 are the conditional F-statistics as in (15);
τmin is the Cragg-Donald minimum eigenvalue statistic; rel bias is the relative bias
of the 2SLS estimator, relative to that of the OLS estimator; SY rej freq uses the
5% Stock-Yogo critical values for a maximum 10% total relative bias

5 Conclusions

We have shown that a conditional first-stage F-test statistic can be informative about the

information that instruments provide for models with multiple endogenous variables. The

conditional F-test is similar to the one proposed by Angrist and Pischke (2009), but takes

the variance of the multiple equations into account for testing a rank reduction of one of

the matrix of reduced from parameters. Our weak instrument asymptotics is defined as

local to a rank reduction of one of this matrix. We find that the conditional F-tests in a

two endogenous variables model provide the same information as the Cragg-Donald test

statistic for testing a rank reduction of one, unless δ = 0, and are informative for total

relative bias and Wald test size distortions for individual structural parameters. With

more than two endogenous variables, the conditional F-statistics can provide additional
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information regarding the strength of the instruments for the different reduced forms.

We therefore recommend in applied work that researchers report standard first-stage F-

statistics, the Cragg-Donald statistic and the conditional F-statistics in order to gauge

the nature of the weak instrument problem, if any. The Stock and Yogo (2005) weak

instrument critical values can be used for the Cragg-Donald and conditional F-statistics.
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6 Appendix

6.1 Cragg-Donald Statistic

The Cragg-Donald statistic in the two-variable model is obtained as

τmin = minH (δ, π2) =

((
π̂1
π̂2

)
−
(
δπ2
π2

))′ (
Σ̂−1 ⊗ Z ′Z

)(( π̂1
π̂2

)
−
(
δπ2
π2

))
.

The first-order condition is given by

−1

2

∂H (δ, π2)

∂π2
=

((
δ
1

)
⊗ I
)′ (

Σ̂−1 ⊗ Z ′Z
)(( π̂1

π̂2

)
−
(
δπ2
π2

))
=

((
δσ̂11 + σ̂12 δσ̂12 + σ̂22

)
⊗ Z ′Z

)(( π̂1
π̂2

)
−
(
δπ2
π2

))
= 0,

resulting in (
δσ̂11 + σ̂12

)
Z ′Zπ̂1 +

(
δσ̂12 + σ̂22

)
Z ′Zπ̂2

= δ
(
δσ̂11 + σ̂12

)
Z ′Zπ2 +

(
δσ̂12 + σ̂22

)
Z ′Zπ2.

Hence,

π2 =

(
δσ̂11 + σ̂12

)
π̂1 +

(
δσ̂12 + σ̂22

)
π̂2

δ
(
δσ̂11 + σ̂12

)
+
(
δσ̂12 + σ̂22

)
=

(
δσ̂22 − σ̂12

)
π̂1 +

(
σ̂21 − δσ̂12

)
π̂2

σ̂21 + δ
2
σ̂22 − 2δσ̂12

,

and

π̂2 − π2 =

(
σ̂21 − 2δσ̂12 + δ

2
σ̂22

)
π̂2 −

((
δσ̂22 − σ̂12

)
π̂1 +

(
σ̂21 − δσ̂12

)
π̂2
)

σ̂21 + δ
2
σ̂22 − 2δσ̂12

= −
(
δσ̂22 − σ̂12

)
σ̂21 + δ

2
σ̂22 − 2δσ̂12

(
π̂1 − δπ̂2

)
;
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π̂1 − δπ2 =

(
σ̂21 − 2δσ̂12 + δ

2
σ̂22

)
π̂1 − δ

((
δσ̂22 − σ̂12

)
π̂1 +

(
σ̂21 − δσ̂12

)
π̂2
)

σ̂21 + δ
2
σ̂22 − 2δσ̂12

=

(
σ̂21 − δσ̂12

)
σ̂21 + δ

2
σ̂22 − 2δσ̂12

(
π̂1 − δπ̂2

)
.

As ( (
σ̂21 − δσ̂12

)
−
(
δσ̂22 − σ̂12

) )′ Σ̂−1( (
σ̂21 − δσ̂12

)
−
(
δσ̂22 − σ̂12

) )
=

(
1 −δ

)
Σ̂Σ̂−1Σ̂

(
1

−δ

)
=

(
1 −δ

)
Σ

(
1

−δ

)
= σ̂21 + δ

2
σ̂22 − 2δσ̂12,

it follows that

H
(
δ, π2

)
=

(
π̂1 − δπ̂2

)′
Z ′Z

(
π̂1 − δπ̂2

)
σ̂21 + δ

2
σ̂22 − 2δσ̂12

.

