
Gatarek, Lukasz; Johansen, Søren

Working Paper

Optimal Hedging with the Vector Autoregressive Model

Tinbergen Institute Discussion Paper, No. 14-022/III

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Gatarek, Lukasz; Johansen, Søren (2014) : Optimal Hedging with the Vector
Autoregressive Model, Tinbergen Institute Discussion Paper, No. 14-022/III, Tinbergen Institute,
Amsterdam and Rotterdam

This Version is available at:
https://hdl.handle.net/10419/98921

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/98921
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


TI 2014-022/III 
Tinbergen Institute Discussion Paper 

 
Optimal Hedging with the Vector 
Autoregressive Model  
 
 
Lukasz Gatarek1 

Søren Johansen2 

 

 
 

 
 
 
 
 
 
 
1  Erasmus School of Economics, Erasmus University Rotterdam, Tinbergen Institute, the 
Netherlands; 
2  University of Copenhagen, CREATES, Denmark.
 



 
Tinbergen Institute is the graduate school and research institute in economics of Erasmus University 
Rotterdam, the University of Amsterdam and VU University Amsterdam. 
 
More TI discussion papers can be downloaded at http://www.tinbergen.nl 
 
Tinbergen  Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 1600 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 

Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, with the 
ambition to support innovative research and offer top quality academic education in core areas of 
finance. 

DSF research papers can be downloaded at: http://www.dsf.nl/ 
 
Duisenberg school of finance 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 8579 
 
 



Optimal hedging with the vector autoregressive model
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Abstract

We derive the optimal hedging ratios for a portfolio of assets driven by a Coin-
tegrated Vector Autoregressive model with general cointegration rank. Our hedge is
optimal in the sense of minimum variance portfolio.

We consider a model that allows for the hedges to be cointegrated with the hedged
asset and among themselves. We find that the minimum variance hedge for assets
driven by the CVAR, depends strongly on the portfolio holding period. The hedge
is defined as a function of correlation and cointegration parameters. For short hold-
ing periods the correlation impact is predominant. For long horizons, the hedge ratio
should overweight the cointegration parameters rather then short-run correlation in-
formation. In the infinite horizon, the hedge ratios shall be equal to the cointegrating
vector. The hedge ratios for any intermediate portfolio holding period should be based
on the weighted average of correlation and cointegration parameters.

The results are general and can be applied for any portfolio of assets that can be
modeled by the CVAR of any rank and order.
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Introduction

The idea of minimum variance portfolio dates back to [Markowitz, 1952]. It is defined as a
portfolio of individually risky assets that, when taken together, result in the lowest possible
risk level for the rate of expected return. Such a portfolio hedges each investment with an
offsetting investment; the individual investor’s choice on how much to offset investments de-
pends on the level of risk and expected return he/she is willing to accept. The investments in
a minimum variance portfolio are individually riskier than the portfolio as a whole. The name
of the term comes from how it is mathematically expressed in Markowitz Portfolio Theory,
in which volatility is used as a replacement for risk, and in which less variation in volatility
correlates to less risk in an investment. Since the seminal paper of [Markowitz, 1952], the
notion of minimum variance portfolio and minimum variance hedging has been explored and
extended heavily in both financial and econometric literature, see [Grinold and Kahn, 1999].
However, the common denominator of those methods remain the same. They either aim at
minimizing volatility of a portfolio itself or volatility of some function of a portfolio. This
function often represents the evolution of the portfolio over time. This is also the purpose
of the hedging problem we define.

In general, the hedging methods can be divided in two classes: static and dynamic
methods. The static hedging techniques assume that the hedged portfolio is selected given
information available in period t, and remains unchanged during the entire holding period
t, . . . , t + h. On the contrary, the dynamic hedging methods allow for rebalancing of the
portfolio during the holding period.

Our method is static. We find the optimal hedging ratios for a portfolio of assets driven
by a Cointegrated Vector Autoregressive model (CVAR). We start with a simple process,
which relates the hedged asset to hedges via cointegration relation. The hedges are exogenous
and are modeled via random walks. In a general specification of the model, the hedges can
also be related to the hedged asset via cointegration relation.

The general results that we find, define the optimal hedging ratios as a function of
correlation and cointegration parameters in the model. We find that a minimum variance
portfolio held for one period should be based on the hedge ratios driven only by correlation.
In the infinite horizon, the hedge ratios will be equal to a cointegrating vector. The hedge
ratios for any intermediate portfolio holding period should be based on the weighted average
of the correlation and cointegration parameters. Our result are general and can be applied
to a CVAR model of any rank and order.

