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Abstract

Economic theory rarely provides a parametric specification for a model, but it often

provides shape restrictions. We consider nonparametric estimation of the heteroge-

neous demand for gasoline in the U.S. subject to the Slutsky inequality restriction

of consumer choice theory. We derive conditions under which the demand function

can be estimated consistently by nonparametric quantile regression subject to the

Slutsky restriction. The estimated function reveals systematic variation in price

responsiveness across the income distribution. A new method for estimating quan-

tile instrumental variables models is also developed to allow for the endogeneity of

prices. In our application, shape-constrained quantile IV estimates show similar

patterns of demand as shape-constrained estimates under exogeneity. The results

illustrate the improvements in the finite-sample performance of a nonparametric

estimator that can be achieved by imposing shape restrictions based on economic

theory.
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1 Introduction

Nonparametric methods are frequently used in demand analysis and have become an

indispensable tool for understanding consumer behavior (Lewbel, 1997; Blundell, 2005).

In addition to increased availability of detailed micro data and advances in computational

methods, this reflects concerns that simple parametric approaches may lead to problems

of misspecification. These in turn may lead to biases in estimated coefficients and poten-

tially misleading conclusions about the substantive questions of interest. Nonparametric

methods, by contrast, are consistent.

Nonetheless, the use of nonparametric methods can be demanding in terms of data

requirements. Even with large data sets it may be difficult in practice to estimate precisely

the object of interest, especially in the case of multiple regressors (see e.g. Silverman

(1986)). Endogeneity concerns may necessitate the use of control function or instrumental

variables approaches, potentially adding further complexity. While these problems are well

understood in principle, they pose extraordinary challenges for the applied researcher

trying to estimate nonparametric models given the typical sample sizes, and raise the

question how the researcher can add structure to the estimates without incurring the risk

of misspecification inherent in simple parametric models.

In this paper we argue that constraints implied by economic theory provide powerful

shape restrictions which allow us to impose meaningful structure on otherwise nonpara-

metric estimates. These restrictions enable the estimates to be informed by an underlying

model of behavior rather than by potentially arbitrary functional form assumptions. How-

ever, these restrictions apply to individual demand behavior. In this paper we utilize a

monotonicity assumption on unobserved heterogeneity together with quantile estimation

to recover individual demands.

We present methods for incorporating the Slutsky constraint in the context of demand

estimation, and we illustrate these methods using the application of gasoline demand in

the U. S. Given the changes in the price of gasoline that have been observed in recent years,

and the role of taxation in the gasoline market, understanding the elasticity of demand

is of key policy interest. We pay particular attention to the question of how demand

behavior varies across the income distribution, and ask whether the welfare implications

of price changes are uniform across the income distribution. This is an example where

very simple parametric models impose strong restrictions on the behavioral responses

allowed for, which may in turn affect resulting policy conclusions.

Imposing Slutsky negativity has several benefits. It ensures that our estimates are con-

sistent with utility maximization, and allows us to recover welfare measures. Violations

of the Slutsky constraint might translate into misleading (and potentially even wrongly

signed) welfare measures such as deadweight loss. The integrability conditions allow one

to verify that a specific parametric specification satisfies the requirements to recover pref-
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erences; Stern (1986) presents such an analysis for a range of commonly used specifications

in the context of labor supply. Our method can be thought of as a nonparametric analogue

to this approach, where admissible candidate estimates are restricted to those satisfying

these restrictions of consumer theory. Where prices take only a few discrete values an

equivalent approach is to impose the Afriat revealed preference inequalities, see Blundell,

Kristensen, and Matzkin (2011).

In terms of statistical precision we expect the additional structure provided by this

restriction to improve the finite-sample performance of our estimator, analogous to the

way sign restrictions in parametric models reduce the Mean Squared Error (MSE). Non-

parametric estimation often requires the choice of bandwidth parameters, such as Kernel

bandwidths or number of knots for a spline. These parameters are optimally chosen in

a way which balances bias and variance of the estimates. The use of shape restrictions,

reducing the variance of the estimates, modifies this trade-off, and therefore allows poten-

tially for smaller optimal bandwidth choices. Shape restrictions can therefore be thought

of as a substitute for bandwidth smoothing, helping to recover the features of interest of

the underlying relationship.

In previous work, we have investigated gasoline demand, focussing on the conditional

mean (Blundell, Horowitz, and Parey, 2012). If unobserved heterogeneity enters in a non-

separable manner, the conditional mean represents an average across unobservables, which

may be difficult to interpret. As Brown and Walker (1989) and Lewbel (2001) have shown,

demand functions generated from random utility functions do not typically yield demand

functions where the unobserved tastes are additive. The identification and estimation

of consumer demand models that are consistent with unobserved taste variation require

analyzing demand models with nonadditive random terms. Under suitable restrictions,

quantile estimation allows us to recover demand at a specific point in the distribution of

unobservables. Matzkin (2003, 2008) derives general identification results for models that

are non-separable in unobserved heterogeneity. This motivates our interest in a quantile

estimator. Quantile regression also allows us to study differential effects of price changes

and welfare costs across the distribution of unobservables.1 The quantile estimation allows

us to compare heavy users with moderate or light users.

The paper makes a number of contributions. We present a quantile estimator which

incorporates shape restrictions. We develop a new estimator for the case of quantile

estimation under endogeneity. We apply these methods in the context of gasoline demand.

