
Chen, Xiaohong; Christensen, Timothy

Working Paper

Optimal uniform convergence rates for sieve
nonparametric instrumental variables regression

cemmap working paper, No. CWP56/13

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Chen, Xiaohong; Christensen, Timothy (2013) : Optimal uniform convergence
rates for sieve nonparametric instrumental variables regression, cemmap working paper, No.
CWP56/13, Centre for Microdata Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2013.5613

This Version is available at:
https://hdl.handle.net/10419/97421

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2013.5613%0A
https://hdl.handle.net/10419/97421
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optimal uniform convergence 
rates for sieve nonparametric 
instrumental variables 
regression 
 
 
 

Xiaohong Chen 
Timothy Christensen 

 

 

 
 

 

 

The Institute for Fiscal Studies 
Department of Economics, UCL 

 
cemmap working paper CWP56/13 



Optimal Uniform Convergence Rates for

Sieve Nonparametric Instrumental Variables Regression∗

Xiaohong Chen† and Timothy M. Christensen‡

First version January 2012; Revised August 2013

Abstract

We study the problem of nonparametric regression when the regressor is endogenous, which is

an important nonparametric instrumental variables (NPIV) regression in econometrics and a

difficult ill-posed inverse problem with unknown operator in statistics. We first establish a gen-

eral upper bound on the sup-norm (uniform) convergence rate of a sieve estimator, allowing for

endogenous regressors and weakly dependent data. This result leads to the optimal sup-norm

convergence rates for spline and wavelet least squares regression estimators under weakly depen-

dent data and heavy-tailed error terms. This upper bound also yields the sup-norm convergence

rates for sieve NPIV estimators under i.i.d. data: the rates coincide with the known optimal

L2-norm rates for severely ill-posed problems, and are power of log(n) slower than the optimal

L2-norm rates for mildly ill-posed problems. We then establish the minimax risk lower bound

in sup-norm loss, which coincides with our upper bounds on sup-norm rates for the spline and

wavelet sieve NPIV estimators. This sup-norm rate optimality provides another justification

for the wide application of sieve NPIV estimators. Useful results on weakly-dependent random

matrices are also provided.
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1 Introduction

In economics and other social sciences one frequently encounters the relation

Y1i = h0(Y2i) + εi (1)

where Y1i is a response variable, Y2i is a predictor variable, h0 is an unknown structural function

of interest, and εi is an error term. However, a latent external mechanism may “determine” or

“cause” Y1i and Y2i simultaneously, in which case the conditional mean restriction E[εi|Y2i] = 0

fails and Y2i is said to be endogenous.1 When the regressor Y2i is endogenous one cannot use

standard nonparametric regression techniques to consistently estimate h0. In this instance one

typically assumes that there exists a vector of instrumental variables Xi such that E[εi|Xi] = 0

and for which there is a nondegenerate relationship between Xi and Y2i. Such a setting permits

estimation of h0 using nonparametric instrumental variables (NPIV) techniques based on a sample

{(Xi, Y1i, Y2i)}ni=1. In this paper we assume that the data is strictly stationary in that (Xi, Y1i, Y2i)

has the same (unknown) distribution FX,Y1,Y2 as that of (X,Y1, Y2) for all i.2

NPIV estimation has been the subject of much research in recent years, both because of its prac-

tical importance to applied economics and its prominent role in the literature on linear ill-posed

inverse problems with unknown operators. In many economic applications the joint distribution

FX,Y2 of Xi and Y2i is unknown but is assumed to have a continuous density. Therefore the condi-

tional expectation operator Th(·) = E[h(Y2i)|Xi = ·] is typically unknown but compact. Model (1)

with E[εi|Xi] = 0 can be equivalently written as

Y1i = Th0(Xi) + ui

E[ui|Xi] = 0
(2)

where ui = h0(Y2i) − Th0(Xi) + εi. Model (2) is called the reduced-form NPIV model if T is

assumed to be unknown and the nonparametric indirect regression (NPIR) model if T is assumed

to be known. Let Ê[Y1|X = ·] be a consistent estimator of E[Y1|X = ·]. Regardless of whether

the compact operator T is unknown or known, nonparametric recovery of h0 by inversion of the

conditional expectation operator T on the left-hand side of the Fredholm equation of the first kind

Th(·) = Ê[Y1|X = ·] (3)

1In a canonical example of this relation, Y1i may be the hourly wage of person i and Y2i may include the education

level of person i. The latent ability of person i affects both Y1i and Y2i. See Blundell and Powell (2003) for other

examples and discussions of endogeneity in semi/nonparametric regression models.

2The subscript i denotes either the individual i in a cross-sectional sample or the time period i in a time-series

sample. Since the sample is strictly stationary we sometimes drop the subscript i without confusion.
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leads to an ill-posed inverse problem (see, e.g., Kress (1999)). Consequently, some form of reg-

ularization is required for consistent nonparametric estimation of h0. In the literature there are

several popular methods of NPIV estimation, including but not limited to (1) finite-dimensional

sieve minimum distance estimators (Newey and Powell, 2003; Ai and Chen, 2003; Blundell, Chen,

and Kristensen, 2007); (2) kernel-based Tikhonov regularization estimators (Hall and Horowitz,

2005; Darolles, Fan, Florens, and Renault, 2011; Gagliardini and Scaillet, 2012) and their Bayesian

version (Florens and Simoni, 2012); (3) orthogonal series Tikhonov regularization estimators (Hall

and Horowitz, 2005); (4) orthogonal series Galerkin-type estimators (Horowitz, 2011); (5) general

penalized sieve minimum distance estimators (Chen and Pouzo, 2012) and their Bayesian version

(Liao and Jiang, 2011). See Horowitz (2011) for a recent review and additional references.

To the best of our knowledge, all the existing works on convergence rates for various NPIV

estimators have only studied L2-norm convergence rates. In particular, Hall and Horowitz (2005)

are the first to establish the minimax risk lower bound in L2-norm loss for a class of mildly ill-

posed NPIV models, and show that their estimators attain the lower bound. Chen and Reiss (2011)

derive the minimax risk lower bound in L2-norm loss for a large class of NPIV models that could

be mildly or severely ill-posed, and show that the sieve minimum distance estimator of Blundell,

Chen, and Kristensen (2007) achieves the lower bound. Subsequently, some other NPIV estimators

listed above have also been shown to achieve the optimal L2-norm convergence rates. As yet there

are no published results on sup-norm (uniform) convergence rates for any NPIV estimators, nor

results on what are the minimax risk lower bounds in sup-norm loss for any class of NPIV models.

Sup-norm convergence rates for any estimators of h0 are important for constructing uniform

confidence bands for the unknown h0 in NPIV models and for conducting inference on nonlinear

functionals of h0, but are currently missing. In this paper we study the uniform convergence prop-

erties of the sieve minimum distance estimator of h0 for the NPIV model, which is a nonparametric

series two-stage least squares regression estimator (Newey and Powell, 2003; Ai and Chen, 2003;

Blundell, Chen, and Kristensen, 2007). We focus on this estimator because it is easy to compute and

has been used in empirical work in demand analysis (Blundell, Chen, and Kristensen, 2007; Chen

and Pouzo, 2009), asset pricing (Chen and Ludvigson, 2009), and other applied fields in economics.

Also, this class of estimators is known to achieve the optimal L2-norm convergence rates for both

mildly and severely ill-posed NPIV models.

We first establish a general upper bound (Theorem 2.1) on the uniform convergence rate of a

sieve estimator, allowing for endogenous regressors and weakly dependent data. To provide sharp

bounds on the sieve approximation error or “bias term” we extend the proof strategy of Huang

(2003) for sieve nonparametric least squares (LS) regression to the sieve NPIV estimator. Together,

these tools yield sup-norm convergence rates for the spline and wavelet sieve NPIV estimators
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under i.i.d. data. Under conditions similar to those for the L2-norm convergence rates for the sieve

NPIV estimators, our sup-norm convergence rates coincide with the known optimal L2-norm rates

for severely ill-posed problems, and are power of log(n) slower than the optimal L2-norm rates for

mildly ill-posed problems. We then establish the minimax risk lower bound in sup-norm loss for h0

in a NPIR model (i.e., (2) with a known compact T ) uniformly over Hölder balls, which in turn

provides a lower bound in sup-norm loss for h0 in a NPIV model uniformly over Hölder balls. The

lower bound is shown to coincide with our sup-norm convergence rates for the spline and wavelet

sieve NPIV estimators.

To establish the general upper bound, we first derive a new exponential inequality for sums of

weakly dependent random matrices in Section 5. This allows us to weaken conditions under which

the optimal uniform convergence rates can be obtained. As an indication of the sharpness of our

general upper bound result, we show that it leads to the optimal uniform convergence rates for

spline and wavelet LS regression estimators with weakly dependent data and heavy-tailed error

terms. Precisely, for beta-mixing dependent data and finite (2 + δ)-th moment error term (for

δ ∈ (0, 2)), we show that the spline and wavelet nonparametric LS regression estimators attain the

minimax risk lower bound in sup-norm loss of Stone (1982). This result should be very useful to

the literature on nonparametric estimation with financial time series.

The NPIV model falls within the class of statistical linear ill-posed inverse problems with

unknown operators and additive noise. There is a vast literature on statistical linear ill-posed

inverse problems with known operators and additive noise. Some recent references include but

are not limited to Cavalier, Golubev, Picard, and Tsybakov (2002), Cohen, Hoffmann, and Reiss

(2004) and Cavalier (2008), of which density deconvolution is an important and extensively-studied

problem (see, e.g., Carroll and Hall (1988); Zhang (1990); Fan (1991); Hall and Meister (2007);

Lounici and Nickl (2011)). There are also papers on statistical linear ill-posed inverse problems

with pseudo-unknown operators (i.e., known eigenfunctions but unknown singular values) (see,

e.g., Cavalier and Hengartner (2005), Loubes and Marteau (2012)). Related papers that allow

for an unknown linear operator but assume the existence of an estimator of the operator (with

rate) include Efromovich and Koltchinskii (2001), Hoffmann and Reiss (2008) and others. To the

best of our knowledge, most of the published works in the statistical literature on linear ill-posed

inverse problems also focus on the rate optimality in L2-norm loss, except that of Lounici and Nickl

(2011) which recently establishes the optimal sup-norm convergence rate for a wavelet density

deconvolution estimator. Therefore, our minimax risk lower bounds in sup-norm loss for the NPIR

and NPIV models also contribute to the large literature on statistical ill-posed inverse problems.

The rest of the paper is organized as follows. Section 2 outlines the model and presents a

general upper bound on the uniform convergence rates for a sieve estimator. Section 3 establishes
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the optimal uniform convergence rates for the sieve NPIV estimators, allowing for both mildly and

severely ill-posed inverse problems. Section 4 derives the optimal uniform convergence rates for

the sieve nonparametric (least squares) regression, allowing for dependent data. Section 5 provides

useful exponential inequalities for sums of random matrices, and the reinterpretation of equivalence

of the theoretical and empirical L2 norms as a criterion regarding convergence of a random matrix.

The appendix contains a brief review of the spline and wavelet sieve spaces, proofs of all the results

in the main text, and supplementary results.

Notation: ‖·‖ denotes the Euclidean norm when applied to vectors and the matrix spectral norm

(largest singular value) when applied to matrices. For a random variable Z let Lq(Z) denote the

spaces of (equivalence classes of) measurable functions of z with finite q-th moment if 1 ≤ q < ∞
and let ‖ · ‖Lq(Z) denote the Lq(Z) norm. Let L∞(Z) denote the space of measurable functions of

z with finite sup norm ‖ · ‖∞. If A is a square matrix, λmin(A) and λmax(A) denote its smallest

and largest eigenvalues, respectively, and A− denotes its Moore-Penrose generalized inverse. If

{an : n ≥ 1} and {bn : n ≥ 1} are two sequences of non-negative numbers, an . bn means there

exists a finite positive C such that an ≤ Cbn for all n sufficiently large, and an � bn means

an . bn and bn . an. #(S) denotes the cardinality of a set S of finitely many elements. Let

BSpl(K, [0, 1]d, γ) and Wav(K, [0, 1]d, γ) denote tensor-product B-spline (with smoothness γ) and

wavelet (with regularity γ) sieve spaces of dimension K on [0, 1]d (see Appendix A for details on

construction of these spaces).

