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Abstract: In this paper, we provide a theoretical prediction of the way in which adaptive
players behave in the long run in normal form games with strict Nash equilibria. In
the model, each player assigns subjective payoff assessments to his own actions, where
the assessment of each action is a weighted average of its past payoffs, and chooses the
action which has the highest assessment. After receiving a payoff, each player updates the
assessment of his chosen action in an adaptive manner. We show almost sure convergence
to a Nash equilibrium under one of the following conditions: (i) that, at any non-Nash
equilibrium action profile, there exists a player who receives a payoff, which is less than
his maximin payoff; (ii) that all non-Nash equilibrium action profiles give the same payoff.
In particular, the convergence is shown in the following games: the battle of the sexes game,
the stag hunt game and the first order statistic game. In the game of chicken and market entry
games, players may end up playing the action profile, which consists of each player’s unique
maximin action.

Keywords: payoff assessment; learning; coordination games

1. Introduction

Over the past few decades, learning models have received much attention in the theoretical and
experimental literature of cognitive science. One such model is fictitious play, where players form beliefs
about their opponents’ play and best respond to these beliefs. In the fictitious play model, players know
the payoff structure and their opponents’ strategy sets.

Whereas there are other learning models in which players have only limited information about the
game structure; players may not have information about payoff structure, opponents’ strategy sets or
they may not even know whether they are playing against other players. In this situation, they may not be
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able to form beliefs about the way that the opponents play or all possible outcomes. What they do know
is their own available actions and the results from the previous play, that is, the realized payoffs from
chosen actions. Instead of forming beliefs about all possible outcomes, each player makes a subjective
assessment on each of his actions based on the realized payoffs from the action and tends to pick the
action that has achieved better results than the others.

One such model with limited information is the reinforcement learning model introduced by Erev and
Roth [1] (ER, hereafter), where they model the observed behaviour of agents in the lab.1 In their model,
the agent chooses an action randomly, where the choice probability of the action is the fraction of the
payoffs realized from the action over the total payoffs realized for all available actions.2

In another learning model, which is introduced by Sarin and Vahid [2] (SV, hereafter), each player
makes a subjective payoff assessment on each of his actions, where the assessment is a weighted average
of realized payoffs from the action, and chooses the action that has the highest assessment. After
receiving a payoff, each player updates the assessment of the chosen action adaptively; the assessment
of the chosen action is adjusted toward the received payoff.3

In this paper, we provide a theoretical prediction of the way in which adaptive players in the SV
model behave in the long run in general games, mostly in coordination games, which are of interest to a
wide range of researchers.4 In this model, the initial assessment of each action is assumed to take a value
between the maximum and the minimum payoff that the action can provide.5 For instance, players may
have experienced the game in advance, so they may use their knowledge of previous payoffs to form the
initial assessment of each action. Given those assessments, each player chooses the action that has the
highest assessment.

After playing a game and receiving a payoff, each player updates his assessment using the realized
payoff; the new assessment of a chosen action is a convex combination of the current assessment and
the realized payoff. In this paper, the sequence of weighting parameters is assumed to be stochastic,6

meaning that the amount of new payoff information that each player incorporates into his new assessment
in each period is uncertain. The randomness assumption is reasonable, because the weights are subjective
and may depend on each player’s capacity or emotion. For instance, a player may sometimes show
inaccuracy in capturing new information because of his lack of concentration. The randomness also
expresses the idea that each player’s subjective weights on the new payoff information depend on his
unexpected mood.

Since the initial assessment of each action is smaller than the best payoff that the action can give,
each player increases his assessment of the action when he receives the best payoff. If there exists an

1 There also exists theoretical work on their model; for instance, see Beggs [3] and Laslier et al. [4].
2 Since the payoffs are assumed to be positive, each player increases the probability of choosing an action whenever the

action is chosen.
3 It is worth noting that if the realized payoff of an action is lower than the assessment of the action, then the chance of the

action being chosen in the next period becomes less likely.
4 As examples of experimental works on coordination games, Cooper, DeJong, Forsythe and Ross [5] and Van Huyck,

Battalio and Beil [6] have investigated which among multiple Nash equilibria is the one played in the lab.
5 See, also, Sarin [7] for the justification of the assumption.
6 Later, we also consider cases where the weighting parameters are non-stochastic.
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action profile at which each player receives the best payoff that his current action can give and they play
the action profile in some period, then players will keep choosing the action profile in all subsequent
periods. We call such an action profile the absorbing state; an action profile is absorbing if, once players
play the action profile in some period, they play it in all subsequent periods.

Furthermore, there exist other cases where players stick to one action profile; if there exists a period
in which, for each player, the assessment of his chosen action and the realized payoff is greater than the
assessments of his other actions, then players keep choosing the action profile in all subsequent periods.
It is shown that each pure Nash equilibrium is always a candidate of the convergence point, that is,
for each strict Nash equilibrium, there exists a range of assessments for all players and actions, such
that players stick to the Nash equilibrium forever. In addition, if: (i) at any non-Nash equilibrium action
profile, at least one player receives the payoff, which is less than his maximin payoff; or (ii) all non-Nash
equilibrium action profiles give the same payoff, then players end up playing a strict Nash equilibrium
with probability one. To see this in detail, we focus on 2 ⇥ 2 coordination games and one non-2 ⇥ 2
coordination game.

First, we focus on 2 ⇥ 2 coordination games. For analytical purposes, we exclusively divide 2 ⇥ 2
coordination games into the following two categories: (i) at non-Nash equilibrium action profiles, there
exists a player who receives the worst payoff; and (ii) there exists a non-Nash equilibrium action profile
that each player’s action corresponds to his unique maximin action. Then, it is shown that players
end up playing a strict Nash equilibrium in coordination games in category (i), while players end up
playing a strict Nash equilibrium or the action profile that consists of each player’s unique maximin
action in coordination games in category (ii). It is helpful for understanding the argument further to see
well-known coordination games from each category. In particular, category (i) includes the battle of the
sexes game, the pure coordination game and the stag hunt game, whereas category (ii) includes the game
of chicken and market entry games.

Next, we focus on a non-2 ⇥ 2 coordination game introduced by Van Huyck, Battalio and Beil [6]
(VHBB, hereafter) to compare the theoretical results from this model with their experimental results. In
the game, each player is asked to pick a number from a finite set, and coordination is achieved when
players pick the same number. If players fail to coordinate, the player who picks the smallest number
among players’ choices receives the highest payoff. In addition, each number gives a better payoff when
the choice is closer to the smallest number among all the players’ choices. We show that each Nash
equilibrium is absorbing.7 It is also shown that the smallest number of the players’ choices weakly
decreases over time. Next, we consider the case where the second best payoff from each action is lower
than the payoff from the maximin action, which is the smallest number of their choice set. Hence,
players are better off if they choose the smallest number of their choice set when they fail to pick the
smallest number among the players’ choices. In this case, we show that players end up playing a Nash
equilibrium with probability one, which can be also observed in the experimental results by VHBB.

