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Stare Down the Barrel and Center the Crosshairs:

Targeting the Ex Ante Equity Premium

Over the past century the average annual return to investing in the US stock market

has been roughly 6% higher than the return to investing in risk-free US T-bills. Mehra and

Prescott [1985] argue that consumption within the US has not been sufficiently volatile to

warrant such a large premium on risky stocks relative to riskless bonds; hence the well known

“equity premium puzzle.”1 The equity premium at issue in economic theory is the premium

investors anticipate ex ante, at the moment they first make the decision to purchase stocks

instead of risk-free debt. Conversely, the premium we observe in market data is the return

investors actually received ex post, after they have held the stock for some time and nature

has buffeted the economy with its random shocks.

To examine the equity premium puzzle, we devise a method to simulate the distribution

from which ex post equity premia are drawn, conditional on various values for investors’ ex

ante equity premium. We calibrate our approach to S&P 500 dividends and US interest rates

(not stock prices or returns) and then conduct statistical tests to confirm that with investors’

true ex ante equity premium as low as, say, 2%, the economy could still reasonably produce

an ex post premium of, say, 6%. This is consistent with the well-known observation that ex

post equity premia are observed with error, and a large range of realized equity premia are

consistent with any given ex ante equity premium. Once we confirm that our simulations

produce sensible results, we examine the distributions of various key financial statistics that

arise in our simulations, such as dividend yields, reward-to-risk ratios, and ex post equity

premia. We consider the various distributions jointly, conditional on particular values of the

ex ante equity premium, and compare those conditional distributions with actual realizations

from the US economy. That is, given various characteristics of the US economic experience

(such as low interest rates and high ex post equity premia as well as observed Sharpe ratios

and dividend yields), what values of the ex ante equity premium are most plausible? We

1The equity premium literature is large, continuously growing, and much too vast to fully cite here. For
recent reviews see Kocherlakota [1996] and Siegel and Thaler [1997].
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determine that the range of ex ante equity premia most consistent with the US market data

is very close to 4%.

Like us, previous authors have investigated the extent to which ex ante considerations

may impact the realized equity premium. For example, Rietz [1988] investigated the effect

that the fear of a serious, but never realized, depression would have on equilibrium asset

prices and equity premia. Our work is distinct from his on at least two fronts. First, Rietz

studies conditions necessary to obtain an ex ante equity premium as high as 6%; conversely,

we develop a method for determining the probability of observing a 6% equity premium

ex post even if the ex ante premium is as low as, say, 2%. Second, Rietz assumes the

possibility of a catastrophic economic state modeled on the Great Depression in order to

obtain large equity premia; conversely, we calibrate to post-WWII data during which there

are no catastrophic states.

Jorion and Goetzmann [1999] take the approach of comparing the US stock market’s per-

formance with stock market experiences in many other countries. They find that, while some

markets such as the US and Canada have done very well over the past century, other coun-

tries have not been so fortunate; average stock market returns from 1921 to 1996 in France,

Belgium and Italy, for example, are all close to zero, while countries such as Spain, Greece

and Romania have experienced negative returns. Jorion and Goetzmann do not conduct

statistical tests because, first, the stock indices they consider are largely contemporaneous

and returns from the various indices are not independent. Statistical tests would have to

take into account the panel nature of the data and explicitly model covariances across coun-

tries. Second, many countries in the comparison pool are difficult to compare directly to

the United States in terms of economic history and underlying data generating processes.

(Economies like Egypt and Romania, for example may have equity premia generated from

data generating processes that differ from the US.) Since in our paper we simulate many

independent economies with the same data generating process as the US over the past half

century, we avoid both of these issues and are hence able to narrow the range of plausible
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ex ante equity premia.

There are some recent papers that, like our paper, make use of fundamental information

in examining the equity premium. However, these studies differ from ours in that they

focus on estimating the ex post equity premium, while we consider the relationship between

the ex ante equity premium and various financial statistics including the ex post equity

premium. One such paper, Fama and French [2002], uses historical dividend yields and other

fundamental information to calculate estimates of the equity premium which are smaller

than previous estimates. Fama and French obtain point estimates of the ex post equity

premium ranging from 2.55% (based on dividend growth rate fundamentals) to 4.78% (based

on bias-adjusted earnings growth rate fundamentals), however these estimates have large

standard errors. For example, for their point estimate of 4.32% based on non-bias-adjusted

earnings growth rates, a 99% confidence interval stretches from approximately -1% to about

9%. Mehra and Prescott’s initially troubling estimate of 6% is easily within this confidence

interval and is in fact within one standard deviation of the Fama and French point estimate.

Another paper that similarly makes use of fundamental information to form lower esti-

mates of the ex post equity premium is Claus and Thomas [2001]. The Claus and Thomas

study covers a shorter time period relative to the Fama and French study – 14 years versus 50

years – yielding point estimates that are subject to at least as much variability as the Fama

and French estimates. Given the large confidence intervals around the equity premium point

estimates from these studies, conducting inference about the original Mehra and Prescott

equity premium puzzle is challenging, even if fundamental sources of information such as

dividends and interest rates are employed in the analysis.

The remainder of our paper proceeds as follows. The basic methodology used to conduct

our simulation approach to estimating equity premia is presented in Section 1 below, along

with important details on estimation of equity premia and the premia used in cash-flow

discounting models. (An appendix to the paper provides a more detailed exposition of the

technical aspects of our simulations, including calibration of key model parameters.) In
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Section 2 we compare financial statistics that arise in our simulations with US market data,

including dividend yields, Sharpe ratios, and interest rates. Our results imply only ex ante

equity premia in a very narrow range are consistent with the US historical experience: an

ex ante equity premium as low as 3.5% is likely too low, an ex ante equity premium as high

as 4.5% appears too high, while an ex ante equity premium in the close vicinity of 4% seems

just right. We present evidence supporting the robustness of our findings to changes in key

parameters of our model in Section 3. Section 4 concludes.

1 Foundations

1.1 Basic Methodology

As noted in the introduction, the equity premium is the extra return, or premium, that

investors demand to purchase risky stock instead of risk-free debt. We call this premium the

ex ante equity premium (denoted πe), and it is formally defined as the difference between

the expected return on risky assets, E {R}, and the expected risk-free rate, E {rf}:2

πe ≡ E {R} − E {rf} . (1)

Empirically we do not observe this ex ante premium; we only observe the returns that

investors actually receive ex post, after they have purchased the stock and held it over some

period of time during which random economic shocks impact prices. Hence, the ex post equity

premium is typically estimated using historical equity returns and risk-free rates. Define R

as the average historical annual return on the S&P 500 and rf as the average historical

return on US T-bills. Then we can calculate the estimated ex post equity premium, π̂e, as

follows:

π̂e ≡ R − rf . (2)

2See, for instance, Mehra and Prescott [1985, Equation 14].
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Given that the world almost never unfolds exactly as one expects, there is no reason to

believe that the stock return we estimate ex post is exactly the same as the return investors

anticipated ex ante. It is therefore difficult to argue that just because we observe a 6% ex

post equity premium in the US data, the premium that investors demand ex ante is also

6% and thus a puzzling challenge to economic theory. We therefore ask the question: if

investors’ true ex ante premium is X%, what is the probability that the US economy could

randomly produce an ex post premium of at least 6%? We can then argue whether or not

the 6% ex post premium observed in the US data is consistent with various ex ante premium

values, X, with which standard economic theory may be more compatible. We then go on

to consider key financial statistics and yields from the US economy to investigate if an X%

ex ante equity premium could likely be consistent with the combinations that have been

observed, such as high Sharpe ratios and low dividend yields, low interest rates and high ex

post equity premia, and so on. The use of both univariate and multivariate distributions of

these statistics allows us to narrow substantially the range of equity premia consistent with

the US market data. We calibrate to US data over 1952 through 1998, with the starting

year of 1952 motivated by the U.S. Federal Reserve Board’s adoption of a modern monetary

policy regime in 1951.

A summary of the basic methodology we employ (detailed in Appendix 1) is as follows:

(a) Assume a value for the equity premium that investors demand when they first pur-

chase stock (e.g. 2%). This assumed premium, appropriately bias-adjusted as described in

Appendix 1, is added to the risk-free interest rate to determine the discount rate that an

investor would rationally apply to a forecasted dividend stream in order to calculate the

present-value-price of dividend-paying stock.

(b) Estimate econometric models for the time-series processes driving dividends and

interest rates in the US economy, allowing for autocorrelation and covariation. Then use

these models to Monte Carlo simulate a variety of potential paths for US dividends and

interest rates. The simulated dividend and interest rate paths are of course different in each
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of these simulated economies because different sequences of random innovations are applied

to the common stochastic processes in each case. However, the key drivers of the simulated

economies themselves are all still identical to those of the US economy since all economies

share common stochastic processes fitted to US data.

(c) Given the assumed equity premium investors demand ex ante (which is the same for

all simulated economies in a given experiment), use a discounted-dividend model to calculate

the fundamental stock returns (and hence ex post equity premia) that arise in each simulated

economy. All economies have the same ex ante equity premium, and yet all economies have

different ex post equity premia. Given the returns and ex post equity premia for each

economy, as well as the means of the interest rates and dividend growth rates produced for

each economy, we are able to calculate various other important characteristics, like Sharpe

ratios and dividend yields.

(d) Examine the distribution of ex post equity premia, interest rates, dividend growth

rates, Sharpe ratios, and dividend yields that arise conditional on various values of the ex

ante equity premia. Comparing the performance of the US economy with intersections of

the various univariate and multivariate distributions of these quantities and conducting joint

hypothesis tests allows us to determine a narrow range of equity premia consistent with the

US market data.

A large literature makes use of similar techniques in many asset pricing applications.

Some of these papers (directly or indirectly) simulate stock prices and dividends under

various assumptions to investigate price and dividend behavior.3 However, these studies

typically employ restrictions on the dividend and discount rate processes so as to obtain

prices from some variant of the Gordon [1962] model and/or some log-linear approximating

framework. For instance, the present value (price, defined as P0) of an infinite stream of

discounted future dividends can be simplified under the Gordon model as P0 = D1/(r − g)

3See, for example, Scott [1985], Kleidon [1986], West [1988a,b], Campbell [1991], Gregory and Smith
[1991], Mankiw, Romer and Shapiro [1991], Hodrick [1992], Timmermann [1993,1995], Donaldson and Kam-
stra [1996] and Campbell and Shiller [1998].
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where D1 is the coming dividend, r is the constant discount rate, and g is the constant

dividend growth rate. That is, by assuming constant r and g, one can analytically solve for

the price. If discount rates or dividend growth rates are in fact time-varying, the infinite

stream of discounted future dividends cannot be simplified, and it is difficult or impossible

to solve prices analytically without imposing other simplifying assumptions.

Rather than employ approximations to solve our price calculations analytically, we in-

stead simulate the dividend growth and discount rate processes directly, and evaluate the

expectation through Monte Carlo integration techniques. This approach is computationally

burdensome, but it is the only way to evaluate prices, returns and other financial quantities

without approximation error.4 We also take extra care to calibrate our models to the time

series properties of actual data. For example, dividend growth is strongly autocorrelated in

the S&P 500 stock market data, counter to the assumption of a logarithmic random walk for

dividends sometimes employed for tractability in other applications. Furthermore, interest

rates are autocorrelated and cross-correlated with dividend growth rates. Thus we model

these properties in our simulated dividend growth rates and interest rates.

2 Results

2.1 Univariate Conditional Distributions

It is well known that the ex post equity premium is estimated with error. See, for instance,

Merton [1980], Gregory and Smith [1991], and Fama and French [1997]. Any particular

realization of the equity premium is drawn from a distribution, implying that given key in-

formation about the distribution (like its mean and standard deviation), one can construct

a confidence interval of statistically similar values and determine whether a particular esti-

mate is outside the confidence interval. As mentioned above, an implication of statistics in a

recent paper by Fama and French [2002] is that an approximate 99% confidence interval for

4There is still Monte Carlo simulation error, but that is random, unlike most types of approximation error,
and it can also be measured explicitly and controlled to be very small, which we have done, as explained in
Appendix 1.
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the equity premium spans from -1% to 9%. It is our goal to narrow this range considerably.

Consider the following: conditional on a particular value of the ex ante equity premium,

how unusual is an observed realization of the ex post equity premium? We answer this

question by generating distributions of ex post equity premia based on various values of the

ex ante equity premium.

Table 1 reports the mean of the ex post equity premium estimates from two thousand

simulated economies as well as percentiles of the distribution of ex post equity premia based

on various values of the ex ante equity premium.5 Note that we estimate the ex post equity

premia over 47 years of simulated data to mirror the 47 years of annual data we have available

for the S&P 500, 1952 to 1998.6 Each row of Table 1 reports statistics corresponding to a

set of simulated economies based on a particular value of the ex ante equity premium. We

consider ex ante equity premium values ranging from 2% to 6%, as shown in the first column.

