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Abstract

This paper considers a model with three overlapping generations of which only
the middle one is able to work. There is a trade-off between food and bio-fuel pro-
duction. We try to study this trade-off, its influence on economic growth and on
resource consumption. The paper should state that even, if the current generation
has the total autonomy of decision about the usage of all resources, they will never
use them completely. The memebers of the current generation will always leave
some resources for production because in the phase of retirement they depend on
the income of the next generation, the latter paying back the credit obtained when
beeing young. Furthermore, it states that as long as land is an essential input
for producing the final product (including food) the amount of land devoted to
bio-fuel production will not raise endlessly. The pure consumption loan model by
Samuelson (1958) serves as basis for our Overlapping-Generations-Model, which we
will integrate into a model of endogenous economic growth with resources, exoge-
nous technical progress and land as a further input. For realization of the optimal
consumption pattern, which leads to the maximum of utility, individuals have to
make four decisions. They have to commit themselves on the exploitation rate
of the non-renewable resource and on the amount of renewable resource used for
production. Coincidentally, the allocation of land, necessary for food production
and for renewable resource regeneration, and the amount of leisure time devoted for
resource production have to be determined. The results are confirmed by numerical
examples and will be reviewed by empirical data.
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1 Introduction

In recent decades the inter-temporal allocation of exhaustible resources has been a fre-

quently discussed topic, especially in the context of sustainable economic growth. Until

the 1970s, the Malthusian view that the limited stock of non-renewable resources would

restrict the economic growth, was dominant (Agnani et al., 2005, p.388). In the neoclas-

sical view, economic growth is possible as long as there is a rise in the technical progress.

But is the growth rate sustainable over years, and does it fulfill the idea of an inter-

generational distributive justice? To get answers to these questions optimal endogenous

growth models, where investments, resource extractions and the used amount of labor

are chosen to maximize the discounted lifetime utility, are used (Olson and Knapp, 1997,

p.277).

In most models, all individuals are living at the same time. They are all the same age,

have the same preferences, make the same decisions every time; they are identical and

behaving as the representative individual. In 1958, Paul Samuelson introduced a more

realistic model of overlapping generations (Weil, 2008, p.115). The individuals are put

together to different generations. These generations are taken into account at different

points of time. New born generations are not included into their budget by the existing-

agents (Weil, 2008, p.117). During one period of time three different generations are

living, every generation lives through three periods. In contrast to the Samuelson-Model,

most scientists use a two-period version of the OLG-Model (for example Balsko and Shell,

1980; John and Pecchenino, 1994; Olson and Knapp, 1997). Especially Diamond (1965)

uses a two-generations model to explain internal and external debt. These two models

serve as a basis for most overlapping-generations models.

OLG-Models can be used to illustrate the most varying topics in research. A common

field of research with OLG-Models is to investigate the depletion of natural renewable and

non-renewable resources and their influence on economic growth, keeping sustainability

in mind (Agnani et al., 2005; Mourmouras, 1993; Olson and Knapp, 1997, for Example

see). If only a non-renewable resource is available and determining the production of

an economy, then consumption cannot be uphold positively over an infinite time horizon

(Krautkraemer and Batina, 1999, p.169). To maintain sustainable growth and therefore,

positive consumption, other factors like technical progress or capital accumulation must

act contrary to the depletion of the resource.

In the OLG-Model of Koskela et al. (2002) a renewable resource is used to serve as a

store of value and as input into the production. They reveal that there are two steady-

state equilibria when the resource growth is assumed to be concave. Only the one with

the higher stock of the renewable resource is stable. Agnani et al. (2005) use an extension

of the Diamond-Model adding an exhaustible resource and physical capital. They find
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the same results as in standard endogenous growth models when technological progress

is introduced exogenously. Furthermore, they present as a result that the labor share

has to be high enough for positive growth, which is a standard condition in standard

OLG-Models without resources.

Frequently, the impact of the use of resource on the environment is considered simul-

taneously. Gerlagh and Keyzer (2001) use an OLG-Model without any technical progress.