2 Uniform convergence rates for sieve NPIV estimators

We begin by considering the NPIV model

Y1i = h0(Y2i) + εi

E[εi|Xi] = 0
(4)

where Y1 ∈ R is a response variable, Y2 is an endogenous regressor with support Y2 ⊂ Rd and

X is a vector of conditioning variables (also called instruments) with support X ⊂ Rdx . The

object of interest is the unknown structural function h0 : Y2 → R which belongs to some infinite-

dimensional parameter space H ⊂ L2(Y2). It is assumed hereafter that h0 is identified uniquely

by the conditional moment restriction (4). See Newey and Powell (2003), Blundell, Chen, and

Kristensen (2007), Darolles, Fan, Florens, and Renault (2011), Andrews (2011), D’Haultfoeuille

(2011), Chen, Chernozhukov, Lee, and Newey (2013) and references therein for sufficient conditions

for identification.
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2.1 Sieve NPIV estimators

The sieve NPIV estimator due to Newey and Powell (2003), Ai and Chen (2003), and Blundell,

Chen, and Kristensen (2007) is a nonparametric series two-stage least squares estimator. Let the

sieve spaces {ΨJ : J ≥ 1} ⊆ L2(Y2) and {BK : K ≥ 1} ⊂ L2(X) be sequences of subspaces

of dimension J and K spanned by sieve basis functions such that ΨJ and BK become dense in

H ⊂ L2(Y2) and L2(X) as J,K → ∞. For given J and K, let {ψJ1, . . . , ψJJ} and {bK1, . . . , bKK}
be sets of sieve basis functions whose closed linear span generates ΨJ and BK respectively. We

consider sieve spaces generated by spline, wavelet or other Riesz basis functions that have nice

approximation properties (see Section 3 for details).

In the first stage, the conditional moment function m(x, h) : X ×H → R given by

m(x, h) = E[Y1 − h(Y2)|X = x] (5)

is estimated using the series (least squares) regression estimator

m̂(x, h) =
n∑
i=1

bK(x)′(B′B)−bK(Xi)(Y1i − h(Y2i)) (6)

where
bK(x) = (bK1(x), . . . , bKK(x))′

B = (bK(X1), . . . , bK(Xn))′ .
(7)

The sieve NPIV estimator ĥ is then defined as the solution to the second-stage minimization problem

ĥ = arg min
h∈ΨJ

1

n

n∑
i=1

m̂(Xi, h)2 (8)

which may be solved in closed form to give

ĥ(y2) = ψJ(y2)′[Ψ′B(B′B)−B′Ψ]−Ψ′B(B′B)−B′Y (9)

where
ψJ(y2) = (ψJ1(y2), . . . , ψJJ(y2))′

Ψ = (ψJ(Y21), . . . , ψJ(Y2n))′

Y = (Y11, . . . , Y1n)′ .

(10)

Under mild regularity conditions (see Newey and Powell (2003), Blundell, Chen, and Kristensen

(2007) and Chen and Pouzo (2012)), ĥ is a consistent estimator of h0 (in both ‖ · ‖L2(Y2) and ‖ · ‖∞
norms) as n, J,K → ∞, provided J ≤ K and J increases appropriately slowly so as to regularize

the ill-posed inverse problem.3 We note that the modified sieve estimator (or orthogonal series

3Here we have used K to denote the “smoothing parameter” (i.e. the dimension of the sieve space used to estimate

the conditional moments in (6)) and J to denote the “regularization parameter” (i.e. the dimension of the sieve space

used to approximate the unknown h0). Note that Chen and Reiss (2011) use J and m, Blundell, Chen, and Kristensen

(2007) and Chen and Pouzo (2012) use J and k to denote the smoothing and regularization parameters, respectively.
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Galerkin-type estimator) of Horowitz (2011) corresponds to the sieve NPIV estimator with J = K

and ψJ(·) = bK(·) being orthonormal basis in L2(Lebesgue).

2.2 A general upper bound on uniform convergence rates for sieve estimators

We first present a general calculation for sup-norm convergence which will be used to obtain uniform

convergence rates for both the sieve NPIV and the sieve LS estimators below.

As the sieve estimators are invariant to an invertible transformation of the sieve basis functions,

we re-normalize the sieve spaces BK and ΨJ so that {b̃K1, . . . , b̃KK} and {ψ̃J1, . . . , ψ̃JJ} form

orthonormal bases for BK and ΨJ . This is achieved by setting b̃K(x) = E[bK(X)bK(X)′]−1/2bK(x)

where −1/2 denotes the inverse of the positive-definite matrix square root (which exists under

Assumption 4(ii) below), with ψ̃J similarly defined. Let

B̃ = (̃bK(X1), . . . , b̃K(Xn))′

Ψ̃ = (ψ̃J(Y21), . . . , ψ̃J(Y2n))′
(11)

and define the J ×K matrices

S = E[ψ̃J(Y2)̃bK(X)′]

Ŝ = Ψ̃′B̃/n .
(12)

Let σ2
JK = λmin(SS′). For each h ∈ ΨJ define

ΠKTh(·) = b̃K(x)′E [̃bK(X)(Th)(X)] = b̃K(·)′E [̃bK(X)h(Y2)] (13)

which is the L2(X) orthogonal projection of Th(·) onto BK . The variational characterization of

singular values gives

σJK = inf
h∈ΨJ :‖h‖L2(Y2)

=1
‖ΠKTh‖L2(X) ≤ 1 . (14)

Finally, define Pn as the second-stage empirical projection operator onto the sieve space ΨJ after

projecting onto the instrument space BK , viz.

Pnh0(y2) = ψ̃J(y2)[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)−B̃′H0/n (15)

where H0 = (h0(Y21), . . . , h0(Y2n))′.

We first decompose the sup-norm error as

‖h0 − ĥ‖∞ ≤ ‖h0 − Pnh0‖∞ + ‖Pnh0 − ĥ‖∞ (16)

and calculate the uniform convergence rate for the “variance term” ‖ĥ − Pnh0‖∞ in this section.

Control of the “bias term” ‖h0−Pnh0‖∞ is left to the subsequent sections, which will be dealt with

under additional regularity conditions for the NPIV model and the LS regression model separately.

Let Zi = (Xi, Y1i, Y2i) and Fi−1 = σ(Xi, Xi−1, εi−1, Xi−2, εi−2, . . .).
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Assumption 1 (i) {Zi}∞i=−∞ is strictly stationary, (ii) X has support X = [0, 1]d and Y2 has

support Y2 = [0, 1]d, (iii) the distributions of X and Y2 have density (with respect to Lebesgue

measure) which is uniformly bounded away from zero and infinity over X and Y2 respectively.

The results stated in this section do not actually require that dim(X) = dim(Y2). However, most

published papers on NPIV models assume dim(X) = dim(Y2) = d and so we follow this convention

in Assumption 1(ii).

Assumption 2 (i) (εi,Fi−1)∞i=−∞ is a strictly stationary martingale difference sequence, (ii) the

conditional second moment E[ε2i |Fi−1] is uniformly bounded away from zero and infinity, (iii)

E[|εi|2+δ] <∞ for some δ > 0.

Assumption 3 (i) Sieve basis ψJ(·) is Hölder continuous with smoothness γ > p and supy2∈Y2 ‖ψ
J(y2)‖ .

√
J , (ii) λmin(E[ψJ(Y2)ψJ(Y2)′]) ≥ λ > 0 for all J ≥ 1.

In what follows, p > 0 indicates the smoothness of the function h0(·) (see Assumption 5 in

Section 3).

Assumption 4 (i) Sieve basis bK(·) is Hölder continuous with smoothness γx ≥ γ > p and

supx∈X ‖bK(x)‖ .
√
K, (ii) λmin(E[bK(X)bK(X)′]) ≥ λ > 0 for all K ≥ 1.

The preceding assumptions on the data generating process trivially nest i.i.d. sequences but

also allow for quite general weakly-dependent data. In an i.i.d. setting, Assumption 2(ii) reduces

to requiring that E[ε2i |Xi = x] be bounded uniformly from zero and infinity which is standard (see,

e.g., Newey (1997); Hall and Horowitz (2005)). The value of δ in Assumption 2(iii) depends on

the context. For example, δ ≥ d/p will be shown to be sufficient to attain the optimal sup-norm

convergence rates for series LS regression in Section 4, whereas lower values of δ suffice to attain

the optimal sup-norm convergence rates for the sieve NPIV estimator in Section 3. Rectangular

support and bounded densities of the endogenous regressor and instrument are assumed in Hall

and Horowitz (2005). Assumptions 3(i) and 4(i) are satisfied by many widely used sieve bases

such as spline, wavelet and cosine sieves, but they rule out polynomial and power series sieves

(see, e.g., Newey (1997); Huang (1998)). The instruments sieve basis bK(·) is used to approximate

the conditional expectation operator Th = E[h(Y2)|X = ·), which is a smoothing operator. Thus

Assumption 4(i) assumes that the sieve basis bK(·) (for Th) is smoother than that of the sieve basis

ψJ(·) (for h).

In the next theorem, our upper bound on the “variance term” ‖ĥ−Pnh0‖∞ holds under general

weak dependence as captured by Condition (ii) on the convergence of the random matrices B̃′B̃/n−
IK and Ŝ − S.
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Theorem 2.1 Let Assumptions 1, 2, 3 and 4 hold. If σJK > 0 then:

‖h0 − ĥ‖∞ ≤ ‖h0 − Pnh0‖∞ +Op

(
σ−1
JK

√
K(log n)/n

)
provided n, J,K →∞ and

(i) J ≤ K, K . (n/ log n)δ/(2+δ), and σ−1
JK

√
K(log n)/n . 1

(ii) σ−1
JK

(
‖(B̃′B̃/n)− IK‖+ ‖Ŝ − S‖

)
= Op(

√
(log n)/K) = op(1).

The restrictions on J , K and n in Conditions (i) and (ii) merit a brief explanation. The re-

striction J ≤ K merely ensures that the sieve NPIV estimator is well defined. The restriction

K . (n/ log n)δ/(2+δ) is used to perform a truncation argument using the existence of (2 + δ)-th

moment of the error terms (see Assumption 2). Condition (ii) ensures that J increases sufficiently

slowly that with probability approaching one the minimum eigenvalue of the “denominator” ma-

trix Ψ′B(B′B)−B′Ψ/n is positive and bounded below by a multiple of σ2
JK , thereby regularizing

the ill-posed inverse problem. It also ensures the error in estimating the matrices (B̃′B̃/n) and Ŝ

vanishes sufficiently quickly that it doesn’t affect the convergence rate of the estimator.

Remark 2.1 Section 5 provides very mild low-level sufficient conditions for Condition (ii) to

hold under weakly dependent data. In particular, when specializing Corollary 5.1 to i.i.d. data

{(Xi, Y2i)}ni=1 (also see Lemma 5.2), under Assumptions 3 and 4 and J ≤ K, we have:

‖(B̃′B̃/n)− IK‖ = Op(
√
K(logK)/n), ‖Ŝ − S‖ = Op(

√
K(logK)/n).

3 Optimal uniform convergence rates for sieve NPIV estimators

3.1 Upper bounds on uniform convergence rates for sieve NPIV estimators

We now exploit the specific linear structure of the sieve NPIV estimator to derive uniform conver-

gence rates for the mildly and severely ill-posed cases. Some additional assumptions are required

so as to control the “bias term” ‖h0 − Pnh0‖∞ and to relate the estimator to the measure of

ill-posedness.

p-smooth Hölder class of functions. We first impose a standard smoothness condition on

the unknown structural function h0 to facilitate comparison with Stone (1982)’s minimax risk lower

bound in sup-norm loss for a nonparametric regression function. Recall that Y2 = [0, 1]d. Deferring

definitions to Triebel (2006, 2008), we let Bp
q,q([0, 1]d) denote the Besov space of smoothness p on

the domain [0, 1]d and ‖ · ‖Bp
q,q

denote the usual Besov norm on this space. Special cases include the

Sobolev class of smoothness p, namely Bp
2,2([0, 1]d), and the Hölder-Zygmund class of smoothness

p, namely Bp
∞,∞([0, 1]d). Let B(p, L) denote a Hölder ball of smoothness p and radius 0 < L <∞,

i.e. B(p, L) = {h ∈ Bp
∞,∞([0, 1]d) : ‖h‖Bp

∞,∞ ≤ L}.
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Assumption 5 h0 ∈ H = Bp
∞,∞([0, 1]d) for some p ≥ d/2.

Assumptions 3 and 5 imply that there is πJh0 ∈ ΨJ such that ‖h0 − πJh0‖∞ = O(J−p/d).