1 Exogenous case

1.1 Regression estimation of a cointegration relation

Single regression equation estimation of cointegration relation has been a topic of research
for more than two decades. There are many methods of correcting the finite-sample biases
in static regressions. [Phillips, 1988] and [Phillips, 1990] have argued that the performance
of estimators of cointegrating vectors based on individual regressions is adversely affected
by the existence of first-order biases. These biases have no effect on the consistency of the
estimators, but result in the asymptotic distributions having non-zero means.

Such biases might play an important role in finite samples. Let us consider a simple
bivariate cointegration model with an endogenous variable y1t cointegrated with a weakly
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exogenous variable y2t

y1t = βy2t + u1t

y2t = y2,t−1 + u2t

(1.1)

where where ut are independent identically distributed (i.i.d.) N(0,Φ) random errors with
mean zero and variance Φ, where

Φ =

(
φ11 φ12

φ21 φ22

)
.

When disturbances uit, i = 1, 2 are autocorrelated or intercorrelated, a static regression of
y1t on y2t provides an estimate which can be biased in fairly large samples. This is due to
disregarding any information about the process generating y2t. Under i.i.d. Gaussian er-
rors, the parameters of the process can be estimated via the full-system maximum likelihood
estimation of cointegrated system, or by maximum likelihood of the regression model with
parameters (β,Φ). This amounts to a single-equation regression of y1t corrected for y2t−1 and
y2t. This method is referred to as a single-equation dynamic regression. The long-run esti-
mates obtained from the properly specified dynamic equation are equivalent, asymptotically,
to the full system estimates.

For the system in (1.1), the definition of dynamic regression is simple. In what follows we
summarize this procedure. First we substitute in (1.1) using the second equation to obtain

y1t = βy2,t−1 + βu2t + u1t = βy2,t−1 + v1t,

where v1t = βu2t + u1t, and we define βCorr = φ−1
22 ξ21 = (φ21 + βφ22)φ

−1
22 . For v2t = u2t we

then have vt i.i.d. N(0,Ξ) where

Ξ =

(
ξ11 ξ12

ξ12 ξ22

)
=

(
φ11 + β2φ22 + 2βφ12 φ12 + βφ22

φ21 + βφ22 φ22

)
.

From the multivariate Normal theory, the following relation holds

E(v1t|u2t) =
Cov(v1t, u2t)

V ar(u2t)
u2t = ξ21φ

−1
22 u2t = βCorru2t,

such that

E(y1t|y2t, y2,t−1) = E(βy2t + v1t|u2t) = βy2t + βCorru2t = βy2t + βCorr∆y2t

results in a regression form of the cointegration model

y1t = βy2,t−1 + βCorr∆y2t + η1t. (1.2)

Here βCorr = φ−1
22 ξ21 collects the information with respect to the correlation between v1t

and u2t and corrects the estimate from a single equation by information about the correla-
tion structure among random errors. We will refer to it as a β-correction parameter. By
construction ηt = y1t−E(y1t|y2t, y2,t−1) is an i.i.d. sequence independent of the sequence u2t.
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The single equation in (1.2) represents unbiased estimation of the cointegration parameter
β. We can prove that the correction works by analyzing covariance of ηt and u2t. By
construction of ηt

ηt = u1t − φ21φ
−1
22 u2t,

we find no covariance between ηt and u2t

Cov(ηt, u2t) = E((u1t − φ12φ
−1
22 u2t), u2t) = φ12 − φ12φ

−1
22 φ22 = 0,

what implies that running dynamic regression (with y2t and y2,t−1) leads to no loss of infor-
mation from φ12. The variance of ηt is given by

V ar(ηt) = E(u1t − φ12φ
−1
22 u2t)

2 = φ11 − φ12φ
−1
22 φ21.

Several features are now evident. By construction ηt is uncorrelated with u2t. The process
u2t is serially uncorrelated with past u2t and with past u1t. It follows that ηt and u2t are
uncorrelated at all lags. The covariance matrix of (v1t, u2t)

′ is diagonal, and the estimation of
a single dynamic equation provides a fully efficient and unbiased estimate of the cointegration
parameter β. Traditionally βCorr is disregarded after running the regression in (1.2). Its main
and only role is to provide an unbiased estimator of β. The information that is conveyed
by this parameter, however, might be useful on its own. In what follows we will present
an example of how it can be used in construction of hedged portfolios for assets modeled
according to the specification in (1.1).

