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Estimation of Risk-Neutral and Statistical Densities by Hermite Polynomial 
Approximation: With an Application to Eurodollar Futures Options 

This paper expands and tests the approach of Madan and Milne (1994) for pncmg 

contingent claims as elements of a separable Hilbert space. Madan and Milne point out that 

pricing in terms of a Hilbert space basis is analogous to the use of discount bonds as a basis for 

pricing fixed income securities or the construction of branches of a binomial tree in pricing 

options. The application of Madan and Milne's approach used here specializes the Hilbert space 

basis to the family of Hermite polynomials. 

Using this approach we infer the underlying risk-neutral density from traded security 

pnces. There has been considerable interest recently in pricing contingent claims based on implied 

distributions. Examples include Longstaff (1992, 1995), Shimko (1993), Dupire (1994), 

Rubinstein (1994), Derman and Kani (1994), Jackwerth and Rubinstein (1995), Ait-Sahalia and 

Lo (1995), and Dumas, Fleming, and Whaley (1996). Empirical work has been confined to the 

S&P 100 and S&P 500 index options. Aside from considering a different market-short-term 

interest rate options~what sets our work apart from these studies is that the Hilbert space basis 

approach is amenable to standard econometric tests. We also perform extensive out-of-sample 

tests of the pricing of our model that corroborate the parametric statistical tests of different 

specifications of our model. Finally, we estimate the actual or statistical probability density and 

compare its characteristics with those of the risk-neutral density. 

This paper presents a new result that extends Madan and Milne (1994). Their original 

model could only be applied to one option maturity class at a time. This current work derives a 

restriction on the coefficients weighting the Hermite polynomial basis elements that allows us to 

use all traded option maturities jointly in estimation. This is analogous to Derman and Kani' s 

construction of an implied binomial tree using all available options. 
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We apply the Hermite-polynomial-basis approach to the pricing of call and put Eurodollar 

futures options traded at the Chicago Mercantile Exchange (C:ME). The Black-Scholes model is a 

parametric special case of the Madan and Milne model. As in the Black-Scholes mode~ interest 

·rates are assumed to be constant. Nevertheless, the Black (1976) model is widely used to price 

Eurodollar futures options, and, in fact, the Pit Committee at the C:ME uses this model (together 

with Barone-Adesi/Whaley 1987 early-exercise approximation) to price illiquid options in their 

determination of settlement prices. Flesaker (1993) and Grinblatt and Jegadeesh (1994) have 

shown that the difference between forward and futures contracts in the Eurodollar market is 

negligible for maturities under one year. The effect of a stochastic discount factor on valuation 

does not appear to be critical for short-dated options; therefore, we restrict our investigation to 

options maturities of less than nine months. 

Another concern is that Eurodollar futures options are American-style options, but our 

model does not value the early-exercise feature of these options. Ramaswamy and Sundaresan 

( 198 S) have shown that the value of the early-exercise feature for futures options is very small. 

Nevertheless, we check the sensitivity of our results to this omission by excluding in-the-money 

options. Our ignoring early exercise does not appear to bias our results. 

For the 1990-1994 sample period as well as subperiods, we reject the Black model in 

favor of a four-parameter Hermite polynomial model. This is not surprising since we have three 

extra degrees of freedom to fit in sample. However, the jointly estimated four-parameter model is 

rejected when tested against an unrestricted four-parameter model estimated separately by option 

maturity. The apparent cause of the rejection is the upward slope of the term structure of forward 

volatility (also reported by Amin and Motton 1994). The model assumes a flat volatility structure. 

The unrestricted results indicate skewness and excess kurtosis in the implied risk-neutral density. 

These characteristics of the distribution are also mirrored in the statistical density estimated from 

a time series on LIBOR. 
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Out-of-sample tests using the four-parameter model versus a two-parameter model that 

does not allow for skewness or excess kurtosis were conducted. Although the gain was small 

from using the four-parameter model, the consistency of better performance was high: 95 percent 

of the out-of-sample days showed smaller mean absolute and root mean square errors. This result 

holds equally well when in-the-money options are filtered out of the sample. 

The paper is organized as follows: Section I reviews the framework of Madan and Milne 

(1994) and gives an overview of the density measures to be estimated. Section 2 gives an 

exposition of option pricing using a Hermite polynomial basis and provides an explicit 

representation of a four-parameter risk-neutral density. Section 3 introduces the corresponding 

statistical density. Section 4 presents the application of the model to Eurodollar futures options. 

The estimation approach is reviewed and estimation results for both the risk-neutral and statistical 

densities are summarized and interpreted. The fit of the model is evaluated both in- and out-of-

sample. Section S offers concluding remarks. 

1. A Review of the Hermite Polynomial Basis for Pricing 

In this section we describe the model setup and assumptions underlying the Hermite 

polynomial approximation approach. Madan and Milne (1994) develop a model for valuation of 

contingent claims and static hedging strategies by identifying a set of "basis" claims and pricing 

them. The model has the following assumptions. There is an underlying probability space 

(f!,F,P) for time t E[O,T] with a complete, increasing, and right-continuous filtration 

{ r; \ 0::;;. t::;;. T}, generated by a d-dimensional Brownian motion z(t) initialized at zero. There 

exists a finite set of d primary securities that can be traded continuously. There also exists a risk-

free or money market account that grows in value at an instantaneous rate given by a positive 

process, r(t). The theoretical economy includes a finite set of assets that can be traded 

continuously. The model shifts to a discrete-time setting for pricing and hedging a wide class of 
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contingent ciaims, which are expressed as functions of the primary assets at specific discrete 

points in time. This is the first step in the discretization of the model that makes static hedging 

strategies feasible. 

The functional dependence of the contingent claims on the primary assets is assumed to be 

very general and covers a very wide variety of real-life contingent claims. The next major 

assumption of the model is that the set of all contingent claims is rich enough to form a Hilbert 

space that is separable and for which an orthonormal basis exists as a consequence. The markets 

are assumed to be complete and free of arbitrage opportunities. This has the same flavor as 

valuation in continuous time, in which contingent claims are redundant. However, in discrete time, 

the set of contingent claims forming the basis for the Hilbert space has a static usefulness akin to 

that of the set of Arrow-Debreu securities. The set of contingent claims forms a minimally 

statically spanning collection of claims, which can be used to value and statically hedge any other 

contingent claim. Consequently, dynamic portfolio rebalancing is unnecessary. 

The price one pays for this setup lies in the dimensionality of the orthonormal basis set, 

which typically can be very large and in general does not give any operational advantage in 

describing or pricing the basis. However, one can construct a finite basis and use it for pricing and 

hedging strategies. Once the basis representation of claims and the claim representation of basis 

elements are obtained, valuation and hedging-static or dynamic-of any other claim are feasible. 

The critical assumption for obtaining an operational basis is that only a finite number of 

basis elements need to be "financed" for the hedging of contingent claims. This financing is 

accomplished by inVesting in a suitable set of assets. Use of only a finite number of basis elements 

introduces a "basis" risk~in the futures market sense of the term-to using this approach. It is 

important to note that this approximate hedge is technically a Hilbert space approximation in that 

the difference between the actual claim cash flow and the hedge cash flow is a random variable 

with an arbitrarily small mean and variance. In other words, there may be instances, albeit with 
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appropriately small probabilities, when the hedge cash flow differs greatly from the required cash 

flow. The magnitude of the basis risk depends on the validity of the underlying probability model 

assumed (i.e., model error) and also on the finite Hilbert space approximation employed (i.e., 

approximation error). 