7 It is absorbing if the minimum number gives different payoffs for opponents’ choices. If it gives the same payoff for any
opponents’ choice, then we have to assume an inertia condition for the players’ tie break rule for the corresponding Nash
equilibrium to be absorbing. See the following argument.
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It is also intriguing to consider cases where the weighting parameters are not stochastic. For example,
we consider players who believe that the situation they are involved in is stationary, so that each action’s
assessment is the arithmetic mean of its past payoffs. We also consider the case where players believe
that the environment is non-stationary and put the same weight on all new payoff information. Then, for
each case, we show the necessary and sufficient condition for coordination failure, where players play
non-Nash equilibrium action profiles alternately forever. In fact, in fictitious play, an example of the
correlated play on off-diagonal action profiles is shown (Fudenberg and Levine [8]) and the empirical
frequencies of the play should converge to the mixed Nash equilibrium in every 2 ⇥ 2 games with
the diagonal property (Monderer and Shapley [9]). We, however, show a case in which the empirical
frequencies of a correlated play on non-Nash equilibrium action profiles do not converge to the mixed
Nash equilibrium.

2. Literature Review

In this paper, we investigate the convergence properties of the SV learning model in mainly
coordination games. In another game, the prisoner’s dilemma game, Sarin [7] shows that players end
up playing for mutual cooperation or mutual defection. In this paper, players do not experience any
stochastic emotional noise on their assessments; SV also investigate a case in which the decision maker
experiences the stochastic emotional shocks on his assessments in each decision period, by which he
may choose an action that does not have the highest assessment. Then, SV show that: (1) assessment of
the action that is played infinitely often converges in distribution to a random variable whose expected
value is the expected objective payoff; and (2) if one action first-order stochastically dominates the other,
then the former action is played more often than the other on average. In the context of SV learning with
the stochastic shocks in games, Leslie and Collins [10] investigate the model with slightly different
updating rules and show convergence of strategies to a Nash distribution8 in the partnership game and
the zero-sum games. Using the SV updating rule, Cominetti, Melo and Sorin [11] show the general
convergence result when each player’s choice rule is the logistic choice rule. They show that players’
choice probabilities converge to a unique Nash distribution if the noise term of the logistic choice rule for
each player is big enough. By a property of the logistic choice rule, if its noise term becomes large, then
the choice probability approaches a uniform distribution. Hence, players in their model are more likely
to choose an action that does not have the highest assessment each time. However, players in the SV
model without emotional shocks do not choose such actions; they always pick the action that they think
is the best based on past payoff realizations. In this paper, even with the lack of such an exploration,
it is shown that players end up playing a Nash equilibrium in several coordination games.

Lastly, some authors have provided empirical supports of this model. For instance, Sarin and
Vahid [12] show that the SV model can explain the data by ER at least as well as the ER model does.
Chen and Khoroshilov [13] show that among learning models comprising the ER model, the SV model

8 Nash distribution is Nash equilibrium under stochastic perturbations on payoffs. If the expected values of the perturbations
are zero, then Nash distribution coincides with the quantal response equilibrium proposed by McKelvey and Palfrey [15]
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and the experience-weighted attraction learning model by Camerer and Ho [14], the SV model can best
explain the data in coordination games and cost sharing games.

This paper is organized as follows. Section 3 provides the formal description of the model. Section 4
gives results in general games, while Sections 5 and 6 focus on 2 ⇥ 2 coordination games and a VHBB
coordination game. Section 7 is devoted to the case in which weighting parameters are not stochastic.
Section 8 concludes.

3. General Games

We consider a case in which M players play the same game repeatedly over periods. Let
N = {1, ...,M} be the set of players. In each period, n 2 N, each player chooses an action from
his own action set simultaneously. Let Si be the finite set of actions for player i 2 N . After all the
players choose actions, each player receives a payoff. If players play (s

i
)i2N 2 ⇧i2NS

i
, then player

i’s realized payoff is denoted by u

i
(s

i
, s

�i
), where s

�i
= (s

1
, ..., s

i�1
, s

i+1
, ..., s

M
). When choosing an

action, each player does not know the payoff functions or the environment in which he is involved.
In each period, each player assigns subjective payoff assessments on his actions; let Qi

n(s
i
) 2 R

denote player i’s assessment on action s

i in period n. Let Q

i
n = (Q

i
n(s

i
))si2Si be the vector of

assessments for all actions for player i. We assume that the initial assessment for each action and each
player takes a value between the maximum and the minimum value that the action gives; thus:
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) 2 (min
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mins�i
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i
(s

i
, s

�i
).

In each period, each player chooses the action that he believes will give the highest payoff; given his
assessments, he chooses the action that has the highest assessment in the period. Therefore, if si⇤n is the
action that player i chooses in period n, then:

s

i⇤
n = argmax

si
Q

i
n(s

i
)

For a tie break situation, which arises when more than two actions have the highest assessment,
we introduce two types of tie break rules. We say that a tie break rule satisfies the inertia condition if
the rule chooses the action that was chosen in the last period; if actions that have the highest assessment
were not chosen in the last period, then the rule picks one of the actions randomly. As a comparison,
we also introduce another tie break condition, the uniform condition, where the rule picks each of the
actions that have the highest assessment with equal probability. In the following argument, we specify a
tie break rule if the result depends on the tie break rule; otherwise, the results do not depend on the tie
break rule assumption.

After playing the game in each period, each player observes only his own payoff; players observe
neither their opponents’ actions nor their payoffs. Given his own realized payoff, each player updates
his assessment of the action chosen in the previous period. Specifically, if player i receives a payoff
u

i
n(s

i
, s

�i
) when players play (s

i
, s

�i
), then he updates Qi

n as follows:

Q

i
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))Q
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i
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n(s
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)u
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i
, s

�i
) if s i is chosen in period n

Q

i
n(s

i
) otherwise
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where �

i
n(s

i
) is player i’s weighting parameter for action s

i in period n. We assume that �i
n(s

i
) is

a random variable that takes a value between zero and one; �i
n(s

i
) 2 (0, 1). It reflects the idea that

players are uncertain how far to incorporate the new payoff information into their new assessments.
The uncertainty can also be interpreted as players’ emotional shocks. How far they incorporate the
new payoff information depends on their random mood. We also assume that: (i) the sequence of
weighting parameters, {�i

n(s
i
)}i,n,si , is independent among periods, players and actions and is identically

distributed among periods; and (ii) each component, �i
n(s

i
), has a density function that is strictly positive

on the domain (0, 1) for all i and s

i.

4. Results

In this section, we investigate the convergence results in general games. In later sections, we focus on
more specific games, in particular, coordination games.

We first show a sufficient condition under which an action profile is absorbing. We say (s

i
)i2I is

absorbing if once players play the action profile in a period, then they play it in all subsequent periods.

Proposition 1. If (si)i2I is such that (i) for all i:

u

i
(s

i
, s

�i
) = max

t�i2S�i
u

i
(s

i
, t

�i
)

and (ii) for all i, there exists r�i, such that:

max

t�i2S�i
u

i
(s

i
, t

�i
) > u

i
(s

i
, r

�i
)

then (s

i
)i2I is absorbing.

Proof. Consider the case where players pick the action profile, (si)i2I , in some period, n. In that case,
player i receives the payoff, ui

(s

i
, s

�i
). Note that the value u

i
(s

i
, s

�i
) is the maximum value that action

s

i can give; therefore, by condition (ii), player i inflates the assessment of the action, si. Since the
assessments of other actions do not change in the next period, player i plays action s

i in period n + 1

again. Since this logic can be applied to other periods and we pick player i randomly, players play the
same action profile in all the subsequent periods.