1.1.1 Hedging under full mean reversion

Model (1.1) can be interpreted as a realistic representation of the data generating process
for prices of pairs of assets in many financial markets. In that case the process y1t is en-
dogenous and its realization cointegrates with the path of y2t with cointegrating parameter
β. The process y2t is defined as an exogenous random walk. Apart from cointegration be-
tween y1t and y2t, the process is also characterized by intercorrelation in the disturbances.
Despite widely used volatility models in financial econometric theory, cointegrated systems
with independent and identically distributed errors remain a valid representation of various
relations in financial market, such as daily measurement of financial instruments with lim-
ited liquidity. An illiquid asset can be defined as an asset which cannot readily be sold at
its face value, see [Vayanos, 2004]. The price formation process in such markets underlie
different principles than the highly volatile intra-day, high frequency trading environments.
For illiquid markets, the volatility clustering patterns etc., are not reflected in the price
quotations. That concerns to an even higher extent quoted financial contracts, whose ma-
turity is distant in the future, for instance in 2 or 3 years. Such families of future contracts,
each with different maturity, but referring to the same underlying asset, can be modeled by
common stochastic trends. Apart from that, the amount of correlation among such assets is
naturally very high. This is related to the sparsity of observations (due to illiquidity), what
implies a small amount of noise at the level of daily measurements. In such systems, hedging
of a particular maturity with closer or further maturities, has remained a financial industry
standard for decades. The informational content, filtered by price quotations for different
maturities, remains unchanged across maturity, only the amount and speed of adjustment of
distinct maturities to the common market trend is different. Due to limited volatility in such
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markets, such systems can be well represented by the specification in (1.1), with reservation,
however, that the strong assumption about the full reversion in this model should be relaxed.
The simplistic specification in model (1.1) implies full mean reversion from period to period.
This follows from an alternative representation of the model in (1.1) given by

∆y1t = αy1,t−1 + βy2t + u1t

∆y2t = u2t,
(1.3)

where α = −1 and ∆y1t = y1t − y1,t−1. This representation of the system in (1.1) is referred
to as an error correction form, where α can be interpreted as mean reversion or speed of
adjustment. Estimation of the parameter α constitutes an important part of econometric
modeling in cointegrated systems. For expository reasons we start with the rather restrictive
specification of full reversion, α = −1, which will be replaced by a more general model below.
We derive first an optimal hedge for a model with full mean reversion.

As shown above, the regression estimation of model (1.1) requires a correlation correction
represented by the parameter βCorr. The information contained in this parameter can be
informative for a hedging procedure based on this process. Our goal consists of finding a
minimum variance portfolio. In what follows, we define this hedge in detail given the data
generating process for assets specified by the equations (1.1).

We define the hedging parameter βh as the amount invested in the hedge y2t in order to
hedge asset y1t and thus we define the portfolio in time period t

st = y1t − βhy2t (1.4)

which consists of assets y1t and y2t weighted with (1,−βh)′. The subscript h indicates that
the main determinant of the hedge we define is the portfolio holding period denoted by h.

In financial market one can consider a long and a short position in a given security. The
long position means the holder of the position owns the security and will profit if the price of
the security goes up. The short position is defined as the sale of a borrowed security, with the
expectation that the asset will fall in value. Then, the investor must eventually return the
borrowed security by buying it back from the market. Because it can be purchased cheaper
then at the time of borrowing, the difference in price results in profit for the investor.

In portfolio hedging, traditionally a long position in asset y1t is hedged with short a
position in another asset y2t and vice versa. Thus the sign in front of the weight βh symbolizes
the market convention regarding hedging practice.

Over time the portfolio value can change. Let st+h − st denote the change in portfolio
market value, induced by the risk drivers we wish to hedge against. Provided a hedge y2t is
available, the hedging problem involves computing the vector of portfolio weights (1,−βh)′
that is optimal according to a particular method. The choice of method depends on the
objective of the portfolio manager. Although those objectives can be various, in most cases
they aim at keeping the risk caused by the unhedged part of y1t minimal over time. The
market value of the portfolio defines the exposure of the portfolio, which can be interpreted
as an unhedged part of y1t in period t. This invokes an alternative interpretation of the
portfolio value as a spread

st = y1t − βhy2t. (1.5)
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Further we define a hedging error after h observations as

et(h) = st+h − st = y1,t+h − y1t − βh(y2,t+h − y2t). (1.6)

The hedging problem we consider aims at minimizing the conditional variance of the
hedging error for a holding period h given the past information It = σ(ys, s ≤ t}.

The optimization problem is defined as

min
βh

V ar(et(h)|It) = min
βh

V ar(st+h|It). (1.7)

The optimal portfolio is selected in period t and it is held up to period t + h. It is a static
hedge, as the portfolio is not rebalanced during periods t, . . . , t+ h.

We present an optimal hedge which explores both the long term cointegration parameter
β, but also the correlation between the random errors in y1t and y2t.