They introduce three different policies of how the exhaustible resource can be used, and

show that only a trust fund, by which future generations receive claims for the resource,

may increase welfare for all generations. But still the introduction and continuation of

such a fund depends on the present generation (Gerlagh and Keyzer, 2001).

The model developed here is an Overlapping Generations Model with technological

progress. In chapter two the basic assumptions, definitions and notations are presented.

Chapter three provides the optimization of consumption with given income. This restric-

tion is abolished in chapter four, and the optimized resource depletion is revealed. This

is followed by numerical examples. Chapter six concludes.

2 The Model

Suppose a world existing over an infinite number of periods, with three generations living

at the same time. Only the middle one is able to work and generates income. Population

growth is zero, and hence, the working population is stable at any level. Apart from their

respective age, individuals do not differ from each other; their utility function is the same

at all times.

Total income in the economy depends on the total production, and this in turn depends

on work of the middle generation, land and the exploitation of two resources in the

respective period t. On the one hand, there is an exhaustible natural resource, say

natural gas, on the other hand, a renewable resource, in our case bio-fuel. We assume

that the resources are not storable, so any amount of lifted gas must be immediately

used within the period, and the renewable resources have to be either cultivated to

regenerate the stock or used for the production. Land used for producing the renewable

resource increases the rate of regeneration, and therefore, the production of bio-fuel, which

concurrently reduces the amount of input of land for total production (cf. İmrohoroğlu

et al. (1999) where the total value of land is considered.). In particular we assume

Wt = W (TWt, Zt, Rt, Ft) (1)

where At and St is the stock of the renewable resource Rt and the exhaustible resource Zt,

respectively, at the beginning of period t, and rt and zt are the rates of resource depletion
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in period t. The used amount of the resources in period t is given by Rt = rt · At

and likewise by Zt = zt · St. The share of land used for production TWt is given by

TWt = (1− tat) · Tt, where Tt is the total land endowment. Ft denotes an (exogenous)

rate of technical progress. The stocks of the resources develop as follows:

St+1 = St − St · zt (2)

At+1 = At + (At − rt · At) · a · tat · Tt − rt · At (3)

where the stock of the renewable resource regenerates by assumption at the rate a ·tat ·Tt.

As there is no capital, the whole productionWt is payed in the form of wages to the middle

generation.

As the old generation in each period is not able to work, the middle generation makes

contracts with the younger generation to provide for their seniority. This entitles them to

get benefits from the younger generation during the next period (in analogy to the pure

consumption loan model by Samuelson (1958)). The income of the middle generation wt

is allocated between consumption in the current period ct, savings st paid to the young

generation, and paying back the credit of the old generation, received at the period before,

including interests qt · st−1. In order to keep the model simple, money is not explicitly

included, but it is assumed that savings are done in the form of binding contracts in real

terms (cf. Balsko and Shell (1980)). The budget constrains in the three phases of an

individual‘s life (t = j, t = j + 1, t = j + 2) are given by

c1,j = −s1,j (4)

c2,j+1 = w2,j+1 − s2,j+1 − qj+1 · s2,j (5)

c3,j+2 = qj+2 · s2,j+1 (6)

where ci,t and si,t are consumption and saving, respectively, of a representative individual

of age i, and qt is the interest factor in period t. Note that s1,j = −s2,j. Individual

income wi,t is total income Wt in period t divided by the number of individuals which are

in their middle age (i.e. w2,t = Wt/N). The total income Wt in period t must fulfill the

consumption of all three generations in period t with 3 ·N individuals living at the same

time. The three constraints can be added to

c3,j+2 + qj+2 (c2,j+1 − w2,j+1) + qj+1 · c1,j = 0 (7)

This figure gives an overview of the relevant variables of the model: Note that, while

individual consumption optimization is made “diagonal” in this table, total income Wt =

w2,tN of the economy is calculated “vertically”, i.e. it must equal total consumption in

each period t, keeping in mind that there are N individuals living in each generation.
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Figure 1: The different amounts of consumptions at the different stages of life

3 Consumption Optimizing

We suppose that, from the current perspective of t=0, the utility function of a represen-

tative young individual who lives in period j is given by

U =
ln (c1,j)

(1 + p)j
+

ln (c2,j+1)

(1 + p)j+1 +
ln (l2,j+1)