The nonparametric estimate of the demand function is noisy due to random sampling

errors. The estimated function is non-monotonic, and there are instances where the

estimate, taken at face value, is inconsistent with economic theory. When we impose

the Slutsky restriction of consumer theory on the demand function, this approach yields

1In the context of alcohol demand, for example, Manning, Blumberg, and Moulton (1995) show that
price responsiveness differs at different quantiles.
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well-behaved estimates of the demand function and welfare costs across the income and

taste distribution. Comparing across income groups and quantiles, our work allows us to

document differences in demand behavior across both observables and unobservables.

The paper proceeds as follows. The next section develops our non-separable model of

demand behavior and the restrictions required for a structural interpretation. Section 3

presents our estimation method, where we describe the nonparametric estimation method

for both the unconstrained estimates and those obtained under the Slutsky constraint.

We also present our procedure for quantile estimation under endogeneity. In Section 4

we discuss the data we use in our investigation and present our empirical findings. We

compare the quantile demand estimates to those from a conditional mean regression.

The endogeneity of prices is considered in Section 5 where we present the results of an

exogeneity test and our quantile instrumental variables procedure. Section 6 concludes.

2 Unobserved Heterogeneity and Structural Demand

Functions

The model of interest in this paper is

W = g(P, Y, U), (1)

where W is demand (measured as budget share), P is price, Y is income, and U represents

unobserved heterogeneity. We impose two types of restrictions on this demand function:

The first set of restrictions addresses the way unobserved heterogeneity enters demand,

and its relationship to price and income. We assume that demand g is monotone in

the unobserved heterogeneity U . To ensure identification, we for now assume that U is

statistically independent of (P, Y ). Given these assumptions, we can also assume without

loss of generality that U ∼ U[0; 1]. This allows recovery of the demand function for specific

types of households from the observed conditional quantiles of demand: the α quantile of

W , conditional on (P, Y ), is

Qα(W |P, Y ) = g(P, Y, α) ≡ Gα(P, Y ). (2)

Thus, the underlying demand function, evaluated at a specific value of the unobservable,

can be recovered via quantile estimation.

In contrast, the conditional mean is

E (W |P = p, Y = y) =

∫
g(p, y, u) fU(u) du

≡ m(p, y),
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where fU(u) is the probability density function of U . Given that we are interested in

imposing shape restrictions based on consumer theory, estimating the demand function

at a specific value of U = α using quantile methods is attractive because economic theory

informs us about g(·) rather than m(·). It is possible therefore that m(·) does not satisfy

the restrictions even though each individual consumer does (see also Lewbel (2001)).

We will later relax the assumption of independence between U and the price P , test for

endogeneity following the cost-shifter approach in Blundell, Horowitz, and Parey (2012)

and present instrumental variables estimates. Imbens and Newey (2009) define the quan-

tile structural function (QSF) as the α-quantile of demand g(p, y, U), for fixed p and y;

under endogeneity of prices, the QSF will be different from the α-quantile of g(P, Y, U),

conditional on P = p and Y = y.

Hausman and Newey (2013) consider the case of multi-dimensional unobserved het-

erogeneity; they show that in this case neither the demand function nor the dimension

of heterogeneity is identified, and use bounds on the income effect to derive bounds for

average surplus. In the context of scalar heterogeneity, Hoderlein and Vanhems (2011)

consider identification of welfare effects, and allow for endogenous regressors in a control

function approach. Hoderlein and Stoye (2013) investigate how violations of the Weak

Axiom of Revealed Preference (WARP) can be detected in a heterogeneous population

based on repeated cross-sectional data, using copula methods to bound the fraction of the

population violating WARP.

We impose the Slutsky constraint by restricting the price and income responses of the

demand function g. Preference maximization implies that the Slutsky substitution matrix

is symmetric negative semidefinite (Mas-Colell, Whinston, and Green, 1995). Ensuring

that our estimates satisfy this restriction is however not only desirable because of the

increase in precision from additional structure, it is also a necessary restriction in order to

be able to perform welfare analysis. Welfare analysis requires knowledge of the underlying

preferences. The question under which conditions we can recover the utility function from

the observed Marshallian demand function, referred to as the integrability problem, has

therefore been of long-standing interest in the analysis of consumer behavior (Hurwicz

and Uzawa (1971)). A demand function which satisfies adding up, homogeneity of degree

zero, and a symmetric negative semidefinite Slutsky matrix allows recovery of preferences

(Deaton and Muellbauer (1980)). As Deaton and Muellbauer (1980) emphasize, these

characteristics also represent the only structure that is implied by utility maximization.

Slutsky negative semidefiniteness is therefore critical for policy analysis of changes in

the prices consumers face. In the context of the two good model considered here, these

integrability conditions are represented through the negative compensated price elasticity

of gasoline demand.

In previous work household demographics or other household characteristics have been

found to be relevant determinants of transport demand. One possibility of accounting
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for these characteristics would be to incorporate them in a semiparametric specification.

However, in order to maintain the fully nonparametric nature of the model, we instead

condition on a set of key demographics in our analysis.2 Thus we address the dimension-

reduction problem by conditioning on a particular set of covariates. This exploits the fact

that the relevant household characteristics are all discrete in our application. We then

estimate our nonparametric specification on this sample which is quite homogeneous in

terms of household demographics.