(An equity premium of 2% is the lowest equity premium we can assume in our simulations

while maintaining the ability to produce auxiliary statistics, such as dividend growth rate

to discount rate ratios and dividend yields, as will be discussed below, that are at least

broadly consistent with observed US data.) The next column shows the mean of the ex post

equity premium estimates across the simulated economies for each case. Note that the mean

ex post equity premium for the simulated data roughly equals the assumed ex ante equity

premium value in each case. For instance, from the bottom row we see that with an ex

ante equity premium of 6%, the mean of the simulated economies’ ex post equity premium

estimates is equal to 6.04%. This is one way to confirm that our simulations are producing

sensible results: on average the world unfolds ex post as it is assumed it will unfold ex ante.

However, the individual simulated economies randomly deviate from this average, depending

5In conducting the experiments described in this paper, we found that two thousand simulations were
sufficient to control Monte Carlo error to be very small. This number of simulations balances the need to
control Monte Carlo error with computing constraints. (Each set of 2,000 simulations we conduct takes
roughly a week to run, depending on the complexity of the case being considered, and we consider dozens of
cases in this paper.)

6Findings reported in this paper are identical when estimating the equity premium over shorter investment
horizons, such as one year.

8



on how each simulated economy randomly unfolded. The percentiles of the distribution for

the case of a 6% equity premium indicate that a 90% confidence interval (covering from the

5th percentile to the 95th percentile) encloses premia of roughly 2.4% to 8.6%. We also see

that 1% of the economies produced ex post premia greater than about 9.2% even though

the ex ante premium was only 6%. Similarly, 1% of the economies produced ex post premia

less than -.1%. The median premium (the 50th percentile) is 6.3%, revealing the slight skew

in the simulated distribution of premia.

The other rows of Table 1 confirm that in each case our simulated economies produce ex

post equity premia with an average equal to the value of the ex ante premium assumed. We

see in the first row of the table that with an ex ante equity premium as low as 2%, a 6% ex

post equity premium is not significantly unusual at the 1% level; i.e. a 6% ex post equity

premium is less than the 99th percentile of about 6.2% shown in the first row of the table.

Other values of the ex ante equity premium between 2% and 6%, of course, are similarly

consistent with an ex post equity premium of 6%. Therefore, results from Table 1 suggest, as

has previous research, that the 6% premium we observe in US data may be simply a “lucky”

outcome, not a true puzzle to challenge generally accepted economic theory.7

Panel A of Figure 1 contains probability distribution functions (PDFs) for the Table 1

rows corresponding to an assumed ex ante equity premium of 2% (indicated in Figure 1 with

a plain line), 3% (line with diamonds), 4% (line with asterisks), and 6% (line with pound

signs). The historic US ex post equity premium of 6% is denoted with a vertical column

of dots. Consistent with the discussion of Table 1 above, a 6% ex post (estimated) equity

premium is not located in the extreme tail of any of the distributions, even for the case of an

ex ante (true) equity premium as low as 2%. Notice that the PDFs are skewed and include

negative realizations of the ex post equity premium. Of further interest, these plots show

7The ex post equity premium estimated over the last 47 years of S&P 500 data is 7.6%. We focus our
analysis on an ex post equity premium of 6% because 6% is the estimate most often cited in the equity
premium literature, and also because 6% is the ex post equity premium estimate that emerges based on a
longer (100 year) span of S&P 500 data. The use of an ex post equity premium of 7.6% in place of 6%
suggests the true ex ante equity premium is slightly higher than described here (around 4.5%). Otherwise
inferences are unchanged.
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that the distributions change shape slightly as the premium drops, becoming fatter (larger

variance, lower peaked).

Next we consider the distribution of the dividend yield (dividend divided by price, D/P )

produced in our simulations. Recall that each of our two thousand simulated economies

produced a single (47 year) estimate of the ex post equity premium, hence Table 1 and

Panel A of Figure 1 conveyed the distributions of mean ex post equity premium estimates.

In contrast, for financial statistics like the dividend yield (and several others to be described

below), each simulated economy produces a set of annual time series observations for which

we can consider higher moments. By considering not only the distribution of the mean

across simulated economies, but also the distribution of the standard deviation, skewness,

and kurtosis of key financial quantities produced in our simulations, we can determine with

greater refinement the ability of our simulated data to match characteristics of the US

economy. For instance, market returns (to be discussed below) are well known to be kurtotic.

Thus, it is interesting to examine the degree to which our simulations are able to produce

kurtotic returns and to look at the distribution of kurtosis across our simulated economies.

In Table 2 we present the distribution of the first four moments of the dividend yields

produced in our simulations, conditional on values of the ex ante equity premium ranging

from 2% to 6% as shown in the left-most column. In the column labeled “S&P 500 D/P”

we report the first four moments of the actual annual S&P 500 dividend yields. The mean

S&P 500 dividend yield is 3.789, the standard deviation is 1.06, the skew is 0.843, and the

kurtosis is 3.144. (These S&P 500 moments are replicated in the rows corresponding to each

assumed value of the ex ante equity premium to facilitate comparisons with the distributions

of the first four moments of the simulated dividend yields.) The mean and percentiles of the

first four moments of the simulated dividend yields are reported in the remaining columns of

the table. Notice that for the 2% ex ante equity premium case, the mean S&P 500 dividend

yield of 3.789 exceeds the 99th percentile, suggesting the first moment of S&P 500 dividend

yields is inconsistent with an ex ante equity premium of 2%. Similarly, for the case of the 6%
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ex ante equity premium, the mean S&P 500 dividend yield is less than the 1st percentile of

the simulated distribution, suggesting the true ex ante equity premium is not likely as high

as 6%. For ex ante equity premia greater than 2.5% and less than 6%, the mean S&P 500

dividend yield is between the 5th and 95th percentiles in each case. Each of the observed

higher moments of the S&P 500 dividend yields (the standard deviation, skew, and kurtosis)

lie within the 90% confidence interval implied by the 5th and 95th percentiles for all values of

the ex ante equity premia considered. Thus moments of the S&P 500 dividend yield other

than the mean do not imply bounds on plausible values of the ex ante equity premium, but

Table 2 results based on the mean dividend yield suggest the true ex ante equity premium

is less than 6% and greater than 2%.

The simulated mean dividend yield distributions summarized in the first row of the 2%,

3%, 4%, and 6% sections of Table 1, are plotted in Panel B of Figure 1. The 3.8% dividend

yield observed over the last 47 years of S&P 500 data is represented by a column of dots,

and PDFs based on the different values of the ex ante equity premium are represented by

the same sets of symbols that were used in Panel A. Consistent with what we observed

in Table 2, notice that the dividend yield realized in the US is in the extreme left tail of

the PDF marked with pound signs (representing the distribution of mean dividend yields

from simulations based on a 6% ex ante equity premium). Thus, we conclude the observed

S&P 500 dividend yield is unlikely to have been produced by an economy with a true ex ante

equity premium of 6%. Likewise, the observed dividend yield is also unusual relative to the

PDF marked by the plain line (representing the distribution of mean dividend yields from

simulations based on a 2% ex ante equity premium), suggesting the observed mean dividend

yield was not likely generated by an economy in which the true ex ante equity premium is

2%. Values of the ex ante equity premium between 2% and 6% are more consistent with the

observed mean dividend yield. Overall, results suggest that given the mean dividend yield

observed for the S&P 500 over the past 47 years, it is implausible that the ex ante equity

premium is as low as 2% or as high as 6%.
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In Panel C of Figure 1 we consider distributions of simulated (nominal) arithmetic mean

returns relative to the 13.4% mean return observed for the S&P 500 during 1952-1998,

and in Panel D we consider return volatility. Table 3 reports the corresponding summary

statistics. (PDFs in Panel C are based on select Table 3 rows labeled “Mean” and plots

in Panel D are based on Table 3 rows marked “σ.”) While the observed S&P 500 mean

return shown in Panel C of Figure 1 is in the upper tail of some of the PDFs in Panel C,

percentiles from Table 3 confirm that for all of our simulations, the observed S&P 500 return

is not unusual at a 1% level of significance for any ex ante equity premium values in the

range of 2% through 6%. Furthermore, the observed S&P 500 mean return is within a 90

percent confidence interval for all the simulations based on ex ante equity premia of 4%

and higher. The observed standard deviation of S&P 500 returns, which is about 15%, is

well within the standard deviation distributions for all the ex ante equity premium cases we

consider, suggesting that we are able to closely replicate the observed mean and volatility of

S&P 500 returns regardless of the ex ante equity premium value we consider. Inspection of

the skewness and kurtosis rows in Table 3 confirms that higher moments of the simulated

returns data are also consistent with historical S&P 500 returns for all values of the ex ante

equity premium considered.

Another interesting quantity arising in our simulations is the ratio we call the discounted

dividend growth rate (denoted y), defined in terms of the growth rate of dividends, gt ≡
(Dt+1 − Dt)/Dt, and the discount rate, rt:

yt =
1 + gt

1 + rt

.

As explained in Appendix 1, the present value price of a stock can be decomposed into a

sum-product of expected dividend growth rates multiplied by the most recent dividend:

Pt = Dt

∞∑
i=1

Et

{
Πi

k=1yt+k−1

}
. (3)
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We calibrate our simulations to produce interest rates and dividend growth rates consistent

with those we have seen in the US economy over the last 47 years; one would therefore

anticipate that the discounted dividend growth rates we produce in our simulations should

be consistent with the actual economy’s data. Table 4 and Panel A of Figure 2 present

evidence that the experiences of the US economy and the simulated economies are indeed

similar. While the US realized discounted dividend dividend growth rate of 0.94 appears

to be in the left tail of the plain line PDF (for the 2% ex ante equity premium case),

the 5th percentile from the appropriate row of Table 4 is 0.931. Thus, based on a 90%

confidence bound implied by the simulated distribution for the 2% ex ante equity premium

case, the US realization of the mean y is not statistically unusual. Based on the percentiles in

Table 4, we see that the US realized mean discounted dividend growth rate is within a 90%

confidence interval for all values of the ex ante equity premium we consider. With regard

to higher moments, the US realized standard deviation, skewness and kurtosis are nowhere

statistically unusual according to the simulated percentiles. It is clear from that the sample

moments of the discounted dividend growth rates observed over recent history in the US are

consistent with a broad range of possible ex ante equity premia.

In Panel B of Figure 2 and in Table 5, we consider the distribution of the Sharpe ratio

(or reward-to-risk ratio, calculated as the average annual difference between the arithmetic

return and the risk-free rate divided by the standard deviation of the annual differences).

As with the ex post equity premium, each of our 2,000 simulated economies produces a

single (47 year) estimate of the Sharpe ratio, hence Table 4 conveys the distribution of only

the mean Sharpe ratio, and not higher moments. The observed Sharpe ratio of 0.501 for

the S&P 500 is nowhere unusual at conventional levels of significance in each case shown in

Table 4 and in each panel plotted in Panel B.

In Panel C of Figure 2, we consider distributions of the first order autocorrelation coef-

ficient estimate on returns (obtained from the regression of returns on lagged returns) for

various values of the ex ante equity premium. The distribution is very similar across sim-
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ulations, and the actual autocorrelation coefficient of -.134, based on the last 47 years of

S&P 500 return data, is not statistically unusual in any case. In Table 6, the first of each

set of two rows provides the mean observed S&P 500 autocorrelation coefficient as well the

mean and percentiles of the distribution of simulated return autocorrelation coefficients (cor-

responding to the PDFs shown in Panel C). The second row in each set reports the standard

deviation of the autocorrelation coefficient estimated on S&P 500 returns and the mean and

distribution percentiles for the standard deviation of the autocorrelation coefficients from the

simulated economies. The distributions of the standard deviations are very similar across

values of the ex ante equity premium, and in no case is the observed S&P 500 standard

deviation statistically unusual.8

The final set of univariate distributions we consider is shown in Panel D of Figure 2

for the first order autoregressive conditional heteroskedasticity (ARCH) coefficient, obtained

from the regression of squared residuals on lagged squared residuals. Once again, the PDFs

are very similar across values of the ex ante equity premium, and the actual S&P 500 value

of 0.25 is not statistically unusual in any case. In Table 7, the first row among each set of

two provides the value of the ARCH coefficient based on S&P 500 returns as well as the

mean and percentiles of the ARCH coefficients based on the simulated data. The second row

in each set of rows contains the standard deviation of the ARCH coefficient estimate based

on the S&P 500 data as well as the mean and percentiles of the ARCH estimates’ standard

deviations based on simulated data. Again, the standard deviation distributions are similar

across ex ante equity premia, and in no case do we find evidence that the S&P 500 estimates

are statistically unusual.

Collectively, the panels of Figures 1 and 2 and Tables 1 through 7 suggest that the true

ex ante equity premium consistent with the US economy is likely greater than 2% and less

than 6%. In some cases we found that US observed values (such as the mean dividend yield,

8Coincidentally, the mean and median standard deviation of the simulated AR(1) coefficients is for all
cases identical (to three decimals) to the standard deviation of the AR(1) coefficient estimated using the
S&P 500 returns.
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at a 1% level of significance) were inconsistent with ex ante equity premia as high as 6%.

In other cases we found that US observed values were not likely given an ex ante equity

premium as low as 2% (such as the mean return, at a 1% level of significance). We will see

below that with additional examination of the statistics produced in our simulations, we can

further and substantially narrow the range of plausible ex ante equity premium values.