Theorem 1.1 Let yt, t = 1, . . . , T, be bivariate and given by

y1t = βy2t + u1t,

y2t = y2,t−1 + u2t,

where ui are i.i.d. (0,Φ). Then the optimal hedge coefficient for the portfolio st = y1t−βhy2t

at time horizon h is given by

β∗h = β + h−1φ−1
22 φ21 = h−1(β(h− 1) + βCorr), (1.8)

and the minimal variance is

V ar(y1,t+h − β∗hy2,t+h|It) = φ11 − h−1φ12φ
−1
22 φ21.

Proof: See Appendix.
The hedge defined in (1.8) is a weighted average of the correlation correction, βCorr, and

the cointegration parameter with weights: 1/h and (h−1)/h. The resulting formula complies
with the stylized facts about the short- and long-term hedging in the sense that for a short
period, h = 1, we hedge fully based on the correlation

β?h = βCorr,

whereas for a long period, when h→∞, we hedge fully based on cointegration

β?h = β.

1.2 Multivariate Specification

1.2.1 Regression estimation of cointegration relation

We define the model with n assets, from which n − 1 are hedges. Let yt = (y1t, y
′
2t)
′ ∈

R1+(n−1), t = 1, . . . , T be given by

y1t = β′y2t + u1t

y2t = y2t−1 + u2t,
(1.9)
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where ui are i.i.d. (0,Φ). The main difference between the univariate case (with one hedge
modeled as a random walk y2t) and the multivariate case, is the possibility of correlation
between the innovations of the random walks y2t, y3t, . . . , ynt. Two hedges modeled by cor-
related random walks are substitutes. In the extreme scenario, if two potential hedges are
fully correlated, then having one of them to hedge y1t is enough for a portfolio. The optimal
hedges that we derive for the portfolio based on assets modeled according to (1.9) takes
into account not only the ratio between the cointegration and correlation parameters but
also deeply explores the correlation in order to account for optimal amount of hedges in a
portfolio. By comparing the variance of the optimal portfolio we can see what we gain by
including more hedges.

To derive the composition of the hedging portfolio, we first need to derive the β-correction
parameters, representing the presence of correlation in the errors in the multivariate spec-
ification. As we allow for n − 1 cointegrating parameters βi, i ∈ 2, . . . , n, we need n − 1
correction parameters. To derive them we follow the same procedure as in the single hedge
scenario. We insert the random walks in y2 into first equation in (1.9). The resulting equation
for y1t can be specified as

y1t = β′y2t + β′u2t + u1t,

= β′y2t + v1t

where v1t = β′u2t + u1t. Similarly to the univariate case, in order to define the correction
parameters, we explore the covariance between v1t and u2t. We obtain

V ar

(
v1t

u2t

)
=

(
β′Φ22β + β′Φ21 + Φ12β Φ12 + β′Φ22

Φ21 + Φ22β Φ22

)
Based on properties of the multivariate Normal distribution we obtain

E(v1t|u2t) = (β + Φ−1
22 Φ21)u2t

so
y1t = β′y2t + βCorr′∆y2t + ηt,

where
βCorr = β + Φ−1

22 Φ21,

and {ηt} is i.i.d. and uncorrelated with {u2t}.
1.2.2 Hedging with correlated assets

The vector containing the n− 1 individual hedges is defined as

βh = (βh,2, . . . , βh,n)′.

Then the portfolio is defined as
st = y1t − β′hy2t. (1.10)

We interpret βh,i, i ∈ 2, . . . , n as the amount of asset yit, necessary to hedge y1t in the
portfolio st. Further, the unhedged part of y1t is again equal to the value (exposure) of the
portfolio

st = y1t − β′hy2t,

and the hedging error over h periods is defined as in (1.6). The optimal hedge that minimizes
the variance of the hedging error over h periods follow.
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Theorem 1.2 Let yt = (y1t, y
′
2t)
′ ∈ R1+(n−1), t = 1, . . . , T be given by

y1t = β′y2t + u1t,

y2t = y2t−1 + u2t,

where ui are i.i.d. (0,Φ). Then the optimal hedge coefficient for the portfolio st = y1t−β′hy2t

at time horizon h is given by

β∗h = β + h−1Φ−1
22 Φ21 = h−1(β(h− 1) + βCorr),

and the minimal variance is

V ar(y1,t+h − β∗hy2,t+h|It) = Φ11 − h−1Φ12Φ
−1
22 Φ21.