3 Nonparametric Estimation

3.1 Unconstrained Nonparametric Estimation

From equation (2), we can write

W = Gα(P, Y ) + Vα; P (Vα ≤ 0 | P, Y ) = α, (3)

where Vα is a random variable whose α quantile conditional on (P, Y ) is zero. We estimate

Gα using a truncated B-spline approximation with truncation points M1 and M2 chosen

by cross-validation. Thus

Gα(P, Y ) =

M1∑
m1=1

M2∑
m2=1

cm1,m2;α B
p
m1

(P )By
m2

(Y ),

where Bp and By (with indices m1 and m2) are spline functions following Powell (1981)

and cm1,m2;α is the finite-dimensional matrix of coefficients.

We denote the data by {Wi, Pi, Yi : i = 1, ...., n}. The estimator is defined in the

following optimization problem:

min
{cm1,m2;α}

n∑
i=1

ρα (Wi − Gα(Pi, Yi)) , (4)

where ρα (V ) = (α− {V < 0})V is the check function.

3.2 Estimation Subject to the Slutsky Inequality

The Slutsky condition is imposed on the nonparametric estimate of the conditional

quantile function. Writing this condition in terms of shares, and taking price and income

2These characteristics include household composition and life-cycle stage of the household, race of the
survey respondent, and as well as the urban-rural location of the household. We describe these selection
criteria in detail in Section 4.1 below.
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to be measured in logs, gives

∂ĜC
α (P, Y )

∂p
+ ĜC

α (P, Y )
∂ĜC

α (P, Y )

∂y
≤ ĜC

α (P, Y )
(

1− ĜC
α (P, Y )

)
, (5)

where the superscript C indicates that the estimator is constrained by the Slutsky condi-

tion. The constrained estimator is obtained by solving the problem (4), subject to (5), for

all (P, Y ). This problem has uncountably many constraints. We replace the continuum

of constraints by a discrete set, thereby solving:

min
{cm1,m2;α}

n∑
i=1

ρα

(
Wi − ĜC

α (Pi, Yi)
)

subject to

∂ĜC
α (pj, yj)

∂p
+ ĜC

α (pj, yj)
∂ĜC

α (pj, yj)

∂y
≤ ĜC

α (pj, yj)
(

1− ĜC
α (pj, yj)

)
, j = 1, ..., J,

where {pj, yj : j = 1, ..., J} is a grid of points. To implement this, we use a standard

optimization routine from the NAG library (E04UC). In the objective function we use a

check function which is locally smoothed in a small neighborhood around 0 (Chen (2007)).

In Appendix Figure A.1, we show that the resulting demand figures are not sensitive to a

range of alternative values of the corresponding smoothing parameter. For imposing the

constraints, we choose a fine grid of points along the price dimension, at each of the 15

income category midpoints.

We use the bootstrap for inference under the assumption that the Slutsky constraint

does not bind in the population.

3.3 Welfare Measures

The estimates of the Slutsky constrained demand function can then be used to recover

measures of deadweight loss (DWL). For this purpose, we consider a hypothetical tax

change which moves the price from p0 to p1. Let e(p) denote the expenditure function at

price p and some reference utility level. The DWL of this price change is given by

L(p0, p1) = e(p1)− e(p0)− (p1 − p0) Gα

[
p1, e(p1)

]
.

L(p0, p1) is computed by replacing e and g with consistent estimates. The estimator of e,

ê, is obtained by numerical solution of the differential equation

dê(t)

dt
= Ĝα [p(t), ê(t)]

dp(t)

dt
,

where [p(t), ê(t)] (0 ≤ t ≤ 1) is a price-(estimated) expenditure path.
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3.4 Quantile Instrumental Variable Estimation

To recognize potential endogeneity of prices, we introduce a cost-shifter instrument

Z for prices. In the application this is a distance measure to gulf supply refinery to

reflect transport costs. Consider again equation (3) from above, where now we impose

the quantile restriction conditional on the distance instrument (and household income):

W = Gα(P, Y ) + Vα; P (Vα ≤ 0 | Z, Y ) = α.

The identifying relation can be written as

P (W −Gα(P, Y ) ≤ 0 | Z, Y ) = α.

Let fZ,Y be the probability density function of (Z, Y ). Then we have∫
Z≤z,Y≤y

P (W −Gα(P, Y ) ≤ 0|Z, Y ) fZ,Y (Z, Y ) dZ dY = αP (Z ≤ z, Y ≤ y)

for all (z, y). An empirical analog is

n−1
n∑
i=1

1 [Wi −Gα(Pi, Yi) ≤ 0] 1 [Zi ≤ z, Yi ≤ y] =
α

n

n∑
i=1

1 [Zi ≤ z, Yi ≤ y] .

Define

Qn(Gα, z, y) = n−1
n∑
i=1

{1 [Wi −Gα(Pi, Yi) ≤ 0]− α} 1 [Zi ≤ z, Yi ≤ y] . (6)

Estimate Gα by solving

min
GαεHn

∫
Qn(Gα, z, y)2 dz dy,

where Hn is the finite-dimensional space consisting of truncated series approximations

and includes the shape restriction when we impose it.