2.2 Multivariate Conditional Distributions

Having considered the plausible range of ex ante equity premia implied by univariate dis-

tributions of various financial statistics produced in our simulations, we now consider the

range implied by the joint distributions. Because our simulations produce returns, ex post

equity premia, Sharpe ratios, dividend yields, etc. based on a series of simulated dividends

and interest rates calibrated to US data, we can consider the joint distributions of these

quantities that arise in our simulations (once again conditional on various values of the ex

ante equity premium). In Section 3 we document the robustness of our results to changes in

the basic parameters upon which our simulations are based.

In Panel A of Table 8, we present χ2 statistics for testing the hypothesis that simulated

distributions of various financial quantities are jointly consistent with values observed in the

US. We present test statistics for simulations based on values of the ex ante equity premium

ranging from 2% to 6%. The column labeled Case 1 reports statistics pertaining to the joint

distribution of the mean return, return standard deviation, mean dividend yield, ex post

equity premium, AR(1) coefficient estimate for returns, and ARCH(1) coefficient estimate

for returns.9 For our joint tests, we do not consider variables which can be derived directly

from these variables (such as the Sharpe ratio which is a function of mean returns, interest

rates, and the return standard deviation). Of course, we also do not consider the financial

9More precisely, the χ2 tests are based on joint normality of (in some cases, joint normality of simple
transformations of) sample estimates of moments of the simulated data, which follow an asymptotic normal
distribution based on a law of large numbers (see White [1984] for details). For instance, we consider the
mean logarithm of gross returns and the mean logarithm of the dividend yield, both of which more closely
follow an asymptotic normal than the mean return or mean dividend yield. Similarly, we consider the cube
root of the return variance which is approximately normally distributed (see Kendall and Stuart [1976, page
399] for further details).
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variables to which we calibrate our simulations (interest rates and dividend growth rates),

as the simulated mean, variance, and covariance of these variables are, by construction,

identical to the corresponding moments of the actual data to which we calibrate. The

column labeled Case 2 reports statistics pertaining to joint distributions of the same set of

variables as Case 1 with the exception of the AR(1) and ARCH(1) coefficients. We saw that

the simulated AR(1) and ARCH(1) distributions are consistent with the observed S&P 500

data in every case we consider, and hence one might expect that excluding these variables

in our test might increase its power.

A significant χ2 test statistic, in this context, suggests that the combination of financial

statistics observed for the US economy is significantly different from the joint collection of

simulated data. One, two, and three asterisks indicate significance at the 10%, 5%, and

1% level respectively. Among the test statistics shown in Panel A (results in other panels

are discussed in Section 3), we only observe insignificant values for the 4% ex ante equity

premium (both Cases 1 and 2). For all other values of the ex ante equity premium, 2%,

2.5%, 3%, 3.5%, 4.5%, 5%, and 6%, we observe very strong rejections (significant at the 1%

level in each case) of the hypothesis that the US realizations of mean dividend yield, ex post

equity premium, etc. are consistent with the simulated economies. That is, only when the

ex ante equity premium is 4% in our simulations are we able to match the joint realization

of returns, return volatility, dividend yield, ex post equity premium, return autocorrelation,

and degree of ARCH. Thus we conclude that the true value of the ex ante equity lies in the

close vicinity of 4%, but not as high as 4.5% or as low as 3.5%.

To motivate the intuition behind the results of the joint tests, we provide bivariate plots of

the simulated data, conditional on various values of the ex ante equity premium. Obviously

we cannot construct a four-or-higher-dimensional plot of the financial variables that interest

us. Three-dimensional plots, while feasible to construct, are too dense to be understandable.

Thus we consider successive bivariate combinations. Because the univariate plots discussed

in the previous section established that the plausible range of ex ante equity premia lies
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somewhere between 2% and 6%, and because the joint tests shown in Panel A of Figure 8

suggest values very close to 4%, we show bivariate plots based on ex ante equity premia of

3.5%, 4%, 4.5% and 5%.

In every case, the pair of statistics we plot are dependent on each other in some way,

allowing us to make interesting conditional statements. Among the bivariate distributions

we consider, we will see some that serve primarily to confirm the ability of our simulations to

produce the character and diversity of results observed in US markets. Some sets of figures

will rule out ex ante equity premia as low as 3.5% while others will rule out ex ante equity

premia as high as 4.5% or 6%. Viewed collectively, the figures serve to confirm that the

range of ex ante equity premia consistent with US market data is in the close vicinity of 4%,

just as we saw with our χ2 tests.

Consider first Figure 3 which reports joint distributions of mean returns and return

standard deviations arising in our simulations based on four particular values of the ex ante

equity premium (3.5% in Panel A, 4% in Panel B, 4.5% in Panel C, and 5% in Panel D).

Each panel contains a scatterplot of two thousand points, each point representing a pair

of statistics (mean return versus return standard deviation) arising in one of the simulated

47-year economies. The combination based on the US realization over the 47-year period

1952-1998 is shown in each plot with crosshairs (solid straight lines with the intersection

marked by a solid dot). The set of simulated pairs in each panel is surrounded by an ellipse

which represents a 99% bivariate confidence bound, based on the asymptotic normality (or

log-normality, where appropriate) of the variables plotted.10 The confidence ellipses for the

3.5% case is marked with stars, the 4% case with asterisks, the 4.5% case with circles and

10The 99% confidence ellipsoids are asymptotic approximations based on joint normality of the sample
estimates of the moments of the simulated data. Consistent with our construction of the χ2 tests reported
above, for some of the variables (return mean, return standard deviation, dividend yield, and interest rate
mean) the moment used to construct the ellipsoid was the mean of a transformation of the data: the
logarithm of the gross return, the logarithm of the interest rate, the logarithm of the dividend yield and
the cube root of the variance of the return. (As stated previously, the cube root of a χ2 random variable is
approximately normally distributed. See Kendall and Stuart [1976, page 399] for details.) All of the sample
moment estimates we consider are asymptotically normally distributed, as can be seen by appealing to the
appropriate law of large numbers. See White [1984] for further details.
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the 5% case with triangles. Notice that the intersection of the crosshairs is within a 99%

confidence ellipse in all cases except that of the 3.5% ex ante equity premium. That is, our

simulations produce mean returns and return volatility that roughly match the US observed

moments of returns (without our having calibrated to returns), but based on this set of plots,

we can conclude that ex ante equity premia less than or equal to 3.5% are inconsistent with

the observed mean return and return volatility of S&P 500 returns.11

We can easily condense the information contained in these four individual plots into one

plot, as shown in Panel A of Figure 4. The scatterplot of points representing individual

simulations are omitted in the condensed plot, but the confidence ellipses themselves (and

the symbols used to distinguish between them) are retained, with the 4% ellipse now indi-

cated in bold. As with Figure 3, we can tell by comparing the confidence ellipses with the

crosshairs representing the S&P 500 return and standard deviation combination that only

the 3.5% ex ante equity premium case is rejected at the 1% significance level. In present-

ing results for additional bivariate combinations, we follow the same practice, omitting the

points that represent individual simulations, using the same set of symbols to distinguish

between confidence ellipses based on ex ante equity premia of 3.5%, 4%, 4.5%, and 5%, and

indicating the 4% ellipse in bold.12

In Panel B of Figure 4 we consider the four sets of confidence ellipses for mean return and

mean dividend yield combinations. Notice that as we increase the ex ante equity premium,

the confidence ellipses shift upward and to the right. Notice also that with higher values

of the ex ante equity premium we tend to have more variable dividend yields. That is, the

confidence ellipse covers a larger range of dividend yields when the value of the ex ante equity

premium is larger. The observed combination of S&P 500 mean return and mean dividend

11Consistent with the χ2 tests presented above, plots of the bivariate distribution of the mean and standard
deviation of returns for ex ante equity premia below 3.5% show the distributions shifting down and flattening
out, resulting in increasing deviations of the bivariate distribution from the S&P 500 crosshairs.

12A detailed supplement available at www.markkamstra.com provides plots that are based on all the values
of the ex ante equity premium we consider in this paper: 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, and 6%. The
plots in that supplement show the scatterplot of points that represent individual simulations as well as the
99% confidence ellipses.
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yield, represented by the intersecting crosshairs, lies within the confidence ellipse for all the

cases shown, though it is close to the edge for some cases. That is, at the 1% significance

level, we cannot reject any of these ex ante equity premium values on the basis of only these

two variables.

Panel C of Figure 4 plots confidence ellipses for mean interest rates versus mean ex post

equity premia. The intersection of the crosshairs is within all four of the confidence ellipses

shown. Notice as well that the confidence ellipses are all negatively sloped: we see high

interest rates with low equity premia and low interest rates with high equity premia. Many

researchers, including Weil [1989], have commented that the flip side of the high equity

premium puzzle is the low risk-free rate puzzle. Here we confirm that the dual “puzzle”

arises in our simulated economies as well.

Panel D of Figure 4 contains the confidence ellipses for paired mean interest rates and

dividend yields, showing a strong linear relationship between the variables. Note that the

range of interest rates and dividend yields in this figure is truncated, going no higher than

6% for dividend yields and no higher than 15% for interest rates. We truncate the range

of this figure to focus attention on the crosshairs as the ellipses are very narrow for this

combination of variables. Considering the ellipses around the joint distribution of interest

rates and dividend yields, only when the ex ante equity premium is 4% (for the ellipse marked

in bold with asterisks) do we ever see combinations like that realized in the US market data.

The intersection of the crosshairs falls far outside the 99% confidence ellipses for all the other

cases shown, and we can deduce that the distribution would flip from one side of the market

pair to the other when the ex ante equity premium is just above 4%. This is our starkest

result among the bivariate plots, sharply narrowing the range of plausible ex ante equity

premia to lie around 4%.13

13The strength of this relationship, and its linearity, bear some comment. Consider the Gordon [1962]
growth model which expresses share price, P , as a simple function of dividends (D), discount rates (r) and
the dividend growth rate (g) when r and g are constant: P = D/(r− g). This expression can be re-arranged
as D/P = r − g, revealing a positive linear relationship between dividend yield and interest rates, just
as we see in Panel D of Figure 4. This suggests that the Gordon model holds approximately, on average,
even when discount rates r and dividend growth rates g are not constant. (Recall that we model both r
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In Panel A of Figure 5, the Sharpe ratio (or reward-to-risk ratio, calculated as the average

annual difference between the arithmetic return and the risk-free rate divided by the standard

deviation of the annual differences) is plotted against the mean dividend yield. As the ex

ante equity premium is increased from 3.5%, the confidence ellipses shift from the left of the

intersected crosshairs to the right. The crosshairs intersection, at a Sharpe ratio of 0.5 and a

mean dividend yield of about 4%, is well outside the 99% confidence ellipse for the 3.5% ex

ante equity premium case, suggesting a 3.5% ex ante equity premium is inconsistent with the

jointly observed S&P 500 Sharpe ratio and mean dividend yield. Indeed Fama and French

[2002] and Jagannathan, McGrattan, and Scherbina [2001] make reference to dividend yields

to argue that the equity premium may be much smaller than 6%; our analysis gives us a

glimpse of just how much smaller it might be.

In Panel B of Figure 5, we consider Sharpe ratio and mean interest rate pairs. The

crosshair intersection is within a 99% confidence ellipse in all cases shown, though it is right

on the edge for the 3.5% ex ante equity premium case.

In Panel C, mean dividend yields are plotted against mean ex post equity premia. We

notice that as the ex ante equity premium rises from 3.5% to 5%, the confidence ellipses shift

upward and to the right. Only for the 4%, 4.5%, and 5% cases do we find the intersected

crosshairs lie within the 99% confidence ellipses.

In Panel D we consider the joint distribution of first order autoregressive coefficients (from

regressing returns on lagged returns) versus first order ARCH coefficients (from regressing

squared regression errors on lagged squared errors). Note that our simulations are able

to replicate the autoregressive and ARCH properties of observed S&P 500 returns without

having calibrated to returns. For all four values of the ex ante equity premium considered

here, the observed AR and ARCH coefficients on S&P 500 returns are well within a 99%

confidence ellipse.

Among the panels of Figures 4 and 5, there are some cases that serve primarily to confirm

and g as autocorrelated.) That is, the Gordon model can be interpreted as an unconditional version of our
present-value expression, Equation (3).
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that our simulations produce sensible outcomes for returns, dividend yields, etc., which we

hope inspires confidence in the method and calibration of our exercise. Many of scatterplots

are more illuminating in that they imply boundaries on the plausible set of ex ante equity

premia; that is, ex ante equity premia which imply returns, dividend yields, etc. consistent

with what has been observed in the US economy over the past 47 years. The joint realization

of key characteristics of the US market data suggests that the true ex ante equity premium

is no lower than 3.5%, no higher than 4.5%, and is most likely near or very slightly above

4%. These findings are consistent with the χ2 tests presented earlier, which showed that

only the joint distributions of simulated mean dividend yields, ex post equity premia, etc.

based on an ex ante equity premium of 4% are consistent with the observed US data.

3 Sensitivity Analysis

A reasonable question is whether our results are sensitive to the values of fundamental

parameters or the assumptions upon which our simulations are based. Thus, we conducted

extensive robustness checks. The three types of sensitivity checks we performed (described in

detail below) are (1) changing the degree of autocorrelation in the fundamental variables upon

which our simulations are based, interest rates and dividend growth rates, (2) restricting the

processes driving interest rates and dividend growth rates to be independent and identically

distributed instead of calibrating to the time series properties observed in practice, and (3)

allowing for time-varying equity premia. We find that small changes in parameters leads to

small changes in our findings, while large changes (like modeling interest rates and dividend

growth rates as iid rather than autocorrelated and cross-correlated) leads to large changes

in our results.