For practical applications of the approach, the model is restricted to a finite set of 

embedded discrete-time equivalents of the underlying continuous-time stochastic processes 

driving the money market and primary assets. Thus, contingent claims are functions of finitely 

many variables, and the Hilbert space is consequently separable with a finite basis. 

The next major step in the application of the model lies in the change of measures. We 

defined above the existence of the probability space (n,F,P). However, an effective basis cannot 

be constructed without a complete knowledge of P, which is typically unknown to the 

practitioner. Madan and Milne rely on an approach developed by Elliot (1993), in which there is a 

change of measure from P to a reference measure R. The latter is assumed to be Gaussian in a 

discrete context. This change of measure introduces errors or deviations that are assumed to be 

sufficiently well bounded. 

Finally, while we assume the structure of the reference measure R, what we have in 

practice, through discrete-time observation of the evolution of the prices (or returns) of both the 

primary assets and the contingent claims, is a statistical discrete-time model ( 6., F, R) that is 

assumed to be a sufficiently close approximation of (n,F,R). 

With all of these assumptions and approximations in hand, we proceed with the exercise of 

identifying the "basis" set and valuing the various contingent claims. In the application of the 

model, we assume that there is only one primary asset and that the Hilbert space may be viewed 

as the space of functions defined on RM, where M represents the number of sample observations 
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at discrete times over the interval (0, T]. The probability measure R is assumed to be Gaussian 

with a Hennite polynomial basis (Rozanov 1982). 

The statistical density P(z) or risk-neutral density Q(z) can be represented as a product 

of a change of measure density and a reference measure density: 

P(z)= v(z)n(z), 
Q(z) = .i(z)n(z), 

(!) 

where u(z) and A(z) are the statistical and risk-neutral change of measure densities, respectively. 

The reference measure density, R(z) = n(z);;::;: ( 1/ J27f)e-zJ12
, is the standard Gaussian derlsity, 

where z is a standardized normal random variate. The focus of the analysis of this paper is on the 

specification and estimation of the change of measure densities. The change of measure densities 

must be bounded above and below by constants for the Hilbert space to be identical with respect 

to both measures. The analysis applies in any case to claims that are reference-measure square 

integrable. Given this assumption and that of Gaussian random process generating uncertainty, a 

basis for the Gaussian reference space may be constructed using Hermite polynomials. These 

polynomials are defined in terms of the normal density as 

'o'n(z) 1 <l>,(z)= (-1) - - -·-·, 
oz' n(z) 

and normalized to unit variance 

¢,(z) = <l>,(z)/ Jki .1 

The Hennite polynomials form an orthonormal system. 

(2) 

(3) 

Although Madan and Milne show how to price multiple assets in terms of the Hermite 

polynomial basis, we work exclusively with the simpler case of a single asset (also exposited in 
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Madan and Milne) and a one-dimensional Gaussian reference measure. We suppose that under the 

reference measure the asset price evolves as geometric Brownian motion: 

(4) 

with drift rateµ, variance rate a, and z1-N(O,l}. All parameters are assumed to be constant.2 

The risk-free rate is also assumed to be constant. The exponent in equation (4) is the continuously 

compounded return process 

(5) 

This process will be applied below for the case of LIBOR, where LIB OR is substituted directly 

for the asset price in (4) and thus LIBOR's dynamics.will be assumed to follow geometric 

Brownian motion. Of course, the interpretation of 1/ as a return process does not apply for an 

interest rate. 

The parameters of the risk-neutral change of density measure A( z) are estimated from 

Eurodollar futures options prices. The parameters of the statistical change of density measure 

v(z) are estimated from the underlying interest-rate process using a time-series on LIBOR. 

2. Option Pricing Using a Hermite Polynomial Basis 

Madan and Milne show that any contingent claim payoff g( z) can be represented in terms 

of the Hermite polynomial basis as 

-g(z)= L;a,¢.(z), (6) 
.t"'o 

where 
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• 
a,= J g(z),,(z)n(z)dz. 

The at coefficient is the covariance of the k-th Hermite polynomial risk with the contingent claim 

payoff, and may be interpreted as the number of units of the k-th basis-element contingent claim 

?t(z) to hold in a portfolio that replicates the contingent claim payoff. The price of this 

contingent claim is expressed as 

• 
V[g(z)] = L:a,ir., (7) 

k=O 

where 1ft is the implicit price of Hermite polynomial risk ¢t(z). The market price of risk :rt may 

be interpreted as the forward price, for delivery upon the contingent claim's maturity, of basis-

element contingent claim ¢"{z). 

Equation (7) is the primary focus for our empirical work, and its empirical counterpart is 

discussed below. Given the structure of the contingent claims and the assumed probability mode~ 

the Hennite polynomial coefficients a, are well defined and hence the ir, can be inferred from the 

observed prices. 

The payoff function g( z) is specialized to standard European call and put payoffs in the 

empirical work below. The call option payoff is denoted by 

c(z S r µ u t) = [S e µt+a/i:-a
1
t1 2 - x]• 

' 0. ' • ' 0 (8) 

and the put option payoff by 

p(z S r µ" t)=[x-S eµ1+a/i.--<11r12f 
• O• ' > ' G • (9) 

The call option payoff can be expressed in terms of the Hennite polynomial basis using a call 

option generating function 
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• 
~( S )- l J ( S t) -<•-•>'"dz ..., u, 0 ,x,µ,u,t - ---e._= c z, 0 ,x,µ,a, e , v2n: __ 

where u is a dummy variable in the generating function for Hermite polynomials: 

The a1r coefficients in ( 6) are defined as follows for the call option payoffs: 

(s )- o'<t>(u,S,,x,µ,a,t)\ _1_ 
a" 0 ,x,µ,a,t - Ou" 11=0 Jki.. 

Hence 4'.f> is a call option generating function. 

(10) 

(11) 

(12) 

Upon evaluating the integral in (10), the call option generating function has the following 

form, as reported in Madan and Milne (1994): 

<l>(u, S,, x, µ,a, t) = S,eµ•••"• N(d,(u))- x N(d,(u)), (13) 

where 

1 S, (µ ") r: d,(u) = r: ln-+ -+- vi +u, 
cr-vt x cr 2 

and 

d,(u) = d, (u)- cr.fi. 
The corresponding put option generating function is 

• 
"'( S )- l J ( S t) -<•-•l'"dz -r u, 0 ,x,µ,u,t - r;::;- p z, 0 ,x,µ,a, e . 

..;2tr _, 
(14) 

Put options have Hermite polynomial coefficients 
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b (S )- o''l'(u,S,,x,µ,cr,t)I _I_ 3 
k o,x,µ,a,t - /JuJ: 11=0 .Jk!. 

The empirical counterpart of equation (7), the option pricing equation in terms of the 

Hermite polynomial basis, is estimated below. As shown in Madan and Milne, setting the drift µ 

equal to the risk-free rate specializes the reference measure to the equivalent martingale measure 

under Black-Scholes, and the Hermite polynomial pricing model collapses to the Black-Scholes 

model under the parametric restriction yielding .<(z) = I. 