4 Estimation Results

4.1 Data

The data are from the 2001 National Household Travel Survey (NHTS). The NHTS

surveys the civilian non-institutionalized population in the United States. This is a

household-level survey conducted by telephone and complemented by travel diaries and

odometer readings.3 We select the sample to minimize heterogeneity as follows: we re-

3See ORNL (2004) for further detail on the survey.
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strict the analysis to households with a white respondent, two or more adults, at least one

child under age 16, and at least one driver. We drop households in the most rural areas,

given the relevance of farming activities in these areas.4 We also restrict attention to those

localities where the state of residence is known, and omit households in Hawaii due to its

different geographic situation compared to continental U.S. states. Households where key

variables are not reported are excluded and we restrict attention to gasoline-based vehicles

(rather than diesel, natural gas, or electricity), requiring gasoline demand of at least one

gallon; we also drop one observation where the reported gasoline share is larger than 1.

We take vehicle ownership as given and do not investigate how changes in gasoline prices

affect vehicle purchases or ownership. The results by Bento, Goulder, Jacobsen, and von

Haefen (2009) indicate that price changes operate mainly through vehicle miles traveled

rather than through fleet composition: they find that more than 95% of the reduction in

gasoline consumption in response to an increase in gasoline tax is due to a reduction in

vehicle miles traveled.

The resulting sample contains 3,640 observations. The key variables of interest are

gasoline demand, price of gasoline, and household income. Corresponding sample descrip-

tives are reported in Table 1; further detail on these variables can be found in Blundell,

Horowitz, and Parey (2012).5

[TABLE 1 ABOUT HERE]

The nonparametric estimates are shown below for the three income groups whose

midpoints in 2001 dollars are $42,500, $57,500 and $72,500. These income levels are

chosen to compare the behavior of lower, middle and upper income households.6

We use cubic B-splines for our nonparametric analysis.7 For each quantile of interest,

the number of knots is obtained by cross-validation, separately for each quantile.8 The

resulting number of (interior) knots is shown in Panel (1) of Table 2. In particular, at the

median, the procedure indicates 4 interior knots in the price dimension and 3 knots in

the income dimension. Across the quartiles, we obtain the same number of knots in the

4These are households in rural localities according to the Claritas urbanicity index, indicating a locality
in the lowest quintile in terms of population density (ORNL (2004, Appendix Q)).

5In the nonparametric analysis below, we impose two additional restrictions to avoid low-density areas
in the data. For this purpose, we restrict attention to households with (2001) household income of at
least $15,000, facing a price of at least $1.20.

6These three income points occupy the 19.1-22.8th, 34.2-42.3th, and 51.7-55.9th percentiles of the
income distribution in our data (see Table 1).

7In the income dimension, we place the knots at equally-spaced percentiles of a normal distribution,
where we have estimated the corresponding mean and variance in our data. In the (log) price dimension
we space the knots linearly.

8Following equation (1) we use the budget share as dependent variable in the cross-validation. Given
that our analysis focuses on the demand behavior for the three income levels of interest, we evaluate the
cross-validation function only for observations which are not too far from these income points, and use
0.5 (in the log income dimension) as cutoff.
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income dimension, while in the price dimension the cross-validation procedure indicates

a more restrictive B-spline for the first quartile (α = 0.25).

In the subsequent analysis we follow these knot choices for both the unconstrained and

the constrained quantile estimates under exogeneity. We have also investigated whether

this cross-validation outcome is sensitive to outliers in the share variable. For this purpose,

we have repeated the cross-validation procedure, leaving out the 10 highest and the 10

lowest gasoline budget share observations. The results are reported in Panel (2) of Table

2, suggesting that overall the number of knots is not very sensitive to this exercise.

[TABLE 2 ABOUT HERE]

4.2 Quantile estimates under exogeneity of prices

Parametric benchmark specifications using linear quantile estimates can be found in

Table 3, where we regress log quantity on log price and log income:

logQ = β0 + β1 logP + β2 log Y + U ; Qα(U |P, Y ) = 0.

For comparison we also report estimates obtained using an OLS estimator (see column

(4)). These indicate a price elasticity of -0.83 and an income elasticity of 0.34. These are

similar to those reported by others (see Hausman and Newey (1995); Schmalensee and

Stoker (1999); West (2004); Yatchew and No (2001)).

The quantile regression estimates are reported in columns (1)-(3), revealing plausi-

ble and interesting patterns in the elasticities across quantiles. At lower quantiles, the

estimated price elasticity is much higher (in absolute values) than at higher quantiles.9

Similarly, the estimated income elasticity declines strongly as we move from the first quar-

tile to the median, and from the median to the third quartile. Thus, low-intensity users

appear to be substantially more sensitive in their demand responses to price and income

variation than high-intensity users.

A natural question is whether this benchmark specification is appropriately specified.

To investigate this, we perform the specification test for the linear quantile regression

model developed in Horowitz and Spokoiny (2002). The results are reported in Table 4.

We clearly reject our baseline specification at a 5% level. This holds whether we measure

our dependent variable as log quantity or as gasoline budget share.

[TABLES 3–4 ABOUT HERE]

We have also augmented the specification reported in Table 3 with squares and cubes

of price and income and found these to be significant. This suggests that the parametric

9A similar pattern is reported in Frondel, Ritter, and Vance (2012) using travel diary data for Germany.
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benchmark model may be misspecified. We therefore now proceed to the nonparametric

analysis.