3.1 Sensitivity to Degree of Autocorrelation in rt and gt

As described in Appendix 1, the entire set of variables we consider in this study are generated

by specifying processes for only the interest rate and the dividend growth rate. Each of these
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two quantities is calibrated to follow the degree of autoregression observed for these series

in the US economy. We study the time-series properties of historic annual dividend growth

rates from the S&P 500 and annual US T-bill rates, and we determine that dividend growth

rates follow a first order moving average process, MA(1), while interest rates follow a first

order autoregressive process, AR(1). The coefficient in each of these processes is set to match

the mean of the observed process. For our first sensitivity check, we consider the impact of

both increasing and decreasing the magnitude of the MA(1) and AR(1) coefficients by as

much as one standard deviation of the estimated coefficients.

Figures 6 and 7 contain confidence ellipses (around joint distributions of the same financial

variables considered in Figures 4 and 5) for simulations based on various changes in the degree

of autoregression in the interest rate and dividend growth rate processes. We base all the

sensitivity tests on a 4% ex ante equity premia since the analysis in Section 2 suggests the

true ex ante equity premium lies very near that value.14 In each panel we plot four confidence

ellipses. Confidence ellipses marked with a star correspond to simulations in which the MA(1)

coefficient for dividend growth rates has been reduced by one standard deviation. Confidence

ellipses marked with an asterisk are for the case where the MA(1) coefficient on the dividend

growth rate process has been increased by one standard deviation. The confidence ellipses

indicated with circles are based on reducing both the MA(1) coefficient for dividend growth

rates and the AR(1) coefficient for interest rates by one standard deviation. For the case

marked by a triangle, both coefficients have been increased (the MA(1) coefficient is increased

by one standard deviation, but the AR(1) coefficient is increased by only half a standard

deviation, as it borders on a unit root process).

Examination of the panels in Figures 6 and 7 reveals that the simulation results are fairly

robust to the degree of autocorrelation in the dividend growth rates. That is, the actual US

market data indicated by the crosshairs remain broadly consistent with the joint distributions

with a few exceptions. In Panels A, B, and D of Figure 6, we see that the crosshairs are not

14Sensitivity results based on a 3.5% or 4.5% ex ante equity premium are very similar, though obviously
less supportive of those respective premia as plausible values for the true ex ante equity premium.
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encompassed by the 99% confidence ellipses with circles, corresponding to reducing both the

MA(1) and AR(1) coefficients at the same time. In Panel D of Figure 6, increasing both the

MA(1) and AR(1) coefficients at the same time places the realized mean US interest rate

and mean S&P 500 dividend yield outside the 99% confidence ellipse (denoted by triangles).

In the remainder of the panels of Figures 6 and 7, (a total of 28 of the 32 cases plotted in

Figures 6 and 7) we still find a 4% ex ante equity premium is consistent with the realized US

outcomes, suggesting our findings are fairly robust to changes in the time series processes

for interest rates and dividend growth rates underlying our simulations.

Joint tests reported in Panel B of Table 8 allow us to make more formal statements about

the consistency of these joint distributions with observed US data. Recall that the column

labeled Case 1 reports χ2 test statistics pertaining to the joint distribution of the mean

return, return standard deviation, mean dividend yield, ex post equity premium, AR(1)

coefficient estimate for returns, and ARCH(1) coefficient estimate for returns, while the

column labeled Case 2 reports statistics pertaining to joint distributions of the same set

of variables with the exception of the AR(1) and ARCH(1) coefficients. The test statistics

are mostly insignificant, consistent with our previous statement that the results are fairly

robust to changes in the degree of autocorrelation used for our simulations. We only find

significant χ2 statistics for the simulations where we either reduced or increased the degree

of autocorrelation in both the dividend growth rate and the interest rate.

3.2 Sensitivity to iid rt and gt

Next, we explore the impact of failing to calibrate the dividend growth rate and interest

rate processes to observed US data. We do so by modeling gt and rt as independently

and identically distributed (iid) processes (i.e. not autocorrelated and not cross-correlated

with each other).15 As we show below, under such restrictive conditions the simulated

distributions are almost always at odds with data from the US economy. Figures 8 and 9

15Sensitivity checks based instead on constant dividend growth rates and constant interest rates yield
scatterplots that are very similar to the iid cases depicted in Figures 8 and 9.

23



contain scatterplots (and confidence ellipses in cases where they are not degenerate) for

simulations based on iid dividend growth rates and interest rates. Once again the ex ante

equity premium is set to 4%. Scanning through the set of figures, not only is it clear that

the US market data are typically at odds with the joint distributions, but it is also obvious

that the simulated data lose the richness apparent in the simulations that capture the degree

of autocorrelation and cross-correlation found in actual interest rates and dividend growth

rates. Dividend yields become virtually constant (see Panels B and D of Figure 8 and

Panels A and C of Figure 9) whereas in reality they vary substantially over time and across

exchanges. In Panel C of Figure 8 we notice that the joint distribution of interest rates and

ex post equity premia becomes more condensed, and in fact the duality of low interest rates

and high equity premia that we observed in our previous figures (and in market data) is no

longer as striking in these simulations as they were previously, though we still see a negative

relationship between ex post equity premia and interest rates. More formally, the joint test

statistics reported in Panel C of Table 8 are strongly significant (for all values of the ex ante

equity premia we consider),16 confirming the notion that modeling gt and rt as iid processes

is inconsistent with the US data.

3.3 Sensitivity to Time-Varying Equity Premia

Finally, we consider the implications of allowing equity premia to vary over time. A recent

strand of the equity premium puzzle literature has been to observe that equity premium

estimates have been falling in recent years. (See Claus and Thomas [2001], Jagannathan,

McGrattan, and Scherbina [2001] and Fama and French [2002], among others.) We should

note that stock market returns are sufficiently volatile that estimates of the equity premium

over short time periods are extremely unreliable. However, to the extent that the equity

premium does time-vary, we seek to verify the robustness of our results.

16We conducted simulations based on iid interest rate and dividend growth rates only for the values of the
ex ante equity premia shown in Panel C of Table 8: 2%, 3%, 4%, 4.5%, and 6%. It is reasonable to assume
that findings would be similar for intermediary values of the ex ante equity premia considered elsewhere in
the paper, including 2.5%, 3.5%, and 5%.
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We consider four different model types for producing annual ex ante equity premia that

vary over time. All four types are somehow linked to annual equity premia estimated over

1952 to 1998 based on a CAPM model which is fully explained in Appendix 2. In all four

models, by working with logs, the time varying equity premia we generate have a lower

bound of 0%. Further, the four models we adopt allow the ex ante equity premium to

evolve as a time series process which covaries with the interest rate and dividend growth

rate processes we use in this paper. For the first model, Type 1, we estimate a time series

process (which turns out to be AR(1)) for the log of the estimated equity premia that emerge

from the CAPM model explained in Appendix 2. We use this time series model to simulate

annual time-varying ex ante equity premia. We set the mean ex ante equity premium to 4%,

consistent with our finding that the most plausible value for the ex ante equity premium is

around 4%.

The second time-varying equity premium model we consider, Type 2, is also based on

the model of log equity premia used for Type 1, but the Type 2 time-varying equity premia

also incorporate a downward time-trend. Although the Type 2 overall average ex ante equity

premium is still set to 4%, the mean premium is set to 6% at the beginning of the 47-year

simulation period and trends downward linearly to a mean of 2% at the end of the 47-year

simulation period.17

The third time-varying equity premium model we consider, Type 3, models the annual ex

ante equity premium as a log-normal random variable (instead of an AR(1) process) with a

4% mean and no time trend. The standard deviation for the log-normal process is based on

the equity premium estimates that emerge from the CAPM model explained in Appendix 2.

Type 4 also models the ex ante equity premium as a log normal random variable, with the

additional feature of a downward time-trend. Although the Type 4 mean ex ante equity

premium is still 4%, the mean premium trends down linearly from 6% to 2% over the course

of the 47-year simulation periods.

17While the time trend in the ex ante equity premium in this case is modeled as deterministic, the realized
ex post equity premium is of course still random.
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Results based on all four types of time-varying equity premia are shown in Figures 10

and 11. Consider the 99% confidence ellipse marked with asterisks and the ellipse marked

with stars, corresponding to the AR(1) model and the log-normal model respectively (both

without time trend), i.e. corresponding to Types 1 and 3 described above. The crosshairs

representing US market data are within these two sets of confidence ellipses almost without

exception. In contrast, the confidence ellipses marked with circles and triangles correspond-

ing to the two downward time-trend models (Types 2 and 4) frequently do not encompass

the crosshairs. Thus, while our results are robust to some forms of time-varying equity

premia, they are not robust to time-varying equity premia that incorporate a deterministic

downward trend. One way to understand this finding is as follows. Our earlier collection of

results based on non-time-varying equity premia suggested that ex ante equity premia in the

range of 4% are best supported by the actual US data. With time-varying ex ante equity

premia that follow a downward trend from 6% to 2%, the simulated data deviate from the

4% ex ante equity premium for much of the 47 year period we simulate, leading to confidence

ellipses that deviate from the 4% cases seen earlier. This suggests a linear time trend in the

equity premium is not consistent with the US data, though it does not necessarily rule out

other sorts of trending equity premia.

Formal χ2 tests are shown in Panel D of Table 8. Simulations based on both types of time-

varying equity premia that incorporate a downward trend (Types 2 and 4) yield significant

test statistics, suggesting these scenarios are inconsistent with observed US data. Simulations

based on time-varying equity premia Types 1 and 3, however, are more consistent with the

observed US data, as three of the four χ2 statistics are insignificant for model Types 1 and 3.

Overall, the sensitivity checks considered in this section based on alternate specifications

for interest rates and dividend growth rates and based on time-varying processes for the ex

ante equity premium make it clear that accounting for autocorrelation doesn’t merely make

our scatterplots noisier or more variable, coincidentally allowing them to envelope realizations

of the US economy. Rather, calibrating the interest rates and dividend growth rates produced
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in our simulations to the degree of autocorrelation observed in the market data leads to

joint distributions of important financial statistics with characteristics consistent with what

is observed empirically (like simultaneously low interest rates and high equity premia but

not the reverse, for instance). Furthermore, the range of plausible ex ante equity premia

implied by the simulations are remarkably robust to minor modifications in the parameter

values upon which the simulations are based as well as to some forms of time-varying equity

premia.

4 Conclusions

The equity premium of interest in theoretical models is the extra return investors anticipate

when purchasing risky stock instead of risk-free debt. Unfortunately, we do not observe this

ex ante premium in the data; we only observe the returns that investors actually receive ex

post, after they purchase the stock and hold it over some period of time during which random

economic shocks impact prices. US stocks have historically returned roughly 6% more than

risk-free debt, which is higher than warranted by standard economic theory; hence the equity

premium puzzle.

In this paper we have devised a method to simulate the distribution from which ex

post equity premia are drawn, conditional on various values for investors’ ex ante equity

premium and calibrated to fundamentals of the US economy. Even though ex post estimates

provided by recent papers suggest the US equity premium may be falling in recent years, these

estimates are imprecise and do not rule out puzzlingly high ex ante equity premia. We have

therefore sought to determine whether realized financial statistics from the US economy are

consistent with various settings of the ex ante equity premium. That is, if investors demand

(ex ante) a particular equity premium, could we still observe combinations of Sharpe ratios,

dividend yields, interest rates, and ex post equity premia observed in practice? Not only do

we find that our choice of models and parameters are consistent with the range of financial

statistics observed in market data, but our results are surprisingly robust to changes in the
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parameter values underlying our study. On the basis of our fundamentals-based analysis, we

conclude that the most plausible range of ex ante equity premia is in a very narrow vicinity

of 4%, in contrast to previous empirical work which could not reliably rule out premia as

low as 0% or as high as 9%.
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Appendices

Appendix 1: Technical Details on the Simulations

A1.1 Fundamentals

In creating distributions of financial variables modeled on the US economy, we start by

generating the fundamental factors that drive asset prices: dividends and discount rates.

We define Pt as a stock’s beginning-of-period-t price and Et as the expectations operator

conditional on information available up to but not including the beginning of period t. The

discount rate, rt is the rate investors use to discount payments received during period t (i.e.

from the beginning of period t to the beginning of period t+1). Investor rationality requires

that the time t market price of a stock, which will pay a dividend Dt+1 one period later and

then sell for Pt+1, satisfy Equation (4):

Pt = Et

{
Pt+1 + Dt+1

1 + rt

}
. (4)

Then Rt ≡ {(Pt+1 + Dt+1)/Pt} − 1 is the return on stock; i.e. the equity return.