Sieve measure of ill-posedness. Let T : Lq(Y2)→ Lq(X) denote the conditional expectation

operator for 1 ≤ q ≤ ∞:

Th(x) = E[h(Y2i)|Xi = x] . (17)

When Y2 is endogenous, T is compact under mild conditions on the conditional density of Y2 given

X. For q′ ≥ q ≥ 1, we define a measure of ill-posedness (over a sieve space ΨJ) as

τq,q′,J = sup
h∈ΨJ :‖Th‖Lq(X) 6=0

‖h‖Lq′ (Y2)

‖Th‖Lq(X)
. (18)

The τ2,2,J measure of ill-posedness is clearly related to our earlier definition of σJK . By definition

σJK = inf
h∈ΨJ :‖h‖L2(Y2)

=1
‖ΠKTh‖L2(X) ≤ inf

h∈ΨJ :‖h‖L2(Y2)
=1
‖Th‖L2(X) = (τ2,2,J)−1

when J ≤ K. The sieve measures of ill-posedness, τ2,2,J and σ−1
JK , are clearly non-decreasing in J .

In Blundell, Chen, and Kristensen (2007), Horowitz (2011) and Chen and Pouzo (2012), the NPIV

model is said to be

• mildly ill-posed if τ2,2,J = O(J ς/d) for some ς > 0;

• severely ill-posed if τ2,2,J = O(exp(1
2J

ς/d)) for some ς > 0.

These measures of ill-posedness are not exactly the same as (but are related to) the measure

of ill-posedness used in Hall and Horowitz (2005) and Cavalier (2008). In the latter papers, it is

assumed that the compact operator T : L2(Y2) → L2(X) admits a singular value decomposition

{µk;φ1k, φ0k}∞k=1, where {µk}∞k=1 are the singular numbers arranged in non-increasing order (µk ≥
µk+1 ↘ 0), {φ1k(y2)}∞k=1 and {φ0k(x)}∞k=1 are eigenfunction (orthonormal) bases for L2(Y2) and

L2(X) respectively, and ill-posedness is measured in terms of the rate of decay of the singular

values towards zero. Denote T ∗ as the adjoint operator of T : {T ∗g}(Y2) ≡ E[g(X)|Y2], which maps

L2(X) into L2(Y2). Then a compact T implies that T ∗, T ∗T and TT ∗ are also compact, and that

Tφ1k = µkφ0k and T ∗φ0k = µkφ1k for all k. We note that ‖Th‖L2(X) = ‖(T ∗T )1/2h‖L2(Y2) for all

h ∈ Dom(T ). The following lemma provides some relations between these different measures of

ill-posedness.

Lemma 3.1 Let the conditional expectation operator T : L2(Y2)→ L2(X) be compact and injective.

Then: (1) σ−1
JK ≥ τ2,2,J ≥ 1/µJ ; (2) If the sieve space ΨJ spans the closed linear subspace (in

L2(Y2)) generated by {φ1k : k = 1, ..., J}, then: τ2,2,J ≤ 1/µJ ; (3) If, in addition, J ≤ K and the

sieve space BK contains the closed linear subspace (in L2(X)) generated by {φ0k : k = 1, ..., J},
then: σ−1

JK ≤ 1/µJ and hence σ−1
JK = τ2,2,J = 1/µJ .
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Lemma 3.1 parts (1) and (2) is Lemma 1 of Blundell, Chen, and Kristensen (2007), while Lemma

3.1 part (3) is proved in the Appendix. We next present a sufficient condition to bound the sieve

measures of ill-posedness σ−1
JK and τ2,2,J .

Assumption 6 (sieve reverse link condition) There is a continuous increasing function ϕ :

R+ → R+ such that: (a) ‖Th‖2L2(X) &
∑J

j=1 ϕ(j−2/d)|E[h(Y2)ψ̃Jj(Y2)]|2 for all h ∈ ΨJ ; or (b)

‖ΠKTh‖2L2(X) &
∑J

j=1 ϕ(j−2/d)|E[h(Y2)ψ̃Jj(Y2)]|2 for all h ∈ ΨJ

It is clear that Assumption 6(b) implies Assumption 6(a). Assumption 6(a) is the so-called

“sieve reverse link condition” used in Chen and Pouzo (2012), which is weaker than the “reverse

link condition” imposed in Chen and Reiss (2011) and others in the ill-posed inverse literature:

‖Th‖2L2(X) &
∑∞

j=1 ϕ(j−2/d)|E[h(Y2)ψ̃Jj(Y2)]|2 for all h ∈ B(p, L). We immediately have the fol-

lowing bounds:

Remark 3.1 (1) Assumption 6(a) implies that τ2,2,J .
(
ϕ(J−2/d)

)−1/2
. (2) Assumption 6(b) im-

plies that τ2,2,J ≤ σ−1
JK .

(
ϕ(J−2/d)

)−1/2
.

Given Remark 3.1, in this paper we could call a NPIV model

• mildly ill-posed if σ−1
JK = O(J ς/d) or ϕ(t) = tς for some ς > 0;

• severely ill-posed if σ−1
JK = O(exp(1

2J
ς/d)) or ϕ(t) = exp(−t−ς/2) for some ς > 0.

Define

σ∞,JK = inf
h∈ΨJ :‖h‖∞=1

‖ΠKTh‖∞ ≤ (τ∞,∞,J)−1 . (19)

Assumption 7 (i) The conditional expectation operator T : Lq(Y2) → Lq(X) is compact and

injective for q = 2 and q =∞, (ii) σ−1
∞,JK‖ΠKT (h0 − πJh0)‖∞ . ‖h0 − πJh0‖∞.

Assumption 7(ii) is a sup-norm analogue of the so-called “stability condition” imposed in the

ill-posed inverse regression literature, such as Assumption 6 of Blundell, Chen, and Kristensen

(2007) and Assumption 5.2(ii) of Chen and Pouzo (2012).

To control the “bias term” ‖Pnh0−h0‖∞, we will use spline or wavelet sieves in Assumptions 3

and 4 so that we can make use of sharp bounds on the approximation error due to Huang (2003).4

Control of the “bias term” ‖Pnh0−h0‖∞ is more involved in the sieve NPIV context than the sieve

nonparametric LS regression context. In particular, control of this term makes use of an additional

argument using exponential inequalities. To simplify presentation, the next theorem just presents

the uniform convergence rate for sieve NPIV estimators under i.i.d. data.

4The key property of spline and wavelet sieve spaces that permits this sharp bound is their local support (see the

appendix to Huang (2003)). Other sieve bases such as orthogonal polynomial bases do not have this property and are

therefore unable to attain the optimal sup-norm convergence rates for NPIV or nonparametric series LS regression.
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Theorem 3.1 Let Assumptions 1, 2, 3 (with ΨJ = BSpl(J, [0, 1]d, γ) or Wav(J, [0, 1]d, γ)), 4 (with

BK = BSpl(K, [0, 1]d, γx) or Wav(K, [0, 1]d, γx)), 5 and 7 hold. If {(Xi, Y2i)}ni=1 is i.i.d. then:

‖h0 − ĥ‖∞ = Op(J
−p/d + σ−1

JK

√
K(log n)/n)

provided J ≤ K, K . (n/ log n)δ/(2+δ), and σ−1
JKK

√
(log n)/n . 1 as n, J,K →∞.

(1) Mildly ill-posed case (σ−1
JK = O(J ς/d) or ϕ(t) = tς). If Assumption 2 holds with δ ≥ d/(ς+p),

and J � K � (n/ log n)d/(2(p+ς)+d) with K/J → c0 ≥ 1, then:

‖h0 − ĥ‖∞ = Op((n/ log n)−p/(2(p+ς)+d)).

(2) Severely ill-posed case (σ−1
JK = O(exp(1

2J
ς/d)) or ϕ(t) = exp(−t−ς/2)). If Assumption 2

holds with δ > 0, and J = c′0(log n)d/ς for any c′0 ∈ (0, 1) with K = c0J for some finite c0 ≥ 1,

then:

‖h0 − ĥ‖∞ = Op((log n)−p/ς).

Remark 3.2 Under conditions similar to those for Theorem 3.1, Blundell, Chen, and Kristensen

(2007), Chen and Reiss (2011) and Chen and Pouzo (2012) previously obtained the following

L2(Y2)-norm convergence rate for the sieve NPIV estimator:

‖h0 − ĥ‖L2(Y2) = Op(J
−p/d + τ2,2,J

√
K/n).

(1) Mildly ill-posed case (τ2,2,J = O(J ς/d) or ϕ(t) = tς),

‖h0 − ĥ‖L2(Y2) = Op(n
−p/(2(p+ς)+d)) .

(2) Severely ill-posed case (τ2,2,J = O(exp(1
2J

ς/d)) or ϕ(t) = exp(−t−ς/2)),

‖h0 − ĥ‖L2(Y2) = Op((log n)−p/ς) .

Chen and Reiss (2011) show that these L2(Y2)-norm rates are optimal in the sense that they

coincide with the minimax risk lower bound in L2(Y2) loss. It is interesting to see that our sup-

norm convergence rate is the same as the known optimal L2(Y2)-norm rate for the severely ill-posed

case, and is only power of log(n) slower than the known optimal L2(Y2)-norm rate for the mildly

ill-posed case. In the next subsection we will show that our sup-norm convergence rates are in fact

optimal as well.

3.2 Lower bounds on uniform convergence rates for NPIR and NPIV models

For severely ill-posed NPIV models, Chen and Reiss (2011) already showed that (log n)−p/ς is

the minimax lower bound in L2(Y2)-norm loss uniformly over a class of functions that include

11



the Hölder ball B(p, L) as a subset. Therefore, we have for a severely ill-posed NPIV model with

δn = (log n)−p/ς ,

inf
h̃n

sup
h∈B(p,L)

Ph
(
‖h− h̃n‖∞ ≥ cδn

)
≥ inf

h̃n

sup
h∈B(p,L)

Ph
(
‖h− h̃n‖L2(Y2) ≥ cδn

)
≥ c′

where inf
h̃n

denotes the infimum over all estimators based on a random sample of size n drawn

from the NPIV model, and the finite positive constants c, c′ do not depend on sample size n. This

and Remark 3.2(2) together imply that the sieve NPIV estimator attains the optimal uniform

convergence rate in the severely ill-posed case.

We next show that the sup-norm rate for the sieve NPIV estimator obtained in the mildly ill-

posed case is also optimal. We begin by placing a primitive smoothness condition on the conditional

expectation operator T : L2(Y2)→ L2(X).

Assumption 8 There is a ς > 0 such that ‖Th‖L2(X) . ‖h‖B−ς
2,2

for all h ∈ B(p, L).

Assumption 8 is a special case of the so-called “link condition” in Chen and Reiss (2011) for the

mildly ill-posed case. It can be equivalently stated as: ‖Th‖2L2(X) .
∑∞

j=1 ϕ(j−2/d)|E[h(Y2)ψ̃Jj(Y2)]|2

for all h ∈ B(p, L), with ϕ(t) = tς for the mildly ill-posed case. Under this assumption, n−p/(2(p+ς)+d)

is the minimax risk lower bound uniformly over the Hölder ball B(p, L) in L2(Y2)-norm loss for

the mildly ill-posed NPIR and NPIV models (see Chen and Reiss (2011)). We next establish the

corresponding minimax risk lower bound in sup-norm loss.

Theorem 3.2 Let Assumption 8 hold for the NPIV model with a random sample {(Y1i, Y2i, Xi)}ni=1.

Then:

lim inf
n→∞

inf
h̃n

sup
h∈B(p,L)

Ph
(
‖h− h̃n‖∞ ≥ c(n/ log n)−p/(2(p+ς)+d)

)
≥ c′ > 0,

where inf
h̃n

denotes the infimum over all estimators based on the sample of size n, and the finite

positive constants c, c′ do not depend on n.

As in Chen and Reiss (2011), Theorem 3.2 is proved by (i) noting that the risk (in sup-norm

loss) for the NPIV model is at least as large as the risk (in sup-norm loss) for the NPIR model,

and (ii) calculating a lower bound (in sup-norm loss) for the NPIR model. We consider a Gaussian

reduced-form NPIR model with known operator T , given by

Y1i = Th0(Xi) + ui, i = 1, ..., n,

ui|Xi ∼ N(0, σ2(Xi)) with infx σ
2(x) ≥ σ2

0 > 0 .
(20)

Theorem 3.2 therefore follows from a sup-norm analogue of Lemma 1 of Chen and Reiss (2011) and

the following theorem, which establishes a lower bound on minimax risk over Hölder classes under

sup-norm loss for the NPIR model.
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Theorem 3.3 Let Assumption 8 hold for the NPIR model (20) with a random sample {(Y1i, Xi)}ni=1.