Figure 1 shows the nonparametric estimates. Each panel corresponds to a particular

point in the income distribution. The line shown with open markers represents the un-

constrained estimates, together with the corresponding bootstrapped confidence intervals

(solid lines). As can be seen in panel (b) for the middle income level, for example, the

unconstrained estimates show overall a downward-sloping trend, but there are several in-

stances where the estimated demand is upward sloping. A similar pattern is also found

in Hausman and Newey (1995). Although here we plot the Marshallian demand estimate,

these instances of upward sloping demand also point to violations of the Slutsky negativ-

ity when we compensate the household for the increase in prices. The line shown as filled

markers represents the estimate constrained by the Slutsky shape restriction. By design,

the constrained estimates are consistent with economic theory.

Interestingly, the constrained and the unconstrained estimates are both well contained

in a 90% confidence band around the unconstrained ones; this pattern is consistent with

the random sampling error interpretation. At the same time, the constrained estimates

show that imposing the shape constraint can also be thought of as providing additional

smoothing. Focussing on the constrained estimates, we compare the price sensitivity

across the three income groups. The middle income group appears to be more price

sensitive than either the upper or the lower income group; this is a pattern also found in

Blundell, Horowitz, and Parey (2012).

[FIGURE 1 ABOUT HERE]

4.3 Comparison across quantiles and the conditional mean esti-

mates

Figure 2 compares the quantile estimates across the three quartiles, holding income

constant at the middle income group. In the unconstrained estimates, the differences in

flexibility (corresponding to the cross-validated number of knots in the price dimension)

are clearly visible. The constrained estimates, however, are quite similar in shape, suggest-

ing that they may approximately be parallel shifts of each other. This would be consistent

with a location-scale model together with conditional homoskedasticity (Koenker (2005)).

Under this model, conditional mean estimates would show the same shape as seen in the

conditional quartile results, and we turn to this comparison now.

[FIGURE 2 ABOUT HERE]

As noted in the introduction, we have previously investigated gasoline demand, fo-

cussing on the conditional mean (Blundell, Horowitz, and Parey (2012)). That analysis
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used a Kernel regression method, in which the shape restriction is imposed by reweighting

the data in an approach building on Hall and Huang (2001). As in the quantile demand

results here we found strong evidence of differential price responsiveness across the in-

come distribution, suggesting a stronger price responsiveness in the middle income group.

Figure 3 shows the conditional mean regression estimates, where we use the same B-spline

basis functions as in the quantile results presented above (Figure 1). The shape of these

two sets of estimates is remarkably similar, especially for the constrained estimates; in

terms of levels, the mean estimates are somewhat higher than the median estimates (by

around 0.1 on the log scale).

[FIGURE 3 ABOUT HERE]

4.4 Welfare measurement

The Slutsky constrained demand function estimates can in turn be used for welfare

analysis of changes in prices. For this purpose we consider a change in price from the

5th to the 95th percentile in our sample for the nonparametric analysis, and we report

Deadweight Loss measures corresponding to this price change. Table 5 shows the DWL

estimates for the three quartiles. In the constrained estimates, we find that the middle

income group has the highest DWL at all quartiles. This is consistent with the graphical

evidence presented in Figure 1 above. The table also shows the DWL estimates implied

by the parametric estimates corresponding to a linear specification. The uniform patterns

in the corresponding DWL figures (within each quantile) reflect the strong assumptions

underlying these functional forms, which have direct consequences for the way DWL

measures vary across these subgroups in the population.

There are two instances (both for the lower-income group) where the unconstrained

DWL shows the wrong sign. This underscores that DWL analysis is only meaningful if

the underlying estimates satisfy the required properties of consumer demand behavior.

One feature of the estimates in Table 5 is the variation in DWL seen across different

quantiles. More generally, we can ask how DWL is distributed over the entire population

of types. Such an analysis is presented in Figure 4. In this figure we show for each income

group the density of DWL across the range of quantiles (from α = 0.05 to α = 0.95),

comparing unconstrained and constrained estimates.

[TABLE 5 AND FIGURE 4 ABOUT HERE]

5 Price Endogeneity

So far we have maintained the assumption of exogeneity on prices. There are many

reasons why prices vary at the local market level. These include cost differences on the

12



supply side, short-run supply shocks, local competition, as well as taxes and government

regulation (EIA (2010)). However, one may be concerned that prices may also reflect pref-

erences of the consumers in the locality, so that prices faced by consumers may potentially

be correlated with unobserved determinants of gasoline demand.

To address this concern, we follow Blundell, Horowitz, and Parey (2012) and use a

cost-shifter approach to identify the demand function. An important determinant of prices

is the cost of transporting the fuel from the supply source. The U.S. Gulf Coast Region

accounts for the majority of total U.S. refinery net production of finished motor gasoline,

and for almost two thirds of U.S. crude oil imports. It is also the starting point for most

major gasoline pipelines. We therefore expect that transportation cost increases with

distance to the Gulf of Mexico, and implement this with the distance between one of the

major oil platforms in the Gulf of Mexico and the state capital (see Blundell, Horowitz,

and Parey (2012) for further details and references). Figure 5 shows the systematic and

positive relationship between log price and distance (in 1,000 km) at state level.