Proposition 1 says that if at an action profile, each player receives a payoff that is strictly better than
the other payoffs from his current action, then the action profile is absorbing.

If the inertia condition is always assumed for each player’s tie break rule, then condition (ii) in
Proposition 1 is not required. However, if the uniform condition is assumed, without condition (ii),
players may not end up playing one action profile. As an extreme example, if two actions give the same
payoff for any opponents’ actions and the payoff is higher than any other payoffs that any other action
can give, then he plays those two actions with equal probability forever.

From Proposition 1, it is easy to see that even action profiles that consist of dominated strategies for
all players can be absorbing. To see this, assume that two players play the prisoner’s dilemma game,
which has the following payoff matrix:
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C D
C 1,1 -1,2
D 2,-1 0,0

Note that the strategy “C” is strictly dominated by the strategy “D” for both players. Notice also that at
(C,C), both players receive the highest payoffs from the action “C”; ui

(C,C) = maxs�i2{C,D} u
i
(C, s

�i
),

8i 2 N . Hence, if players play (C,C) once, then they always play it afterwards.9

In the next statement, we show that player i stops playing an action if the assessment of the action
becomes smaller than the minimum payoff that another action can give.

Proposition 2. If Qi
n(s

i
) < mins�i

u(t

i
, s

�i
) in some period, n, for ti 6= s

i, then player i does not choose
s

i after period n.

Proof. From the fact that Qi
n(t

i
) � mins�i

u(t

i
, s

�i
), we have the fact that Qi

n(t
i
) > Q

i
n(s

i
). Notice that

s

i is not chosen in period n. Then, we have Qi
n+1(t

i
) > mins�i

u(t

i
, s

�i
) > Q

i
n+1(s

i
),10 and player i will

not choose s

i in period n+ 1. The same logic can be applied in later periods, and thus, player i will not
choose s

i in any subsequent periods.

Once the assessment of one action becomes lower than the worst payoff from another action, then the
action will not be chosen forever. Therefore, if the worst payoff from one action is greater than the best
payoff from another action, then the latter action is never chosen at any time. One natural question is
whether players end up playing a strict Nash equilibrium. We say that players end up playing (s

i
)i2I if

there exists n, such that for all periods after n, players play (s

i
)i2N . If the condition, Qi

m(s
i
) > Q

i
m(t

i
),

satisfies for all i, m > n and s

i 6= t

i
, then players end up playing (s

i
)i2I .11 In the following statement,

we show that for any strict Nash equilibrium, there exist assessments for all players, such that they end
up playing the strict Nash equilibrium:

Proposition 3. For any strict Nash equilibrium and any period, there exist assessments for all players,
such that they play the Nash equilibrium in the period and all subsequent periods.

Proof. Let (s

i⇤
)i2N be a strict Nash equilibrium and s

i⇤ be player i’s strategy at the strict Nash
equilibrium. Then, we have the following condition; for all i 2 N :

u

i
(s

i⇤
, s

�i⇤
) > u

i
(t

i
, s

�i⇤
) (1)

for all ti 6= s

i⇤. Now, we pick assessments of players, such that the following conditions are satisfied;
for all i :

Q

i
n(s

i⇤
) > Q

i
n(t

i
) (2)

9 See, also, Sarin [7] for the result.
10 Since the assessment of the chosen action is a convex combination of the realized payoff and the assessment of the

previous period with �i
n 2 (0, 1) for all i and n, we have Qi

n+1(t
i) >mins�i u(ti, s�i). Notice also that si is not chosen

in period n, and thus, the assessment of the action is unchanged in the next period, n+ 1.
11 This condition does not include some convergence case that happens when we assume the inertia condition for all players.

In such a case, we can weaken the condition as follows: players end up playing (si)i2N if there exist n and (Qi
n)i2I , such

that for all m � n, i and ti 6= si, Qi
m(si) � Qi

m(ti), where player i chooses si in period n.
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and:
u

i
(s

i⇤
, s

�i⇤
) > Q

i
n(t

i
) (3)

for all ti 6= s

i⇤
. Note that Equation (3) can hold, since by Equation (1), the minimum value of the

assessment of action t

i is less than or equal to u

i
(t

i
, s

�i⇤
), which is strictly less than u

i
(s

i⇤
, s

�i⇤
). Thus,

by Equations (2) and (3), players play the strict Nash equilibrium in period n and:
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, s

�i⇤
)} > Q
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for all ti 6= s

i⇤. Therefore, players play the strict Nash equilibrium again in period n+ 1. Notice that we
can apply the same argument for the following periods, and thus, players play the strict Nash equilibrium
in all subsequent periods.

Proposition 3 says that for any strict Nash equilibrium, there exists a case in which players end up
playing the strict Nash equilibrium. However, it is possible that players end up playing a non-Nash
equilibrium. Hence, it is natural to consider the case where if they converge to play one action profile,
then it should be a strict Nash equilibrium.

In the following statements, we focus on the cases where all pure Nash equilibria are strict. We also
assume that there do not exist any redundant actions that always give the same constant payoff; for any
i 2 N and actions si, ti 2 S

i, si 6= t

i, the following condition does not hold:
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where if the inequality holds with equality, then the following condition also holds; for t
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Proof. To prove the statement, we should consider the case in which Equation (4) holds strictly and the
case in which Equation (4) holds with equality.In both cases, we prove by contradiction.

We first consider the case in which Equation (4) holds strictly. Then, we assume that there exist
assessments, such that players end up playing (s

i
)i2N . It implies that 9n, 8m > n:

min{Qm(s
i
), u

i
(s

i
, s

�i
)} � Qm(t

i
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i. Note that for m > n and t
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i, ui
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i
, s

�i
) should be greater than Q

i
m(t

i
); it is the condition

for the other actions not to be chosen in the next period. However, it contradicts the fact that Equation (4)
holds strictly.

We next assume that Equation (4) holds with equality. We again assume that there exist assessments,
such that players end up playing (s

i
)i2N . Since we have the additional condition, it implies that 8m > n:

min{Qm(s
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)

However, it contradicts the fact that Equation (4) holds with equality.
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If Equation (4) is satisfied at non-Nash equilibrium action profiles, then players never end up playing
one of them. It is also obvious that the condition is not satisfied at each strict Nash equilibrium.
Equation (4) says that there exists a player who receives a payoff, which is less than his maximin
payoff. Though the condition limits the class of games, still, there exist interesting games that satisfy
the condition. For example, the stag hunt game satisfies Equation (4) at non-Nash equilibrium action
profiles and has the following payoff matrix:

Rabbit Stag
Rabbit 1,1 2,0
Stag 0,2 5,5

At non-Nash equilibrium action profile, one player decides to hunt a stag, while the other player
decides to hunt a rabbit. The player who decides to hunt a stag fails and receives nothing. Note that the
payoff is less than the maximin payoff, which is obtained when both players decide to hunt a rabbit and
share the rabbit.