6.2 Total Relative Bias

Equivalently to (10) we can write

x2 = x1δ
∗ + Z2 (π22 − π12δ∗) + v2 − δ∗v1

where δ∗ = π21/π11 = δ−1. Hence, under LRR1 weak instrument asymptotics, we have

x2 = x1δ
∗ − Z2cδ∗/

√
n+ v2 − δ∗v1.

As (
1√
n
Z ′2Mx̂1u

1√
n
Z ′2Mx̂1 (v2 − δ∗v1)

)
d−→
(

ψZ∗∗2 u

ψZ∗∗2 (v2−δ∗v1)

)
= N (0,Ω∗ ⊗Q∗) ,
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Ω∗ =

(
σ2u σu2 − δ∗σu1

σu2 − δ∗σu1 σ22 + δ∗2σ21 − 2δ∗σ12

)
Z∗∗2 = Mx̂1Z2

Q∗ = plim
(
n−1Z∗∗′2 Z∗∗2

)

Q∗ = plim
1

n
Z ′2Mx̂1Z2

= plim

(
1

n
(Z ′2Z2 − Z ′2x1 (x′1Z (Z ′Z)Z ′x1)x

′
1Z2)

)
= plim

(
1

n
(Z ′2Z2 − Z ′2δx2 (δx′2Z (Z ′Z)Z ′δx2) δx

′
2Z2)

)
= Q

It follows that ψZ∗∗2 u = ψZ∗2u and ψZ∗∗2 (v2−δ∗v1) = ψZ∗2 (v2−δ∗v1) = −1
δ
ψZ∗2 (v1−δv2), as e.g.

Z ′2Mx̂1u = Z ′2u− Z ′2x1 (x′1PZx1)
−1
x′1PZu

= Z ′2u− Z ′2x1
(
x′1Z (Z ′Z)

−1
Z ′x1

)
x′1Z (Z ′Z)

−1
Z ′u.

Further,

plim
(
n−1Z ′x1

)
= δ plim (Z ′x2) ,

λ̃
∗

= σ−1v2−δ∗v1Qcδ
∗

= (δ∗σv1−δv2)
−1Qcδ∗

= λ̃,

so we get that

β̂2,SLS − β2
d−→ −δ σu

σv1−δv2

(
λ̃+ z̃v

)′
z̃u(

λ̃+ z̃v

)′ (
λ̃+ z̃v

)
and hence, asymptotically,

E
(
β̂2,SLS

)
− β2 = −δE

(
β̂1,2SLS

)
− β1.
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Using this, we can express the total relative bias

B2 =

(
Eβ̂2SLS − β

)′
ΣX

(
Eβ̂2SLS − β

)
(
Eβ̂OLS − β

)′
ΣX

(
Eβ̂OLS − β

) ,
where ΣX = plim (n−1X ′X), as

b2
Σ′XuΣ

−1/2
X Σ

1/2
X DΣXDΣ

1/2
X Σ

−1/2
X ΣXu

Σ′XuΣ
−1
X ΣXu

where

b = E


(
λ̃+ z̃v

)′
z̃v(

λ̃+ z̃v

)′ (
λ̃+ z̃v

)
 ;

ΣXu =

(
σu1
σu2

)
;

D =
1

σ21 + δ2σ22 − 2δσ12

(
1 −δ
−δ δ2

)
.

Hence

B2 ≤ max eval
(

Σ
1/2
X DΣXDΣ

1/2
X

)
.

as Σ
1/2
X DΣXDΣ

1/2
X is a symmetric idempotent matrix, we get that

B2 ≤ b2.

The latter as

ΣX = plim
1

n

(
x′1x1 x′1x2
x′1x2 x′2x2

)
= π′2QZZπ2

(
δ2 δ
δ 1

)
+ ΣV

and hence

ΣXD = ΣVD.

Let

d =
1√

σ21 + δ2σ22 − 2δσ12

(
1
−δ

)
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so that D = dd′, then

d′ΣV d = 1

and hence

ΣXDΣXD = ΣVDΣVD = ΣV dd
′ΣV dd

′

= ΣV dd
′ = ΣVD = ΣXD

and therefore

Σ
1/2
X DΣXDΣ

1/2
X Σ

1/2
X DΣXDΣ

1/2
X = Σ

1/2
X DΣXDΣXDΣXDΣ

1/2
X

= Σ
1/2
X DΣXDΣ

1/2
X .
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