[FIGURE 5 ABOUT HERE]

In the following, we first present evidence from a nonparametric exogeneity test. We

then estimate a nonparametric quantile IV specification, incorporating the shape restric-

tion.

5.1 Exogeneity Test

Building on the work for the conditional mean case in Blundell and Horowitz (2007),

Fu (2010) develops a nonparametric exogeneity test in a quantile setting. As Blundell

and Horowitz (2007), this approach does not require an instrumental variables estimate,

and instead tests the exogeneity hypothesis directly. By avoiding the ill-posed inverse

problem, it is likely to have substantially better power properties than alternative tests.

To simplify the computation we focus on the univariate version of the test here. For

this purpose, we split the overall sample according to household income, and then run the

test for each household income group separately.10 We select income groups to broadly

correspond to our three reference income levels in the quantile estimation; we select a low

income group of households (household income between $35,000 and $50,000), a middle

income group of households (household income between $50,000 and $65,000), and an

upper income group of households (household income between $65,000 and $80,000).

Given that we perform the test three times (for these three income groups) we can adjust

the size for a joint 0.05-level test. Given the independence of the three income samples,

10The test makes use of the vector of residuals from the quantile model under the null hypothesis.
Even though we implement the test separately for three income groups, we use the residuals from the
bivariate model using all observations, so that these residuals correspond to the main (unconstrained)
specification of interest (see e.g. Figure 1).
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the adjusted p-value for a joint 0.05-level test of exogeneity, at each of the three income

groups, is 1− (0.95)(1/3) = 0.01695.

Table 6 shows the test results, where column (1) presents our baseline estimates, and

columns (2) and (3) show a sensitivity with respect to the bandwidth parameter choice

required for the Kernel density estimation. For the median case, the p-values are above 0.1

throughout and thus there is no evidence of a violation of exogeneity at the median. The

evidence for the first quartile is similar. The only instance of a borderline p-value is for the

lower income group for the upper quartile, with a baseline p-value of 0.02, which is still

above the adjusted cutoff value for a test 0.05-level test. Overall, we interpret this evidence

as suggesting that we do not find strong evidence of endogeneity in this application. This

finding is also consistent with our earlier analysis focusing on the conditional mean (see

Blundell, Horowitz, and Parey (2012)). In order to allow a comparison, we nonetheless

present quantile IV estimates in the following.

[TABLE 6 ABOUT HERE]

5.2 Quantile Instrumental Variable Estimates

Figure 6 presents our quantile IV estimates under the shape restriction. These es-

timates are shown as filled markers, and compared with our earlier shape-constrained

estimates assuming exogeneity of prices (see Figure 1), shown as open markers.11 Overall,

the shape of the IV estimates is quite similar to those obtained under the assumption of

exogeneity. This is consistent with the evidence from the exogeneity test presented above.

As before the comparison across income groups suggests that the middle income group is

more elastic than the two other income groups, in particular over the lower part of the

price range.

[FIGURE 6 ABOUT HERE]

6 Conclusions

The starting point of this analysis are the following two observations: First, when

there is heterogeneity in terms of usage intensity, the patterns of demand may potentially

be quite different at different points in the distribution of the unobservable heterogeneity.

Under suitable exogeneity assumptions and a monotonicity restriction, quantile methods

11To simplify the computation of the IV estimates we set the number of interior knots for the cubic
splines to 2 in both the income and the price dimension here, and impose the Slutsky constraint at five
points in the income dimension ($37,500, $42,500, $57,500, $72,500, and $77,500). We use the NAG rou-
tine E04US together with a multi-start procedure to solve the global minimization problem. The resulting
demand function estimates do not appear sensitive to specific starting values. In the implementation of
the objective function (see equation (6)), we smooth the indicator function corresponding to the term
1 [Wi −Gα(Pi, Yi) ≤ 0] in the neighborhood of 0 using a Gaussian Kernel.
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allow us to recover the demand function at different points in the distribution of unob-

servables. This allows us to estimate demand functions for specific types of individuals,

rather than averaging across different types of consumers.

Second, we want to be able to allow a flexible effect of price and income on household

demand, and in particular allow price responses to differ by income level. Nonparametric

estimates eliminate the risk of specification error but can be poorly behaved due to random

sampling errors. Fully nonparametric demand estimates can be non-monotonic and may

violate consumer theory. In contrast, a researcher choosing a tightly specified model

is able to precisely estimate the parameter vector; however simple parametric models

of demand functions can be misspecified and, consequently, yield misleading estimates

of price sensitivity and DWL. We argue that in the context of demand estimation, this

apparent trade-off can be overcome by constraining nonparametric estimates to satisfy the

Slutsky condition of economic theory. We have illustrated this approach by estimating a

gasoline demand function. The constrained estimates are well-behaved and reveal features

not found with typical parametric model specifications. We present estimates across

income groups and at different points in the distribution of the unobservables.

These estimates are obtained initially under the assumption of exogenous prices, and

the reader may therefore be concerned about potential endogeneity of prices. We investi-

gate this in two ways. First, we implement an exogeneity test to provide direct evidence

on this. As instrument, we use a cost shifter variable measuring transportation cost. The

results suggest that endogeneity is unlikely to be of first order relevance. Nonetheless,

we investigate the shape of the demand function without imposing exogeneity of prices.

