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Pricing and Hedging Index Options under Stochastic Volatility: 

An Empirical Examination 

I Introduction 

It is well known that volatility of the underlying asset price (as measured by· its standard 

deviation or variance) is one of the most determinants of option prices and hedge ratios. 

The famous Black-Scholes (henceforth, BS) formula of option pricing is predicated on the 

assumption of a constant or a deterministically evolving volatility process. Rubinstein (85, 

92) document various option pricing anomalies in a BS framework in the equity and index 

options market, the most notable of which is the volatility smile evident in option prices.1 

Several others have documented similar biases and anomalies in other financial markets, 

a. comprehensive discussion of which can be found in Bates (95). Although the presence 

of these anomalies/biases does not immediately imply that volatility evolves randomly, a 

random volatility process that has non-zero correlation with the asset returns process can 

yield leptokurtosis and skewness in asset returns that have the promise to explain many of 

these biases. A random volatility process, however, takes us away from the pure arbitrage 

foundations of option pricing, since volatility is another state variable that needs to be 

considered in the pricing and hedging of options and volatility or a known function of it is 

not a traded asset. 

The issue of stochastic volatility (henceforth SV) and its effects on option prices has 

been studied extensively. 2 Some of the earlier work in this area include Johnson and Shanno 

(87), Hull and White (87), Scott (87), Wiggins (87), Chesney and Scott (89) and Melino 

and Turnbull (90). The models developed by these authors require either the use of Monte-

Carlo simulation or the numerical solution of a two dimensional parabolic partial differential 

equation (PDE) to get option prices and hedge ratios and are computationally demanding. 

Some of these models have the questionable assumption of zero correlation between spot 

asset returns and the volatility and/or zero risk premium on volatility. Stein and Stein (90) 

1Tb.e fact that a.s the strike price of an option increa.ses, its implied volatility (from the BS model) 
decreases is often referred to as the volatility smile. 

~In this paper stochastic volatility models will refer to models in which volatility is driven by innovations 
that are different from the innovations driving the asset returns, thus precluding the GARCH models. 
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provide a solution for option prices that can be gotten via bivariate numerical integration. 

However their model is also developed under the assumption of zero correlation between 

spot asset returns and the volatility process. 

Heston (93) has developed a tractable closed-form solution for European option pricing 

with stochastic volatility (henceforth, SV) that also permits correlation between asset re-

turns and volatility. Correlation between asset returns and volatility is an important factor 

for any option pricing model because the substantial negative skewness in the risk neutral 

distribution of the underlying asset's returns that can give rise to overpricing/underpricing 

of out-of-the-money calls/puts [see Bates (94)] can only be gotten via a negative correlation 

between returns and volatility and not just by making the tails of the distribution fatter 

that any SV model can accomplish. Furthermore, Heston's solution also permits closed 

form solutions for the option's delta and vega. Bates (96) and Scott (93) use the similar 

framework as that of Heston to develop models in which the asset returns follow a jump 

diffusion and Scott also allows for stochastic interest rates. 

Although a stochastic volatility option pricing model may be more appropriate than the 

BS model for many option markets, extant empirical tests of SV models have had to cope 

with the lack of a closed form solution making it difficult to imply out parameters that drive 

the volatility process (and whose values are needed to price and hedge options) and the level 

of volatility from option prices. Using the time series of BS implied volatilities to estimate 

the parameters and determine the level of volatility in a SV model is inconsistent and 

Kearns (92) has shown that the method of moments approach used in some papers {Scott 

(87), Chesney and Scott (89) and Melino and Turnbull (90)] to estimate the parameters of 

the volatility process is sensitive to the choice of moments. 

Furthermore, formally testing the hedging properties of SV models that lack closed-form 

solutions is very difficult because computing hedge ratios by numerically solving tl1e required 

PDE or in a Monte Carlo framework is very computationally demanding. Hedging is a very 

important issue (especially in the real world) and empirical tests of SV models that do not 

throw light on this issue miss an important dimension. Heston's model (if implemented on 

Emopean options) provides one with an opportunity to test both the pricing and hedging 

effectiveness of a SV model without being encumbered by the additional complications of 
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other SV models and the possible clouding of inference therein. 

Bates {95) provides an empirical examination of Heston's SV fi:amewor k in the currency 

options market as a subset of his jump diffusion - stochastic volatility model. The currency 

options are American and the add-on approximation for the early exercise feature is derived 

from a deterministic volatility setup. There are no out-of-sample tests thus making it 

difficult to judge whether the improved fit between model and market prices in-sample 

results form the presence of extra parameters or the model truly does better. Also there 

is no examination of the very important issue of the hedging performance of the model. 