Then:

lim inf
n→∞

inf
h̃n

sup
h∈B(p,L)

Ph
(
‖h− h̃n‖∞ ≥ c(n/ log n)−p/(2(p+ς)+d)

)
≥ c′ > 0,

where inf
h̃n

denotes the infimum over all estimators based on the sample of size n, and the finite

positive constants c, c′ depend only on p, L, d, ς and σ0.

4 Optimal uniform convergence rates for sieve LS estimators

The standard nonparametric regression model can be recovered as a special case of (4) in which

there is no endogeneity, i.e. Y2 = X and

Y1i = h0(Xi) + εi

E[εi|Xi] = 0
(21)

in which case h0(x) = E[Y1i|Xi = x].

Stone (1982) (also see Tsybakov (2009)) establishes that (n/ log n)−p/(2p+d) is the minimax risk

lower bound in sup-norm loss for the nonparametric LS regression model (21) with h0 ∈ B(p, L). In

this section we apply the general upper bound (Theorem 2.1) to show that spline and wavelet sieve

LS estimators attain this minimax lower bound for weakly dependent data allowing for heavy-tailed

error terms εi.

Our proof proceeds by noticing that the sieve LS regression estimator

ĥ(x) = bK(x)(B′B)−B′Y (22)

obtains as a special case of the NPIV estimator by setting Y2 = X, ψJ = bK , J = K and γ = γx.

In this setting, the quantity Pnh0(x) just reduces to the orthogonal projection of h0 onto the sieve

space BK under the inner product induced by the empirical distribution, viz.

Pnh0(x) = b̃K(x)(B̃′B̃/n)−B̃′H0/n . (23)

Moreover, in this case the J ×K matrix S defined in (12) reduces to the K ×K identity matrix

IK and its smallest singular value is unity (whence σJK = 1). Therefore, the general calculation

presented in Theorem 2.1 can be used to control the “variance term” ‖ĥ − Pnh0‖∞. The “bias

term” ‖Pnh0−h0‖∞ is controlled as in Huang (2003). It is worth emphasizing that no explicit weak

dependence condition is placed on the regressors {Xi}∞i=−∞. Instead, this is implicitly captured by

Condition (ii) on convergence of B̃′B̃/n− IK .
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Theorem 4.1 Let Assumptions 1, 2, 4 (with BK = BSpl(K, [0, 1]d, γ) or Wav(K, [0, 1]d, γ)) and 5

hold for Model (21). Then:

‖ĥ− h0‖∞ = Op(K
−p/d +

√
K(log n)/n)

provided n,K →∞, and

(i) K . (n/ log n)δ/(2+δ) and
√
K(log n)/n . 1

(ii) ‖(B̃′B̃/n)− IK‖ = Op(
√

(log n)/K) = op(1).

Condition (ii) is satisfied by applying Lemma 5.2 for i.i.d. data and Lemma 5.3 for weakly

dependent data. Theorem 4.1 shows that spline and wavelet sieve LS estimators can achieve this

minimax lower bound for weakly dependent data.

Corollary 4.1 Let Assumptions 1, 2 (with δ ≥ d/p), 4 (with BK = BSpl(K, [0, 1]d, γ) or Wav(K, [0, 1]d, γ))

and 5 hold for Model (21). If K � (n/ log n)d/(2p+d) then:

‖ĥ− h0‖∞ = Op((n/ log n)−p/(2p+d))

provided that one of the followings is satisfied

(1) the regressors are i.i.d.;

(2) the regressors are exponentially β-mixing and d < 2p;

(3) the regressors are algebraically β-mixing at rate γ and (2 + γ)d < 2γp.

Corollary 4.1 states that for i.i.d. data, Stone’s optimal sup-norm convergence rate is achieved

by spline and wavelet LS estimators whenever δ ≥ d/p and d ≤ 2p (Assumption 5). If the regressors

are exponentially β-mixing the optimal rate of convergence is achieved with δ ≥ d/p and d < 2p.

The restrictions δ ≥ d/p and (2 + γ)d < 2γp for algebraically β-mixing (at a rate γ) reduces

naturally towards the exponentially mixing conditions as the dependence becomes weaker (i.e. γ

becomes larger). In all cases, a smoother function (i.e., bigger p) means a lower value of δ, and

therefore heaver-tailed error terms εi, are permitted while still obtaining the optimal sup-norm

convergence rate. In particular this is achieved with δ = d/p ≤ 2 for i.i.d. data. Recently, Belloni

et al. (2012) require that the conditional (2 + η)th moment (for some η > 0) of εi be uniformly

bounded for spline LS regression estimators to achieve the optimal sup-norm rate for i.i.d. data.5

5Chen would like to thank Jianhua Huang for working together on an earlier draft that does achieve the optimal

sup-norm rate for a polynomial spline LS estimator with i.i.d. data, but under a stronger condition that E[ε4i |Xi = x]

is uniformly bounded in x.
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Uniform convergence rates of series LS estimators have also been studied by Newey (1997), de Jong

(2002), Song (2008), Lee and Robinson (2013) and others, but the sup-norm rates obtained in these

papers are slower than the minimax risk lower bound in sup-norm loss of Stone (1982).6 Our result

is the first such optimal sup-norm rate result for a sieve nonparametric LS estimator allowing for

weakly-dependent data with heavy-tailed error terms. It should be very useful for nonparametric

estimation of financial time-series models that have heavy-tailed error terms.

5 Useful results on random matrices

5.1 Convergence rates for sums of dependent random matrices

In this subsection a Bernstein inequality for sums of independent random matrices due to Tropp

(2012) is adapted to obtain convergence rates for sums of random matrices formed from β-mixing

(absolutely regular) sequences, where the dimension, norm, and variance measure of the random

matrices are allowed to grow with the sample size. These inequalities are particularly useful for es-

tablishing convergence rates for semi/nonparametric sieve estimators with weakly-dependent data.

We first recall a result of Tropp (2012).

Theorem 5.1 (Tropp (2012)) Let {Ξi}ni=1 be a finite sequence of independent random matrices

with dimensions d1 × d2. Assume E[Ξi] = 0 for each i and max1≤i≤n ‖Ξi‖ ≤ Rn, and define

σ2
n = max

{∥∥∥∥∥
n∑
i=1

E[ΞiΞ
′
i]

∥∥∥∥∥ ,
∥∥∥∥∥

n∑
i=1

E[Ξ′iΞi]

∥∥∥∥∥
}
.

Then for all t ≥ 0,

P

(∥∥∥∥∥
n∑
i=1

Ξi

∥∥∥∥∥ ≥ t
)
≤ (d1 + d2) exp

(
−t2/2

σ2
n +Rnt/3

)
.

Corollary 5.1 Under the conditions of Theorem 5.1, if Rn
√

log(d1 + d2) = o(σn) then∥∥∥∥∥
n∑
i=1

Ξi,n

∥∥∥∥∥ = Op(σn
√

log(d1 + d2)) .

We now provide a version of Theorem 5.1 and Corollary 5.1 for matrix-valued functions of

β-mixing sequences. The β-mixing coefficient between two σ-algebras A and B is defined as

2β(A,B) = sup
∑

(i,j)∈I×J

|P(Ai ∩Bj)− P(Ai)P(Bj)| (24)

6See, e.g., Hansen (2008), Masry (1996), Cattaneo and Farrell (2013) and the references therein for the optimal

sup-norm convergence rates of a conditional mean function via the kernel, local linear regression and partitioning

estimators of a conditional mean function.
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with the supremum taken over all finite partitions {Ai}i∈I ⊂ A and {BJ}j∈J ⊂ B (Doukhan,

Massart, and Rio, 1995). The qth β-mixing coefficient of {Xi}∞i=−∞ is defined as

β(q) = sup
i
β(σ(. . . , Xi−1, Xi), σ(Xi+q, Xi+q+1, . . .)) . (25)

The process {Xi}∞i=−∞ is said to be algebraically β-mixing at rate γ if qγβ(q) = o(1) for some γ > 1,

and geometrically β-mixing if β(q) ≤ c exp(−γq) for some γ > 0 and c ≥ 0. The following extension

of Theorem 5.1 is made using a Berbee’s lemma and a coupling argument (see, e.g., Doukhan et al.

(1995)).

Theorem 5.2 Let {Xi}∞i=−∞ be a strictly stationary β-mixing sequence and let Ξi,n = Ξn(Xi) for

each i where Ξn : X → Rd1×d2 is a sequence of measurable d1×d2 matrix-valued functions. Assume

E[Ξi,n] = 0 and ‖Ξi,n‖ ≤ Rn for each i and define s2
n = max1≤i,j≤n max{‖E[Ξi,nΞ′j,n]‖, ‖E[Ξ′i,nΞj,n]‖}.

Let q be an integer between 1 and n/2 and let Ir = q[n/q] + 1, . . . , n when q[n/q] < n and Ir = ∅
when q[n/q] = n. Then for all t ≥ 0,

P

(∥∥∥∥∥
n∑
i=1

Ξi,n

∥∥∥∥∥ ≥ 6t

)
≤ n

q
β(q) + P

(∥∥∥∥∥∑
i∈Ir

Ξi,n

∥∥∥∥∥ ≥ t
)

+ 2(d1 + d2) exp

(
−t2/2

nqs2
n + qRnt/3

)
(where ‖

∑
i∈Ir Ξi,n‖ := 0 whenever Ir = ∅).

Corollary 5.2 Under the conditions of Theorem 5.2, if q = q(n) is chosen such that n
q β(q) = o(1)

and Rn
√
q log(d1 + d2) = o(sn

√
n) then∥∥∥∥∥
n∑
i=1

Ξi,n

∥∥∥∥∥ = Op(sn
√
nq log(d1 + d2)) .

5.2 Empirical identifiability

This subsection provides a readily verifiable condition under which, with probability approaching

one (wpa1), the theoretical and empirical L2 norms are equivalent over a linear sieve space. This

equivalence, referred to by Huang (2003) as empirical identifiability, has several applications in

nonparametric sieve estimation. In the context of nonparametric series regression, empirical iden-

tifiability ensures the estimator is the orthogonal projection of Y onto the sieve space under the

empirical inner product and is uniquely defined (Huang, 2003). Empirical identifiability is also used

to establish the large-sample properties of sieve conditional moment estimators (Chen and Pouzo,

2012). A sufficient condition for empirical identifiability is now cast in terms of convergence of a

random matrix, which we verify for i.i.d. and β-mixing sequences.

A subspace A ⊆ L2(X) is said to be empirically identifiable if 1
n

∑n
i=1 b(Xi)

2 = 0 implies b = 0

a.e.-[FX ] where FX dentoes the distribution of X. A sequence of spaces {AK : K ≥ 1} ⊆ L2(X) is
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empirically identifiable wpa1 as K = K(n)→∞ with n if

lim
n→∞

P

(
sup
a∈AK

∣∣∣∣∣ 1
n

∑n
i=1 a(Xi)

2 − E[a(X)2]

E[a(X)2]

∣∣∣∣∣ > t

)
= 0 (26)

for any t > 0. Huang (1998) uses a chaining argument to provide sufficient conditions for (26) over

the linear space BK under i.i.d. sampling. Chen and Pouzo (2012) use this argument to establish

convergence of sieve conditional moment estimators. Although easy to establish for i.i.d. sequences,

it may be difficult to verify (26) via chaining arguments for certain types of weakly dependent

sequences. To this end, the following is a readily verifiable sufficient condition for empirical iden-

tifiability for linear sieve spaces. Let BK = clsp{bK1, . . . , bKK} denote a general linear sieve space

and let B̃ = (̃bK(X1), . . . , b̃K(Xn))′ where b̃K(x) is the orthonormalized vector of basis functions.

Condition 5.1 λmin(E[bK(X)bK(X)′]) > 0 for each K ≥ 1 and ‖B̃′B̃/n− IK‖ = op(1).

Lemma 5.1 If λmin(E[bK(X)bK(X)′]) > 0 for each K ≥ 1 then

sup
b∈BK

∣∣∣∣∣ 1
n

∑n
i=1 b(Xi)

2 − E[b(X)2]

E[b(X)2]

∣∣∣∣∣ = ‖B̃′B̃/n− IK‖2 .

Corollary 5.3 Under Condition 5.1, BK is empirically identifiable wpa1.