For this purpose, we develop a novel estimation approach to nonparametric quantile esti-

mation with endogeneity. We estimate IV quantile models under shape restrictions. The

results are broadly similar to the estimates under exogeneity.

The analysis showcases the value of imposing shape restrictions in nonparametric

quantile regressions. These restrictions provide a way of imposing structure and thus

informing the estimates without the need for arbitrary functional form assumptions which

have no basis in economic theory.
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Table 1: Sample descriptives

Mean St. dev.

Log gasoline demand 7.127 0.646
Log price 0.286 0.057
Log income 11.054 0.580

Observations 3640

Note: See text for details.
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Table 2: Cross-validation results

quantile number interior knots
(α) price income

(1) Base case

0.25 1 3
0.50 4 3
0.75 3 3

(2) Leaving out largest 10
and lowest 10 share observations

0.25 1 3
0.50 4 4
0.75 1 3

Note: Table shows cross-validation results by quantile.
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Table 3: Log-log model estimates

α = 0.25 α = 0.50 α = 0.75 OLS
(1) (2) (3) (4)

log(p) -1.00 -0.72 -0.60 -0.83
[0.23] [0.19] [0.22] [0.18]

log(y) 0.41 0.33 0.23 0.34
[0.02] [0.02] [0.02] [0.02]

Constant 2.58 3.74 5.15 3.62
[0.27] [0.21] [0.26] [0.20]

N 3640 3640 3640 3640

Note: Dependent variable is log gasoline demand. See text for details.
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Table 4: Specification test

Dependent var. test statistic
critical value

p-value reject?
0.05 level 0.01 level

gasoline share 2.52 1.88 2.69 0.0120 yes
log quantity 2.71 1.82 2.43 0.0020 yes

Note: Test implements Horowitz and Spokoiny (2002) for the median case. The first row reports the test

results for gasoline demand measured as budget share, the second row for log quantity. Under the null

hypothesis, the model is linear in log price and log income. See text for details.
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Figure 1: Quantile regression estimates: constrained versus unconstrained estimates

a) upper income group
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b) middle income group
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c) lower income group
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Note: Figure shows unconstrained nonparametric quantile demand estimates (open markers) and con-

strained nonparametric demand estimates (filled markers) at different points in the income distribution

for the median (α = 0.5), together with simultaneous confidence intervals. Income groups correspond

to $72,500, $57,500, and $42,500. Confidence intervals shown refer to bootstrapped symmetrical, simul-

taneous confidence intervals with a confidence level of 90%, based on 4,999 replications. See text for

details. 23



Figure 2: Quantile regression estimates: constrained versus unconstrained estimates (mid-
dle income group)

a) upper quartile (α = 0.75)
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b) middle quartile (α = 0.50)
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c) lower quartile (α = 0.25)
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Note: Figure shows unconstrained nonparametric quantile demand estimates (filled markers) and con-

strained nonparametric demand estimates (filled markers) at the quartiles for the middle income group

($57,500), together with simultaneous confidence intervals. Confidence intervals shown refer to boot-

strapped symmetrical, simultaneous confidence intervals with a confidence level of 90%, based on 4,999

replications. See text for details. 24



Figure 3: Mean regression estimates: constrained versus unconstrained estimates

a) upper income group

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

6.6

6.8

7

7.2

7.4

7.6

7.8

Symmetrical joint confidence intervals (mean case), high income group  

log price

lo
g 

de
m

an
d

 

 
CI
CI
unconstrained exog
constrained exog

b) middle income group
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c) lower income group
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Note: Figure shows unconstrained nonparametric mean regression demand estimates (filled markers) and

constrained nonparametric demand estimates (filled markers) at different points in the income distribu-

tion, together with simultaneous confidence intervals. Income groups correspond to $72,500, $57,500,

and $42,500. Confidence intervals shown refer to bootstrapped symmetrical, simultaneous confidence

intervals with a confidence level of 90%, based on 4,999 replications. See text for details.
25



T
ab

le
5:

D
W

L
es

ti
m

at
es

u
n
co

n
st

ra
in

ed
co

n
st

ra
in

ed
li
n
ea

r
q
u
an

ti
le

es
ti

m
at

es

in
co

m
e

D
W

L
D

W
L

/t
ax

D
W

L
/i

n
c?

D
W

L
D

W
L

/t
ax

D
W

L
/i

n
c?

D
W

L
D

W
L

/t
ax

D
W

L
/i

n
c?

lo
w

er
q
u
ar

ti
le

(α
=

0.
25

)

72
50

0
11

.7
6

5.
72

%
1.

62
12

.7
4

6.
21

%
1.

76
13

.8
9

7.
12

%
1.

92
57

50
0

33
.2

4
20

.0
1%

5.
78

29
.1

8
17

.5
4%

5.
08

12
.8

8
7.

24
%

2.
24

42
50

0
-1

5.
40

-8
.9

1%
-3

.6
2

0.
85

0.
54

%
0.

20
11

.3
0

7.
35

%
2.

66

m
ed

ia
n

(α
=

0.
50

)

72
50

0
49

.6
4

17
.3

0%
6.

85
16

.3
2

5.
81

%
2.

25
20

.3
3

7.
26

%
2.