(1 + p)j+1 +
ln (c3,j+2)

(1 + p)j+2 (8)

where l2,j+1 is leisure time (part of which must be sacrificed in the middle period of life in

order to earn income) and p is the individual‘s rate of time preference.1 We assume that

the individual seeks to maximize its lifetime utility with currently both income w2,j+1 and

(thus) the remaining leisure time l2,j+1 being exogenously given. Then from maximizing

(8) regarding (7) it follows that the optimal consumption plan is given by

c1,j = −s1,j =
w2,j+1

qj+1 +
qj+1

1+p
+

qj+1

(1+p)2

(9)

c2,j+1 =
qj+1

1 + p
· c1,j (10)

c3,j+2 =
qj+1 · qj+2

(1 + p)2
· c1,j (11)

It can be shown that the general result in OLG models holds that optimal individual

consumption rises by the factor qt/(1 + p) in each period t. Since the individual does

not earn any income in the first period of life, it must take debt in the amount of its

consumption in that period according to (9). The amount of consumption depends in

each period for t = j, j + 1, j + 2 on the amount of income earned in period t = j + 1. In

period j the individual raises a credit, with a prediction of future income, and in period

j+1 it grants a credit, depending on the current income to receive repayments in period

j + 2 to fulfill the consumption needs.

Now we consider the situation from the view of an individual who also lives in period

j, but has already reached the second period of its life. As the amount of consumption

1Detailed information on the influence of endogenous labor supply can be found in Nourry and Venditti

(2006), and in Duranton (2001).
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when it was young is now an exogenous variable, its maximization problem reduces to

maxUm =
ln (c2,j)

(1 + p)j
+

ln (c3,j+1)

(1 + p)j+1 +
ln (l2,j)

(1 + p)j
(12)

with the remaining relevant constraints being

c2,j = w2,j − c3,j − s2,j (13)

c3,j+1 = qj+1 · s2,j (14)

The term w2,j − c3,j denotes disposable income of the representative working individual,

which is total income net of the debt which has been taken in the past, including interest.

Obviously, c3,j is identical to the consumption of the elder generation of period j; because

they gave the loan in the previous period. Maximizing (12) with respect to (13 and 14)

yields the optimal consumption pattern

c2,j =
w2,j − c3,j
1 + 1

1+p

(15)

c3,j+1 = c2,j ·
qj+1

1 + p
= qj+1 ·

w2,j − c3,j
2 + p

(16)

s2,j =
c3,j+1

qj+1

=
w2,j − c3,j
2 + p

(17)

With constant population, equilibrium in the capital market requires that s1,j+s2,j =

0. Hence, equating (9) and (17) yields the equilibrium interest factor with exogenously

given incomes w2,t:

q∗j+1 =
w2,j+1 · (2 + p)

(w2,j − c3,j) ·
(

1 + 1
1+p

+ 1
(1+p)2

) (18)

Total income is given by (1), according to this the individual share of income is represented

by w2,t =
W (tat,Tt,zt,St,rt,At,Ft)

N
in period t. Substituting w2,j and w2,j+1 yields

q∗j+1 =
W (taj+1, Tj+1, zj+1, Sj+1, rj+1, Aj+1, Fj+1) · (1 + p)2

W (taj, Tj , zj, Sj , rj , Aj, Fj)
(19)

Note that N · c1,t +N · c2,t +N · c3,t = Wt, i.e. total consumption in period t must equal

real income in that period (because the resource cannot be stored). Moreover, from the

optimal consumption plans it follows that c2,t/c1,t = c3,t/c2,t = (1 + p).2 Given all that,

the right hand expression in (19) results.3

4 Optimizing Resource Depletion

It seems natural that the middle generation decides on the rates of resource depletion

because by their work they determine the amount of income available in the current

2See appendix A.
3See appendix B.
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period. At first sight, it seems to be optimal for them to fully exploit the exhaustible

resource within their lifespan. However, there are two limiting factors to such a behavior:

First, the younger generation would not agree to any saving contract which would leave

them without any resources in their own seniority. Secondly, lifting the resource requires

input of leisure time Lt by the middle agers, which is also a scarce resource for every

individual.