2. I The Risk-Neutral Density 

The risk-neutral density is given by 

Q( ) I ~ " "' ( )e-''" z ::; r;:;- £....i e n tY' /c z 
"\/2K t=O 

(15) 

with respect to the standard normal reference measure on z. In turn, the variate z may be 

expressed in terms of the return process 1/ as 

'!-(µ-er' 12) 
z-~~-~-~ 

- u!./t (16) 

Under the reference measure, z is normally distributed with the standard moments: 

z- N(O,I); Ez = 0, Ez' =I, Ez' = 0, Ez' = 3, .... (17) 

However, the actual risk-neutral distribution of z may be non-normal; thus, the more general 

density specification in equation (15). For the empirical work below, the Hermite polynomial 

expansion of the equivalent martingale measure is truncated at the fourth order. 

Using the definitions of the Hermite polynomials, the truncated density is shown explicitly 

to be: 

10 



Q(z)= _l ,-•'"[(/3 _/!i_+ 3/3, )+(/3 _ 3/33 )z 
,fl; 0 ..fi. J24 ' .J6 

+(/!i_- 5/3, )z' +/!i_z' +Az'] ..fi. J24 .J6 J24 

(18) 

where /3,, =en :r k, the future value of the k-th price of risk coefficient. Appendix A derives the 

central moments of Q( z) in terms of the fl 1i: • That derivation shows how the change of measure 

density, given by the bracketed term containing the /3,, in (18), alters the central moments of z and 

'f/ under the reference measure. 

2.2 Restrictions on the Market Prices of Risk across Time 

The market prices of Hermite polynomial risk are functionally related across time. The 

restriction has the following form: 

(19) 

where s < t . Appendix B shows the derivation of this restriction on the hypothesis that the 

measure change is path independent and volatility is constant. The practical implication of 

equation ( 19) is that all traded contingent claims can be used jointly in estimation of the 7r k's. 

Only the longest available maturity's prices of risk need to be estimated to infer all others. 

3. The Statistical Density 

The statistical density is sometimes referred to as the actual or the true probability density. 

It is estimated from the underlying price. The basic object for analysis is the asset return process, 

T/, the continuously compounded return. 

The fourth-order representation of the statistical density is 

11 



¥ )' 4 1 q-µ rT 

P(z) = '[,a,(>,(q-p_,fr +er Jt) ./le- ~' 
.t=O U 2 &u (20) 

This equation simplifies to 

(21) 

when a 0 =1 and at= 0, for k = 1 ... 4, i.e., if the reference measure is the actual probability 

measure. 

4_ Application to Eurodollar Futures Options 

This section estimates the prices of Eurodollar futures options by Hermite polynomial 

approximation and tests the restrictions on the model. The reference measure parameters and 

market prices of third- and fourth-order Hermite polynomial risk are estimated by a G:rvfM 

procedure that uses a nonparametric kernel estimator for the covariance matrix. These estimates 

are used to construct a daily time series of the risk-neutral density. The out-of-sample 

performance of the four-parameter model is compared with that of the two-parameter model. 

4. J Data and Institutional Background 

The futures and options price data in this study consist of daily closing prices for all three-

month Eurodollar futures and options contracts traded at the Chicago Mercantile Exchange. The 

sample period covered January 1990 through September 1994. LIBOR is the rate of interest paid 

on three-month time deposits in the London interbank market. The interest is paid in the form of 

an add-on yield, calculated on a 360-day calendar basis, for a $1 million deposit, which is also the 

notional size of both the Eurodollar futures and futures options contracts. 

Eurodollar futures contracts mature in a quarterly cycle, with contracts maturing two 

London business days before the third Wednesday in March, June, September, and December. 4 

On any day, Eurodollar futures are traded for these months out to ten years in the future, with 

12 



substantial open interest for contract months running out about three years. The price of the 

Eurodollar futures contract is an index value constructed as 100 minus the add-on yield expressed 

as a percent. The minimum index movement, the tick size, is one basis point, or $25. 

Quarterly Eurodollar futures options expire simultaneously with their underlying futures 

contracts and are cash settled. If an option is exercised, the Eurodollar futures call writer (seller) 

becomes short one Eurodollar futures contract while the call purchaser receives one long 

Eurodollar futures contract. Eurodollar futures calls gain value as the index rises and LIBOR falls. 

At expiration, the CME automatically exercises options that are in the money, resulting in an 

immediate marking to market of the futures position. The tick size for the Eurodollar futures 

options is also one basis point, implying a minimum price change of $25 for an option contract. 

Another important feature of Eurodollar futures options is that they are American-style options, 

which means that they can be exercised before their expiration date if early exercise is to the 

advantage of the option holder. 

The data set of option prices was filtered in two ways. First, they were filtered by time to 

expiration. Options were excluded that had less than 30 days to expiration. At such a short time 

horizon, these options contain little information about implicit distributions. Options with more 

than one year to expiration were also excluded. In addition to the concern mentioned in the 

introduction that the assumption of a constant discount factor becomes untenable as an 

approximation beyond this horizon, the volume of such options diminishes as well. These longer-

tenn options are less likely to represent equilibrium market prices. Second, the options were 

filtered by volume. The CME data set includes many options for which there was zero trading 

volume on a given day. The CME Pit Committee imputes an option price using the futures 

settlement price and the Black futures option model with Barone-Adesi/Whaley (1987) early-

exercise correction. 
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Figure 1 shows the daily aggregate volume across all option maturity classes for puts in 

the upper panel and calls in the lower during the January 1990 to September 1994 sample. There 

are a total of 1188 trading days. Figure 2 shows the range of "moneyness" for the options in the 

sample. Moneyness is defined as the ratio of strike, expressed as an interest rate, to LIBOR. The 

mean moneyness is just slightly out of the money for both puts and calls. 

The statistical density is estimated from a daily time series on LIBOR. The three-month 

LIBOR series used is the Financial Times London Interbank Fixing, which is a deposit rate for 

$10 million, computed as the arithmetic average of rates at five banks quoted at 11:00 a.m. GMT. 

The banks are National Westminster Bank, Bank of Tokyo, Deutsche Bank, Banque National de 

Paris, and Morgan Guaranty Trust. 

4.2 Estimation 

We estimate the drift and variance rate parameters µ and u in the reference measure as 

well as the third- and fourth-order Hermite polynomial risk prices :r 3 and :r 4 in the change of 

measure density. 

The empirical counterpart of equation (7) is 

' C, = LJr,a,(µ,cr)+u, 
t=O (22) ' P, = L ,,.,b,(µ,u) + u1, 
k=O 

where C; is the price of the i-th call option and P1 is the price of the j-th put option in a daily 

panel of options. Appendix A shows that the lower-order :rt' s are restricted in estimation to be: 

n 0 = e-rt, :r1 = 0, and :r2 = 0. Equation (22) is estimated restricted and unrestricted with regard to 

the treatment of time to maturity. The restricted version stacked all puts and calls across all 

maturities and imposed the restriction derived in Appendix B that relates :r" of different 

maturities. The unrestricted version estimated all four parameters separately by option expiration. 
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A standard nonlinear Wald test (see Judge et al. 1985, pp. 215-216) is used as a formal test of the 

time-to-maturity restrictions. The Black-Scholes restriction thatµ= r, ;r3 = 0, and ;r4 = 0 is also 

tested by a nonlinear Wald statistic for the restricted and each of the unrestricted runs by option 

expiration. 