Invoking the standard transversality condition that the expected present value of the

stock price Pt+i falls to zero as i goes to infinity, and defining the growth rate of dividends

during period t as gt ≡ (Dt+1 − Dt)/Dt , allows us rewrite Equation (4) as:

Pt = DtEt

{ ∞∑
i=1

(
Πi

k=1

[
1 + gt+k−1

1 + rt+k−1

])}
. (5)

One attractive feature of expressing the present value stock price as in Equation (5), in terms

of dividend growth rates and discount rates, is that this form highlights the irrelevance of

inflation, at least to the extent that expected and actual inflation are the same. Notice that

working with nominal growth rates and discount rates, as we do, is equivalent to working

31



with deflated nominal rates (i.e. real rates). That is, 1+([gt−It]/[1+It])
1+([rt−It]/[1+It])

= (1+gt)
(1+rt)

, where It is

inflation. Working with nominal values in our simulations removes a potential source of

measurement error associated with attempts to estimate inflation.

A1.2 Calibration

The first step in obtaining stock prices from Equation (5) is to estimate time series models

for dividend growth and interest rates so that our Monte Carlo simulations will generate

dividends and discount rates that share key features with observed S&P 500 dividends and

US discount rates. The discount rate is defined to be the risk-free interest rate plus a constant

premium of X%, where X is chosen to produce a target equity premium as explained in

Section A1.3. Economic theory admits a wide range of possible processes for the risk-free

interest rate, from constant to autoregressive and highly non-linear heteroskedastic forms.

The AR(1) model of the logarithm of interest rates, as described in Hull [1993, page 408]

will be used here as it fits our data well and restricts nominal interest rates to be positive.

Standard specification tests for normality, autocorrelation, and ARCH on the error term from

an AR(1) model of the logarithm of interest rates do not reject the null of no misspecification.

The 1-year T-bill rates on our annual data have mean 0.059 and standard deviation 0.03

over 1952-1998, the time period we study.18 The AR(1) coefficient estimate in the regression

of log interest rates on lagged log interest rates equals 0.83.

Since dividend growth rates have a minimum value of -100% and no theoretical maximum,

a natural choice for their distribution is the log-normal. The logarithm of 1 plus the annual

dividend growth rate has mean 0.0531 and standard deviation 0.035 for the S&P 500 over

1952 to 1998. We estimated simple ARMA time series models for the logarithm of 1 plus the

dividend growth rate and found the best model by the Bayesian Information Criterion to be

an MA(1) model with the MA(1) coefficient equal to 0.60. Standard tests for normality of

this error term (and hence conditional log-normality of dividend growth rates) do not reject

18The starting year of 1952 was motivated by the U.S. Federal Reserve Board’s adoption of a modern
monetary policy regime in 1951.
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the null of normality, and standard tests for autocorrelation and ARCH fail to reject the

null of homoskedasticity and no serial correlation. Finally, the error terms from the MA(1)

model of log dividend growth rates and log interest rates are correlated, with a correlation

coefficient of 0.21.

Properties of prices and returns produced by Equation (5) depend in important ways

on the modeling of the dynamics of the dividend growth and interest rate processes. For

instance, the stock price will equal a constant multiple of the dividend level and returns will

be very smooth over time if dividend growth and interest rates are set equal to constants

plus independent innovations. However, using models that capture the serial dependence

of dividend growth rates and interest rates observed in the data, as we do, will typically

lead to time-varying price-dividend ratios and variable returns of the sort we observe in the

S&P 500 stock market data.

A1.3 The Equity Premium versus the Discount Premium

When discounting a stream of uncertain cashflows to determine the present value of a

share of stock, one typically uses a discount rate that exceeds the risk-free interest rate. In

this case the appropriate risk adjustment, which we refer to as the “discount premium,” is

the amount one needs to add to the risk-free rate in order to produce a risk-adjusted discount

rate that correctly prices the stock: In the finance literature and in common practice, the

equity premium and discount premium are typically used interchangeably, with estimates of

one substituted for the other in various applications.19 However, as we now show, in general

they are not equivalent.

The ex ante equity premium, πe, is defined as the difference between the expected equity

return and the expected risk-free rate:

πe ≡ E {R} − E {rf} . (1)

19See, for instance, Claus and Thomas [2001] who comment on the equity premium but then calculate the
discount premium instead, and Lee, Myers, and Swaminathan [1999] who calculate the equity premium but
then use it as a discount premium for the purpose of discounting future cash flows.

33



The discount premium πd, however, is the premium added to the risk-free rate, rf , for the

purpose of discounting future risky cash flows, as in determining the present value of a share

of stock. As stated at the beginning of the appendix, the price of a company’s stock which

will pay a dividend Dt+1 one period from now and then sell for price Pt+1 is:

Pt = Et

{
Pt+1 + Dt+1

1 + rf,t + πd

}
. (4)

Notice that by dividing both sides of Equation (4) by Pt, defining the stock return Rt as

(Pt+1 + Dt+1)/Pt − 1, and applying the law of iterated expectations we obtain the following:

1 = E
{

1 + Rt

1 + rf,t + πd

}
. (6)

By Jensen’s Inequality, the value of πd that sets the expectation in Equation (6) equal to

1 will not necessarily be the equity premium πe = E {R} − E {rf} defined above. Only in

the special case where the denominator of Equation (6) is not random (e.g. if rf and πd are

both constant) can we multiply both sides of Equation (6) by E {1 + rf + πd} and derive the

equality of πd and πe. Therefore, simply adding πd = X% to the risk-free rate will not in

general yield an equity premium of πe = X%. In most cases, πd �= πe.

In this study, we determine the appropriate discount premium by finding the value of πd

that satisfies the expectation in Equation (6). In our application, πd exceeds πe by roughly

20 basis points.20 In other words, if a 2% equity premium is desired, then we must add a

2.2% discount premium to the risk-free interest rate. The difference of 20 basis points is a

relatively important adjustment when one considers the power of compounding in present

20Donaldson, Kamstra, and Kramer [2002] highlight the difference between πd and πe which arises due to
Jensen’s inequality. They also provide a simple method of moments estimator that can be used for estimating
πd without bias.
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value calculations. Donaldson, Kamstra, and Kramer [2002] call the difference between the

discount premium and the equity premium the “risk gap.” They document that the risk gap

can be as large as 40 basis points among stocks listed on the S&P 500, and that failure to

account for the risk gap when conducting asset valuation can lead to pricing errors as large

as 50%.

One way to verify that our estimator delivers the correct discount premium for the

desired equity premium, and that we have made the equity-premium-to-discount-premium

bias adjustment correctly, is to observe that our simulations replicate the equity premium

assumed in each case. As discussed in the main text, when we assume a 2% ex ante equity

premium, we obtain the correct mean of 2% for the ex post equity premium, having added

the adjusted discount premium of 2.2% to the risk-free rate in our simulations.

A1.4 Numerical Simulation

We now detail the numerical simulation by which our figures and tables are produced.

That is, we detail for the nth economy the formation of the prices (P n
t ), returns (Rn

t ), ex post

equity premia (π̂n
e ), etc., (where n = 1, · · · , N and t = 1, · · · , T ), given dividends, dividend

growth rates, risk-free interest rates and the equity premium of the nth economy: Dn
t , gn

t−1,

and rn
t−1 = rn

f,t−1 + πd.
21

In terms of timing and information, recall that P n
t is the stock’s beginning-of-period-

t price, rn
t is the rate used to discount payments received during period t and is known

at the beginning of period t, Dn
t is paid at the beginning of period t, gn

t is defined as

(Dn
t+1 − Dn

t )/Dn
t and is not known at the beginning of period t since it depends on Dn

t+1,

and Et {·} is the conditional expectation operator, with the conditioning information being

the set of information available to investors up to but not including the beginning of period

t. Finally, recall Equation (5), rewritten to correspond to the nth economy:

21We set the number of economies, N , at 2000. This is a sufficiently large number of replications to
produce results with very small simulation error, as discussed below.
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P n
t = Dn

t Et

{ ∞∑
i=1

(
Πi

k=1

[
1 + gn

t+k−1

1 + rn
t+k−1

])}
. (7)

Returns are constructed as Rn
t = (P n

t+1 + Dn
t+1 − P n

t )/P n
t , and π̂n

e = R
n − rn

f where R
n

=

1
T

∑T
t=1 Rn

t and rn
f = 1

T

∑T
t=1 rn

f,t.

Based on Equation (7), we generate prices by generating a multitude of possible streams

of dividends and discount rates, present-value discounting the dividends with the discount

rates, and averaging the results; i.e. by conducting a Monte Carlo integration. Hence we

produce prices (P n
t ), returns (Rn

t ), ex post equity premia (π̂n
e ), and a myriad of other financial

quantities, utilizing only dividend growth rates and discount rates. The exact procedure is

described below and summarized in Exhibit 1.22

Exhibit 1 Diagram of a Simple Market Price
Calculation for the tth Observation
of the nth Economy (Steps 1 and 2)
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t




︸ ︷︷ ︸
J Possible Paths of Economy n

Step 1: When forming P n
t , the most recent fundamental information available to a

market trader would be gn
t−1, Dn

t , and rn
t−1. The quantities gn

t−1, Dn
t , and rn

t−1 must therefore

22According to Equation (7), the stream of dividends and discount rates should be infinitely long, however
truncating the stream at a sufficiently distant point in time denoted I leads to a very small approximation
error. We discuss this point more fully below.
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be generated directly in our simulations, whereas P n
t is calculated based on these g, r and

D. The objective of Steps 1(a)-(c) outlined below is to produce dividend growth rates and

interest rates that replicate the real world dividend growth and interest rate data. That is,

the simulated dividend growth rates and interest rates must have the same mean, variance,

covariance, and autocorrelation structure as the observed S&P 500 dividend growth rates

and US interest rates.

Step 1(a): Note that since, as described above, the logarithm of one plus the dividend

growth rate is modeled as an MA(1) process, log(1 + gn
t ) is a function of only innovations,

labeled εn
g . Note also that since the logarithm of the interest rate is modeled as an AR(1)

process, log(rn
f,t) is a function of log(rn

f,t−1) and an innovation labeled εn
r . Set the initial

dividend, Dn
1 , equal to the total S&P 500 dividend value for 1951 (observed at the end of

1951), and the lagged innovation of the logarithm of the dividend growth rates εn
g,0 to 0. To

match the real-world interest rate data, set log(rn
f,0) = −3.05 (the mean value of log interest

rates required to produce interest rates matching the mean and variance of observed T-bill

rates). Then generate two independent standard normal random numbers, ηn
1 and νn

1 (note

that the subscript on these random numbers indicates time, t), and form two correlated

random variables, εn
r,1 = 0.242(0.21ηn

1 + (1 − .212).5νn
1 ) and εn

g,1 = 0.0305ηn
1 . These are the

simulated innovations to the interest rate and dividend growth rate processes, formed to have

standard deviations of 0.242 and 0.0305 respectively to match the data, and to be correlated

with correlation coefficient 0.21 as we find in the S&P 500 return and T-bill rate data. Next,

form log(1 + gn
1 ) = 0.0531 + 0.60εn

g,0 + εn
g,1 and log(rn

f,1) = −0.18 + 0.94log(rn
f,0) + εn

r,1.
23 Also

form Dn
2 = Dn

1 (1 + gn
1 ).

Step 1(b): Produce two correlated normal random variables, εn
r,2 and εn

g,2 as in Step

1(a) above, and conditioning on εn
g,1 and log(rn

f,1) from Step 1(a) produce log(1 + gn
2 ) =

23Notice that the AR(1) parameter for the log interest rate process is estimated to be 0.83 but we have
set it to 0.94 in the simulations. It is well known that the coefficient estimate in an AR(1) OLS regression
is biased downwards; see for instance Kennedy [1992, page 147]. Numeric simulations were employed to
determine the appropriate correction for our data, as in Orcutt and Winokur [1969], and this led to the
setting of 0.94. The intercept term had to be adjusted as well to reflect this new setting.
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0.0531 + 0.60εn
g,1 + εn

g,2, log(rn
f,2) = −0.18 + 0.94log(rn

f,1) + εn
r,2 and Dn

3 = Dn
2 (1 + gn

2 ).

Step 1(c): Repeat Step 1(b) to form log(1 + gn
t ), log(rn

f,t) and Dn
t for t = 3, 4, 5, · · · , T

and for each economy n = 1, 2, 3, · · · , N . Then calculate the dividend growth rate gn
t and

the discount rate rn
t (which equals rn

f,t plus the bias-corrected discount premium needed to

obtain the desired equity premium).

Step 2: For each time period t = 1, 2, 3, · · · , T and economy n = 1, 2, 3, · · · , N we next

calculate prices, P n
t . In order to do this we must solve for the expectation of the infinite sum

of discounted future dividends conditional on time t − 1 information for economy n. That

is, we must produce a set of possible paths of dividends and interest rates that might be

observed in periods t, t + 1, t + 2, · · · given what is known at period t − 1 and use these to

solve the expectation of Equation (7). We use the superscript j to index the possible paths

of future economies that could possibly evolve from the current state of the economy.

Step 2(a): Set εj,n
g,t−1 = εn

g,t−1 and log(rj,n
f,t−1) = log(rn

f,t−1) for j = 1, 2, 3, · · · , J .24 Generate

two independent standard normal random numbers, ηj,n
t and νj,n

t and form two correlated

random variables εj,n
r,t = 0.242(0.21ηj,n

t + (1 − .212).5νj,n
t ) and εj,n

g,t = 0.0305ηj,n
t for j =

1, 2, 3, · · · , J .25 These are the simulated innovations to the interest rate and dividend growth

rate processes, respectively. Form log(1 + gj,n
t ) = 0.0531 + 0.60εj,n

g,t−1 + εj,n
g,t and log(rj,n

f,t ) =

−0.18 + 0.94log(rj,n
f,t−1) + εj,n

r,t .