We assume the simple leisure function

Lt = L (Rt, Zt) = N ·H −Rt − ω · Zt (20)

where H are the maximum working hours of one individual during each period. One

unit of renewable resource can be extracted with the input of one working hour, whereas

for the production of one unit of non-renewable resource a higher amount of labour is

needed, indicated by ω > 1.4 Because Lt = l2,t ·N , this can be transformed into

l2,t = H −
rtAt + ztSt

N
≥ 0 (21)

There is an upper limit to the exploiting rates rt and zt because leisure cannot be negative.

Now we turn back to the overall maximization problem of the middle generation (i =

2) in the initial period j, with the relevant constraints being (13), (14) and additionally,

w2,j =
W (taj, Tj , zj , Sj, rj , Aj , Fj)

N
(22)

which can be added to

W (taj, Tj , zj , Sj, rj , Aj , Fj)

N
− c3,j − c2,j −

c3,j+1

qj+1

= 0 (23)

The optimal consumption plan given by (15) to (17) is still valid. But now income w2,j

and the interest factor q∗j+1 are dependent on the exploiting rates rj and zj. Keeping in

mind the determination of leisure time by deciding on the extent of the extraction rates

(20), the utility function (12) translates to

max Um(r, z) =
ln
(

W (taj ,Tj ,zj ,Sj ,rj ,Aj ,Fj)·(1+p)

N(3+3p+p2)

)

(1 + p)j
(24)

+
ln
(

LRj,Zj

N

)

(1 + p)j

+
ln
(

(1+p)2·W (taj+1,Tj+1,zj+1,Sj+1,rj+1,Aj+1,Fj+1)

N(3+3p+p2)

)

(1 + p)j+1

Fur further calcualtions the production function (4) is specified using the Cobb-

Douglas type,

W (tat, Tt, zt, St, rt, At, Ft) = TY β
t · (St · gZt)

α
· (At · gJt)

1−α−β
· (1 + f)t · F (25)

4More complex production functions would not alter our principal results.
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To reveal the optimal extraction of resources and the optimal allocation of land, the

current value Hamiltonian is set up using the further constraints of the stocks of resources

((2) and (3)). The shadow prices of the resources are πt for the non-renewable resource,

and θt for the renewable resource. The resulting first order condition (FOC) for the

control variables (rt+1, zt+1, tat+1) and state variables (At+1, St+1, Tt+1), using (25) and

(21) are

zt+1 :
2α

zt+1 (1 + p)t+1 −
2St+1

(HN − At+1rt+1 − 2St+1zt+1) (1 + p)t+1 (26)

+ πt+1St+1 = 0

rt+1 :
2− 2α− 2β

rt+1 (1 + p)t+1 −
At+1

(HN − At+1rt+1 − 2St+1zt+1) (1 + p)t+1 (27)

+ θt+1At+1 (aTt+1tat+1 + 1) = 0

tat+1 :
aAt+1Tt+1θt+1 (tat+1 − 1) (rt+1 − 1) (1 + p)1+t + 2β

(tat+1 − 1) (1 + p)1+t
= 0 (28)

St+1 :
2α

St+1 (1 + p)t+1 −
2zt+1

(HN − At+1rt+1 − 2St+1zt+1) (1 + p)t+1 (29)

+ πt+1 (zt+1 − 1) + πt = 0

At+1 :
2− 2α− 2β

At+1 (1 + p)t+1 −
rt+1

(HN − At+1rt+1 − 2St+1zt+1) (1 + p)t+1 (30)

+ θt+1 (rt+1 − 1) (aTt+1tat+1 + 1) + θt = 0

Tt+1 :
aAt+1Tt+1θt+1tat+1 (rt+1 − 1) (1 + p)1+t + 2β

Tt+1 (1 + p)1+t
= 0 (31)

From the first order conditions we can reveal the optimal extraction rates and the op-

timal allocation of land. Because of the complexity of the equations and the dependencies

of the variables on each other, this can only be done by using numerical simulations.