Another coordination game that satisfies Equation (4) is the first order statistic game, where each
player chooses a number from a finite set, and coordination occurs when all of them pick the same
number. In addition, if players succeed in coordinating at a higher number, then they receive a better
payoff. When they fail to coordinate on choosing the same number, the player who has chosen the
smallest number receives the best payoff, the player who has chosen the second smallest number receives
the second best payoff, and so on; the smaller number the player has chosen, the better payoff he receives.
For example, we consider the case where each player picks a number from one to four and the payoff
matrix of each player is expressed as follows:

1 2 3 4
1 1 1.5 1.5 1.5
2 0 2 2.5 2.5
3 -1 0 3 3.5
4 -2 -1 0 4

The first column represents player i’s choice, while the first row represents the minimum value of his
opponents’ choices. It is easy to see that at each Nash equilibrium, all players pick the same number.
Since action 1 gives at least one, and players who fail to pick the smallest number receive at most zero,
this game satisfies Equation (4).

In both games, Equation (4) holds strictly. In other games, such as the battle of the sexes games,
Equation (4) holds weakly, in particular, ui

(s

i
, s

�i
) = u

i
(t

i
, t

�i
) for all i and (s

i
), (t

i
) /2 E

⇤
, where E

⇤

is the set of pure Nash equilibria. For instance, a battle of the sexes game has the following payoff matrix:

s

2
1 s

2
2

s

1
1 1,2 0,0
s

1
2 0,0 2,1
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In the following theorem, we show that players end up playing a Nash equilibrium almost surely if:
(i) Equation (4) is satisfied strictly at non-Nash equilibrium profiles; or (ii) if each player’s payoffs at
non-Nash equilibrium action profiles are equal.

Theorem 1. Players end up playing a strict Nash equilibrium almost surely if (i) 8(si)i2N /2 E

⇤,
9i 2 N such that :

u

i
(s

i
, s

�i
) < max

ti 6=si
min

t�i2S�i
u

i
(t

i
, t

�i
) (5)

or (ii) 8i 2 N , 8(si)i2N , (ti)i2N /2 E

⇤,

u

i
(s

i
, s

�i
) = u

i
(t

i
, t

�i
)

Proof. Case (i): (Only the intuition of the proof is provided here. For details, see the Appendix.) It
is a direct consequence from Lemma 1 that if players end up playing one action profile, then it should
be a strict Nash equilibrium. Therefore, it should be shown that they actually end up playing a strict
Nash equilibrium. The intuition of the proof is as follows. Since off-diagonal action profiles cannot be
played infinitely often, there exists a period after which players only play strict Nash equilibria. Since we
consider games with strict Nash equilibrium, players should change their actions at the same time when
they move from one Nash equilibrium to another Nash equilibrium. Note also that since the sequence
of weighting parameters is independent and each component has a density function that is positive on
its domain, perfect correlated play on strict Nash equilibria is impossible. Now, the detailed proofs are
given in the following arguments.

Case (ii): Note that if condition (ii) satisfies, then the payoff from any Nash equilibrium should be
greater than the payoff from non-Nash equilibrium; ui

(s

i⇤
, s

�i⇤
) > u

i
(s

i
, s

�i
) for all i 2 N, (s

i⇤
) 2 E

⇤

and (s

i
) /2 E

⇤
. Therefore, each strict Nash equilibrium is absorbing, and thus, once players play a strict

Nash equilibrium, then they play it forever. By the same logic as the proof in (i), players cannot play
only non-Nash equilibrium action profiles forever. That is, with probability one, players play a strict
Nash equilibrium at some time, and then play it in all subsequent periods.

Theorem 1 shows that players end up playing a strict Nash equilibrium almost surely in the games
that satisfy condition (i) or (ii). To see this in detail, in the following sections, we investigate 2 ⇥ 2 and
non-2⇥ 2 coordination games.

5. 2 ⇥2 Coordination Games

In this section, we focus on 2⇥2 coordination games, which have the following payoff matrix:

s

2
1 s

2
2

s

1
1 a11, b11 a12, b12

s

1
2 a21, b21 a22, b22

where a11 > a21, a22 > a12, b11 > b12 and b22 > b21. Note that given the conditions, the pure
Nash equilibria are (s

1
1, s

2
1) and (s

1
2, s

2
2). For the purposes of the analysis, we exclusively divide 2 ⇥ 2



Games 2013, 4 658

coordination games into the following two categories. In the first category, at non-Nash equilibrium
action profiles, there exists at least one player who receives his worst payoff; akl � alk and blk � bkl for
k 6= l. In the second category, there exists an action profile at which each player’s action corresponds to
his unique maximin action: akl > alk and blk > bkl for k 6= l. Then, we have the following result:

Proposition 4. With probability one, players end up playing: (i) a strict Nash equilibrium in 2 ⇥ 2
coordination games in the first category; and (ii) a Nash equilibrium or the action profile at which
each player’s action corresponds to his unique maximin action in 2 ⇥ 2 coordination games in the
second category.

Proof. (i) Note that by Theorem 1, we only have to consider the case in which only one of the inequalities
holds with equality: without loss of generality, we assume that a12 = a21 and b12 > b21. Notice that
(s

1
1, s

2
1), which is a strict Nash equilibrium, is absorbing. Since at (s12, s21), player 2 receives the payoff,

b21, which is strictly lower than the worst payoff of another action, b12; players never play the action
profile infinitely many times. Since player 1 receives the worst payoff at (s11, s22), players never end up
playing the action profile. Therefore, the last case to be considered is that players play only (s

1
1, s

2
2)

and (s

1
2, s

2
2) alternately forever without ending up playing one of the action profiles. However, it cannot

happen, since a12 < a22. Therefore, players end up playing one of strict Nash equilibria.
(ii) Without loss of generality, we assume that a21 > a12 and b21 > b12. Note that (s11, s22) is not

played infinitely many times, since, at the action profile, each player receives his worst payoff. It is easy
to show that there exists a case in which players end up playing (s

1
2, s

2
1). What we have to show is that

players actually end up playing a strict Nash equilibrium or (s12, s21) with probability one. To show that,
we consider the following four possible cases according to the number of absorbing states under the
uniform condition for each player’s tie break rule.12

(1) Consider the case where there exist two absorbing states that correspond to strict Nash equilibria.
Since strict Nash equilibria are absorbing, it is obvious that they end up playing a strict Nash equilibrium
or (s12, s21).

(2) Consider the case where there exists one absorbing state that corresponds to a strict Nash
equilibrium. Let such a strict Nash equilibrium be (s11, s21). The only case to be considered is that players
play only (s

1
2, s

2
1) and (s

1
2, s

2
2) alternately without converging one of them. Since s

2
1 and s

2
2 are played

infinitely many times, it should be that b21 = b22, which contradicts the condition for the coordination
game. Thus, players end up playing a strict Nash equilibrium or (s12, s21).

(3) Consider the case where (s

1
2, s

2
1) is absorbing. It can be shown by the argument in Theorem 1 that

perfect correlation on strict Nash equilibria is impossible, and thus, players end up playing a strict Nash
equilibrium or (s12, s21).