Condition 5.1 is a sufficient condition for (26) with a linear sieve space BK . It should be noted

that convergence is only required in the spectral norm. In the i.i.d. case this allows for K to increase

more quickly with n than is achievable under the chaining argument of Huang (1998). Let

ζ0(K) = sup
x∈X
‖bK(x)‖ (27)

as in Newey (1997). Under regularity conditions, ζ0(K) = O(
√
K) for tensor products of splines,

trigonometric polynomials or wavelets and ζ0(K) = O(K) for tensor products of power series or

polynomials (Newey, 1997; Huang, 1998). Under the chaining argument of Huang (1998), (26)

is achieved under the restriction ζ0(K)2K/n = o(1). Huang (2003) relaxes this restriction to

K(log n)/n = o(1) for a polynomial spline sieve. We now generalize this result by virtue of Lemma

5.1 and exponential inequalities for sums of random matrices.

Lemma 5.2 If {Xi}ni=1 is i.i.d. and λmin(E[bK(X)bK(X)′]) ≥ λ > 0 for each K ≥ 1, then

‖(B̃′B̃/n)− IK‖ = Op(ζ0(K)
√

(logK)/n)

provided ζ0(K)2(logK)/n = o(1).
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Remark 5.1 If {Xi}ni=1 is i.i.d., K(logK)/n = o(1) is sufficient for sieve bases that are tensor

products of splines, trigonometric polynomials or wavelets, and K2(logK)/n = o(1) is sufficient

for sieve bases that are tensor products of power series or polynomials.

The following lemma is useful to provide sufficient conditions for empirical identifiability for

β-mixing sequences, which uses Theorem 5.2.

Lemma 5.3 If {Xi}∞i=−∞ is strictly stationary and β-mixing with mixing coefficients such that one

can choose an integer sequence q = q(n) ≤ n/2 with β(q)n/q = o(1) and λmin(E[bK(X)bK(X)′]) ≥
λ > 0 for each K ≥ 1, then

‖(B̃′B̃/n)− IK‖ = Op(ζ0(K)
√
q(logK)/n)

provided ζ0(K)2q logK/n = o(1).

Remark 5.2 If {Xi}∞i=−∞ is algebraically β-mixing at rate γ, Kn1/(1+γ)(logK)/n = o(1) is suffi-

cient for sieve bases that are tensor products of splines, trigonometric polynomials or wavelets, and

K2n1/(1+γ)(logK)/n = o(1) is sufficient for sieve bases that are tensor products of power series or

polynomials.

Remark 5.3 If {Xi}∞i=−∞ is geometrically β-mixing, K(log n)2/n = o(1) is sufficient for sieve

bases that are tensor products of splines, trigonometric polynomials or wavelets, and K2(log n)2/n =

o(1) is sufficient for sieve bases that are tensor products of power series or polynomials.

A Brief review of B-spline and wavelet sieve spaces

We first outline univariate B-spline and wavelet sieve spaces on [0, 1], then deal with the multivariate case

by constructing a tensor-product sieve basis.

B-splines B-splines are defined by their order m ≥ 1 and number of interior knots N ≥ 0. Define the

knot set

t−(m−1) = . . . = t0 ≤ t1 ≤ . . . ≤ tN ≤ tN+1 = . . . = tN+m (28)

where we normalize t0 = 0 and tN+1 = 1. The B-spline basis is then defined recursively via the De Boor

relation. This results in a total of K = N +m splines which together form a partition of unity. Each spline is

a polynomial of degree m− 1 on each interior interval I1 = [t0, t1), . . . , In = [tN , tN+1] and is (m− 2)-times

continuously differentiable on [0, 1] whenever m ≥ 2. The mesh ratio is defined as

mesh(K) =
max0≤n≤N (tn+1 − tn)

min0≤n≤N (tn+1 − tn)
. (29)

We let the space BSpl(K, [0, 1]) be the closed linear span of these K = N+m splines. The space BSpl(K, [0, 1])

has uniformly bounded mesh ratio if mesh(K) ≤ κ for all N ≥ 0 and some κ ∈ (0,∞). The space

BSpl(K, [0, 1]) has smoothness γ = m − 2, which is denoted as BSpl(K, [0, 1], γ) for simplicity. See De

Boor (2001) and Schumacker (2007) for further details.
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Wavelets We follow the construction of Cohen et al. (1993a,b) for building a wavelet basis for [0, 1]. Let

(φ, ψ) be a father and mother wavelet pair that has N vanishing moments and support(φ) = support(ψ) =

[0, 2N−1]. For given j, the approximation space Vj wavelet space Wj each consist of 2j functions {φjk}1≤k≤2j

and {ψjk}1≤k≤2j respectively, such that {φjk}1≤k≤2j−2N and {ψjk}1≤k≤2j−2N are interior wavelets for which

φjk(·) = 2j/2φ(2j(·) − k) and ψjk(·) = 2j/2ψ(2j(·) − k), complemented with another N left-edge functions

and N right-edge functions. Choosing L ≥ 1 such that 2L ≥ 2N , we let the space Wav(K, [0, 1]) be the closed

linear span of the set of functions

WLJ = {φLk : 1 ≤ k ≤ 2L} ∪ {ψjk : k = 1, . . . , 2j and j = L, . . . , J − 1} (30)

for integer J > L, and let K = #(WLJ). We say that Wav(K, [0, 1]) has regularity γ if φ and ψ are both γ

times continuously differentiable, which is denoted as Wav(K, [0, 1], γ) for simplicity.

Tensor products To construct a tensor-product B-spline basis of smoothness γ for [0, 1]d with d > 1,

we first construct d univariate B-spline bases for [0, 1], say Gi with Gi = BSpl(k, [0, 1]) and smoothness γ

for each 1 ≤ i ≤ d. We then set K = kd and let BSpl(K, [0, 1]d) be spanned by the unique kd functions given

by
∏d
i=1 gi with gi ∈ Gi for 1 ≤ i ≤ d. The tensor-product wavelet basis Wav(K, [0, 1]d) of regularity γ for

[0, 1]d is formed similarly as the tensor product of d univariate Wavelet bases of regularity γ (see Triebel

(2006, 2008)).

Wavelet characterization of Besov norms Let f ∈ Bαp,q([0, 1]d) have wavelet expansion

f =

∞∑
k=−∞

ak(f)φLk +

∞∑
j=L

∞∑
k=−∞

bjk(f)ψjk (31)

where {φLk, ψjk}j,k are a Wavelet basis with regularity γ > α. Equivalent norms to the Bα∞,∞ and Bα2,2

norms may be formulated equivalently in terms of the wavelet coefficient sequences {ak}∞k and {bjk}j,k,

namely ‖ · ‖bα∞,∞
and ‖ · ‖bα2,2 , given by

‖f‖bα∞,∞
= supk |ak(f)|+ supj,k 2j(α+d/2)|bjk(f)|

‖f‖bα2,2 = ‖a(·)(f)‖+
(∑∞

j=0(2jα‖bj(·)(f)‖)2
)1/2 (32)

where ‖a(·)(f)‖ and ‖bj(·)(f)‖ denote the infinite-dimensional Euclidean norm for the sequences {ak(f)}k
and {bjk(f)}k (see, e.g., Johnstone (2013) and Triebel (2006, 2008)).

B Proofs of main results

B.1 Proofs for Section 2

Proof of Theorem 2.1. It is enough to show that ‖ĥ− Pnh0‖∞ = Op(σ
−1
JK

√
K(log n)/n). First write

ĥ(y2)− Pnh0(y2) = ψ̃J(y2)′[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)−B̃′e/n (33)
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where e = (ε1, . . . , εn). Convexity of Y2 (Assumption 1(ii)), smoothness of ψ̃J (Assumption 3(i)) and the

mean value theorem provide that, for any (y, y∗) ∈ Y2
2 ,

|ĥ(y)− Pnh0(y)− (ĥ(y∗)− Pnh0(y∗))| = |(ψ̃J(y)− ψ̃J(y∗))′[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)−B̃′e/n| (34)

= |(y − y∗)′∇ψ̃J(y∗∗)′[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)−B̃′e/n|(35)

≤ Jα‖y − y∗‖‖[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)−1B̃′e/n‖ (36)

for some y∗∗ in the segment between y and y∗, and some α > 0 (and independent of y and y∗).

We first show that T1 := ‖[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)−B̃′e/n‖ = op(1). By the triangle inequality and

properties of the matrix spectral norm,

T1 ≤ (‖[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)− − [SS′]−1S‖+ ‖[SS′]−1S‖)‖B̃′e/n‖ (37)

whence by Lemma C.2 (under condition (ii) of the Theorem), wpa1

T1 .
{
σ−1
JK‖(B̃

′B̃/n)− IK‖+ σ−2
JK

(
‖Ŝ − S‖+ ‖(B̃′B̃/n)− IK‖

)
+ σ−1

JK

}
‖B̃′e/n‖ . (38)

Noting that ‖B̃′e/n‖ = Op(
√
K/n) (by Markov’s inequality under Assumptions 2 and 4), it follows by

conditions (i) and (ii) of the Theorem that T1 = op(1). Therefore, for any fixed M̄ > 0 we have

lim sup
n→∞

P
(
‖[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)−B̃′e/n‖ > M̄

)
= 0 . (39)

Let Bn denote the event ‖[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)−B̃′e/n‖ ≤ M̄ and observe that P(Bc
n) = o(1). On

Bn, for any C ≥ 1, a finite positive β = β(C) and γ = γ(C) can be chosen such that

Jα‖y0 − y1‖‖[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)−B̃′e/n‖ ≤ Cσ−1
JK

√
K(log n)/n (40)

whenever ‖y0 − y1‖ ≤ βn−γ . Let Sn be the smallest subset of Y2 such that for each y ∈ Y2 there exists a

yn ∈ Sn with ‖yn− y‖ ≤ βn−γ . For any y ∈ Y2 let yn(y) denote the yn ∈ Sn nearest (in Euclidean distance)

to y. Therefore,

|ĥ(y)− Pnh0(y)− (ĥ(yn(y))− Pnh0(yn(y)))| ≤ Cσ−1
JK

√
K(log n)/n (41)

for any y ∈ Y2, on Bn.

For any C ≥ 1, straightforward arguments yield

P
(
‖ĥ− Pnh0‖∞ ≥ 4Cσ−1

JK

√
K(log n)/n

)
≤ P

({
‖ĥ− Pnh0‖∞ ≥ 4Cσ−1

JK

√
K(log n)/n

}
∩Bn

)
+ P(Bc

n) (42)

≤ P
({

sup
y∈Y2

|ĥ(y)− Pnh0(y)− (ĥ(yn(y))− Pnh0(yn(y)))| ≥ 2Cσ−1
JK

√
K(log n)/n

}
∩Bn

)
+P
({

max
yn∈Sn

|ĥ(yn)− Pnh0(yn)| ≥ 2Cσ−1
JK

√
K(log n)/n

}
∩Bn

)
+ P(Bc

n) (43)

= P
({

max
yn∈Sn

|ĥ(yn)− Pnh0(yn)| ≥ 2Cσ−1
JK

√
K(log n)/n

}
∩Bn

)
+ o(1) (44)
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where the final line is by (41) and the fact that P(Bc
n) = o(1). For the remaining term:

P
({

max
yn∈Sn

|ĥ(yn)− Pnh0(yn)| ≥ 2Cσ−1
JK

√
K(log n)/n

}
∩Bn

)
≤ P

(
max
yn∈Sn

|ψ̃J(yn)′[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)−B̃′e/n| ≥ 2Cσ−1
JK

√
K(log n)/n

)
(45)

≤ P
(

max
yn∈Sn

|ψ̃J(yn)′{[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)− − [SS′]−1S}B̃′e/n| ≥ Cσ−1
JK

√
K(log n)/n

)
(46)

+P
(

max
yn∈Sn

|ψ̃J(yn)′[SS′]−1SB̃′e/n| ≥ Cσ−1
JK

√
K(log n)/n

)
. (47)

It is now shown that a sufficiently large C can be chosen to make terms (46) and (47) arbitrarily small as

n, J,K →∞. Observe that Sn has cardinality . nν for some ν = ν(C) ∈ (0,∞) under Assumption 1(ii).