The error terms u; and u1 are assumed to arise for two reasons: (1) the infinite dimension 

basis representation of the contingent claim price is truncated to a finite dimension and (2) the 

market prices of traded claims are assumed to be noisy (e.g., some settlement prices may be based 

on relatively "stale" prices) and not necessarily the true equilibrium prices. 

Equation (22) is estimated using a G:MM procedure in which a quadratic form, 

u'(B)W(B)u(B), in the error pricing vector u is minimized with respect to a weighting matrix 

W(B), where 8 is the parameter vector. The standard GMM covariance matrix is 

where D(0) is the Jacobian matrix iJu I iXl and S = E( u(ll)u'( 11)]. 

The usual GMM covariance matrix cannot be used in our application because our time and 

panel data series on option prices have irregular dimensions. The number of calls and puts 

available each day was screened by volume and consequently varies over time. Our solution to 

this problem is to use a kernel estimator for the cross-moment matrix of the errors, u(B)u'(B). 5 

The kernel estimator allows us to interpolate values for the cross-moment matrix based on a 

rolling sample of errors in a window including the current observations and lagged observations 

on u. We used a 20-day window. The cross-moment estimator has the following form: 

(23) 

where 
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w(x;. x
1

, t,, 1
1

, x, x',t, t') = 

exp(- ~(x; - x,x i - x', t; - t, ti - t')V-1 (x,. - x,x1 - x', t; - t, ti - t')'] 
~-e~xp~[--i-(;;-_:;-;-_:;.;-_ t t. - t')V-'(x------~- x - x' t - t t. - t')'] 
t:..J 2•'J'•'J ''J'•'J 
' 

is a Gaussian kernel with weighting matrix 

h, 0 

V= h, 
h, 

0 h, 

(24) 

The u's have two arguments: moneyness x and time to maturity t of the option to which they 

correspond. The cross-moment matrix element for an option with moneyness x' and time to 

maturity t' is a function of all current errors and errors in the lag window. (In order to preserve 

the underlying covariance structure of calls and puts, cross moments involving two calls, two 

puts, or call and put are kept distinct in applying the kernel.) These errors are weighted by matrix 

w, which is a Gaussian weighting matrix commonly used in kernel estimation (see Silverman 

1986). The matrix ir determines the degree of smoothing for the kernel, i.e., the "band-width." 

The number of days in the lag window is T, and N, is the number of options included in the 

sample on date t. 

In practice, the cross-moment matrix constructed using (23) failed to be positive definite. 

However, a detailed examination of the errors revealed that the cross correlations were unstable 

over time and appear to average out to zero. To achieve positive definiteness, a damping matrix 

was applied to the off-diagonal elements of the cross-moment matrix. This matrix consists of ones 

on its diagonal and a constant less than one for each off-diagonal element. An off-diagonal value 

of .3 was the threshold at which the matrix usually became positive definite. The resulting 

parameter standard errors rose monotonically as the damping value was driven to zero. A 
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diagonal cross-moment matrix turns out to be a conservative choice. (In fact, the resulting 

standard errors using the diagonal kernel are quite similar to, though generally slightly smaller 

than, the standard errors from using a homoscedastic diagonal covariance matrix using the 

contemporaneous u vector.) Since the off-diagonal covariances are assumed to be zero, the kernel 

was applied only to on-diagonal cross moments in the lag window. 

As discussed below, the time-to-maturity restrictions of the model are rejected. 

Consequently, the diagonal covariance matrix is less tenable for the restricted runs. However, the 

key Wald tests below are evaluated using the covariance matrix estimated from the unrestricted 

model. 

4.3 Estimation Results 

Restricted Model 

The output of the daily nonlinear Hermite polynomial regression runs for the restricted 

model is summarized in Figures 3 and 4. The daily time series for the point estimates of each the 

four parameters, µ, u, tr 3 , and tr 4 , are sh6wn, with two standard error bounds around them. 

The basic findings are: (1) the risk-neutral drift µ is usually insignificantly different from 

zero; (2) a is very tightly estimated and peaks around the time of the breakdown of the European 

Exchange Rate Mechanism; (3) the market price of skewness tr1 was insignificantly different from 

zero in 1990-1991, often negative during 1992, usually negative in early 1993, and then positive 

through the rest of the sample; and ( 4) the sample uniformly shows significant excess kurtosis, 

with a positive value of tr4 . (Appendix A shows that skewness and kurtosis are directly 

proportional to tr 3 and tr 4 , respectively.) 

The nonlinear Wald test of the Black-Scholes restrictions is usually strongly rejected, 

except in isolated, short periods of the sample. [To conserve space, the Waid test results are not 

reported. 6] Acceptance of the Black-Scholes null usually coincides with a relatively flat forward 
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volatility curve, which often occurs at times of high volatility. The forward volatility curve for 

LIBOR usually slopes upward out to a one-year maturity. 

The residuals from regression (22), i.e., the pricing errors, were tested for any remnant of 

the volatility smile. Linear regressions were run, separately for puts and calls, of each day's 

pricing errors from the restricted four-parameter model on moneyness, moneyness squared, time 

to maturity, and time to maturity squared. If the four-parameter model "flattens" the volatility 

smile, the R2 's should be zero. In fact, they are never close to zero. This is largely a reflection of 

a key result in the next section on the unrestricted model: the restricted model is rejected, hands 

down. The time to maturity regressors are also usually significant in the daily regressions. 

However, the regression results indicate nothing about the magnitude of the errors. This is 

assessed in Figure 5, which shows the daily mean absolute error (MAE) and root mean square 

error (RMSE), where the unit of measurement is a basis point. Both measures are usually much 

less than one basis point, the minimum tick size for price movements. The MAE and RMSE are 

also usually close together, indicating that the residual smile is not that pronounced, even though 

it is statistically significant in the regressions. However, there are frequent, large spikes in the 

RMSE relative to the MAE. 

Unrestricted Moel~ 

The results for the unrestricted model are presented in a similar format to those from the 

restricted model. To summarize those results, the time series of parameter estimates were 

stratified into two subsamples that derived from options with minimum and maximum maturities, 

respectively. The minimum and maximum maturity sample results are presented in separate 

panels. For the 1990-1994 sample, the minimum maturity options had a mean time to maturity of 

75 days with standard deviation of 27 days; the maximum maturity options had a mean time to 

maturity of 225 days with standard deviation of 28 days. A check on the robustness of the results 

was done by filtering out all of the in-the-money options and rerunning the Hermite polynomial 
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regressions. Because the results for the full and filtered samples turned out to be so similar, only 

the latter appear in the following figures. 

Figures 6-9 show respectively the daily time series for the point estimates of each the four 

parameters,µ, a, tr3 , and 1r4 , with two standard error bounds around them. Especially for the 

filtered sample, the kernel estimator produces apparently excessively wide confidence bounds 

episodically. Qualitatively, the results for the minimum and maximum maturity series are similar to 

those reported for the restricted model. In Figure 8, there is significant skewness for the minimum 

maturities in early 1993 and somewhat later in 1993 for the maximum maturities. Excess kurtosis 

is more evident in Figure 9 for the minimum maturity series than for the maximum maturity series. 