(4) Lastly, consider the case where there exists no absorbing state. Then, the following condition on
players’ payoffs should hold: a21 � a22 and b21 � b11, where at least one of them should hold with
equality. Without loss of generality, we assume that a21 = a22 and b21 � b11. Note that once s

1
2 is

12 The uniform condition for each players’ tie break rule is only used for the categorization; the result does not depend on
the condition. Note that if an action profile is absorbing under the uniform condition, then it is absorbing under any other
condition for each player’s tie break rule.
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played, it is played in all subsequent periods.13 Since, by the same logic above, (s12, s21) and (s

1
2, s

2
2) are

not played alternately forever, they end up playing a strict Nash equilibrium or (s12, s21).

In fact, this categorization helps us to understand the long run outcomes of the adaptive learning
process in 2 ⇥ 2 coordination games. In the following argument, we focus on specific coordination
games: the battle of the sexes game, the stag hunt game, the game of chicken and market entry games.

Consider first the battle of the sexes game, which has the following payoff matrix:

Opera Football
Opera 1, 2 0, 0

Football 0, 0 2, 1

In this game, the row player prefers going to a football game together to going to an opera together,
while the column player enjoys going to the opera together rather than going to the football game
together. However, players are worse off when they fail to coordinate to go to one of them. By
Proposition 4, we know that players end up playing a strict Nash equilibrium almost surely.

There exists another form of the battle of the sexes game, which has the following payoff matrix:

Opera Football
Opera 1,2 0,0

Football 0.5,0.5 2,1

Notice that the row player enjoys going to a football game alone rather than going to an opera alone.
The column player is in the opposite situation; she enjoys going to the opera alone rather than going to
the football game alone. In this case, it is a possible outcome that players fail to coordinate, and they end
up playing their favored actions (football, opera).

We secondly consider the stag hunt game, which has the following payoff matrix:

Stag Rabbit
Stag 10,10 0,8

Rabbit 8,0 4,4

In the stag hunt game, at each off-diagonal action profile, one player receives the worst payoff.
Therefore, by Theorem 1 or Proposition 4, players end up playing a strict Nash equilibrium almost surely.

We thirdly consider the game of chicken:

Swerve Stay
Stay 1,-1 -10,-10

Swerve 0,0 -1,1

The game describes the following situation. There are two drivers who are facing each other to show
their braveness. When one driver swerves while his opponent stays, he shows his cowardice to the

13 Tie break situation can be ignored, since it happens with zero probability.
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audience. If both drivers swerve, then both of them are safe and receive nothing. However, the best
outcome for each driver is that he stays, while the opponent swerves, so that he can show his braveness.
Whereas the worst scenario is that both drivers stay and have a severe accident. Note that each player
receives the worst payoff at (stay, stay). Therefore, by Proposition 4, players end up playing a strict Nash
equilibrium or (swerve, swerve).

Lastly, consider a market entry game, which has the following payoff matrix:

Stay Out Enter
Enter 100,0 -50,-50

Stay Out 0,0 0,100

In this game, players have to decide to enter a market or stay out from the market. If a player decides
to stay out, regardless of his opponent’s action, he receives nothing. If one player decides to enter while
his opponent decides to stay out, he enjoys the profit from the market. However, if both players decide to
enter, players face severe competition and earn negative profit. In this case, by Proposition 4, we know
that players end up playing a strict Nash equilibrium or (stay out, stay out) almost surely.

6. VHBB Coordination Games

In this section, we consider the coordination game proposed by Van Huyck, Battalio and Beil [6],
where there exist M players with S

i
= S = {1, 2, ..., J} for all i 2 N = {1, ...,M}, and players have

the following payoff function:

u

i
(s

i
, s

�i
) = a(min{s1, ..., sM})� bs

i

where a > b > 0 for all i 2 N . If J=4, then player i’s payoffs are shown by the following matrix:

1 2 3 4
1 a-b a-b a-b a-b
2 a-2b 2a-2b 2a-2b 2a-2b
3 a-3b 2a-3b 3a-3b 3a-3b
4 a-4b 2a-4b 3a-4b 4a-4b

where the numbers in the first column correspond to player i’s actions and the numbers in the first row
correspond to the minimum values of the opponents’ actions. It is easy to check that (j, j, j, ...., j),
j 2 S, is a pure Nash equilibrium and is absorbing14 under the inertia condition.

Proposition 5. Assume the inertial condition for each player’s tie break rule. Then, for j 2 S, the pure
Nash equilibrium (j, j, ..., j) is absorbing.

14 It is easy to check that Nash equilibria, except (1, 1, ..., 1), are absorbing. However, under the inertia condition for each
player’s tie break rule, (1, 1, ..., 1) is also absorbing.
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When a player is choosing the smallest action among players’ actions, he is receiving the best payoff
that the action can give. Therefore, the player does not change his action when he is choosing the smallest
action, except when he chooses one and is facing a tie break situation. If the inertia condition is satisfied,
then he chooses one forever, and the minimum value of actions does not increase over time. Moreover,
since the minimum value is bounded below, it converges.

Proposition 6. Assume the inertia condition for each player’s tie break rule. Then, the minimum value
of actions among players is non-increasing over periods and converges almost surely.

We now assume that each action’s second best payoff, a(j � 1) � bj for j 2 S/{1}, is less than the
secure payoff, a� b. That is:

a(j � 1)� bj < a� b

for all j 2 S/{1}. This means that each player receives a payoff better than his maximin payoff
only when his choice is the smallest among all players’ choices. Since there exists at least one player
who receives a payoff, which is less than his maximin payoff at non-Nash equilibrium action profiles,
by Theorem 1, players end up playing a Nash equilibrium.

Corollary 1. If a(j � 1) � bj < a � b for all j 2 S\{1}, then players end up playing a pure Nash
equilibrium almost surely.

7. Non-Random Weighting Parameters

7.1. Coordination Failure

In this section, we assume that players’ weighting parameters are not random variables. For example,
players may believe that all past experiences equally represent the corresponding action’s value, that is,
players believe that the environments in which they are involved are stationary. Therefore, in each period,
players put the same weight on all past experiences and players’ assessments become the arithmetic mean
of past payoffs. Note that the weighting parameters for each player are as follows: �i

n(s
i
j) =

1
⌧(n)+1 for

all i 2 N and s

i
j 2 S

i, where ⌧(n) is the number of times that the action, sij , is played until period n.

We also consider the players who have the following weighting parameters: �i
n(s

i
j) = � for all i, sij

and n as in Sarin and Vahid [12]; all players have constant weighting parameters in all periods, that is,
both players always put the same weight on the received payoff in each period. It is reasonable to assume
this condition if players believe that the situation they are facing is non-stationary. If � is close to one,
then players believe that only the most recent payoffs give information about the values of corresponding
actions. If � is close to zero, then players believe that initial assessments of actions mostly represent the
actions’ value.