Control of (46): The Cauchy-Schwarz inequality and Assumption 3 yield

|ψ̃J(yn)′{[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)− − [SS′]−1S}B̃′e/n|

.
√
J‖[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)− − [SS′]−1S‖ ×Op(

√
K/n) (48)

uniformly for yn ∈ Sn (recalling that ‖B̃′e/n‖ = Op(
√
K/n) under Assumptions 2 and 4). Therefore, (46)

will vanish asymptotically provided

T2 := σJK
√
J‖[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)− − [SS′]−1S‖/

√
log n = op(1) . (49)

Under condition (ii), the bound

T2 .
√
J
{
‖(B̃′B̃/n)− IK‖+ σ−1

JK

(
‖Ŝ − S‖+ ‖(B̃′B̃/n)− IK‖

)}
/
√

log n (50)

holds wpa1 by Lemma C.2, and so T2 = op(1) by virtue of conditions (i) and (ii) of the Theorem.

Control of (47): Let {Mn : n ≥ 1} be an increasing sequence diverging to +∞ and define

ε1,i,n = εi{|εi| ≤Mn}
ε2,i,n = εi − ε1,i,n
gi,n = ψJ(yn)′ [SS′]

−1
Sb̃K(Xi) .

(51)

Simple application of the triangle inequality yields

(47) ≤ (#Sn) max
yn∈Sn

P

({∣∣∣∣∣
n∑
i=1

gi,n(ε1,i,n − E[ε1,i,n|Fi−1])

∣∣∣∣∣ > C

3
σ−1
JK

√
K(log n)/n

}
∩An

)
+ P(A c

n )(52)

+P

(
max
yn∈Sn

∣∣∣∣∣ 1n
n∑
i=1

gi,nE[ε1,i,n|Fi−1]

∣∣∣∣∣ ≥ C

3
σ−1
JK

√
K(log n)/n

)
(53)

+P

(
max
yn∈Sn

∣∣∣∣∣ 1n
n∑
i=1

gi,nε2,i,n

∣∣∣∣∣ ≥ C

3
σ−1
JK

√
K(log n)/n

)
(54)

where An is a measurable set to be defined. The following shows that terms (52), (53), and (54) vanish

asymptotically provided a sequence {Mn : n ≥ 1} may be chosen such that
√
nJ/ log n = O(M1+δ

n ) and

Mn = O(
√
n/(J log n)) and J ≤ K. Choosing J ≤ K and setting M1+δ

n �
√
nK/ log n trivially satisfies the
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condition
√
nK/ log n = O(M1+δ

n ). The condition Mn = O(
√
n/(K log n)) is satisfied for this choice of Mn

provided K . (n/ log n)δ/(2+δ).

Control of (53) and (54): For term (54), first note that

|gi,n| . σ−1
JK

√
JK (55)

whenever σJK > 0 by the Cauchy-Schwarz inequality, and Assumptions 3 and 4. This, together with Markov’s

inequality and Assumption 2(iii) yields

P

(
max
yn∈Sn

∣∣∣∣∣ 1n
n∑
i=1

gi,nε2,i,n

∣∣∣∣∣ ≥ C

3
σ−1
JK

√
K(log n)/n

)
.

σ−1
JK

√
JKE[|εi|{|εi| > Mn}]
σ−1
JK

√
K(log n)/n

(56)

≤

√
nJ

log n

E[|εi|2+δ{|εi| > Mn}]
M1+δ
n

(57)

which is o(1) provided
√
nJ/ log n = O(M1+δ

n ). Term (53) is controlled by an identical argument, using the

fact that E[ε1,i,n|Fi−1] = −E[ε2,i,n|Fi−1] by Assumption 2(i).

Control of (52): Term (52) is to be controlled using an exponential inequality for martingales due to

van de Geer (1995). Let An denote the set on which ‖(B̃′B̃/n) − IK‖ ≤ 1
2 and observe that P(A c

n ) = o(1)

under the condition ‖(B̃′B̃/n) − IK‖ = op(1). Under Assumptions 2(ii), 3, and 4, the predictable variation

of the summands in (52) may be bounded by

1

n2

n∑
i=1

E[(gi,n(ε1,i,n − E[ε1,i,n|Fi−1]))2|Fi−1] . n−1ψ̃J(yn)′[SS′]−1S(B̃′B̃/n)S′[SS′]−1ψ̃J(yn) (58)

. σ−2
JKJ/n on An (59)

uniformly for yn ∈ Sn. Moreover, under Assumption 4, each summand is bounded uniformly for yn ∈ Sn by

|n−1gi,n(ε1,i,n − E[ε1,i,n|Fi−1])| .
σ−1
JK

√
JKMn

n
. (60)

Lemma 2.1 of van de Geer (1995) then provides that (52) may be bounded by

(#Sn) max
yn∈Sn

P

({∣∣∣∣∣
n∑
i=1

gi,n(ε1,i,n − E[ε1,i,n|Fi−1])

∣∣∣∣∣ > C

3
σ−1
JK

√
K(log n)/n

}
∩An

)
+ P(A c

n )

. nν exp

{
−

Cσ−2
JKK(log n)/n

c1σ
−2
JKJ/n+ c2n−1σ−2

JK

√
JKMn

√
CK(log n)/n

}
+ o(1) (61)

. exp

{
log n− CK(log n)/n

c3J/n

}
+ exp

{
log n−

√
CK(log n)/n

c4KMn/n

}
+ o(1) (62)

for finite positive constants c1, . . . , c4. Thus (52) is o(1) for large enough C by virtue of the conditions

Mn = O(
√
n/(J log n)) and J ≤ K.

B.2 Proofs for Section 3

Proof of Theorem 3.1. Theorem 2.1 gives ‖ĥ−Pnh0‖∞ = Op(σ
−1
JK

√
K(log n)/n) provided the conditions

of Theorem 2.1 are satisfied. The conditions J ≤ K and K . (n/ log n)δ/(2+δ) are satisfied by hypothesis.
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Corollary 5.1 (under Assumptions 3 and 4 and the fact that {(Xi, Y2i)}ni=1 are i.i.d. and J ≤ K) yields

‖(B̃′B̃/n)− IK‖ = Op(
√
K(logK)/n) (63)

‖Ŝ − S‖ = Op(
√
K(logK)/n) . (64)

Therefore, the conditions of Theorem 2.1 are satisfied by these rates and the conditions on J and K in

Theorem 3.1.

It remains to control the approximation error ‖Pnh0 − h0‖∞. Under Assumptions 1, 3 (with ΨJ =

BSpl(J, [0, 1]d, γ) or Wav(J, [0, 1]d, γ)) and 5 there exists a πJh0 = ψ̃J′cJ ∈ ΨJ with cJ ∈ RJ such that

‖h0 − πJh0‖∞ = O(J−p/d) (65)

(see, e.g., Huang (1998)) so it suffices to control ‖Pnh0 − πJh0‖∞.

Both Pnh0 and πJh0 lie in ΨJ , so ‖Pnh0 − πJh0‖∞ may be rewritten as

‖Pnh0 − πJh0‖∞ =
‖Pnh0 − πJh0‖∞

‖ΠKT (Pnh0 − πJh0)‖∞
× ‖ΠKT (Pnh0 − πJh0)‖∞ (66)

≤ σ−1
∞,JK × ‖ΠKT (Pnh0 − πJh0)‖∞ (67)

where

ΠKT (Pnh0 − πJh0)(x) = b̃K(x)S′[Ŝ(B̃′B̃/n)−Ŝ]−Ŝ(B̃′B̃/n)−B̃′(H0 −ΨcJ)/n . (68)

Define the K ×K matrices

D = S′[SS′]−1S

D̂ = (B̃′B̃/n)−Ŝ′[Ŝ(B̃′B̃/n)−Ŝ]−Ŝ(B̃′B̃/n)− .
(69)

By the triangle inequality,

‖ΠKT (Pnh0 − πJh0)‖∞ (70)

≤ ‖b̃K(x)D̂B̃′(H0 −ΨcJ)/n‖∞ (71)

+‖b̃K(x){S′ − (B̃′B̃/n)−Ŝ′}[Ŝ(B̃′B̃/n)−Ŝ]−Ŝ(B̃′B̃/n)−B̃′(H0 −ΨcJ)/n‖∞ . (72)

The arguments below will show that

‖ΠKT (Pnh0 − πJh0)‖∞ = Op(
√
K(log n)/n)× ‖h0 − πJh0‖∞ +Op(1)× ‖ΠKT (h0 − πJh0)‖∞ . (73)

Substituting (73) into (67) and using Assumption 7(ii), the bound σ−1
∞,JK .

√
J × σ−1

JK (under Assumption

3), equation (65), and the condition p ≥ d/2 in Assumption 5 yields the desired result

‖Pnh0 − πJh0‖∞ = Op(J
−p/d + σ−1

JK

√
K(log n)/n) . (74)

Control of (71): By the triangle and Cauchy-Schwarz inequalities and compatibility of the spectral
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norm under multiplication,

(71) ≤ ‖b̃K(x)(D̂ −D)B̃′(H0 −ΨcJ)/n‖∞

+‖b̃K(x)D{B̃′(H0 −ΨcJ)/n− E [̃bK(Xi)(h0(Y2i)− πJh0(Y2i))]}‖∞

+‖b̃K(x)DE [̃bK(Xi)ΠKT (h0 − πJh0)(Xi)]‖∞ (75)

.
√
K‖D̂ −D‖{Op(

√
K/n)× ‖h0 − πJh0‖∞ + ‖ΠKT (h0 − πJh0)‖L2(X)}

+Op(
√
K(log n)/n)× ‖h0 − πJh0‖∞

+‖b̃K(x)DE [̃bK(Xi)ΠKT (h0 − πJh0)(Xi)]‖∞ (76)

by Lemma C.3 and properties of the spectral norm. Lemma C.2 (the conditions of Lemma C.2 are satisfied

by virtue of (63) and (64) and the condition σ−1
JKK

√
(log n)/n . 1) and the condition σ−1

JKK
√

(log n)/n . 1

yield
√
K‖D̂ −D‖ = Op(1). Finally, Lemma C.1 (under Assumptions 1 and 4) provides that

‖b̃K(x)DE [̃bK(Xi)ΠKT (h0 − πJh0)(Xi)]‖∞ . ‖ΠKT (h0 − πJh0)‖∞ (77)

and so

(71) = Op(
√
K(log n)/n)× ‖h0 − πJh0‖∞ +Op(1)× ‖ΠKT (h0 − πJh0)‖∞ (78)

as required.

Control of (72): By the Cauchy-Schwarz inequality, compatibility of the spectral norm under multipli-

cation, and Assumption 4,

(72) .
√
K‖S′ − (B̃′B̃/n)−Ŝ′‖‖[Ŝ(B̃′B̃/n)−Ŝ]−Ŝ(B̃′B̃/n)−‖‖B̃′(H0 −ΨcJ)/n‖ (79)

. σ−1
JK

√
K{‖(B̃′B̃/n)− IK‖+ ‖Ŝ − S‖}‖B̃′(H0 −ΨcJ)/n‖ (80)

where the second line holds wpa1, by Lemma C.2 (the conditions of Lemma C.2 are satisfied by virtue

of (63) and (64) and the condition σ−1
JKK

√
(log n)/n . 1). Applying (63) and (64) and the condition

σ−1
JKK

√
(log n)/n . 1 again yields

(72) = Op(1)× ‖B̃′(H0 −ΨcJ)/n‖ (81)

= Op(
√
K/n)× ‖h0 − πJh0‖∞ +Op(1)× ‖ΠKT (h0 − πJh0)‖∞ (82)

by Lemma C.3, equation (65), and the relation between ‖ · ‖∞ and ‖ · ‖L2(X).

Proof of Lemma 3.1. As already mentioned, Assumption 7(i) implies that the operators T , T ∗, TT ∗ and

T ∗T are all compact with the singular value system {µk;φ1k, φ0k}∞k=1 where µ1 = 1 ≥ µ2 ≥ µ3 ≥ ... ↘ 0.

For any h ∈ B(p, L) ⊂ L2(Y2), g ∈ L2(X), we have

(Th)(x) =

∞∑
k=1

µk 〈h, φ1k〉Y2
φ0k(x), (T ∗g)(y2) =

∞∑
k=1

µk 〈g, φ0k〉X φ1k(y2).