Recall that the confidence bounds were computed using the diagonal kernel estimator described in 

the previous section. The full kernel (with damped off-diagonal cross-moment elements) would 

produce much tighter confidence bounds. 

Figure 10 shows thep-values from the daily nonlinear Wald tests of the time-to-maturity 

restrictions. The panels of this figure summarize the tests of the restricted value of the parameters 

for a given maturity option versus their unrestricted values. The restrictions are rejected much 

more frequently for the shorter-term options: rejection at the 5 percent level occurs for 92 percent 

of the sample days for the minimum maturity options as compared with 65 percent for the 

maximum maturity options. 

Figure 11 reports the p-values from the Wald tests of the Black-Scholes restrictions 

applied to a given maturity class. The Black-Scholes specification is also rejected more frequently, 

in 94 percent of the sample days, for the minimum maturity options as compared with 86 percent 

for the maximum maturity options. 

The diagnostic regressions for the volatility smile in the pricing errors again indicates that 

even for the unrestricted model, the R2 's tend to be high for both calls and puts. However, Figure 
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12 shows that the MAE's and RM:SE's are small, and, in contrast to Figure S for the restricted 

model, the gap between the two measures is smaller, with fewer large outlier spikes. 

Using the parameter estimates and equation (18) for Q(z), Figure 13 shows the risk-

neutral density, contrasting the 1990-1992 subperiod with the 1993-1994 subperiod. The upper 

plot is derived from options with the longest maturities in the sample; the lower, from options 

with the shortest maturities. For both maturity extremes, skewness reverses sign and kurtosis 

decreases going from the 1990-1992 to the 1993-1994 subperiod. The statistical significance of 

these shifts is clear from Table I, which gives the sample means for tr3 and tr4 for the two 

subperiods and two maturity groups. While statistically significant shifts in 7r3 and tr4 occurred, 

their economic significance is open to question. The latter is investigated using out-of-sample 

performance measurements of the four-parameter Hermite polynomial model. 

Out .of· Sample.I es ts 

The out-of-sample performance of the four-parameter model is compared with a 

separately estimated two-parameter model. Both the full-moneyness sample and the filtered (out-

of-the-money and at-the-money) sample were used in estimation. The two-parameter model 

includes only µ and u. All parameters are estimated on a given day and then plugged into the 

models on the next trading day. The daily pricing errors are analyzed using the MAE and RMSE 

measures. 

Figure 14 shows the daily time series for the in-sample MAE and RMSE for each model 

for the filtered sample. The results for the full-moneyness sample were very similar and are not 

graphed. Figure 15 shows the four-parameter model's in-sample versus out-of-sample 

comparisons for the MAE and RMSE. It is clear that the four-parameter model consistently beats 

the two-parameter model-particularly from mid.1993 to the end of the sample, when skewness 

is significant. Although there are a number oflarge spikes, the out-of.sample MAE's and RMSE's 

are usually less than the tick size. 
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Table 2 summarizes the out-of-sample results. The times series averages of the daily 

MAE's and RMSE's were computed along with their standard errors. For the overall sample, the 

mean MAE is about .25 basis points. regardless of whether in-the-money options are included in 

estimation. The similarity of results gives some assurance that the use of a European pricing 

model instead of an American one is inconsequential in this application. Most strikingly, the four-

parameter model had lower MAE and RMSE in about 95 percent of the sample days. 

The key finding is for the 1993-1994 subsample. Here mean MAE and RMSE are about 

.4 basis points, and the superior performance of the four-parameter model is realized in 97 to 98 

percent of the sample days, again for both full-moneyness and filtered samples. The gain to 

accounting for skewness and kurtosis is slight-less than the tick size-but it is extremely 

consistent and essentially costless to realize. The additional computational effort is negligible. We 

would like to note that dollar value of the gain becomes more economically significant for 

positions involving multiple contracts. 

Interpreta,tion 

Our reference measure is one under which the underlying primary asset value process (in 

our case LIBOR) is geometric Brownian motion with drift µ and variance rate a. Initially, we 

assume that µ and u are constant for the entire sample time horizon such that there is a well-

specified relationship between the basis prices 1f t for different times to maturity. This is equation 

(19) above, repeated here: 

for s < t and where k is the k-th basis element. 

The restrictions have been derived in a preference-free setting commonly employed in 

option pricing models. Equivalently, as shown in Appendix C, this relationship is consistent with 

an economy in which investors maximize their terminal consumption or wealth and their 
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preferences do not depend on the price path of the underlying asset. The appendix gives the 

technical conditions on the risk-neutral and reference measures in order for equation (19) to hold. 

The intuition of those conditions is that with constant parameters µ and a, the 

preferences are such that investors care only about tenninal consumption. In an asset pricing 

context, the investors' marginal utilities depend only on the final asset price, not the path followed 

by that price. In other words, empirical rejection of (19) could imply that investors' utilities may 

depend on intermediate consumption. This implies that the relationship between basis prices at 

different dates is more complex than that derived in Appendix B. 

An alternative reason for the rejection of the deterministic restrictions of equation (19) 

could be that µ and a do vary over time as functions of some other state variables. In fact, 

Madan and Milne's general model does specify that µ and a could be functions of another 

Markov process ~(1). 7 With time-varyingµ and a, we would have to explicitly specify the ,g(t) 

process and the functional dependence of the parameters on that process in order to derive 

restrictions similar to (19), which could then be empirically verified. Under this assumption we 

make no claims about investor preferences. 

In our empirical tests, we retained the constant parameter assumption and also estimated 

an unrestricted model, i.e., one without restriction (19). A justification for the unrestricted model 

is that contingent claims can be arranged in different maturity classes and that each maturity class 

is driven by a separate, but possibly correlated, Wiener process, with similar Hennite polynomial 

representations. As discussed above, the unrestricted model performed well. 

We recognize the need for a more general setup that incorporates time-varying 

parameters, with corresponding relationships between the parameters for different maturity 

classes. The unrestricted model effectively implies separate Wiener processes for different option 

maturities. However, all of the options are claims on the same underlying asset; therefore, the 

treatment of the unrestricted model appears to be ad hoc. 
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However, while there may be only one underlying Wiener process driving the primary 

asset value directly, there may be several other Wiener processes (through ;(t)) that affect the 

asset values through their impact on µ and CT. Our unrestricted Hermite polynomial regression 

results may be giving indirect evidence on the impact of the state variable or stochastic process 

.;(t), with its own embedded discrete-time representation. 

Thus, estimation of the Hermite polynomial regression parameters separately for different 

maturities is defensible. The fact that the µ 's and CT 's, especially the latter, are different for 

different maturities makes the unrestricted approach more reasonable and more valuable in 

practical applications than the full restricted model. 