In this section, we consider the battle of the sexes game, in which players may play off-diagonal
action profiles alternately without ending up at a Nash equilibrium. In detail, we first consider the case
where �

i
n(s

i
j) =

1
⌧(n)+1 for all i, sij and n and off-diagonal payoffs for each player are all equivalent;

a12 = a21, b12 = b21. In particular, we assume that a12 = 0 and b12 = 0.
As an example, consider the case where players’ initial assessments are as follows: Q

1
1(s

1
1) = 0.2,

Q

1
1(s

1
2) = 0.2 + ✏, Q

2
1(s

2
1) = 0.2 + ✏, Q

2
1(s

2
2) = 0.2, where ✏ 2 (0, 0.2) is an irrational number. In
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this case, in the first period, they play (s

1
2, s

2
1), and both players receive a payoff of zero. In period 2,

players’ assessments are as follows: Q1
2(s

1
1) = 0.2, Q

1
2(s

1
2) =

1
2(0.2+ ✏), Q

2
2(s

2
1) =

1
2(0.2+ ✏), Q

2
2(s

2
2) =

0.2. Notice that the assessments of s

1
1 and s

2
2 are greater than the assessments of s

1
2 and s

2
1. Hence,

players play (s

1
1, s

2
2), and both players receive a payoff of zero. Using the payoff information in period 2,

they update their assessments, and they have the following assessments in period 3: Q

1
3(s

1
1) =

1
2(0.2),

Q

1
3(s

1
2) =

1
2(0.2 + ✏), Q

2
3(s

2
1) =

1
2(0.2 + ✏), Q

2
3(s

2
2) =

1
2(0.2). Then, players play (s

1
2, s

2
1) in period 3.

Notice that their assessments of action s

1
1 and s

2
2 never coincide with the assessments of action s

1
2 and

s

2
1 at any period because of ✏. After period 3, players play (s

1
2, s

2
1) until the corresponding assessments

become lower than the assessments of (s11, s22). After the event, players again switch back to play (s

1
1, s

2
2),

and so on.
When �

i
n(s

i
j) =

1
⌧(n)+1 for all i, sij and n, the following statement shows the condition of initial

assessments for coordination failures, which is the play on off-diagonal action profiles alternately.
In this section, we assume that players’ tie break rules satisfy the inertia condition.

Proposition 7. In 2 ⇥ 2 coordination games with a12 = a21 = b12 = b21 = 0, under the inertia condition,
if �i

n(s
i
j) =

1
⌧(n)+1 for all i, sij and n, then the necessary and sufficient condition for the coordination

failure is as follows:
Q
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1(s

1
2)

Q
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1(s

1
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=

Q

2
1(s

2
1)

Q

2
1(s

2
2)

Proof. See the Appendix.

This result says that players will play non-Nash equilibria alternately forever, if and only if players’
ratios of initial assessments “coordinate”.

Next, we consider the players who have the following weighting parameters: �i
n(s

i
j) = � for all i, sij

and n. Then, the necessary and sufficient condition of initial assessments for the coordination failure is
as follows:

Proposition 8. In 2 ⇥ 2 coordination games with a12 = a21 = b12 = b21 = 0, under the inertia condition,
if �i

n(s
i
j) = � for all i, sij and n, then the necessary and sufficient condition for the coordination failure

is as follows; for some z 2 Z:
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Proof. See the Appendix.

Since players play a Nash equilibrium forever if they coordinate once on the Nash equilibrium,
for each case, the negation of the condition is the one for the success of coordination. For instance,
if off-diagonal payoffs are all zero and players are frequentists, then they coordinate in some period and
in all subsequent periods, if and only if the initial assessments for both players and actions should satisfy
the following condition: Q1

1(s
1
2)

Q1
1(s

1
1)

6= Q2
1(s

2
1)

Q2
1(s

2
2)

.
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7.2. Non-Convergence to a Mixed Nash Equilibrium

It is an interesting question whether the empirical frequencies of play on the off-diagonal action
profiles converge to the mixed Nash equilibrium. In fictitious play, Monderer and Shapley [9] show
that every 2 ⇥ 2 game with the diagonal property15 has the fictitious play property; the empirical
frequencies of past play, which is a belief of players about an opponent player’s behaviour, converges to
a Nash equilibrium.

First note that 2 ⇥ 2 coordination games with a21 = a12 = b12 = b21 = 0 also have the diagonal
property. In this case, under the condition of coordination failure, players forever play off-diagonal
action profiles alternately. However, the frequency of the play need not converge to the mixed Nash
equilibrium. We show this by an example. Consider a pure coordination game, which has the following
payoff matrix:

s

2
1 s

2
2

s

1
1 1,1 0,0
s

1
2 0,0 1,1

We assume that weighting parameters and initial assessments for players are as follows:
�

1
n(s

1
1) = �

2
n(s

2
2) =

1
2 , �1

n(s
1
2) = �

2
n(s

2
1) =

1
4 , Q1

1(s
1
1) = Q

2
1(s

2
2) =

1
2 , Q1

1(s
1
2) = Q

2
1(s

2
1) =

1
4 . Under the

inertia condition for both players, it is easy to see that players play action profiles in the following order:
(s

1
1, s

2
2) ! (s

1
1, s

2
2) ! (s

1
2, s

2
1) ! (s

1
1, s

2
2) ! (s

1
1, s

2
2) ! (s

1
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2
1) ! .... In period 1, they play (s

1
1, s

2
2),

and the assessments of s11 and s

2
2 become 1

4 . Because of the inertia condition, they choose (s

1
1, s

2
2) again

in period 2, and their assessments become 1
8 . Now, players change to play (s

1
2, s

2
1) in period 3, and the

assessments of s12 and s

2
1 become 1

16 . In period 4, players return to play (s

1
1, s

2
2), and so on. Therefore,

the empirical frequencies of play for both players converge to ((

2
3 ,

1
3), (

1
3 ,

2
3)), while the mixed Nash

equilibrium in this game is ((12 ,
1
2), (

1
2 ,

1
2)).

8. Conclusions and Discussion

In this paper, we provide a theoretical foundation of adaptive learning in games with strict Nash
equilibria. Different from the belief-based learning model, players in this model have limited information
about their decision-making environment. We provide conditions under which players end up playing
a strict Nash equilibrium; it happens when: (i) at the non-Nash equilibrium action profile, one player
receives a payoff that is less than his maximin payoff; and (ii) all the payoffs from non-Nash equilibrium
action profiles are the same for each player. We also investigate specific cases, such as the VHBB

15 The game has the diagonal property if ↵ 6= 0 and � 6= 0, where:

↵ = a11 + a22 � a12 � a21

and:
� = b11 + b22 � b12 � b21
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coordination game, the stag hunt game, the battle of the sexes game, the game of chicken and market
entry games.

This model can be also interpreted as a population model. Consider the situation in which there
exist two large populations of naive players. In each period, one player is picked from each population
randomly and plays a 2 ⇥ 2 coordination game, but he can play the game only once.16 After each
player plays the game, he reports the payoff that he has received to each population. We assume that
each population does not share information with the other population. Each population accumulates
information as a public assessment, which consists of realized payoffs and the initial assessment. In
each period, the public assessment of the action that is played is updated, using realized payoffs as
defined above; the convex combination of the realized payoff and the public assessment in the previous
period. Each player may not know whether he is playing a game, but he knows the public assessment.
Using the public assessment, each player chooses an action that has the highest public assessment.

For example, consider the battle of the sexes game. After the result of going to the opera or to
football, both players report the realized payoff to the population that they belong to, so that people
in the population can make an assessment before they play the game themselves. The result above
says that players from two different populations never coordinate when initial assessments satisfy the
condition in Proposition 7 when they are frequentists. Otherwise, players coordinate to play one of the
pure Nash equilibria.