Let PJ = clsp{φ0k : k = 1, ..., J}, and note that PJ is a closed linear subspace of BK under the conditions

of part (3).
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To prove part (3), for any h ∈ ΨJ with J ≤ K, we have

ΠKTh(·) =

K∑
j=1

〈Th, b̃Kj〉X b̃Kj(·) (83)

=

J∑
j=1

〈Th, φ0j〉Xφ0j(·) +R(·, h) (84)

for some R(·, h) ∈ BK\PJ . Therefore

σ2
JK = inf

h∈ΨJ :‖h‖L2(Y2)=1
‖ΠKTh(X)‖2L2(X) (85)

= inf
h∈ΨJ :||h||L2(Y2)=1

∥∥∥∥∥∥
J∑
j=1

〈Th, φ0j〉X φ0j(·) +R(·, h)

∥∥∥∥∥∥
2

L2(X)

(86)

= inf
h∈ΨJ :||h||L2(Y2)=1

 J∑
j=1

〈Th, φ0j〉2X + ||R(·, h)||2L2(X)

 (87)

≥ inf
h∈ΨJ :||h||L2(Y2)=1

 J∑
j=1

〈Th, φ0j〉2X

 (88)

= inf
h∈ΨJ :||h||L2(Y2)=1

 J∑
j=1

µ2
j 〈h, φ1j〉2Y2

 (89)

≥ µ2
J inf
h∈ΨJ :||h||L2(Y2)=1

 J∑
j=1

〈h, φ1j〉2Y2

 = µ2
J . (90)

This, together with part (1), gives 1/µJ ≥ σ−1
JK ≥ τ2,2,J ≥ 1/µJ .

Proof of Theorem 3.3. Our proof proceeds by application of Theorem 2.5 of Tsybakov (2009) (page 99).

We first explain the scalar (d = 1) case in detail. Let {φjk, ψjk}j,k be a wavelet basis for L2([0, 1]) as

in the construction of Cohen et al. (1993a,b) with regularity γ > max{p, ς} using a pair (φ, ψ) for which

support(φ) = support(ψ) = [0, 2N − 1]. The precise type of wavelet is not important, but we do require that

‖ψ‖∞ <∞. For given j, the wavelet spaceWj consists of 2j functions {ψjk}1≤k≤2j , such that {ψjk}1≤k≤2j−2N

are interior wavelets for which ψjk(·) = 2j/2ψ(2j(·)−k). We will choose j deterministically with n, such that

2j � (n/ log n)1/(2(p+ς)+1) . (91)

By construction, the support of each interior wavelet is an interval of length 2−j(2N − 1). Thus for all j

sufficiently large,7 we may choose a set M ⊂ {1, . . . , 2j −2N} of interior wavelets with #(M) & 2j such that

support(ψjm) ∩ support(ψjm′) = ∅ for all m,m′ ∈M with m 6= m′. Note also that by construction we have

#(M) ≤ 2j (since there are 2j − 2N interior wavelets).

We begin by defining a family of submodels. Let h0 ∈ B(p, L) be such that ‖h0‖Bp∞,∞(Y2) ≤ L/2, and for

each m ∈M let

hm = h0 + c02−j(p+1/2)ψjm (92)

7Hence the lim inf in our statement of the Lemma.
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where c0 is a positive constant to be defined subsequently. Noting that

c02−j(p+1/2)‖ψjm‖Bp∞,∞ . c02−j(p+1/2)‖ψjm‖bp∞,∞ (93)

≤ c0 (94)

it follows by the triangle inequality that ‖hm‖Bp∞,∞ ≤ L uniformly in m for all sufficiently small c0. For

m ∈ {0} ∪M let Pm be the joint distribution of {(Xi, Y1i)}ni=1 with Y1i = Thm(Xi) + ui for the Gaussian

NPIR model (20).

To apply Theorem 2.5 of Tsybakov (2009), first note that for any m ∈M

‖h0 − hm‖∞ = c02−j(p+1/2)‖ψjm‖∞ (95)

= c02−jp‖ψ‖∞ (96)

and for any m,m′ ∈M with m 6= m′

‖hm − hm′‖∞ = c02−j(p+1/2)‖ψjm − ψjm′‖∞ (97)

= 2c02−jp‖ψ‖∞ (98)

by virtue of the disjoint support of {ψjm}m∈M . Using the KL divergence for the multivariate normal dis-

tribution (under the Gaussian NPIR model (20)), Assumption 8 and the equivalence between the Besov

function-space and sequence-space norms, the KL distance K(Pm, P0) is

K(Pm, P0) ≤ 1

2

n∑
i=1

(c02−j(p+1/2))2E

[
(Tψjm(Xi))

2

σ2(Xi)

]
(99)

≤ 1

2

n∑
i=1

(c02−j(p+1/2))2E
[
(Tψjm(Xi))

2
]

σ2
0

(100)

=
n

2σ2
0

(c02−j(p+1/2))2‖(T ∗T )1/2ψjm(Y2)‖2L2(Y2) (101)

.
n

2σ2
0

(c02−j(p+1/2))2(2−jς)2 (102)

=
n

2σ2
0

c202−j(2(p+ς)+1) (103)

. c20 log n (104)

since 2−j � ((log n)/n)1/(2(p+ς)+1). Moreover, since #(M) � 2j , we have

log(#(M)) . log n+ log log n (105)

Therefore, we may choose c0 sufficiently small that ‖hm‖Bp∞,∞ ≤ L and K(Pm, P0) ≤ 1
8 log(#(M)) uniformly

in m for all n sufficiently large. All conditions of Theorem 2.5 of Tsybakov (2009) are satisfied and hence we

obtain the lower bound result.

The multivarite case uses similar arguments for a tensor-product wavelet basis (see Triebel (2006, 2008)).

We choose the same j for each univariate spaces such that 2j � (n/ log n)1/(2(p+ς)+d) and so the tensor-

product wavelet space has dimension 2jd � (n/ log n)d/(2(p+ς)+d). We construct the same family of submodels,

26



setting hm = h0 + c02−j(p+d/2)ψjm where ψjm is now the product of d interior univariate wavelets defined

previously. Since we take the product of d univariate interior wavelets, we again obtain

‖hm − hm′‖∞ & c02−jp (106)

for each m,m′ ∈ {0} ∪M with m 6= m′, and

K(Pm, P0) .
n

2σ2
0

(c02−j(p+d/2))2(2−jς)2 (107)

=
n

2σ2
0

c202−j(2(p+ς)+d) (108)

. c20 log n . (109)

The result follows as in the univariate case.

B.3 Proofs for Section 4

Proof of Theorem 4.1. The variance term is immediate from Theorem 2.1 with σJK = 1. The bias calcula-

tion follows from Huang (2003) under Assumptions 1(ii), 4 (withBK = BSpl(K, [0, 1]d, γ) or Wav(K, [0, 1]d, γ)),

and 5 and the fact that the empirical and true L2(X) norms are equivalent over BK wpa1 by virtue of the

condition ‖B̃′B̃/n− IK‖ = op(1), which is implied by Condition (ii).

Proof of Corollary 4.1. By Theorem 4.1, the optimal sup-norm convergence rate (n/ log n)−p/(2p+d) is

achieved by setting K � (n/ log n)d/(2p+d)), with δ ≥ d/p for condition (i) to hold. (1) When the regressors

are i.i.d., by Lemma 5.2, condition (ii) is satisfied provided that d ≤ 2p (which is assumed in Assumption

5). (2) When the regressors are exponentially β-mixing, by Lemma 5.3, condition (ii) is satisfied provided

that d < 2p. (3) When the regressors are algebraically β-mixing at rate γ, by Lemma 5.3, condition (ii) is

satisfied provided that (2 + γ)d < 2γp.

B.4 Proofs for Section 5

Proof of Corollary 5.1. Follows by application of Theorem 5.1 with t = Cσn
√

log(d1 + d2) for sufficiently

large C, and applying the condition Rn
√

log(d1 + d2) = o(σn).

Proof of Theorem 5.2. By Berbee’s lemma (enlarging the probability space as necessary) the processs {Xi}
can be coupled with a process X∗i such that Yk := {X(k−1)q+1, . . . , Xkq} and Y ∗k := {X∗(k−1)q+1, . . . , X

∗
kq} are

identically distributed for each k ≥ 1, P(Yk 6= Y ∗k ) ≤ β(q) for each k ≥ 1 and {Y ∗1 , Y ∗3 , . . .} are independent

and {Y ∗2 , Y ∗4 , . . .} are independent (see, e.g., Doukhan et al. (1995)). Let Ie and Io denote the indices of

{1, . . . , n} corresponding to the odd- and even-numbered blocks, and Ir the indices in the remainder, so

Ir = q[n/q] + 1, . . . , n when q[n/q] < n and Ir = ∅ when q[n/q] = n.

Let Ξ∗i,n = Ξ(X∗i,n). By the triangle inequality,

P (‖
∑n
i=1 Ξi,n‖ ≥ 6t)

≤ P(‖
∑[n/q]q
i=1 Ξ∗i,n‖+ ‖

∑
i∈Ir Ξi,n‖+ ‖

∑[n/q]q
i=1 (Ξ∗i,n − Ξi,n)‖ ≥ 6t)

≤ n
q β(q) + P

(
‖
∑
i∈Ir Ξi,n‖ ≥ t

)
+ P

(
‖
∑
i∈Ie Ξ∗i,n‖ ≥ t

)
+ P

(
‖
∑
i∈Io Ξ∗i,n‖ ≥ t

) (110)
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To control the last two terms we apply Theorem 5.1, recognizing that
∑
i∈Ie Ξ∗i,n and

∑
i∈Io Ξ∗i,n are each

the sum of fewer than [n/q] independent d1 × d2 matrices, namely W ∗k =
∑kq
i=(k−1)q+1 Ξ∗i,n. Moreover each

W ∗k satisfies ‖W ∗k ‖ ≤ qRn and max{‖E[W ∗kW
∗′
k ]‖, ‖E[W ∗′k W

∗
k ]‖} ≤ q2sn. Theorem 5.1 then yields

P

(∥∥∥∥∥∑
i∈Ie

Ξ∗i,n

∥∥∥∥∥ ≥ t
)
≤ (d1 + d2) exp

(
−t2/2

nqs2
n + qRnt/3

)
(111)

and similarly for Io.

Proof of Corollary 5.2. Follows by application of Theorem 5.2 with t = Csn
√
nq log(d1 + d2) for suffi-

ciently large C, and applying the conditions n
q β(q) = o(1) and Rn

√
q log(d1 + d2) = o(sn

√
n).

Proof of Lemma 5.1. Let GK = E[bK(X)bK(X)′]. Since BK = clsp{b1, . . . , bK} , we have:

sup{| 1n
∑n
i=1 b(Xi)

2 − 1| : b ∈ BK , E[b(X)2] = 1}

= sup{|c′(B′B/n−GK)c| : c ∈ RK , ‖G1/2
K c‖ = 1} (112)

= sup{|c′G1/2
K (G

−1/2
K (B′B/n)G

−1/2
K − IK)G

1/2
K c| : c ∈ RK , ‖G1/2

K c‖ = 1} (113)

= sup{|c′(B̃′B̃/n− IK)c| : c ∈ RK , ‖c‖ = 1} (114)

= ‖B̃′B̃/n− IK‖22 (115)

as required.

Proof of Lemma 5.2. Follows by application of Corollary 5.1 with Ξi,n = n−1(̃bK(Xi)̃b
K(Xi)

′ − IK),

Rn . n−1(ζ0(K)2 + 1), and σ2
n . n−1(ζ0(K)2 + 1).

Proof of Lemma 5.3. Follows by application of Corollary 5.2 with Ξi,n = n−1(̃bK(Xi)̃b
K(Xi)

′ − IK),

Rn . n−1(ζ0(K)2 + 1), and s2
n . n−2(ζ0(K)2 + 1).

C Supplementary lemmas and their proofs

Huang (2003) provides conditions under which the operator norm of orthogonal projections onto sieve spaces

are stable in sup norm as the dimension of the sieve space increases. The following Lemma shows the same

is true for the operator QK : L∞(X)→ L∞(X) given by

QKu(x) = b̃K(x)DE [̃bK(X)u(X)] (116)

where D = S′[SS′]−1S, i.e.

lim sup
K→∞

sup
u∈L∞(X)

‖QKu‖∞
‖u‖∞

≤ C (117)

for some finite positive constant C. The proof follows by simple modification of the arguments in Theorem

A.1 in Huang (2003) (see also Corollary A.1 of Huang (2003)).

Lemma C.1 QK is stable in sup norm under Assumption 1 and 4.

Proof of Lemma C.1. The assumptions of Theorem A.1 of Huang (2003) with ν and νn taken to be the

distribution of X are satisfied under Assumption 1. Let PK denote the orthogonal projection onto the sieve

space, i.e.