Proof: See Appendix.
It is seen that the variance of the optimal portfolio increases with the horizon h, from

the conditional variance of u1t given u2t, Φ11 − Φ12Φ
−1
22 Φ21 for h = 1, to the variance of the

cointegrating relation Φ11 for h→∞. It is also seen that including more correlated hedges,
the varian of u1t given u2t will decrease, but the limit remains the same.

2 Full cointegration model

The analysis under exogenous hedges is now generalized to the full cointegration model, see
[Johansen 1996]. Thus we consider a model that allows the hedges to be cointegrated with
y1t and among themselves such that the number of cointegrating relations could be more
than one. The assumption of full reversion is dropped and general adjustment coefficients
are allowed.

Theorem 2.1 Let (y1t, y
′
2t)
′ ∈ R1+(n−1), t = 1, . . . , T be given by

∆yt = αγ′yt−1 + ut,

where ut are i.i.d.(0,Ξ) and α and γ are r×n matrices, and the eigenvalues of ρ = Ir+γ
′α are

inside the unit circle. Then the optimal hedge for the portfolio st = y1t−β′hy2t = (1,−β′h)′yt+h
at time horizon h is given by

β∗h = Σ−1
h22Σh21,

where

Σh = V ar(yt+h|It) =

(
Σh11 Σh12

Σh21 Σh22

)
is given by

Σh = hCΞC ′ − α(γ′α)−2(Ir − ρh)γ′ΞC ′ − CΞγ(Ir − ρ′h)(α′γ)−2α′ (2.1)

+ α(γ′α)−1[
h−1∑
i=0

ρiγ′Ξγρ′i](α′γ)−1α′,

and C = γ⊥(α′⊥γ⊥)−1α′⊥. The minimal variance is

V ar(y1,t+h − β∗hy2,t+h|It) = Σh11 − Σh12Σ
−1
h22Σh21.
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Proof: See Appendix.
Note that for h = 1, we get Ir − ρ = −γ′α and C + α(γ′α)−1γ′ = In and therefore

Σ1 = CΞC ′ + α(γ′α)−1γ′ΞC ′ + CΞγ(α′γ)−1α′ + α(γ′α)−1γ′Ξγ(α′γ)−1α′ = Ξ,

and for h→∞ we find h−1Σh = CΞC ′, the long run-variance of the process yt.

2.1 Some special cases

The results in Theorem 2.1 cover the cases considered so far, in particular we focus on a
model with one cointegrating relation and n− 1 exogenous hedges.

We consider the model (1.3) written in error correction form

∆y1t = α1(y1,t−1 + α−1
1 β′y2t−1) + β′u2t + u1t

∆y2t = u2t

where ut are i.i.d.(0,Φ). We find the covariance matrix

Ξ = V ar

(
β′u2t + u1t

u2t

)
=

(
Φ11 + β′Φ21 + Φ12β + β′Φ22β β′Φ22 + Φ12

Φ21 + Φ22β Φ22

)
,

and the parameters α = (α1, 0, . . . , 0)′, γ = (1, α−1
1 β′)′, γ′⊥ = (−α−1

1 β, In−1) and α′⊥ =
(0, In−1), but also

C = In − α(γ′α)−1γ′ =

(
0 −α−1

1 β′

0 In−1

)
.

Inserting into the general expression (2.1) we first find that because α′⊥ = (0, In−1) we
get

Σh22 = hα′⊥Ξα⊥ = hΦ22.

Next we see that α′⊥C = α′⊥ = (0, In−1), 1 + ρ = 1 + γ′α = 1 + α1, C
′e1 = (0,−α−1

1 β′) and
we find

Σh21 = α′⊥Σhei = hα′⊥Ξ(0,−α−1
1 β′)− α′⊥Ξγ(1− (1 + α1)

h)α−1
1

= −hΦ22βα
−1
1 − (Φ21 + Φ22β + α−1

1 Φ22β)(Ir − (1 + α1)
h)α−1

1

and therefore

β∗h = −βα−1
1 + h−1(Φ−1

22 Φ21 + β(1 + α−1
1 ))((1 + α1)

h − 1)α−1
1 . (2.2)

In particular we can take α1 = −1, see (1.1), and find the full mean reversion case which
gives

β∗h = β + h−1Φ−1
22 Φ21,

see Theorem 1.2.
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3 Numerical illustrations

3.1 Full mean reversion

To present how the developed methodology works in practice, we present the optimal hedge
implied by the resulting formulas for a selection of model specifications. It is shown how the
optimal hedging formula balances the correlation and cointegration parameters depending
on the protfolio holding period h. As shown in formula (1.8), for infinitely held portfolios, the
optimal hedge is given by the cointegration parameter. This parameter results in a stationary
portfolio st with a constant variance. Any other selection of the hedging parameter leads to
a portfolio which is nonstationary in variance. That is also true about the optimal hedge
we derive for any holding horizon h different from h = ∞. Still, we intend to construct
the portfolio according to the optimal ratio β∗h implied by the formula, because for a given
holding period h, it results in lower variance than the portfolio based on cointegration hedge
and held h time periods. It is crucial for the methodology to know a priori the holding
horizon for this portfolio.