Statistical Density 

The statistical density given by equation (20) was estimated by maximum likelihood using 

the Financial Times London Interbank Fixing for three-month LIBOR. The full-sample standard 

deviation,(]", of25 percent reported in Table 3 for LIBOR exceeds the 199().-1994 average 20 

percent value of the daily CT estimates from the risk-neutral density estimation. This discrepancy is 

largely the result of the volatility spike in late 1992. For the entire sample, the a 3 coefficient for 

skewness is insignificantly different from zero and that for kurtosis is .537, somewhat higher than 

the corresponding average value of fi3 for minimum sample maturities of . 461 and more than 

double the ft3 for maximum sample maturities of .214. However, skewness for the statistical 

density is significantly negative during the 199().-1992 subperiod, as it is for the risk-neutral 

density (see Table 1). 

The January 1993 to September 1994 subperiod shows no statistically significant 

skewness, unlike the subsample used in estimation of the risk-neutral tr3 . The kurtosis implied by 

a 4 is also relatively high. However, this result is sensitive to the inclusion of the month of January 

1993, during which LIBOR hardly moved, driving volatility down and kurtosis up sharply. Once 

January is excluded from the subperiod, a 3 is about .2, significant at the 5 percent level, and the 
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degree of significance increases as more early months are dropped from 1993.8 The a 3 value 

compares with a corresponding /33 of approximately three-quarters this size. Positive statistical-

density skewness is highly significant in 1994, mirroring that for the risk-neutral density. 

The three-month Treasury bill yield was also used to estimate equation (20). As expected, 

the results, reported in Table 3, are very similar to those from the LIBOR series. In contrast to the 

LIBOR series, the T-bill yield series shows significant positive skewness for the 1993-1994 

subperiod, including January 1993. 

Figure 16 displays graphs of the risk-neutral and statistical densities for the minimum and 

maximum maturity samples and the two subperiods. The risk-neutral density parameters used in 

generating these graphs are those from the filtered samples (in-the-money options excluded). The 

1993-1994 subperiod used for the graphs excludes January 1993. The most striking feature of 

these graphs is the close match of the two densities for the minimum maturity sample. (The 

corresponding graphs, not shown, for the option sample including the in-the-money options 

exhibits an even closer match for the minimum maturity sample.) The greater kurtosis of the 

statistical density relative to the risk-neutral is especially evident in the maximum maturity sample. 

5. Conclusion 

This paper expands and tests the approach of Madan and Milne (1994) for pncmg 

contingent claims as elements of a separable Hilbert space. We specialize the Hilbert space basis 

to the family of Hermite polynomials and use the model to price options on Eurodollar futures. 

Restrictions on the prices of Hermite polynomial risk for contingent claims with different times to 

maturity are derived. This allows all traded options to be used in estimation of the market prices 

of risk. However, these restrictions are rejected by our empirical tests of the four-parameter 

model. 
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We drop the market price of risk restrictions and estimate the model separately by option 

maturity. This can be justified as an indirect way to accommodate the likely time variation of the 

underlying parameters of the asset price dynamics, which the current model does not explicitly 

include. The out-of-sample performance of the unrestricted four-parameter model is consistently 

better than that of an unrestricted two-parameter version of the model, although the gain is small. 

The price of risk estimates for the restricted as well as the unrestricted models indicate 

skewness and excess kurtosis in the implied risk-neutral density. For both estimated risk-neutral 

and statistical densities, the sign of skewness changed from negative to positive after 1992. The 

statistical density has greater excess kurtosis than the risk-neutral density, especially when derived 

from longer-term option prices. In our sample, the risk-neutral density implied by shorter-term 

options closely matches the shape of the statistical density. 

Future work can test the static hedging properties of the model. In particular the Hermite 

polynomial coefficients have the interpretation of being basis-mimicking portfolios. If the Hermite 

polynomial coefficients for a contingent claim can be derived under this model, arbitrage-free 

pricing of these claims is feasible by Hermite polynomial approximation. Many contracts, such as 

path-dependent options, exotic options, swaps, etc., are candidates for this approach. 
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Appendix A: Central Moments of z and T/ under the Risk-Neutral Measure 

This appendix derives the moments of the return process TJ under the risk-neutral density 

Q(z). Under the reference measure, the first four central moments of 77 are 

E[T/] = µ-u' 12; 

E[(T/-E77)']=u' It; 

E[(T/-ET/)']=0; 

E[( T/-ET/)'] = 3u' / t'. 

For Q(z) to be a density, 

• 
f Q(z)dz = 1 

This is easily verified by substituting for Q(z) using equation (11) and using the moments of z 

from (12): 

Mean: 

The mean of z under Q( z) is given by 

• 3 3 
EQ[z]= fzQ(z)dz=/3,----r.:'/3,+ r;/3,=/3, 

-• "6 v6 
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Since 

the mean of 11 under Q( z) is given by 

"' " E0 [ 11]= µ--+ ..fi{J,. 
2 I 

Thus, p1 gives the mean shift of 1] relative to the reference measure. 

Variance: 

The variance of z and 11 under Q( z) are given by 

Eo[(z -E0z)'] =I+ J].p, - p;; 

E0 [(11-E0 11)2]= ~' (1+J2p, -p;). 

where the restriction that p(I = 1 is imposed (and is imposed for the remaining moments). 

Third Central Moment: 

E0[( z - Eo z )'] = ./6p, - 3../2{3,{32 - 2/3:; 

E0 [( 11- E011)'] = ~1: ( .f6p, -3../2{3,/3, - 2/3:) 
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Fourth Central Mome11t: 

E0[( z - EQ z)'] ~ 3 - 6/ii - 3p;' + Yi /i, + 6..fi./ii/i, - 4J6/i,/i, + ..fi.4/i,; 

E0 [( 'I- E0 T/)' l ~ ~: ( 3- 6/ii - 3/i: +Yi /i, + 6./2fii/i, - 4J6/J,/i3 + ..fi.4p,} 
Parameter Restrictions 

The reference measure parameters µ and CT can be specified arbitrarily. In this case, the 

estimated p" parameters fit the density Q(z) to the risk-neutral return process implicit in options 

prices. As shown above, p1 gives the mean shift for the mean of 17 under Q( z) relative to the 

reference measure, and similarly p, and p2 give the variance shift. On the other hand, ifµ and CT 

are estimated from options prices, they are estimated under the risk-neutral distribution Q(z) and 

no parameter shift is necessary. If we impose the condition that the first two moments of T/ under 

the transformed measure are equal to the true moments under the reference measure, p, and fi2 

must each equal zero. Therefore, the following restrictions can be imposed: Po= 1, p1 = 0, and 

p2 = 0. These restrictions were used in the estimation of equations (22) for Eurodollar futures 

options. 

With the foregoing restrictions, the third and fourth central moments simplify to the 

following: 
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Third Central Moment: 

Fourth Central Moment: 
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Appendix B: Restrictions on Basis Prices for Different Maturities 

This appendix derives the relationship between basis prices at different maturities. Let St 

denote the asset price at time t, and let r represent a constant interest rate paid by a money market 

account. We shall distinguish three stochastic processes that describe the behavior of S1 under 

three supposedly equivalent measures. 

Let P be the statistical measure on F that defines the probability or relative frequency of 

the occurrence of events. Hence for each set A EF the magnitude P(A) is the asymptotic relative 

frequency of occurrence of an even m E A, where we are capable of replaying history over the 

time interval [o, T] infinitely often_ 

Let Q be the risk-neutral or equivalent martingale measure also defined on (Q,F). 