PKu(x) = bK(x)′E[bK(X)bK(X)′]−1E[bK(X)u(X)] (118)
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for any u ∈ L∞(X). Let 〈·, ·〉 denote the L2(X) inner product. Since D is an orthogonal projection matrix

and PK is a L2(X) orthogonal projection onto BK , for any u ∈ L∞(X)

‖QKu‖2L2(X) = E[u(X )̃bK(X)′]D2E [̃bK(X)u(X)]

≤ E[u(X )̃bK(X)′]E [̃bK(X)u(X)]

= ‖PKu‖2L2(X)

≤ ‖u‖2L2(X) .

(119)

As in Huang (2003), let ∆ index a partition of X into finitely many polyhedra. Let v ∈ L∞(X) be

supported on δ0 for some δ0 ∈ ∆ (i.e. v(x) = 0 if x 6∈ δ0). For some coefficients α1, . . . , αK ,

QKv(x) =

K∑
i=1

αibKi(x) . (120)

Let d(·, ·) be the distance measure between elements of ∆ defined in the Appendix of Huang (2003). Let l be

a nonnegative integer and let Il ⊂ {1, . . . ,K} be the set of indices such that for any i ∈ Il the basis function

bKi is active on a δ ∈ ∆ with d(δ, δ0) ≤ l. Finally, let

vl(x) =
∑
i∈Il

αibKi(x) . (121)

For any v ∈ L∞(X),

‖QKv‖2L2(X)

= ‖QKv − v‖2L2(X) + ‖v‖2L2(X) + 2〈QKv − v, v〉 (122)

= ‖PKv − v‖2L2(X) + ‖QKv − PKv‖2L2(X) + 2〈QKv − PKv, PKv − v〉+ ‖v‖2L2(X) + 2〈QKv − v, v〉(123)

≤ ‖vl − v‖2L2(X) + ‖QKv − PKv‖2L2(X) + 2〈QKv − PKv, PKv − v〉+ ‖v‖2L2(X) + 2〈QKv − v, v〉 (124)

= ‖vl − v‖2L2(X) + ‖v‖2L2(X) + 〈QKv − PKv,QKv + PKv − 2v〉+ 2〈QKv − v, v〉 (125)

= ‖vl − v‖2L2(X) + ‖v‖2L2(X) + ‖QKv‖2L2(X) − ‖PKv‖
2
L2(X) − 2〈QKv − PKv, v〉+ 2〈QKv − v, v〉 (126)

= ‖vl − v‖2L2(X) + ‖v‖2L2(X) + ‖QKv‖2L2(X) − ‖PKv‖
2
L2(X) + 2〈PKv − v, v〉 (127)

= ‖vl − v‖2L2(X) + ‖v‖2L2(X) + ‖QKv‖2L2(X) + ‖PKv‖2L2(X) − 2‖v‖L2(X) (128)

≤ ‖vl − v‖2L2(X) + ‖v‖2L2(X) (129)

where (124) uses the fact that PK is an orthogonal projection, and (129) follows from (119). The remainder

of the proof of Theorem A.1 of Huang (2003) goes through under these modifications.

The next lemma provides useful bounds on the estimated matrices encountered in the body of the paper.

Recall the definitions of D̂ and D in expression (69).

Lemma C.2 Under Assumption 3(ii) and 4(ii), if J ≤ K, ‖(B̃′B̃/n)− IK‖ = op(1), then wpa1

(i) (B̃′B̃/n) is invertible and ‖(B̃′B̃/n)−1‖ ≤ 2

(ii) ‖(B̃′B̃/n)−Ŝ′ − S′‖ . ‖(B̃′B̃/n)− IK‖+ ‖Ŝ − S‖
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(iii) ‖(B̃′B̃/n)−1/2Ŝ′ − S′‖ . ‖(B̃′B̃/n)− IK‖+ ‖Ŝ − S‖.

If, in addition, σ−1
JK(‖(B̃′B̃/n)− IK‖+ ‖Ŝ − S‖) = op(1), then wpa1

(iv) (B̃′B̃/n)−1/2Ŝ′ has full column rank and Ŝ(B̃′B̃/n)−1Ŝ is invertible

(v) ‖D̂ −D‖ . ‖(B̃′B̃/n)− IK‖+ σ−1
JK(‖Ŝ − S‖+ ‖(B̃′B̃/n)− IK‖)

(vi) ‖[Ŝ(B̃′B̃/n)−Ŝ′]−Ŝ(B̃′B̃/n)−− [SS′]−1S‖ . σ−1
JK‖(B̃′B̃/n)− IK‖+ σ−2

JK(‖Ŝ−S‖+ ‖(B̃′B̃/n)− IK‖).

Proof of Lemma C.2. We prove Lemma C.2 by part. Note that under Assumption 3(ii) and 4(ii), ‖S‖ ≤ 1

since S is isomorphic to the L2(X) orthogonal projection of T onto the space BK , restricted to ΨJ .

(i) Let An denote the event ‖(B̃′B̃/n) − IK‖ ≤ 1
2 . The condition ‖(B̃′B̃/n) − IK‖ = op(1) implies that

P(A c
n ) = o(1). Clearly ‖(B̃′B̃/n)−1‖ ≤ 2 on An.

(ii) Working on An (so we replace the generalized inverse with an inverse), Assumption 4(ii), the triangle

inequality, and compatibility of the spectral norm under multiplication yields

‖(B̃′B̃/n)−1Ŝ′ − S′‖ ≤ ‖(B̃′B̃/n)−1Ŝ′ − (B̃′B̃/n)−1S′‖+ ‖(B̃′B̃/n)−1S′ − S′‖ (130)

≤ ‖(B̃′B̃/n)−1‖‖Ŝ − S‖+ ‖(B̃′B̃/n)−1 − IK‖‖S′‖ (131)

≤ 2‖Ŝ − S‖+ ‖(B̃′B̃/n)−1 − IK‖ (132)

= 2‖Ŝ − S‖+ ‖(B̃′B̃/n)−1[(B̃′B̃/n)− IK ]‖ (133)

≤ 2‖Ŝ − S‖+ 2‖(B̃′B̃/n)− IK‖ (134)

(iii) Follows the same arguments as (ii), noting additionally that λmin((B̃′B̃/n)−1) ≤ 1
2 on An, in which

case

‖(B̃′B̃/n)−1/2 − IK‖ ≤ (1 + 2−1/2)−1‖(B̃′B̃/n)− IK‖ (135)

by Lemma 2.2 of Schmitt (1992).

(iv) Let sJ(A) denote the Jth largest singular value of a J ×K matrix A. Weyl’s inequality yields

|sJ(Ŝ(B̃′B̃/n)−1/2)− σJK | ≤ ‖(B̃′B̃/n)−1/2Ŝ′ − S′‖ . (136)

This and the condition σ−1
JK(‖(B̃′B̃/n)− IK‖+ ‖Ŝ − S‖) = op(1) together imply that

|sJ(Ŝ(B̃′B̃/n)−1/2)− σJK | ≤
1

2
σJK (137)

wpa1. Let Cn be the intersection of An with the set on which this bound obtains. Then P(C c
n) = o(1).

Clearly (B̃′B̃/n)−1/2Ŝ′ has full column rank J and Ŝ(B̃′B̃/n)−1Ŝ is invertible on Cn.

(v) On Cn ⊆ An we have ‖(B̃′B̃/n)−1/2‖ ≤
√

2. Working on Cn, similar arguments to those used to prove

parts (ii) and (iii) yield

‖D̂ −D‖ ≤ ‖(B̃′B̃/n)−1/2 − IK‖(‖(B̃′B̃/n)−1/2‖+ 1) + ‖Q̂−Q‖‖(B̃′B̃/n)−1/2‖ (138)

≤ (1 +
√

2)‖(B̃′B̃/n)−1/2 − IK‖+
√

2‖Q̂−Q‖ . (139)
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Since Q̂ and Q are orthogonal projection matrices, part (1.5) of Theorem 1.1 of Li et al. (2013) implies

‖Q̂−Q‖ ≤ σ−1
JK‖(B̃

′B̃/n)−1/2Ŝ′ − S′‖ (140)

on Cn. Part (v) is then proved by substituting (140) and (135) into (139).

(vi) Working on Cn (so we replace the generalized inverses with inverses), similar arguments used to prove

part (v) yield

‖[Ŝ(B̃′B̃/n)−1Ŝ′]−1Ŝ(B̃′B̃/n)−1 − [SS′]−1S‖

≤ ‖[Ŝ(B̃′B̃/n)−1Ŝ′]−1Ŝ(B̃′B̃/n)−1/2‖‖(B̃′B̃/n)−1/2 − IK‖ (141)

+‖[Ŝ(B̃′B̃/n)−1Ŝ′]−1Ŝ(B̃′B̃/n)−1/2 − [SS′]−1S‖

≤ 2σ−1
JK‖(B̃

′B̃/n)−1/2 − IK‖+ ‖[Ŝ(B̃′B̃/n)−1Ŝ′]−1Ŝ(B̃′B̃/n)−1/2 − [SS′]−1S‖ . (142)

Theorem 3.1 of Ding and Huang (1997) yields

‖[Ŝ(B̃′B̃/n)−1Ŝ′]−1Ŝ(B̃′B̃/n)−1/2 − [SS′]−1S‖ . σ−2
JK‖(B̃

′B̃/n)−1/2Ŝ′ − S′‖ (143)

wpa1 by virtue of part (iii) and the condition σ−1
JK(‖(B̃′B̃/n)− IK‖+ ‖Ŝ − S‖) = op(1). Substituting

(143) and (135) into (142) establishes (vi).

This completes the proof.

Lemma C.3 Under Assumption 4, if {Xi, Y2i}ni=1 are i.i.d. then

(i) ‖B̃′(H0 −ΨcJ)/n‖ ≤ Op(
√
K/n)× ‖h0 − πJh0‖∞ + ‖ΠKT (h0 − πJh0)‖L2(X)

(ii) ‖b̃K(x)D{B̃′(H0−ΨcJ)/n−E [̃bK(Xi)(h0(Y2i)−πJh0(Y2i))]}‖∞ = Op(
√
K(log n)/n)×‖h0−πJh0‖∞.

Proof of Lemma C.3. We prove Lemma C.3 by part.

(i) First write

‖B̃′(H0 −ΨcJ)/n‖ ≤ ‖B̃′(H0 −ΨcJ)/n− E [̃bK(Xi)(h0(Y2i)− πJh0(Y2i))]‖

+‖E [̃bK(Xi)(h0(Y2i − πJh0(Y2i))]‖ (144)

and note that

‖E [̃bK(Xi)(h0(Y2i)− πJh0(Y2i))]‖2 = ‖ΠKT (h0 − πJh0)‖2L2(X) . (145)

Finally,

‖B̃′(H0 −ΨcJ)/n− E [̃bK(Xi)(h0(Y2i)− πJh0(Y2i))]‖ = Op(
√
K/n)× ‖h0 − πJh0‖∞ . (146)

by Markov’s inequality under Assumption 4 and the fact that {Xi, Y2i}ni=1 are i.i.d.
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(ii) An argument similar to the proof of Theorem 2.1 converts the problem of controlling the supremum

that of controlling the maximum evaluated at finitely many points, where the collection of points has

cardinality increasing polynomially in n. Let S ′n be the set of points. Also define

∆i,J,K = b̃K(Xi)(h0(Y2i)− πJh0(Y2i))− E [̃bK(Xi)(h0(Y2i)− πJh0(Y2i))]} (147)

Then it suffices to show that sufficiently large C may be chosen that

(#S ′n) max
xn∈S′

n

P

(∣∣∣∣∣
n∑
i=1

n−1b̃K(xn)D∆i,J,K

∣∣∣∣∣ > C‖h0 − πJh0‖∞
√
K(log n)/n

)
= o(1) . (148)

The summands in (148) have mean zero (by the law of iterated expectations). Under Assumption 4

the summands in (148) are bounded uniformly for xn ∈ S ′n by

|n−1b̃K(xn)D∆i,J,K | .
K

n
‖h0 − πJh0‖∞ (149)

and have variance bounded uniformly for xn ∈ S ′n by

E[(n−1b̃K(xn)D∆i,J,K)2] ≤ ‖h0 − πJh0‖2∞ × n−2E [̃bK(xn)′Db̃K(Xi)̃b
K(Xi)

′Db̃K(xn)] (150)

. ‖h0 − πJh0‖2∞ ×
K

n2
. (151)

The result follows for large enough C by Bernstein’s inequality for i.i.d. sequences using the bounds

(149) and (151).

This completes the proof.
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