To start with, we show the role of strength of correlation for the construction of the
optimal hedge. We start with case of no correlation in random errors of process in (1.1) and
then we increase the correlation subsequently

• No covariance of the innovations
We select the following parameters for model (1.1)

β = 0.4

Φ =

(
0.1 0
0 0.2

)
.

(3.1)

These parameters imply the following βCorr parameter

βCorr = ξ21φ
−1
22 = (φ21 + βφ22)φ

−1
22 = β = 0.4, (3.2)

which, according to (1.8), defines the optimal hedge ratio for a portfolio st held up to
period t + 1, that is, for h = 1. In this degenerate case, the optimal hedge for h = 1,
i.e. βCorr, is equal to β. As a consequence

β?h =
βCorr + β(h− 1)

h
= β. (3.3)

To understand why the relation βCorr = β holds under no covariance in innovations
we need to refer to the regression representation of cointegration

y1t = βy2t−1 + βCorr∆y2t + ηt (3.4)

and the definition of process ηt

ηt = u1t − φ21φ
−1
22 u2t|φ21=0 = u1t. (3.5)

After substituting for ηt in (3.4) we obtain

y1t = βy2t−1 + βCorry2t − βCorry2,t−1 + u1t. (3.6)

10



It follows immediately that only if βCorr = β we obtain the original equation for y1t in
model (1.1), i.e.

y1t = βy2t + u1t. (3.7)

• Low covariance of the innovations
In this scenario we keep the cointegration relation at the same level as in the pre-
vious example, but we allow for some correlation in the innovations. The following
parameters are selected for model (1.1)

β = 0.4

Φ =

(
0.1 0.01
0.01 0.2

)
.

(3.8)

These parameters imply the following βCorr

βCorr = ξ21φ
−1
22 = (φ21 + βφ22)φ

−1
22 = (0.01 + 0.4× 0.2)0.2−1 = 0.45. (3.9)

Thus the optimal hedge for h = 1 equals to βCorr = 0.45 and then it smoothly drops
to asymptotically reach the level of the cointegration hedge β = 0.4. Any intermedi-
ate portfolio holding horizon h requires a weighted average of those two parameters,
according to equation (1.8).

• High covariance in the innovations
Finally we consider scenario of high correlation, implied by the covariance of 0.12. The
following parameters are selected for model (1.1)

β = 0.4

Φ =

(
0.1 0.12
0.12 0.2

)
.

(3.10)

In that case an optimal hedge required for h = 1 rises as much as to 1, higher then in
the previous scenario, where βCorr = 0.45. Thus, the higher correlation automatically
translates into a higher hedge for the optimal portfolio for h = 1

βCorr = ξ21φ
−1
22 = (φ21 + βφ22)φ

−1
22 = (0.12 + 0.4× 0.2)0.2−1 = 1. (3.11)

Due to unchanged cointegration parameter, the optimal hedge for an infinitely held
portfolio remains the same, i.e. β = 0.4.

3.2 Limited reversion

• No covariance in the innovations
Similarly to case of full mean reversion, we start with the scenario of no correlation.
We consider the model in (1.3). Mean reversion is set equal to α = −0.2. Cointegration
level and covariance matrix are unchanged from the previous example

α = −0.2

β = 0.4

Φ =

(
0.1 0
0 0.2

) (3.12)
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which results in the same level of βCorr, as well. The limiting level of the hedge for
h→∞ is immediately found from equation (2.2)

βh(h→∞) = −β
α

= − 0.4

−0.2
= 2. (3.13)

• High covariance in the innovations
For the high correlation scenario under limited mean reversion, we consider the follow-
ing parameters

α = −0.2

β = 0.4

Φ =

(
0.1 0.12
0.12 0.2

)
.

(3.14)

Results of this scenario are presented in Figure 1.

Finally, in Figure 2, we present the volatility of the portfolio st as a function of the
portfolio holding period h, for three different type of hedges: correlation hedge βCorr,
cointegration hedge β, and the optimal hedge β∗ respectively.