Appendix

A. Proof of Theorem 1

A.1. Detailed Proof for Case (i) in Theorem 1

At any non-Nash equilibrium action profile, there exists a player who is receiving a payoff that is less
than his maximin payoff. Assume that a non-Nash equilibrium action profile, denoted by (s

i
)i, is played

in period n � 1. Then, a player whose payoff is less than his maximin payoff never plays his current
action again if the assessment of his current action becomes lower than his maximin payoff. Note that
the probability of such an event is bounded below by the following probability:

Pr(Q

i
n(s

i
) 2 (u

i
(s

i
, s

�i
), min

t�i2S�i
u

i
(t

i
, t

�i
))) | A)

where A = {Qi
n�1(s

i
) = maxs�i

u

i
(s

i
, s

�i
)}. Since the sets of players and actions are finite, if players

play a non-Nash equilibrium action profile infinitely often, then the player who receives a worse payoff
stops playing the action with probability one. Therefore, players do not play a non-Nash equilibrium
action profile infinitely often. Hence, we assume that players only play some Nash equilibrium action
profiles. The remaining cases to be considered are that players play some strict Nash equilibria
alternately without converging one of them. Since the game that we consider here has only strict Nash
equilibria, all players should change their strategies at the same time when they change from one Nash

16 Alternatively, each population is so large that the probability that a player plays a game again is almost zero.
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equilibrium to another. Let (si⇤)i2N and (s

i⇤⇤
)i2N be two different strict Nash equilibrium action profiles

that are played infinitely often. In this argument, we assume that players play only those two strict Nash
equilibria alternately. The argument can be extended easily to the case where players play more than two
Nash equilibria. Note that since players change one strict Nash equilibrium action profile to another strict
Nash equilibrium action profile at the same time, all players should receive the payoffs that are strictly
less than their current assessments. It also should be true that ui

(s

i⇤
, s

�i⇤
) = u

i
(s

i⇤⇤
, s

�i⇤⇤
) for all i,

and each player i’s assessment never reaches the level ui
(s

i⇤
, s

�i⇤
) in a finite period. In the following

argument, we show that players fail to play strict Nash equilibria alternately with probability one; to
show that, we restrict our attention to the periods in which players change from (s

i⇤⇤
)i2N to (s

i⇤
)i2N .

By the assumption on weighting parameters, we can ignore the case where Q

i
(s

i⇤
) = Q

i
(s

i⇤⇤
). Now,

we consider period n, such that the condition Q

i
n�1(s

i⇤
) > Q

i
n�1(s

i⇤⇤
) > Q

i
n(s

i⇤
) holds. Then, for any

small " 2 (0, 1), there exist 0 < c

i
, d

i
< 1, such that:

Pr(Q

i
n(s

i⇤
) 2 ("u

i
(s

i⇤⇤
, s

�i⇤⇤
) + (1� ")Q

i
n�1(s

i⇤⇤
), Q

i
n�1(s

i,⇤⇤
)) | B)  c

i

and:
Pr(Q

i
n(s

i⇤
) 2 (u

i
(s

i⇤⇤
, s

�i⇤⇤
), (1� ")u

i
(s

i⇤⇤
, s

�i⇤⇤
) + "Q

i
n�1(s

i⇤⇤
)) | B)  d

i

where B := {Qi
n�1(s

i⇤
) > Q

i
n�1(s

i⇤⇤
) > Q

i
n(s

i⇤
)}. Note that:

Pr(Q

i
n(s

i⇤
) 2 ("u

i
(s

i⇤⇤
, s

�i⇤⇤
) + (1� ")Q

i
n�1(s

i⇤⇤
), Q

i
n�1(s

i⇤⇤
)) | B)

=

Pr("u

i⇤⇤
+ (1� ")Q

i⇤⇤
n�1 < �u

i⇤⇤
+ (1� �)Q

i⇤
n�1 < Q

i⇤⇤
n�1)

Pr(�u

i⇤⇤
+ (1� �)Q

i⇤
n�1 < Q

i⇤⇤
n�1)

=

F (K)� F ((1� ")K)

F (K)

= 1� F ((1� ")K)

F (K)

and:

Pr(Q

i
n(s

i⇤
) 2 (u

i
(s

i⇤⇤
, s

�i⇤⇤
), (1� ")u

i
(s

i⇤⇤
, s

�i⇤⇤
) + "Q

i
n�1(s

i⇤⇤
)) | B)

=

Pr(u

i⇤⇤
< �u

i⇤⇤
+ (1� �)Q

i⇤
n�1 < (1� ")u

i⇤⇤
+ "Q

i⇤⇤
n�1)

Pr(�u

i⇤⇤
+ (1� �)Q

i⇤
n�1 < Q

i⇤⇤
n�1)

=

F ("K)

F (K)

where u

i⇤⇤
= u

i
(s

i⇤⇤
, s

�i⇤⇤
), � = �

i
n(s

i⇤⇤
), Qi⇤

n�1 = Q

i
n�1(s

i⇤
), Qi⇤⇤

n�1 = Q

i
n�1(s

i⇤⇤
), F (x) = Pr((1 �

�)  x) for x 2 (0, 1) and K =

Qi⇤⇤
n�1�ui⇤⇤

Qi⇤
n�1�ui⇤⇤ . Notice that for any K 2 (0, 1], F (cK)

F (K) 2 (0, 1) and

limK!0
F (cK)
F (K) = limK!0

cf(cK)
f(K) = c, where c 2 {", 1 � "}, f is the density function for the weighting

parameter and f(0) < 1.
Therefore, for player i, with probability one, there exist infinitely many periods, n, such that Qi

n(s
i⇤
)

is not too close to or not too far from Q

i
n(s

i⇤⇤
):

Q

i
n(s

i⇤
) < "u

i
(s

i⇤⇤
, s

�i⇤⇤
) + (1� ")Q

i
n�1(s

i⇤⇤
)
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and:
Q

i
n(s

i⇤
) > (1� ")u

i
(s

i⇤⇤
, s

�i⇤⇤
) + "Q

i
n�1(s

i⇤⇤
)

In the following argument, we focus on the cases where both conditions hold when player i changes his
action from s

i⇤ to s

i⇤⇤.
Now, we consider period n in which players have just switched to (s

i⇤⇤
)i2N , so that both conditions

above hold for player i. In the following argument, we consider the cases in which a coordination failure
happens in period n+ 1. Notice that for the case:

Q

j
n(s

j⇤
) 2 ["u

j
(s

j⇤⇤
, s

�j⇤⇤
) + (1� ")Q

j
n(s

j⇤⇤
), Q

j
n(s

j⇤⇤
))

for j 6= i, we have:

Pr(Q

i
n+1(s

i⇤⇤
) � Q

i
n(s

i⇤
))⇥ Pr(Q

j
n+1(s

j⇤⇤
) < Q

j
n(s

j⇤
)) � e1,ij

while for the case:
Q

j
n(s

j⇤
) < "u

j
(s

j⇤⇤
, s

�j⇤⇤
) + (1� ")Q

j
n(s

j⇤⇤
)

for j 6= i, we have:

Pr(Q

i
n+1(s

i⇤⇤
) < Q

i
n(s

i⇤
))⇥ Pr(Q

j
n+1(s

j⇤⇤
) � Q

j
n(s

j⇤
)) � e2,ij

for some e1ij > 0 and e2,ij > 0. In any case, the probability that players fail to play the same
strict Nash equilibrium in period n + 1 has a positive probability, which has the lower bound,
minh2{1,2} minij,i 6=j{eh,ij} > 0. Since players change from (s

i⇤⇤
)i2N to (s

i⇤
)i2N infinitely many times,

players fail to play a strict Nash equilibrium with probability one, which contradicts the hypothesis.
Therefore, the only possibility is that players play only one strict Nash equilibrium after some period.