Step 2(b): Produce two correlated normal random variables εj,n
r,t+1 and εj,n

g,t+1 as in Step

2(a) above, and conditioning on εj,n
g,t and log(rj,n

f,t ) from Step 2(a) produce log(1 + gj,n
t+1) =

24We choose J to equal 2,000, in order to ensure the simulation error in calculating prices and returns was
controlled to be very small. To determine the simulation error, we conducted a simulation of the simulations.
Unlike some Monte Carlo experiments (such as those estimating the size of a test statistic under the null)
the standard error of the simulation error for most of our estimates (returns, prices, etc.) are themselves
analytically intractable, and must be simulated. In order to estimate the standard error of the simulation
error in estimating market prices, we estimated a single market price 2,000 times, each time independent
of the other, and from this set of prices computed the mean and variance of the price estimate. If the
experiment had no simulation error, each of the price estimates would be identical. With the number of
possible paths, J , equal to 2,000 we find that the standard deviation of the simulation error is less than
0.20% of the price, which is sufficiently small as not to be a source of concern for our study.

25For our random number generation we made use of a variance reduction technique, stratified sampling.
This technique has us drawing pseudo-random numbers ensuring that q% of these draws come from the qth

percentile, so that our sampling does not weight any grouping of random draws too heavily.
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0.0531 +0.60εj,n
g,t + εj,n

g,t+1, and log(rj,n
f,t+1) = −0.18 +0.94log(rj,n

f,t )+ εj,n
r,t+1 for j = 1, 2, 3, · · · , J .

Step 2(c): Repeat Step 2(b) to form log(1 + gj,n
t+i) and log(rj,n

t+i) for i = 2, 3, 4, · · · , I,

j = 1, 2, 3, · · · , J , and economies n = 1, 2, 3, · · · , N . Solve for the dividend growth rate gj,n
t+i,

the dividends Dj,n
t+i, and the discount rate rj,n

t+i (which equals rj,n
f,t+i plus the bias-corrected

discount premium needed to obtain the desired equity premium) for i = 0, 1, 2, · · · , I.

Step 2(d): The present discounted value of each of the individual J streams of dividends

is now taken in accordance with Equation (7), with the jth present value price noted as P j,n
t .

Finally, the price for the nth economy in period t is formed: P n
t = 1

J

∑J
j=1 P j,n

t .

In considering these prices, note that according to Equation (7) the stream of discount

and dividend growth rates should be infinitely long, while in our simulations we extend the

stream only a finite number of periods, I. Since the ratio of gross dividend growth rates to

gross discount rates are less than unity in steady state, the individual product elements in

the infinite sum in Equation (7) eventually converge to zero as I increases. (Indeed, this

convergence to zero is exactly what is required for the standard transversality condition that

the expected present value of the stock price Pt+i falls to zero as i goes to infinity.) We

therefore set I large enough in our simulations so that the truncation does not materially

effect our results. We find that setting I = 1000 years is sufficient in all cases we studied.

That is, the discounted present value of a dividend payment received 1000 years in the future

is essentially zero. Also note that the steps above are required to produce P n
t , Dn

t , gn
t , and

rn
t for n = 1, · · · , N and t = 1, · · · , T ; the intermediate terms superscripted with a j are

required only to perform the numerical integration that yields P N
t . Note that the length of

the time series T is chosen to be 47 to imitate the 47 years of annual data we have available

from the S&P 500 from 1952 to 1998.

Step 3: After performing Steps 1(a)-(c) and 2(a)-(d) for t = 1, · · · , T , rolling out N

independent economies for T periods, we construct the market returns for each economy,

Rn
t = (P n

t+1 +Dn
t+1−P n

t )/P n
t , and the equity premium that agents in the nth economy would

observe, π̂n
e , estimated from Equation (1) as the mean difference in market returns and the
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risk-free rate. These simulated equity premia form the basis for the analysis in the rest of

this paper.

Appendix 2: Model Underlying our Four Types of Time-

Varying Equity Premia

We detail below four types of time-varying ex ante equity premia. Briefly, the first type

is based on an AR(1) model of equity premia that emerges from Merton’s [1980] conditional

CAPM, the second is based on Merton’s CAPM and a downward trend, the third models

the time-varying equity premia as iid, and the fourth incorporates a downward trend to the

iid time-varying equity premia.

Merton’s conditional CAPM is expressed in terms of returns in excess of the risk-free

rate, or, in other words, the period by period equity premium. For the ith asset,

Et−1(ri,t) = λ covt−1(ri,trm,t), (8)

where ri,t are excess returns on the asset, rm,t are excess returns on the market portfolio, and

covt−1 is the time-varying conditional covariance between excess returns on the asset and on

the market portfolio. For the expected excess market return, (8) becomes

Et−1(rm,t) = λ vart−1(rm,t) (9)

where vart−1 is the market time-varying conditional variance. Merton [1980] argues that

λ in (9) is the weighted sum of the reciprocal of each investor’s coefficient of relative risk

aversion, with the weight being related to the distribution of wealth among individuals.

Equation (9) defines a time-varying equity premium, but this model has the equity pre-

mium varying only as a function of time-varying conditional variance. Following Bekaert and
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Harvey [1995], it is possible to allow λ in (9) to vary over time by making it a parametric

function of conditioning variables. We set λt−1 = exp
(
λ0 + λ1

Dt−1

Pt−1

)
since the dividend yield

is a well known predictor of future returns.

We make use of a simple ARCH specification to model vart−1(rm,t). Once again we

calibrate to the S&P 500 over 1952 to 1998, estimating the following model:

rm,t = λt−1 vart−1(rm,t) + em,t (10)

vart−1(rm,t) = ht = ω + αe2
m,t−1 (11)

λt−1 = exp

(
λ0 + λ1

Dt−1

Pt−1

)
(12)

The values of estimated parameters are λ0 = −.90, λ1 = 0.53, ω = 0.021, and α = 0.066.

For our simulations, we model the time series process of the ex ante time varying equity

premium (denoted πe,t) by using the excess return as a proxy for the equity premium:

π̂e,t = λ̂t−1 ˆvart−1(rm,t) (13)

where λ̂t−1 = exp
(
−0.9 + 0.53Dt−1

Pt−1

)
, ˆvart−1(rm,t) = 0.021 + 0.066ê2

m,t−1, and êm,t−1 =

rm,t−1 − π̂t−1. The time-varying equity premium we estimate here, π̂e,t, follows a strong

AR(1) time series process, similar to that of the risk-free interest rate.26

To generate the first time varying equity premium model we consider, labeled Type 1

(with autocorrelated ex ante equity premia), we start by producing three sets of iid normal

random variables. We calibrate two of these random variables to residuals from the time

series models we estimated for S&P 500 dividend growth rates and US interest rates, as

26The mean of the estimated equity premium from this model is 8% and the standard deviation is 6.2%.
An AR(1) model of the natural logarithm of the equity premium has a coefficient of 0.72 on the lagged equity
premium, with a standard error of 0.089 and an R2 of 0.599. The error from this regression is insignificantly
correlated with the innovation from the interest rate model but is significantly positively correlated with the
innovation from the MA(1) model of dividend growth rates, with a correlation coefficient of 0.216.
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detailed in Appendix 1. (Recall from Appendix 1 that interest rates follow an AR(1) process

and dividend growth rates follow an MA(1) process.) We calibrate the third set of iid normal

random variables to the residuals from the AR(1) model of the equity premia that emerge

from estimating the Merton CAPM described above using S&P 500 returns. The interest

rates, dividend growth rates, and equity premia we generate not only follow the time series

processes to which they are calibrated, they also mimic the covariance structure between

the residuals from the time series models of interest rates, dividend growth rates, and equity

premia as estimated using US data. In evolving a 47-year simulated time series of the

(natural logarithm of the) equity premium, the ‘year 1’ simulated value and the intercept

term are set to the appropriate values necessary to generate a 4% mean equity premium.

In producing model Type 2 (autocorrelated and downward trending ex ante equity pre-

mia), we model the same AR(1) structure used for Type 1 equity premia (and the same

time series properties for interest rates and dividend growth rates). We then incorporate a

downward trend in the premium by setting the mean equity premium to be 6% at the start

of the 47-year simulation period, 2% at the end, and 4% overall.

Model Types 3 and 4 do not use the AR(1) process used for time-varying equity premia

in model Types 1 and 2, though they are still linked to the CAPM model described above

(and the interest rate and dividend growth rate processes are still calibrated as described

above). The Type 3 time-varying equity premium is a log-normal random variable which

has a mean of 4%, a standard deviation calibrated to the variability of the equity premium

estimates that emerge from the CAPM model, and no downward trend. Finally, for Type 4

we model the ex ante equity premium as a log-normal random variable with a mean premium

of 6% at the start of the 47-year simulation period, 2% at the end, and 4% overall.
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Table 1
Statistics on Ex Post Equity Premium Estimates (π̂e)

for the Simulated Market Economies Based on Various
Values of the Ex Ante Equity Premium

This table presents means and percentiles of the ex post equity premium estimates (π̂e) arising in our
simulated economies. The ex post equity premium is estimated as the difference between the mean return
and the mean interest rate over 47 years of simulated data. The results reported in each set of rows correspond
to simulations in which the ex ante equity premium was set to a value ranging from 2% through 6%.

Ex Ante Mean of Percentiles of
Equity Simulated Simulated π̂e

Premium π̂e 1% 5% 50% 95% 99%
2 % 2.032 -7.008 -2.977 2.452 5.316 6.244
2.5 % 2.516 -5.230 -1.773 2.907 5.626 6.847
3 % 2.954 -5.198 -1.518 3.345 6.076 7.107
3.5 % 3.498 -3.911 -0.625 3.872 6.494 7.278
4 % 3.980 -3.319 0.027 4.344 6.825 7.618
4.5 % 4.532 -2.268 0.705 4.934 7.317 8.200
5 % 5.024 -1.610 1.334 5.397 7.662 8.522
6 % 6.040 -0.099 2.362 6.304 8.561 9.248
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Table 2
Statistics on Dividend Yields (D/P ) for

the Simulated Market Economies Based on Various
Values of the Ex Ante Equity Premium

This table presents the first four moments of annual S&P 500 dividend yield (dividend divided by price,
estimated each year during 1952-1998) along with means and percentiles of the first four moments of the
annual dividend yields arising in our simulated economies. The results reported in each set of rows correspond
to simulations in which the ex ante equity premium was set to a value ranging from 2% through 6%.

Ex Ante S&P Mean of Percentiles of
Equity 500 Simulated Simulated D/P
Premium Moment D/P D/P 1% 5% 50% 95% 99%
2% Mean 3.789 1.439 0.824 0.912 1.328 2.284 3.299

σ 1.060 0.465 0.108 0.145 0.356 1.062 1.914
Skewness 0.843 0.873 -0.192 0.099 0.803 1.907 2.483
Kurtosis 3.144 3.503 1.629 1.900 2.988 6.993 9.934

2.5% Mean 3.789 2.031 1.179 1.315 1.893 3.214 4.180
σ 1.060 0.616 0.134 0.197 0.481 1.535 2.281
Skewness 0.843 0.844 -0.191 0.030 0.766 1.842 2.513
Kurtosis 3.144 3.456 1.618 1.843 2.942 6.795 10.228

3% Mean 3.789 2.618 1.541 1.733 2.434 4.116 5.341
σ 1.060 0.768 0.161 0.241 0.594 1.884 3.077
Skewness 0.843 0.823 -0.235 0.027 0.783 1.756 2.355
Kurtosis 3.144 3.368 1.624 1.870 2.936 6.190 9.390

3.5% Mean 3.789 3.159 1.935 2.134 2.970 4.837 6.108
σ 1.060 0.856 0.212 0.284 0.707 1.948 3.150
Skewness 0.843 0.791 -0.339 0.001 0.747 1.742 2.295
Kurtosis 3.144 3.305 1.615 1.818 2.876 5.985 9.145

4% Mean 3.789 3.720 2.296 2.533 3.485 5.562 7.532
σ 1.060 0.978 0.236 0.328 0.779 2.246 4.014
Skewness 0.843 0.777 -0.281 -0.006 0.731 1.730 2.277
Kurtosis 3.144 3.253 1.613 1.832 2.821 6.067 9.021

4.5% Mean 3.789 4.231 2.764 3.009 4.001 6.262 7.761
σ 1.060 1.053 0.264 0.365 0.834 2.527 4.126
Skewness 0.843 0.783 -0.286 -0.010 0.733 1.745 2.315
Kurtosis 3.144 3.278 1.616 1.851 2.866 6.038 9.314

5 % Mean 3.789 4.762 3.115 3.414 4.532 6.791 8.773
σ 1.060 1.118 0.293 0.395 0.928 2.489 4.145
Skewness 0.843 0.759 -0.293 -0.017 0.693 1.714 2.232
Kurtosis 3.144 3.211 1.610 1.852 2.797 6.066 8.513

6% Mean 3.789 5.792 3.936 4.257 5.534 8.233 9.835
σ 1.060 1.245 0.320 0.429 1.050 2.822 4.145
Skewness 0.843 0.745 -0.316 -0.053 0.694 1.725 2.183
Kurtosis 3.144 3.216 1.632 1.811 2.790 5.959 8.768
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Table 3
Statistics on Returns for

the Simulated Market Economies Based on Various
Values of the Ex Ante Equity Premium

This table presents the first four moments of annual S&P 500 returns (estimated each year during 1952-1998)
along with means and percentiles of the first four moments of the annual returns arising in our simulated
economies. The results reported in each set of rows correspond to simulations in which the ex ante equity
premium was set to a value ranging from 2% through 6%.