Note that the rate of technical progress does neither affect the FOC of the control

variables nor the FOC of the state variables. Therefore, the rate of technical progress

does not effect the optimal exploiting rates or the optimal allocation of land. However, a

higher rate of technical progress increases the interest factor according to (19) as well as

the resulting income path according to (1).

5 Numerical Example

We consider first an example without technological progress (i.e. f = 0). Individual

time preference is p = 4%, the initial renewable resource stock is A0 = 1500, the intitial

non-renewable resource stock is S0=3800. The amount of land being available for use is
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set constant with Tt = Tt+1 = 1 (case 1).5

Figure 2: Remaining resource stocks S

and A, total income W, all values in

logarithmical depiction, case 1

Figure 3: Resource depletion rates z

and r, income growth rate g, case 1

Figure 4: Consumption of the different

generations during the first three peri-

ods of their life, case 1

As Fig. 2 and Fig. 3 reveal, in this scenario the stock of the non-renwable resource

rapidly decreases at the rate of zt ≈ 5, 19% and the stock of the renewable resoucres

increases at the rate of rt ≈ 57, 6%. With this depletion rate, steady growth of income at

a rate of gt ≈ 4, 46% is possible. Due to this, each new generation is able to generate a

higher amount of consumption than the previous generation in each period (see. Fig. 4).

Although the non-renewable resource is not totally exhausted until later, the remaining

stock is very quickly reduced to a negligible amount. This is compensated by an even

5The further variables are set constant during the whole simulations, with F = 1, α = 0.4, β = 0.2,

a = 2.15 and working population size N = 1.
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higher increase of the renewable resource. Due to the fact that the total land endowment

T and the share of land used for resource regeneration tat ≈ 82, 49% is constant, this is

only possible, if the productivity of land would rise exteremly. It seems to be possible

that there might be a certain increase, but not to infinity. Therefore, there is a natural

maximum of the stock of the renwable resource Amax
t . If Amax

t = 5000 is assumed, the

results change to the following (case 2).

Figure 5: Remaining resource stocks S

and A, total income W, all values in

logarithmical depiction, case 2

Figure 6: Resource depletion rates z

and r, income growth rate g, case 2

Figure 7: Total Consumption of the dif-

ferent generations, case 2

Figure 8: Leisure time, case 2

There is no change in the resource depletion rates, but the stock of the renewable

resource is quickly increased to its maximum, and as soon as Amax
t is reached, the rate

of income growth is shrinking and becoming even negative (see Fig. 6). There is not

enough renewable resource to substitute for the decreasing amount of non-renewable

resource available. Although this reduction-rate is the same for many future generations
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and - in this sense - they all treat their successors like they have been treated themselves,

one would hardly call that a particularly convincing kind of inter-generational justice.

On the other hand, without technological progress, a negative rate of income growth is

inevitable, irrespective of the way the initial stock is divided among generations (see Fig.

7). Hence, sooner or later the economy will no longer be able to provide even for its basic

needs.

From Fig. 8 we can see that in the beginning more labor has to be invested to

accumulate the higher stock of renewable resource. If this state is reached, less leisure

time has to be devoted to resource extraction, and therefore, the additional leisure time

can compensate for the decreasing amount of consumption.

Now we suppose that there is technological progress, with resource productivity rising

by the rate f = 8% per year, all other variables being unvaried, keeping the assumption

of Amax
t (case 3).

Figure 9: Remaining resource stocks S

and A, total income W, all values in

logarithmical depiction, case 3

Figure 10: Resource depletion rates z

and r, income growth rate g, case 3

As we have already seen, the exhaustion rate is not affected thereby at all and remains

at its previous level rt ≈ 57, 6%. As it can be learned from Fig. 9 in contrast to Fig. 2, we

see the limiting influence of Amax
t . But in contrast to Fig. 5 the total amount of income is

now rising, due to the influence of the technological progress. A quite similar effect would

be achived if it is possible to extend the total amount of land being available for total

production by investments. This would lead, on the one hand, to a higher regeneration

capacity, which induces a higher amount of resource usable for production, and on the

other hand, directly to a higher production.
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6 Summery

It is shown that economic growth is possible even if one generation can decide on the

extraction rates of the renewable and non-renewable resources. It is necessary that there

is a compensation for the used resources in form of a higher stock of technical progress

or a higher amount of land available for production. We reach the same results as it is

postulated in the Hartwick’s rule to reach intergenerational equity (cf. Hartwick (1977)).