80
57

50
0

5.
86

2.
20

%
1.

02
30

.2
0

12
.3

0%
5.

25
19

.0
6

7.
36

%
3.

32
42

50
0

12
.8

1
5.

87
%

3.
01

18
.5

7
8.

56
%

4.
37

16
.9

0
7.

45
%

3.
98

u
p
p

er
q
u
ar

ti
le

(α
=

0.
75

)

72
50

0
23

.0
7

5.
71

%
3.

18
20

.6
4

5.
07

%
2.

85
19

.2
9

4.
76

%
2.

66
57

50
0

15
.9

8
4.

35
%

2.
78

39
.4

0
11

.4
2%

6.
85

19
.7

7
5.

22
%

3.
44

42
50

0
-4

3.
60

-1
1.

25
%

-1
0.

26
1.

17
0.

35
%

0.
28

18
.8

6
5.

63
%

4.
44

N
ot

e:
T

ab
le

sh
ow

s
D

W
L

es
ti

m
at

es
,

co
rr

es
p

on
d

in
g

to
a

ch
an

g
e

in
p

ri
ce

s
fr

o
m

th
e

5
th

to
th

e
9
5
th

p
er

ce
n
ti

le
,

th
a
t

is
fr

o
m

$
1
.2

2
5

to
$
1
.4

3
6
.

F
o
r

co
m

p
a
ra

b
il

it
y

a
ll

th
re

e
se

ts
of

es
ti

m
at

es
ar

e
b

as
ed

on
th

e
sa

m
p

le
fo

r
th

e
n

on
p

a
ra

m
et

ri
c

a
n

a
ly

si
s,

a
n

d
u

se
b

u
d

g
et

sh
a
re

a
s

d
ep

en
d

en
t

va
ri

a
b

le
.
∗

D
W

L
p

er
in

co
m

e
fi

g
u

re
s

a
re

re
sc

al
ed

b
y

fa
ct

or
10

4
fo

r
b

et
te

r
re

ad
ib

il
it

y.

26



Figure 4: Distribution of DWL, constrained versus unconstrained

(a) high-income group
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(b) middle-income group
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(c) low-income group
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Note: Graphs show density estimates for the distribution of DWL estimates. Based on estimates for the

5th to the 95th percentile (α = 0.05 to 0.95 in steps of 0.005). Density estimates computed using an

Epanechnikov Kernel. Since DWL is nonnegative in the constrained case, density is renormalized in the

boundary area (Jones (1993)). Estimates computed using the same knot choice throughout as

crossvalidated for the median.
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Figure 5: The Instrument Variable for Price: Distance to the Gulf of Mexico
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Table 6: Exogeneity test (p-values)

income base bandwidth sensitivity

range case factor 0.8 factor 1.25

(1) (2) (3)

first quartile (α = 0.25)
low 0.382 0.350 0.450

middle 0.212 0.196 0.195
high 0.361 0.290 0.470

median (α = 0.50)
low 0.331 0.224 0.453

middle 0.140 0.171 0.126
high 0.685 0.643 0.734

third quartile (α = 0.75)
low 0.020 0.024 0.015

middle 0.710 0.825 0.585
high 0.818 0.848 0.817

Note: Table shows p-values for the exogeneity test from Fu (2010). Endogenous variable is price, in-

strumented with distance. We run separate tests for three income groups; for this test, these groups

are defined as follows: ‘low’: income between $35,000 and $50,000, ‘middle’: $50,000 – $65,000, ‘high’:

$65,000 – $80,000. The specification we test is the unconstrained nonparametric quantile estimate as

shown e.g. in Figure 1 for the median. In implementing this test, required bandwidth choices for the

Kernel density estimates use Silverman’s rule of thumb. Columns (2) and (3) vary all bandwidth inputs

by the indicated factor.
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Figure 6: Quantile regression estimates under the shape restriction: IV estimates versus
estimates assuming exogeneity

a) upper income group
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b) middle income group
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c) lower income group
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Note: Figure shows constrained nonparametric IV quantile demand estimates (filled markers) and con-

strained quantile demand estimates under exogeneity (open markers) at different points in the income

distribution for the median (α = 0.5), together with simultaneous confidence intervals. Income groups

correspond to $72,500, $57,500, and $42,500. Confidence intervals shown correspond to the unconstrained

quantile estimates under exogeneity as in Figure 1. See text for details.
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Figure A.1: Sensitivity of constrained quantile regression estimates to smoothing param-
eter

(a) γ = 0.001
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(b) γ = 0.0005
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(c) γ = 0.0001
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(d) γ = 0.00001
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(e) γ = 0.000005

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

6.6

6.8

7

7.2

7.4

7.6

7.8

Constrained gasoline demand (50−th quantile)

log price

lo
g 

de
m

an
d

 

 
constrained at upper income group
constrained at middle income group
constrained at lower income group

(f) γ = 0.000001
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Note: In the computation of the constrained quantile estimates (see Section 3.2), the check function is

smoothed in a small neighborhood around 0, using a quadratic approximation over the range

[−(1− α)γ; αγ] (see Chen (2007)), where γ is a bandwidth parameter. This figure shows the

constrained quantile regression estimates for the median (α = 0.5), resulting from alternative choices of

γ. The figures presented in the main text correspond to panel (f) of Figure A.1.
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