As expected, the optimal hedge portfolio results in lowest variance, irrespective of the
holding period h, see Figure 2. Furthermore, the correlation hedge applied for short
holding periods leads to lower volatility of portfolio compared to the cointegration
hedge. However, for portfolios held for a long horizon, the cointegration hedge clearly
outperforms the former. Asymptotically the volatility of the optimal portfolio becomes
identical with volatility of portfolio constructed with the cointegration based hedge.
It is remarkable how non-optimal are the portfolios constructed with the correlation
hedge βCorr, if they are held for long horizon h. The variance of such portfolios is
growing with h and for long horizons it highly surpasses the variance not only of the
optimal hedge, but also the variance corresponding to the cointegration hedge.

4 Summary

We derive the optimal hedging ratios for a portfolio of assets driven by a Cointegrated Vector
Autoregressive model with general cointegration rank. Our hedge is optimal in the sense of
minimum variance portfolio. We start with the exogenous case, in which the hedged asset
depends on hedges via a cointegration relation, and the hedges are exogenous, modeled by
random walks. Then we consider a model that allows for the hedges to be cointegrated
with the hedged asset and among themselves. We find that the minimum variance hedge for
assets driven by the CVAR, depends strongly on the portfolio holding period. The hedge is
defined as a function of correlation and cointegration parameters. For short holding periods
the correlation impact is predominant. For long horizons, the hedge ratio should overweight
the cointegration parameters rather then short-run correlation information. In the infinite
horizon, the hedge ratios shall be equal to the cointegrating vector. The hedge ratios for any
intermediate portfolio holding period should be based on the weighted average of correlation
and cointegration parameters.
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Our results are general and can be applied for any portfolio of assets that can be modeled
by the CVAR of any rank and order. The further research aims at a dynamic version of the
developed methodology. In that case the static hedge kept for the entire portfolio holding
horizon shall be replaced by a hedge that is dynamically rebalanced during this period.
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Appendix

We give the proofs of Theorems 1.1, 1.2, and 2.1, but first we give a simple lemma on the
minimization of a variance which will be used in the proofs.

Lemma 1 Let yt = (y1t, y2t) ∈ Rn be a random variable with y1t ∈ R, and y2t ∈ Rn−1 and
variance matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
> 0.

Then
min

β∈Rn−1
V ar(y1t − β′y2t) = Σ11 − Σ12Σ

−1
22 Σ21

is attained for
β∗ = Σ−1

22 Σ21.

Theorem 1.1 Let yt, t = 1, . . . , T, be bivariate and given by

y1t = βy2t + u1t,

y2t = y2,t−1 + u2t,

where ui are i.i.d. (0,Φ). Then the optimal hedge coefficient for the portfolio st = y1t−βhy2t

at time horizon h is given by

β∗h = β + h−1φ−1
22 φ21 = h−1(β(h− 1) + βCorr),

and the minimal variance is

V ar(y1,t+h − β∗hy2,t+h|It) = φ11 − h−1φ12φ
−1
22 φ21.

Proof of Theorem 1.1. The portfolio st = y1t − βhy2t at horizon h is

st+h = y1t+h − βhy2t+h

= u1t+h − (βh − β)y2t+h,

using the first equation y1,t+h = βy2,t+h + u1,t+h. Then

V ar

((
u1t+h

y2t+h

)
|It
)

=

(
φ11 φ12

φ21 hφ22

)
,

and the optimal choice of βh for minimizing V ar(st+h|It)) is found from Lemma 1 as

β∗h − β = h−1φ−1
22 φ21

and the minimal variance is

V ar(y1,t+h − β∗hy2,t+h|It) = φ11 − h−1φ12φ
−1
22 φ21.

Using βCorr = φ−1
22 ξ21 = φ21φ

−1
22 + β the optimal hedge coefficient can be expressed as

β∗h = β + h−1φ−1
22 φ21 = β + h−1(βCorr − β) = h−1(β(h− 1) + βCorr).
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Theorem 1.2 Let yt = (y1t, y
′
2t)
′ ∈ R1+(n−1), t = 1, . . . , T be given by

y1t = β′y2t + u1t,

y2t = y2t−1 + u2t,

where ui are i.i.d. (0,Φ). Then the optimal hedge coefficient for the portfolio st = y1t−β∗′h y2t

at time horizon h is given by

β∗h = β + h−1Φ−1
22 Φ21 = h−1(β(h− 1) + βCorr),

and the minimal variance is

V ar(y1,t+h − β∗hy2,t+h|It) = Φ11 − h−1Φ12Φ
−1
22 Φ21.