B. Proof of Proposition 7

We assume that each player’s initial assessments of both actions are different. Then, the condition
of coordination failure under the inertia condition for each player’s tie break rule is as follows: for
j 6= k and (1) for the initial assessment, Qi

1(s
i
j) > Q

i
1(s

i
k) and Q

�i
1 (s

�i
k ) > Q

�i
1 (s

�i
j ); and (2) for any n,

Q

i
n(s

i
j) � Q

i
n(s

i
k) and Q

�i
n (s

�i
k ) � Q

�i
n (s

�i
j ), where, if one of the inequalities holds, then: (i) Qi

n�1(s
i
j) >

Q

i
n�1(s

i
k) and Q

�i
n�1(s

�i
k ) > Q

�i
n�1(s

�i
j ); and (ii) Qi

n+1(s
i
j) < Q

i
n+1(s

i
k) and Q

�i
n+1(s

�i
k ) < Q

�i
n+1(s

�i
j ). Let

ˆ

Q

i
t(s

i
j) be the assessment of action s

i
j when only (s

i
j, s

�i
k ) is played t times, where j 6= k. Then, it

can be easily verified that the condition for coordination failure is equivalent to the following condition;
for any u, t 2 N, ˆ

Q

i
u(s

i
j) � ˆ

Q

i
t(s

i
k) and ˆ

Q

�i
u (s

�i
k ) � ˆ

Q

�i
t (s

�i
j ), where if one of inequalities holds,

then ˆ

Q

i
u�1(s

i
j) >

ˆ

Q

i
t(s

i
k), ˆ

Q

�i
u�1(s

�i
k ) >

ˆ

Q

�i
t (s

�i
j ), ˆ

Q

i
u+1(s

i
j) <

ˆ

Q

i
t(s

i
k) and ˆ

Q

�i
u+1(s

�i
k ) <

ˆ

Q

�i
t (s

�i
j ) for

j 6= k. Therefore, in the following proofs, we use the latter condition.
The important factor of this argument is that the players change actions at the same time and they

“coordinate” at coordination failure. If the players coordinate on diagonal action profiles once, then they
succeed in coordinating. Therefore, if the following conditions are satisfied, players never coordinate;
for any m and n 2 N:

1

n

Q

1
1(s

1
j) �

1

m

Q

1
1(s

1
k) and

1

n

Q

2
1(s

2
k) �

1

m

Q

2
1(s

2
j)
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holds, where equalities among them do not hold consecutively; if one of the equalities holds at m, n,
then both inequalities hold strictly at m, n � 1 and m, n + 1. In the following argument, we show that
this condition is equivalent to the following condition:

Q

1
1(s

1
2)

Q

1
1(s

1
1)

=

Q

2
1(s

2
1)

Q

2
1(s

2
2)

To make this clear, we assume first that if one of the inequalities holds with equality, then both
inequalities should hold with equality. Then, the original condition above can be expressed as follows:

Q

1
1(s

1
2) <

m

n

Q

1
1(s

1
1) and Q

2
1(s

2
2) >

n

m

Q
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1)

or:
Q

1
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1
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m

n

Q

1
1(s

1
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2
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2
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n

m

Q

2
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2
1)
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Q

1
1(s

1
2) =

m

n

Q

1
1(s

1
1) and Q

2
1(s

2
2) =

n

m

Q

2
1(s

2
1).

Note that if Q1
1(s

1
2)

Q1
1(s

1
1)

is a rational number, then there exist m and n, such that Q1
1(s

1
2)

Q1
1(s

1
1)

=

m
n . By the last

condition, we should have Q2
1(s

2
2)

Q2
1(s

2
1)

=

n
m , that is, Q2

1(s
2
2)

Q2
1(s

2
1)

should be a rational number, too. If Q1
1(s

1
2)

Q1
1(s

1
1)

is an

irrational number, then Q2
1(s

2
2)

Q2
1(s

2
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should be also an irrational number. If Q1
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1
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1
1)
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2
1)
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2
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, say if Q1

1(s
1
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1
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2
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2
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1
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>

m
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2
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2
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. This means that Q1

1(s
1
2) >

m
nQ

1
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1
1) and Q

2
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2
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n
mQ

2
1(s

2
1), and it contradicts the conditions above. Hence, the following relation,
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1(s

1
2)
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1(s

1
1)

=
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1(s

2
1)

Q2
1(s

2
2)

, is the only case that satisfies the condition above.
Now consider the other cases. There exist m and n 2 N, such that 1

nQ
i
1(s

i
1) =

1
mQ

i
1(s

i
2) and

1
nQ

j
1(s

j
2) 6= 1

mQ

j
1(s

j
1), say 1

nQ
j
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j
2) >

1
mQ

j
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j
1).17 Then:
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i
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i
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Q

j
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j
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j
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j
1)

should hold. Notice that Qi
1(s

i
1)

Qi
1(s

i
2)

should be a rational number, n
m . Moreover, by the conditions above,

we have n+1
m >

Qj
1(s

j
2)

Qj
1(s

j
1)

>

n
m . It is easy to see that at 2n and 2m, the following conditions also satisfy:

1
2nQ

i
1(s

i
1) =

1
2mQ

i
1(s

i
2) and 1

2nQ
j
1(s

j
2) >

1
2mQ

j
1(s

j
1). Thus, we have the following condition: 2n+1

2m >

Qj
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j
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Qj
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j
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>
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2m . Using the same logic, the condition should be satisfied for any kn and km, where k 2 N.

17 If 1
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j
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1
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If k ! 1, then the condition becomes as follows; n
m � Qj

1(s
j
2)

Qj
1(s

j
1)

>

n
m . However, there do not exist initial

assessments that satisfy this condition.18 Therefore, the necessary and sufficient condition for initial
assessments for the coordination failure in this case is equivalent to the following condition:

Q

1
1(s

1
2)

Q

1
1(s

1
1)

=

Q

2
1(s

2
1)

Q

2
1(s

2
2)
.

C. Proof of Proposition 8

It can be shown that the following condition is equivalent to the condition for the coordination failure
in the coordination game; for any t, there exists u such that:

ˆ

Q

i
t(s

i
1) 2 (

ˆ

Q

i
u+1(s

i
2),

ˆ

Q

i
u(s

i
2)] and ˆ

Q

�i
t (s

�i
2 ) 2 (

ˆ

Q

�i
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�i
1 ),

ˆ

Q

�i
u (s
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1 )]
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i
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ˆ

Q

i
u+1(s

i
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ˆ

Q

i
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Q

i
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�i
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ˆ

Q

�i
u+1(s

�i
1 ),

ˆ

Q

�i
u (s

�i
1 ))

for all i.19 Since ˆ

Q

i
t(s

i
j) = (1� �)

t
ˆ

Q

i
0(s

i
j), the condition in Proposition 8 can be easily derived.
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