Asymptotic relative frequency Q(A), for A EF, defines the time-zero price of trading in the 

futures market for T delivery of the claim that pays unit face value if OJ e A and zero otherwise. 
, 

Let R be the reference measure, also defined on F. For any set A EF, R(A) is the 

probability that OJ e A under measure R. The asset price process will have a simple description 

under the measure R. Suppose that under the measure R we may write that 

(Bl) 

for a standard Brownian motion z;. Alternatively, we have that under R the continuously 

compounded return 

z; ~ In(S,i S0 )/a-(µ! a- a I 2)t (B2) 

is a standard Brownian motion. In particular, the density of the continuously compounded return 

under the reference measure is normal with mean zero and variance t. Equivalently, the density of 

the standardized return 
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z, = z;/ ..Ji= rt/( a/ ..Ji)-(µ I a- a/ 2)../i 

is normal with mean zero and unit variance. (In accordance with the discrete-time setting of their 

model, Madan and Milne 1994 used the normalized variate z, in their derivations.) 

Consider the class of densities given by the collection of square integrable functions with 

respect to the standard normal density. Any such density may be written in the form of equation 

(15) in the text as 

• 
Q(z,,I) = Le"1r,(t)¢,(z,)n(z,), (B3) 

k:O 

where n(z) is the standard normal density and lf.t(t) is a square sununable sequence that has the 

interpretation of the forward price at time zero for delivery of the contingent claim ¢tCzr), when 

Q defines the risk-neutral density. 

Our working hypothesis is that both the risk-neutral and statistical densities for all 

maturities lie in this class. Hence the statistical density for z1 is 

P(z,,t) = v(z,,t)n(z,), (B4) 

where 

• 
v(z,, t) = L a,(1)¢, (z, ), 

.t=O 

and the risk-neutral density for z, is 

Q(z,,t) = .<(z,,t)n(z,), (B5) 

where 

• 
l(z,,I) = Le"1r,(t)¢,(z,) . 

.t=O 
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Note that under the reference measure the process z; = z1 Ji is a standard Br(iwnian motion with 

statistical and risk-neutral densities given on applying the change of variable fcrmula to equations 

(B4) and (B5) respectively by 

P'(z;,t) = }i >{z;/ Ji)n(z;/Jt) (B6) 

and 

(B7) 

We may also define the adapted processes for the Radon-Nikodym derivatives. First let A1 

be defined by 

A =E'[dQIF] I dR f > 

as the change of measure density process from the reference measure R to the risk-neutral 

measure Q. By construction the process A1 is an R martingale. 

Similarly, define the R-martingale process N1 by 

Consider now the process 

that defines the density of Q with respect to P. This is by construction a P martingale, and hence 

¢1tNt is an R martingale. It follows that 

<!> =-1 E'[N dQ I F]=-1 E'[N dQ dR IF]=~ 
t N TdP 1 N TdRdP r N 

' ' ' 
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The coefficient restriction on the market prices of risk f( k derived below is predicated on 

the hypothesis that 

/\, =J.(z;/..fi,t) (BS) 

for z;, a standard Brownian motion. 

The following derivation shows the relation between the market price of risk f( k at an 

arbitrary time t to the market price of risk f( k at an earlier time s. 

Conditional on F:. 

z;- N(z;,t- s). 

Equations (B7) and (B8}, z;, a standard Brownian motion, and At, an R martingale, imply 

(:;-:;i 
"' - 2(1-1) Ji 
J A.(z' I ..fi t)~--- -dz'= A.(z' I 's s) = A.(z s) 

1 , &.Jt-s 1 s -vs, ,, . -
Now make the change of variable in the integration of z1 = z; I Ji. This gives 

(:,./i-1,.Jsi 
"' e- 2c1-1) Ji J. A.(z,,t) ,,fiii~-dz, = A.(z,.s)_ 

This may be rewritten as 

(1,-1,./ilJii 
"' 2(t-1Yt 

J A.(z,,t) _}z;~ dz,= A.(z,,s)_ 
_ 2Jr (t-s)/t 

' ' -~ 

Now let us write the left-hand side as an inner product with respect to~. giving 
v2" 

Ifwe write 
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(B9) 

then the desired inner product is 

• • 
L"•(l)e"B, = L"•(s)e"¢,(z,)= 2(z,,s). (B!O) 
.t~o 

Multiplying (B9) by n(z,) gives 

From Hilbert space representation theory, we have that 

' -~ 

e '' ¢,(z,) r;;-dz,. 
-v2n: 

Hence, 

and from the definition of the Hermite polynomial generating function., 

we have that 

(Bl I) 

The desired coefficients are then 

(B12) 
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The exponent in (B 11) can be rewritten as 

_ (z·=-(~•~+u(!/~ ))
2 

__ u' +-u'(l_-_s) +-"JS_s_z, 
2(1-s)/1 2 21 ..ft · 

Substituting, we have 

[ -('"", "',_,'])' z, -:;t·-,-
r 1 ----------- -----···-··· 

ll"SI,_!!_ «le 2f.t-s')// 

<ti(u)=e--y,- 'L-&.j(t-s)ll dz,. (B13) 

The integral in (B13) is that of N( z, t + u(\~ s), 1 ~ s) over the whole range, and this is unity; 

thus, 

Using the generating function of the Hermite polynomials, this may be rewritten as 

" ' -~ !L "' e 1 uk~12 

<ti(u) = e' .J2;rL,¢,(z,)~ "''./k! 
t=O V27r t k! 

• ¢,(z,)s"'./k! u' 
= L 1k11 kr' 

k=O • 

and it follows from (B12) that 

B _ ¢,(z,)s"'' 
t - tk/2 

From (BIO), the desired inner product is 

~ "¢,(z,)I" '( £...7r1:(t)e tll = 11. z,,s). 
t=O f 

But we also have 
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Hence, 

or 

• 
.<(z,,s) = L tr,(s)en,P,(z,) ,,., 

"' Kk(t)err sk12 = Jr.t(s)en, 
I 

sk12 
tr (s) = tr (t)e'"-" -

k k lk/2" 
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Appendix C: An Interpretation of the Basis Price Restrictions 

The restrictions on the market prices of risk derived in Appendix B are predicated on the 

hypothesis that 

(CI) 

which is equation (BS) in Appendix B. This hypothesis is in fact strongly rejected by the data. One 

could ask which economic assumptions ensure the validity of equation (CI). In general, the 

process A= {A,, 0 s I,; T} is adapted to the filtration F = {F, I 0 s Is T} and A, is F, 

measurable. The A process does not reduce to a function of z; as stated in equation (Cl). 

Suppose that Ar were a function of just z;, say 

A,=L(z~). (CZ) 

This is a very special hypothesis in the context of asset pricing that asserts that marginal utilities 

depend on just the final asset price, independent of the price path taken. If preferences were for 

final wealth with no regard for intermediate consumption, then one would expect such to be the 

case. 

Now since under R the process z; is Markov, the expectation of A1 conditional on F; is a 

function of just z;, say g(z;). This gives us the validity of the expression 

A,= g(z;). 