Proof of Theorem 1.2. The portfolio st = y1t − β′hy2t at horizon h is

st+h = y1t+h − β′hy2t+h = u1t+h − (βh − β)′y2t+h,

using the first equation y1,t+h = β′y2,t+h + u1,t+h. Then

V ar

((
u1t+h

y2t+h

)
|It
)

=

(
Φ11 Φ12

Φ21 hΦ22

)
,

and the optimal choice of βh for minimizing V ar(st+h|It)) is found from Lemma 1 as

β∗h − β = h−1Φ−1
22 Φ21

and the minimal variance is

V ar(y1,t+h − β∗′h y2,t+h|It) = Φ11 − h−1Φ12Φ
−1
22 Φ21.

Using βCorr = Φ−1
22 ξ21 = Φ−1

22 Φ21 + β the optimal hedge coefficient can be expressed as

β∗h = β + h−1Φ−1
22 Φ21 = β + h−1(βCorr − β) = h−1(β(h− 1) + βCorr).

Theorem 2.1 Let (y1t, y
′
2t)
′ ∈ R1+(n−1), t = 1, . . . , T be given by

∆yt = αγ′yt−1 + ut,

where ut are i.i.d.(0,Ξ) and α and γ are n×r matrices, and the eigenvalues of ρ = Ir+γ
′α are

inside the unit circle. Then the optimal hedge for the portfolio st = y1t−β′hy2t = (1,−β′h)′yt+h
at time horizon h is given by

β∗h = Σ−1
h22Σh21,

where

Σh = V ar(yt+h|It) =

(
Σh11 Σh12

Σh21 Σh22

)
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is given by

Σh = hCΞC ′ − α(γ′α)−2(Ir − ρh)γ′ΞC ′ − CΞγ(Ir − ρ′h)(α′γ)−2α′

+ α(γ′α)−1[
h−1∑
i=0

ρiγ′Ξγβρ′i](α′γ)−1α′,

and C = γ⊥(α′⊥γ⊥)−1α′⊥. The minimal variance is

V ar(y1,t+h − β∗hy2,t+h|It) = Σh11 − Σh12Σ
−1
h22Σh21.

Proof of Theorem 2.1. The portfolio is st+h = (1,−β′h)′yt+h and

Σh = V ar(yt+h|It) =

(
Σh11 Σh12

Σh21 Σh22

)
.

The result in Lemma 1 gives the minimizing value of βh as

β∗h = Σ−1
h22Σh21,

and the minimal variance

V ar(y1,t+h − β∗hy2,t+h|It) = Σh11 − Σh12Σ
−1
h22Σh21.

Thus we only need to find Σh. From the equations we find that the cointegrating relation
γ′yt is an AR(1) process with autoregressive parameter ρ = Ir + γ′α,

γ′yt = ργ′yt−1 + γ′ut.

Under the assumption that the eigenvalues of ρ are inside the unit circle, the stationary
solution is γ′yt =

∑∞
i=0 ρ

iγ′ut−i, such that

γ′yt+h =
h−1∑
i=0

ρiγ′ut+h−i +
∞∑
i=h

ρiγ′ut+h−i

=
t+h∑
i=t+1

ρt+h−iγ′ui + ρh
∞∑
i=0

ρiγ′ut−i =
t+h∑
i=t+1

ρt+h−iγ′ui + ρhγ′yt.

Because α′⊥yt is a random walk we find

α′⊥yt+h =
t+h∑
i=t+1

α′⊥ui + α′⊥yt.

Using the
In = γ⊥(α′⊥γ⊥)−1α′⊥ + α(γ′α)−1γ′ = C + α(γ′α)−1γ′,

we then find

yt+h = (C + α(γ′α)−1γ′)yt+h

=
t+h∑
i=t+1

(Cui + α(γ′α)−1ρt+h−iγ′ui) + (C + α(γ′α)−1ρhγ′)yt = z1t + z2t,
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where z1t is independent of the past It and therefore z2t. Therefore we get, using
∑h−1

i=0 ρ
i =

(Ir − ρ)−1(Ir − ρh) = −(γ′α)−1(Ir − ρh), that

Σh = V ar(z1t) =
h−1∑
i=0

[C + α(γ′α)−1ρiγ′]Ξ[C ′ + γρ′i(α′γ)−1α′]

= hCΞC ′ − α(γ′α)−2(Ir − ρh)γ′ΞC ′ − CΞγ(Ir − ρ′h)(α′γ)−2α′

+ α(γ′α)−1

h−1∑
i=0

ρiγ′Ξγρ′i(α′γ)−1α′.
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Figure 1: Optimal hedge coefficient β?h under limited mean reversion and high covariance.
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Figure 2: Volatility of various portfolios under limited mean reversion and high covariance
for the correlation hedge βCorr (thick line), the cointegration hedge β (thin line) and for the
optimal hedge β?h (dotted line) for different holding periods.
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