The future generations must be able to reach at least the same amount of consumption

as the previous ones. This is fullfilled, even without any central planner or any other

political intervention.

To fit the model more to a realistic setting, in a first step three generations are regarded

instead of two, as mostly done. This underlines that the current deciding generation is

always effected by the past and the future. Furthermore, the technological progress should

be endogenized, by introducing investments to research. Consequently, labor has to be

devided between total production, research and leisure time. The technological progress

may first affect total production, but it also may effect the regeneration rate, by inventing

e.g. new fertilizer, or enlarge the total amount of usable land.

A Mathematical Appendix

Proposition I: c2,t/c1,t = c3,t/c2,t = 1 + p

Proof of proposition I: We have

N · c1,j +N · c2,j +N · c3,j = w2,jN (A.1)

N · c1,j+1 +N · c2,j+1 +N · c3,j+1 = w2,j+1N (A.2)

From the conditions for consumption optimization (9) to (11) and (15) to (17) we know

that
c2,j+1

c1,j
=

qt+1

1 + p
(A.3)

and
c3,j+1

c2,j
=

qt+2

1 + p
(A.4)

Moreover, we have
w2,j+1

w2,j

=
c1,j+1

c1,j
=

c2,j+1

c2,j
=

c3,j+1

c3,j
(A.5)

and from the capital equilibrium equation (18) it follows that

q∗j+1 =
w2,j+1(2 + p)

(w2,j − c3,j)(1 +
1

1+p
+ 1

(1+p)2
)

(A.6)
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By combining (A.1), (A.2) and (A.6) we find

(c1,j+1 + c2,j+1 + c3,j+1)(2 + p)

qj+1(1 +
1

1+p
+ 1

(1+p)2
)

= c1,j − c2,j (A.7)

Dividing (A.7) by c2,j yields

c1,j
c2,j

=
(
c1,j+1+c2,j+1+c3,j+1

c2,j
)(2 + p)

qj+1(1 +
1

1+p
+ 1

(1+p)2
)

− 1
?
=

1

1 + p
(A.8)

According to (A.3) q∗j+1 can be substituted by (1+ p)c2,j+1/c1,j . By rearranging terms in

(A.8), this leads to

c1,j
c2,j

c1,j+1

c2,j+1

+
c1,j
c2,j

+
c3,j+1

c2,j+1

c1,j
c2,j

?
=

(1 + p) + 2 + 2
1+p

+ 1
(1+p)2

2 + p
(A.9)

Obviously, the relation c1,j/c2,j must be equal to c1,j+1/c2,j+1 and to c2,j+1/c3,j+1, because

the optimal consumption plan (9) to (11) is identical for each generation. Thus, denoting

this relation as x, we have

1

x2
+

1

x
+

x

x
?
=

(1 + p) + 2 + 2
1+p

+ 1
(1+p)2

2 + p
(A.10)

According to our proposition, we should have x = (1 + p). By inserting this into (A.10),

it is easily shown that both sides of the equation are identical and, hence, the proposition

holds true. q.e.d.

Proposition II:
rj+1Bj(1−rj)(1+f)(j+1)

N
(2+p)

(
rjBj(1+f)j

N
−c31)(1+

1
1+p

+ 1
(1+p)2

)
=

rj+1(1−rj)(1+f)(j+1)(1+p)2

rj(1+f)j

Proof of proposition II:

c3,j =
w2,j

1 + 1
1+p

1
(1+p)2

=
rjBj(1+f)j

N

1 + 1
1+p

1
(1+p)2

(A.11)

Inserting (A.11) into proposition II yields

rj+1Bj(1−rj)(1+f)(j+1)

N
(2 + p)

(
rjBj(1+f)j

N
−

rjBj(1+f)(j−1)

N

1+ 1
1+p

1
(1+p)2

)(1 + 1
1+p

+ 1
(1+p)2

)

(A.12)

=
rj+1(1− rj)(1 + f)(j+1)(1 + p)2

rj(1 + f)j
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