Ex Ante Mean of Percentiles of
Equity S&P Simulated Simulated Data
Premium Moment 500 Data 1% 5% 50% 95% 99%
2 % Mean 13.439 8.074 4.587 5.514 7.907 11.182 13.605

σ 15.008 15.476 9.294 10.526 14.960 22.000 27.310
Skewness -0.106 0.462 -0.409 -0.188 0.410 1.268 1.788
Kurtosis 2.468 3.388 1.958 2.147 2.979 5.936 8.467

2.5 % Mean 13.439 8.578 5.009 5.958 8.411 11.738 14.369
σ 15.008 14.475 8.388 9.617 14.067 21.031 24.825
Skewness -0.106 0.447 -0.428 -0.211 0.413 1.281 1.870
Kurtosis 2.468 3.379 1.947 2.141 2.989 5.689 9.099

3 % Mean 13.439 9.087 5.644 6.510 8.844 12.642 15.041
σ 15.008 13.741 7.924 9.057 13.267 20.248 23.179
Skewness -0.106 0.427 -0.493 -0.177 0.382 1.220 1.731
Kurtosis 2.468 3.321 1.914 2.107 2.983 5.704 8.172

3.5 % Mean 13.439 9.579 6.002 6.979 9.369 12.783 15.499
σ 15.008 13.169 7.619 8.785 12.710 19.010 23.221
Skewness -0.106 0.433 -0.423 -0.181 0.381 1.223 1.731
Kurtosis 2.468 3.347 1.928 2.152 2.990 5.669 8.584

4 % Mean 13.439 10.111 6.474 7.430 9.803 13.833 16.641
σ 15.008 12.636 7.368 8.432 12.089 18.522 22.605
Skewness -0.106 0.411 -0.498 -0.247 0.356 1.229 1.799
Kurtosis 2.468 3.311 1.865 2.102 2.963 5.629 8.566

4.5 % Mean 13.439 10.595 7.186 7.984 10.359 14.034 16.692
σ 15.008 12.236 7.273 8.164 11.763 17.992 21.921
Skewness -0.106 0.426 -0.461 -0.206 0.373 1.207 1.781
Kurtosis 2.468 3.331 1.861 2.124 2.976 5.723 9.131

5 % Mean 13.439 11.108 7.410 8.318 10.862 14.688 17.297
σ 15.008 11.834 6.870 7.791 11.376 17.506 21.028
Skewness -0.106 0.415 -0.442 -0.214 0.372 1.194 1.745
Kurtosis 2.468 3.301 1.937 2.162 2.972 5.485 8.713

6 % Mean 13.439 12.113 8.524 9.390 11.864 15.694 18.412
σ 15.008 11.135 6.452 7.390 10.743 16.359 20.501
Skewness -0.106 0.417 -0.472 -0.204 0.365 1.187 1.888
Kurtosis 2.468 3.289 1.957 2.149 2.943 5.576 8.508
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Table 4
Statistics on Discounted Dividend Growth Rates (y) for the Simulated

Market Economies Based on Various Values of the Ex Ante Equity Premium

This table presents the first four moments of S&P 500 discounted dividend growth rates (based on annual
dividend growth rates estimated over 1952-1998, and reported in decimal form) as well as means and per-
centiles of the first four moments of discounted dividend growth rates arising in our simulated economies.
The discounted dividend growth rate, yt, is defined as (1+gt)/(1+rt) where gt is the growth rate of dividends
and rt is the discount rate. The results reported in each set of rows correspond to simulations in which the
ex ante equity premium was set to a value ranging from 2% through 6%.

Ex Ante S&P Mean of Percentiles of
Equity 500 Simulated Simulated y
Premium Moment y y 1% 5% 50% 95% 99%
2 % Mean 0.942 0.978 0.889 0.931 0.983 1.011 1.019

σ 0.037 0.042 0.027 0.030 0.040 0.062 0.083
Skewness 0.023 -0.049 -1.122 -0.689 -0.036 0.574 0.829
Kurtosis 2.631 2.719 1.803 1.995 2.578 3.882 4.858

2.5 % Mean 0.942 0.974 0.892 0.925 0.978 1.007 1.016
σ 0.037 0.042 0.028 0.030 0.040 0.061 0.078
Skewness 0.023 -0.059 -1.056 -0.738 -0.047 0.556 0.836
Kurtosis 2.631 2.691 1.772 1.985 2.581 3.727 4.603

3 % Mean 0.942 0.969 0.883 0.916 0.974 1.001 1.011
σ 0.037 0.042 0.027 0.030 0.040 0.064 0.085
Skewness 0.023 -0.062 -1.123 -0.722 -0.048 0.538 0.846
Kurtosis 2.631 2.701 1.801 1.960 2.596 3.823 4.625

3.5 % Mean 0.942 0.965 0.884 0.917 0.969 0.997 1.005
σ 0.037 0.042 0.027 0.030 0.039 0.061 0.082
Skewness 0.023 -0.046 -1.087 -0.722 -0.038 0.597 0.820
Kurtosis 2.631 2.704 1.787 1.963 2.586 3.827 4.791

4 % Mean 0.942 0.960 0.873 0.913 0.964 0.994 1.001
σ 0.037 0.042 0.027 0.030 0.039 0.062 0.086
Skewness 0.023 -0.048 -1.080 -0.727 -0.038 0.580 0.840
Kurtosis 2.631 2.693 1.809 1.972 2.577 3.840 4.747

4.5 % Mean 0.942 0.956 0.875 0.909 0.960 0.987 0.995
σ 0.037 0.041 0.027 0.030 0.039 0.062 0.083
Skewness 0.023 -0.056 -1.146 -0.763 -0.042 0.595 0.884
Kurtosis 2.631 2.718 1.794 1.962 2.585 3.831 4.867

5 % Mean 0.942 0.951 0.870 0.905 0.956 0.983 0.990
σ 0.037 0.041 0.027 0.030 0.039 0.059 0.081
Skewness 0.023 -0.051 -1.074 -0.771 -0.038 0.594 0.884
Kurtosis 2.631 2.733 1.805 1.968 2.607 3.934 4.939

6 % Mean 0.942 0.943 0.867 0.895 0.947 0.974 0.982
σ 0.037 0.040 0.026 0.029 0.038 0.059 0.076
Skewness 0.023 -0.045 -1.055 -0.732 -0.020 0.553 0.792
Kurtosis 2.631 2.715 1.800 1.985 2.606 3.802 4.572
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Table 5
Statistics on Sharpe Ratios for

the Simulated Market Economies Based on Various
Values of the Ex Ante Equity Premium

This table presents the mean Sharpe ratio for the S&P 500 over 1952-1998 as well as means and percentiles
of the Sharpe ratio arising in our simulated economies. The Sharpe ratio is defined as excess return divided
by the standard deviation of the excess return. The results reported in each row correspond to simulations
in which the ex ante equity premium was set to a value ranging from 2% through 6%.

Ex Ante Mean of Percentiles of
Equity S&P Simulated Simulated Data
Premium 500 Data 1% 5% 50% 95% 99%
2 % 0.501 0.154 -0.284 -0.139 0.157 0.425 0.522
2.5 % 0.501 0.199 -0.230 -0.091 0.196 0.505 0.612
3 % 0.501 0.243 -0.238 -0.078 0.241 0.564 0.725
3.5 % 0.501 0.293 -0.156 -0.037 0.289 0.646 0.799
4 % 0.501 0.343 -0.157 0.002 0.339 0.699 0.867
4.5 % 0.501 0.396 -0.107 0.039 0.395 0.752 0.930
5 % 0.501 0.453 -0.081 0.078 0.441 0.847 1.021
6 % 0.501 0.571 -0.005 0.140 0.559 1.012 1.181
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Table 6
Statistics on Market Return Autoregressive Coefficients for

the Simulated Market Economies Based on Various
Values of the Ex Ante Equity Premium

The first line in each cell of this table contains the first order autoregressive coefficient, AR(1), for S&P 500
returns along with means and percentiles of the AR(1) coefficients arising in our simulated economies. The
second line in each cell contains the same statistics based on the standard deviation of the AR(1) estimate
for the S&P 500 and the simulated economies. S&P 500 AR(1) coefficients are estimated over 1952-1998.
The results reported in each set of rows correspond to simulations in which the ex ante equity premium was
set to a value ranging from 2% through 6%.

Ex Ante Mean of Percentiles of
Equity S&P Simulated Simulated Data
Premium Moment 500 Data 1% 5% 50% 95% 99%
2 % AR(1) -0.134 -0.058 -0.398 -0.305 -0.058 0.182 0.306

σ of estimate 0.151 0.151 0.134 0.142 0.151 0.157 0.165
2.5 % AR(1) -0.134 -0.039 -0.371 -0.281 -0.043 0.209 0.307

σ of estimate 0.151 0.151 0.133 0.142 0.151 0.157 0.167
3 % AR(1) -0.134 -0.029 -0.375 -0.282 -0.033 0.233 0.344

σ of estimate 0.151 0.151 0.132 0.142 0.151 0.158 0.165
3.5 % AR(1) -0.134 -0.033 -0.393 -0.287 -0.032 0.227 0.309

σ of estimate 0.151 0.151 0.136 0.142 0.151 0.158 0.167
4 % AR(1) -0.134 -0.027 -0.360 -0.267 -0.030 0.225 0.337

σ of estimate 0.151 0.151 0.136 0.143 0.151 0.157 0.166
4.5 % AR(1) -0.134 -0.018 -0.371 -0.267 -0.022 0.238 0.336

σ of estimate 0.151 0.151 0.134 0.143 0.151 0.157 0.165
5 % AR(1) -0.134 -0.026 -0.380 -0.268 -0.031 0.231 0.334

σ of estimate 0.151 0.151 0.137 0.143 0.151 0.157 0.165
6 % AR(1) -0.134 -0.019 -0.348 -0.263 -0.023 0.235 0.364

σ of estimate 0.151 0.151 0.136 0.142 0.151 0.157 0.167
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Table 7
Statistics on ARCH Coefficients for

the Simulated Market Economies Based on Various
Values of the Ex Ante Equity Premium

The first line in each cell of this table contains the first order autoregressive conditional heteroskedasticity
coefficient, ARCH(1), for S&P 500 returns along with means and percentiles of the ARCH(1) coefficients
arising in our simulated economies. The second line in each cell contains the same statistics based on the
standard deviation of the ARCH(1) estimate for the S&P 500 index and the simulated economies. S&P 500
ARCH(1) coefficients are estimated over 1952-1998. The results reported in each set of rows correspond to
simulations in which the ex ante equity premium was set to a value ranging from 2% through 6%.

Ex Ante Mean of Percentiles of
Equity S&P Simulated Simulated Data
Premium Moment 500 Data 1% 5% 50% 95% 99%
2 % ARCH 0.250 -0.002 -0.265 -0.209 -0.025 0.273 0.434

σ of estimate 0.147 0.153 0.108 0.143 0.153 0.160 0.206
2.5 % ARCH 0.250 0.003 -0.269 -0.203 -0.018 0.274 0.410

σ of estimate 0.147 0.154 0.107 0.142 0.153 0.159 0.218
3 % ARCH 0.250 0.004 -0.285 -0.202 -0.020 0.271 0.417

σ of estimate 0.147 0.153 0.117 0.143 0.153 0.162 0.194
3.5 % ARCH 0.250 0.006 -0.275 -0.197 -0.019 0.293 0.439

σ of estimate 0.147 0.154 0.110 0.141 0.154 0.162 0.226
4 % ARCH 0.250 0.001 -0.285 -0.206 -0.024 0.279 0.407

σ of estimate 0.147 0.153 0.115 0.141 0.153 0.162 0.204
4.5 % ARCH 0.250 -0.002 -0.279 -0.207 -0.022 0.272 0.433

σ of estimate 0.147 0.153 0.115 0.142 0.154 0.160 0.202
5 % ARCH 0.250 0.006 -0.269 -0.209 -0.013 0.291 0.423

σ of estimate 0.147 0.153 0.109 0.142 0.153 0.161 0.202
6 % ARCH 0.250 -0.002 -0.280 -0.199 -0.022 0.271 0.419

σ of estimate 0.147 0.154 0.114 0.143 0.153 0.161 0.218
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Table 8
Joint Tests: Are Joint Distributions of the Simulated Data

Consistent with Observed Combinations of Financial Statistics?