For any bounded Borel test function h(z;), we have that 

EQ( h(z;J] = E"( A,h(z;)] 

= E"[E"[ A,h(z;) I F, ]] 

= E"(A,h(z;J) 

= E"[g(z;)h(z;)]. 
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But we also have by the definition of J.(z;/Ji,t) that 

(CS) 

It follows from (CJ), (C4), and (CS) that A,= J.(z;/Ji,t). Hence, the hypothesis tested and 

rejected in this paper is given by equation (C2). 
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Endnotes 

I. The Hennite polynomials through the fourth order are 

¢,(z) = l; 
¢,(z)=z; 

I ' ¢,(z)= ,/z(z -1); 

1 ' ¢,(z)= J6(z -3z); 

,I. 1 ' 1 ~.(z)= r,o:-(z -6z +3). 
v24 

2. Time-varying, deterministic drifts and volatilities can be used in the reference measure. See 
Madan and :Milne, p. 236, for technical conditions that must be satisfied. 

3. From Madan and Milne (1994), pp. 237-238, the b, coefficients can be obtained from the put-
call parity condition: 

<l>(u, S
0
,x,µ,u, t) - '¥(u,S

0
,x,µ, O', t) + x = S

0
e_.+.,.f,,,; 

4. The C:ME determines the final settlement price of the Eurodollar contract based on LIBOR 
prevailing in the cash market by the following procedure. On the last day of trading of a maturing 
Eurodollar futures contract, the CME polls sixteen banks that are active in the London Eurodollar 
market These banks are randomly selected from a group of no less than 20 banks. In the final 90 
minutes of trading, the CME asks these banks for three-month LIBOR quotes at a random time 
during this period and again at the close of trading. The CME specifically asks each bank for "its 
perception of the rate at which three-month Eurodollar Time Deposit funds are currently offered 
by the market to prime banks" (CME, 1994, Chapter 39, p. 3). The four highest and four lowest 
quotes at both the random and closing-time polls are eliminated and the remaining quotes are 
averaged together and rounded to the nearest basis point to give the LIBOR value for the 
detennination of the final settlement price. 

5. See Silvennan (1986) for an introduction to kernel estimation. Ai't-Sahalia and Lo (1995) use a 
kernel estimator for the option pricing function. 

6. The results are available from the authors. 

7. See Madan and Milne ( 1994 ), Assumption 3 .1. 

8. The low volatility estimate of .149 for 1993-1994 also increases to .22 when January is 

excluded. 
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Table 1 
Mean Subperiod Parameter Values for 

the Market Prices of Skewness and Kurtosis Risk 

Suboeriod 
1990-1992 

1993-1994 

Subrwriod 
1990-1992 

1993-1994 

Suboeriod 
1990-1992 

1993-1994 

Suboeriod 
1990-1992 

···--
1993-1994 

Maximum Maturity Sample 

"' -.040 
1.002) 
.118 

(.003) 

Minimum Maturity Sample 

"' . 
-.056 
1.003) 
.157 

(.004) 

Maximum Maturity Sample 
In-the-money Options Excluded 

"' .. 
-.031 

. (.002) -
.108 

1.003) 

Minimum Maturity Sample 
In-the-money Options Excluded 

"' -.038 
(.003) 
.131 

1.003) 

"• 
.247 

(.006) 
.139 

(.004) 

"• 
.477 

(.007) 
.422 

(010) 

"• 
.237 

(.005) 
.144 

(.004) 

... 
.457 

(.007) 
.339 

1.007) 

Standard errors of the sample means are given in parentheses. The means are taken over the daily 
estimates of each of the parameters in each subperiod. 1! 3 is the market price of skewness risk and 1r 4 is 
the price of kurtosis risk. 



Table 2 
Out-of-Sample Results:j: 

Four-Parameter Model vs. Two-Parameter Model 

1990-1994 

All Strikes In-the-Money Excluded -
Mean difference in MAE* .252 .249 

Standard Error .006 .005 
Mean difference in RMSE .261 .277 

Standard Error .007 .007 
% 4-parm smaller MAEt 95.3 94.9 
% 4-parm smaller RMSE 94.7 94.8 

Sample Size 1087 1004 

1990-1992 

All Strila!s ln-the-Monev Excluded 
Mean difference in MAE .163 .208 

Standard Error .004 .006 
Mean differe11ce in RMSE .164 .213 

Standard Error .006 .008 -
% 4-parm smaller MAE 93.4 93.8 

% 4-nnrm smaller RMSE 92.4 92.8 
Samole Size 668 601 

1993-1994 

All Strikes In-the-Monev Excluded 
Mean difference i11 MAE .394 .313 

Standard Error .010 .008 -
Mean difference in RMSE .414 .371 

Standard Error .011 .009 -·-
% 4-parm smaller MAE 98.3 96.5 

% 4-nnrm smaller RMSE 98.3 97.8 
Samo/e Size 419 403 

tThe parameters estimated based on one day's options were used in pricing options the next trading day. 
Daily mean absolute errors and root mean square errors across all calls and puts were computed. 
*Results are expressed in basis points. 
tPercentage of the daily MAEs or RMSEs in out-0f-sample results for the four-parameter model that were 
smaller than the corresponding two-parameter values. 



Table 3 
Estimation of the Statistical Density• 

Parameter: µ 

1990-1994 1990-1992 1993-1994 1994 
Interest Rate Series Estimate Std. Error Estimate Std. Error Estimate Std, Error Estimate Std. Error 

3-month LJBOR -.132 .151 -.469 .182 .236 .142 .766 .298 
3-month T-bill -.009 .143 -.545 .190 .506 .175 .865 .262 

Parameter: O: 

1990-1994 1990-1992 1993-1994 1994 
Interest Rate Series Estimate Std. Error Estimate Std. Error Estimate Std Error Estimate I Std. Error 

3-month L!BOR .254 .003 .270 .009 .149 .008 .225 I .014 I 3-month T-bi// .213 .002 .224 .008 .205 .009 .l.'l.9 .012 ' 
l'arameter: a 3 

1990-1994 1990-1992 1993-1994 1994 
interest Rate Series Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error 

3-month LJBOR -.012 .058 
I 

-.132 .067 .039 .100 .258 .088 
3-month T-bill .086 .067 -.138 .094 .219 .071 .213 .088 

Parameter: a 4 

1990-1994 1990-1992 1993~1994 1994 
Interest Rate Series 1'.Stimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std Error 

3-month LIBOR .537 .031 .554 .047 .651 .050 .403 .094 
3-month T-bill .564 .032 .685 .052 .393 .063 .422 .078 

•Maximum likelihood estimation of equation (20) The three-month LIBOR series consists of daily observations from the Financial Times London Interbank 
Firing, and the three-month Treasury bill series consists of daily observations on constant-maturity three-month yields from the Federal Reserve Board. 
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Figure 4 - Restricted Mode.I 
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Figure 5 - Restricted Model 
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Figure 7 - Unrestricted Filtered Sample 
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Figure 8 - Unrestricted Filtered Sample 
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Figure 9 - Unrestricted Filtered Sample 
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Figure 12 - Unrestricted Filtered Sample 
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Figure 13 
Risk-Neu\ra! Densities: 1990 - 1992 vs 1993 - 1994 
Eurodollar futures Options: Maximum Sample Maturities 
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Figure 14 - Unrestricted Filtered Sample 
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Figure 15 - Unrestricted Filtered Sample 
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Figure 15 - Unrestricted Filtered Sample 
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