We present χ2 statistics for testing whether various joint collections of data simulated over 47-year periods
are consistent with US financial statistics observed over 1952-1998. For Case 1, we consider whether the joint
simulated distributions of the mean return, return standard deviation, mean dividend yield, ex post equity
premium, AR(1) coefficient estimate for returns, and ARCH(1) coefficient estimate for returns are consistent
with the values of these quantities observed in practice. For Case 2, we consider joint simulated distributions
of the same financial statistics with the exception of the AR(1) and ARCH(1) coefficients. The Case 1 and 2
χ2 statistics have 6 and 4 degrees of freedom respectively. One, two, and three asterisks indicate significance
at the 10%, 5%, and 1% level of significance respectively.

Case 1 Case 2
χ2 Statistic χ2 Statistic

Panel A: Various Values
of the Ex Ante Equity Premium
Ex Ante Equity Premium of 2% 293.90∗∗∗ 281.89∗∗∗

Ex Ante Equity Premium of 2.5% 153.71∗∗∗ 146.86∗∗∗

Ex Ante Equity Premium of 3% 62.51∗∗∗ 56.09∗∗∗

Ex Ante Equity Premium of 3.5% 22.31∗∗∗ 16.77∗∗∗

Ex Ante Equity Premium of 4% 8.16 4.19
Ex Ante Equity Premium of 4.5% 20.07∗∗∗ 16.32∗∗∗

Ex Ante Equity Premium of 5% 51.46∗∗∗ 47.31∗∗∗

Ex Ante Equity Premium of 6% 195.16∗∗∗ 186.62∗∗∗

Panel B: Sensitivity to Parameter Settings
with a 4% Ex Ante Equity Premium
Reduced Auto in Dividend Growth 8.31 4.22
Increased Auto in Dividend Growth 8.50 4.08
Reduced Auto in Dividend Growth & Interest Rates 119.41∗∗∗ 114.83∗∗∗

Increased Auto in Dividend Growth & Interest Rates 12.52∗ 7.30
Panel C: Sensitivity to
Various Values of the Ex Ante Equity Premium
with iid Dividend Growth Rates and Interest Rates
Ex Ante Equity Premium of 2% 9.86×106∗∗∗ 9.87×106∗∗∗

Ex Ante Equity Premium of 3% 8.44×105∗∗∗ 8.42×105∗∗∗

Ex Ante Equity Premium of 4% 4.54×106∗∗∗ 4.54×106∗∗∗

Ex Ante Equity Premium of 4.5% 1.01×107∗∗∗ 1.01×107∗∗∗

Ex Ante Equity Premium of 6% 1.05×108∗∗∗ 1.05×108∗∗∗

Panel D: Sensitivity to Time Varying Equity Premia
with a 4% Average Ex Ante Equity Premium
Type 1: Autocorrelated Equity Premium 10.99∗ 5.59
Type 2: Autocorrelated & Downward Trending

Equity Premium 146.79∗∗∗ 140.53∗∗∗

Type 3: iid Equity Premium 9.14 4.65
Type 4: Downward Trending Equity Premium 162.54∗∗∗ 156.61∗∗∗
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Figure 1: Probability Distribution Function of Simulated Ex Post Equity
Premia, Dividend Yields, Mean Returns, and Return Standard Deviations

This figure contains PDFs for various financial statistics generated in 2,000 simulated economies. Each panel
contains a PDF for each of four different assumed values of the ex ante equity premium: 2%, 3%, 4%, and
6% (marked with a plain line, �, ∗, and # respectively). Panel A shows distributions of the ex post equity
premium (mean return minus mean interest rate), Panel B shows the mean dividend yield distributions
(dividend divided by price), Panel C shows mean return distributions, and Panel D shows distributions of
the standard deviation of returns. In each panel, the vertical column of dots indicates the value of the ex
post equity premium, the mean dividend yield, the mean return, or the return standard deviation estimated
using actual US data over 1952-1998. The simulated statistics are estimated over 47 years of generated data
for each economy.



Figure 2: Probability Distribution Function of Simulated Mean Discounted
Dividend Growth Rates, Sharpe Ratios, AR Coefficients, and ARCH Coefficients
This figure contains probability distribution functions (PDFs) for various financial statistics generated in
2,000 simulated economies. Each panel contains a PDF for each of four different assumed values of the ex
ante equity premium: 2%, 3%, 4%, and 6% (marked with a plain line, �, ∗, and # respectively). Panel A
shows distributions of the mean discounted dividend growth rate (yt = (1+gt)/(1+rt) where gt is the growth
rate of dividends and rt is the discount rate), Panel B shows the Sharpe ratio distributions (excess return
divided by the standard deviation of the excess return), Panel C shows the return autocorrelation coefficient
(the OLS parameter estimate from regressing returns on lagged returns), and Panel D shows distributions
of the ARCH coefficient (the OLS parameter estimate from regressing squared residuals on lagged squared
residuals). In each panel, the vertical column of dots indicates the value of the discounted dividend growth
rate, the Sharpe ratio, the return AR coefficient, or the ARCH coefficient estimated using actual US data
over 1952-1998. The simulated statistics are estimated over 47 years of generated data for each economy.



Figure 3: Bivariate Distributions for Mean Returns Versus Return Standard
Deviations Based on Several Values of the Ex Ante Equity Premium

Bivariate distributions of mean returns versus return standard deviations are shown in this figure. Panels A,
B, C, and D are based on ex ante equity premia of 3.5%, 4%, 4.5% and 5% respectively. The 2,000 simulated
pairs, indicated with points, are based on data calibrated to dividend growth rates from the S&P 500 and
1-year US T-bill rates (1952-1998). Simulated points are surrounded by a thin line representing a 99%
asymptotic confidence ellipse. The US realization (the non-simulated pair) is indicated by the intersection
of the cross-hairs. The simulated statistics are estimated over 47 years of generated data.



Figure 4: Bivariate Distributions for Various Combinations of Variables
Based on Several Values of the Ex Ante Equity Premium

Panels A, B, C, and D show bivariate distributions for mean returns versus return standard deviation, mean return
versus mean dividend yield, mean interest rate versus ex post equity premium, and mean interest rate versus mean
dividend yield respectively. 99% asymptotic confidence confidence ellipses are shown for the following cases: ex
ante equity premia of 3.5% (marked by �), 4% (marked by ∗), 4.5% (marked by ◦), and 5% (marked by �). The
2,000 simulations underlying each confidence ellipse are based on data calibrated to dividend growth rates from the
S&P 500 and 1-year US T-bill rates (1952-1998). The US realization (the non-simulated pair) is indicated by the
intersection of the cross-hairs. The simulated statistics are estimated over 47 years of generated data.



Figure 5: Bivariate Distributions for Various Combinations of Variables
Based on Several Values of the Ex Ante Equity Premium

Panels A, B, C, and D show bivariate distributions for Sharpe ratio versus mean dividend yield, Sharpe ratio versus
mean interest rate, mean dividend yield versus ex post equity premium, and first order autoregressive coefficient
versus first order ARCH coefficient respectively. 99% asymptotic confidence confidence ellipses are shown for the
following cases: ex ante equity premia of 3.5% (marked by �), 4% (marked by ∗), 4.5% (marked by ◦), and 5%
(marked by �). The 2,000 simulations underlying each confidence ellipse are based on data calibrated to dividend
growth rates from the S&P 500 and 1-year US T-bill rates (1952-1998). The US realization (the non-simulated pair)
is indicated by the intersection of the cross-hairs. The simulated statistics are estimated over 47 years of generated
data.



Figure 6: Sensitivity to Changes in Autocorrelation
for Various Combinations of Variables
Based on 4% Ex Ante Equity Premium

Panels A, B, C, and D show bivariate distributions for mean returns versus return standard deviation, mean return
versus mean dividend yield, mean interest rate versus ex post equity premium, and mean interest rate versus mean
dividend yield respectively. 99% asymptotic confidence confidence ellipses are shown for the following cases: reduced
autocorrelation in dividend growth (marked by �), increased autocorrelation in dividend growth (marked by ∗),
reduced autocorrelation in dividend growth and interest rates (marked by ◦), and increased autocorrelation in
dividend growth and interest rates (marked by �). The 2,000 simulations underlying each confidence ellipse are
based on data calibrated to dividend growth rates from the S&P 500 and 1-year US T-bill rates (1952-1998). The
US realization (the non-simulated pair) is indicated by the intersection of the cross-hairs. The simulated statistics
are estimated over 47 years of generated data. Plots in all four panels are based on an ex ante equity premium of
4%.



Figure 7: Sensitivity to Changes in Autocorrelation
for Various Combinations of Variables
Based on 4% Ex Ante Equity Premium

Panels A, B, C, and D show bivariate distributions for Sharpe ratio versus mean dividend yield, Sharpe ratio versus
mean interest rate, mean dividend yield versus ex post equity premium, and first order autoregressive coefficient
versus first order ARCH coefficient respectively. 99% asymptotic confidence confidence ellipses are shown for the
following cases: reduced autocorrelation in dividend growth (marked by �), increased autocorrelation in dividend
growth (marked by ∗), reduced autocorrelation in dividend growth and interest rates (marked by ◦), and increased
autocorrelation in dividend growth and interest rates (marked by �). The 2,000 simulations underlying each con-
fidence ellipse are based on data calibrated to dividend growth rates from the S&P 500 and 1-year US T-bill rates
(1952-1998). The US realization (the non-simulated pair) is indicated by the intersection of the cross-hairs. The
simulated statistics are estimated over 47 years of generated data. Plots in all four panels are based on an ex ante
equity premium of 4%.



Figure 8: Sensitivity to iid Dividend Growth Rates and Mean Interest Rates
for Various Combinations of Variables
Based on 4% Ex Ante Equity Premium

Panels A, B, C, and D show bivariate distributions for Sharpe ratio versus mean dividend yield, Sharpe ratio versus
mean interest rate, mean dividend yield versus ex post equity premium, and first order autoregressive coefficient
versus first order ARCH coefficient respectively. The 2,000 simulated pairs, indicated with points, are based on iid
dividend growth rates and interest rates. 99% asymptotic confidence confidence ellipses are shown for Panels A and C,
though they are partially obscured by the scatterplots themselves. Confidence ellipses not defined for Panels B and D
in which one of the two plotted variables is constant or near-constant. The US realization (the non-simulated pair)
is indicated by the intersection of the cross-hairs. All statistics are estimated over 47 years of actual US (1952-1998)
or simulated data. Plots in all four panels are based on an ex ante equity premium of 4%.



Figure 9: Sensitivity to iid Dividend Growth Rates and Mean Interest Rates
for Various Combinations of Variables
Based on 4% Ex Ante Equity Premium

Panels A, B, C, and D show bivariate distributions for Sharpe ratio versus mean dividend yield, Sharpe ratio versus
mean interest rate, mean dividend yield versus ex post equity premium, and first order autoregressive coefficient
versus first order ARCH coefficient respectively. The 2,000 simulated pairs, indicated with points, are based on iid
dividend growth rates and interest rates. 99% asymptotic confidence confidence ellipses are shown for Panels B and D,
though they are partially obscured by the scatterplots themselves. Confidence ellipses not defined for Panels A and C
in which one of the two plotted variables is constant or near-constant. The US realization (the non-simulated pair)
is indicated by the intersection of the cross-hairs. All statistics are estimated over 47 years of actual US (1952-1998)
or simulated data. Plots in all four panels are based on an ex ante equity premium of 4%.



Figure 10: Sensitivity to Time-Varying Equity Premium
for Various Combinations of Variables

Panels A, B, C, and D show bivariate distributions for mean returns versus return standard deviation, mean return
versus mean dividend yield, mean interest rate versus ex post equity premium, and mean interest rate versus mean
dividend yield respectively. 99% asymptotic confidence confidence ellipses are shown for the following cases: auto-
correlated equity premium (Type 1, marked by ∗); autocorrelated and downward trending equity premium (Type 2,
marked by �); iid equity premium (Type 3, marked by �); and downward trending equity premium (Type 4, marked
by ◦) respectively. The 2,000 simulations underlying each confidence ellipse are based on data calibrated to dividend
growth rates from the S&P 500 and 1-year US T-bill rates (1952-1998). The US realization (the non-simulated pair)
is indicated by the intersection of the cross-hairs. All statistics are estimated over 47 years of actual US (1952-1998)
or simulated data. The average ex ante equity premium equals roughly 4% for all four panels.



Figure 11: Sensitivity to Time-Varying Equity Premium
for Various Combinations of Variables

Panels A, B, C, and D show bivariate distributions for mean returns versus return standard deviation, mean return
versus mean dividend yield, mean interest rate versus ex post equity premium, and mean interest rate versus mean
dividend yield respectively. 99% asymptotic confidence confidence ellipses are shown for the following cases: auto-
correlated equity premium (Type 1, marked by ∗); autocorrelated and downward trending equity premium (Type 2,
marked by �); iid equity premium (Type 3, marked by �); and downward trending equity premium (Type 4, marked
by ◦) respectively. The 2,000 simulations underlying each confidence ellipse are based on data calibrated to dividend
growth rates from the S&P 500 and 1-year US T-bill rates (1952-1998). The US realization (the non-simulated pair)
is indicated by the intersection of the cross-hairs. All statistics are estimated over 47 years of actual US (1952-1998)
or simulated data. The average ex ante equity premium equals roughly 4% for all four panels.