Knoch {92) has used Heston's model to explain option prices in the foreign currency options 

market. However, he estimates the parameters of the volatility process from the time series 

of exogenous implied volatilities (as given by the Black-Scholes model) thus introducing a 

potential inconsistency in the methodology and sets the risk premium of volatility to zero. 

This paper provides an empirical test of the pricing and hedging effectiveness of the SV 

model developed by Heston {93) in the S&P 500 index options market. It distinguishes 

itself from the above mentioned papers in using European options for the empirical test, 

avoids the inconsistency of using BS volatilities in a SV framework by estimating volatility 

jointly with other parameters, provides out-of-satTlple forecasts of option prices of the SV 

model, relates the out-of-sample model mispricing;s to bid-ask spreads and trading activity 

of options and checks, out-of-sample, the hedging performance of the SV model after talcing 

into account the transactions costs (bid-ask spreads) in the index options market. Bakshi 

et al. (96) also test for the pricing and hedging effectiveness of Heston's SV model (a 

subset of their stochastic volatility - stochastic interest rates model) in the S&P 500 index 

options market and in spirit is closest to this paper. However, in their estimation, Bakshi 

et al. treat the time invariant parameters of the model to be time varying (they estimate 

these parameters daily) introducing an inconsistency with the prescriptions of the theoretical 

model. In contrast, this paper treats the time invariant parameters of the SV option pricing 

model to be constant during the period of estimation and these parameters are estimated 

by implicitly concentrating out the daily variance from a criterion function that uses both 

cross-sectional and time-series information and allows for autocon·elation in the residuals. 

The hedging test is performed only by using one option both for BS and SV model, thus 
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enabling one to make controlled comparisons between the two models. 3 Also, unlike Bakshi 

et al., S&P 500 futures are used instead of the spot value of the index available from the 

data set (that requires tra.nsacting in the 500 stocks constituting the index) in the hedge 

portfolio and round trip transaction costs in the options market are taken into account, 

resulting in a more realistic hedging test. 

The main results of this paper are - Out-of-sample, the SV model results in a decrease of 

the mean absolute pricing error (where price is measured as the mid point of bid-ask spread) 

by 24 cents for calls and 15 cents for puts as compared to the BS model. Out-of-sample, 

both models significantly underprice out-of-the-money puts and overprice out-of-the-money 

calls, though the degree of mispricing is much lower in the SV model. In addition to strike 

price and time to maturity biases, the degree of mispricing in both models is related to bid-

ask spreads (a form of transactions cost) on options and options trading volume, though 

trading volume does not seem to have any economic significance. In terms of hedging, 

where both models are compared using only one option, the SV model always results in 

lower root mean squared errors and lower variance for a minimum variance hedge portfolio 

than the BS model for most classes of options and the differences in variances between the 

two models are statistically significant. This shows that not taking into account the risk 

from volatility shocks and therefore the shocks to the asset returns process through the 

correlation between returns and volatility can result in poor hedges in the index options 

market. 

Section II describes the model, Section ID describes the methodology and data, Section 

IV describes the results and Section V concludes. 

II Model 

Let the asset price St and volatility Vt follow the following two processes 

(1) 

(2) 

dS(t) - µSdt + .;;;wsdz1(t) 

dv(t) = 1<[(8 - v(t)Jdt + u.;;;w dz2(t) 

3 Tbe hedging criterion used is tha.t of mitrimwn variance hedging tba.t requires only one aption even for 
a SV model. 
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where z1 and z2 are two Wiener processes with correlation p. The asset price evolves as 

a geometric Brownian motion and the variance of the instantaneous rettu·ns Vt evolve..s as 

a square root process with long-term mean 8. 4 The speed with which 'Vt reverts towards 

0 is measured by "'· It can be shown (see the appendix) that the half life of the volatility 
. ln (2) process is K • 

Given this, Heston (93) shows that the price at time t of a European call option that 

matures at T (r::: T- t) and has an exercise price of K is given by 

(3) 

where 

( 4) P ·( ·l (K)' ~ - + - R e ; x,v,r~""~ ""' 1 l loo ( -i•lnlKIJ ( . "')) 
1 x,v,r, 11. / e . "'¥' 

2 7rO i<jJ 

where Re() denotes the real part of a complex variable and x = ln(S). 

(5) 

where Cj() and Dj() are functions of KiJ, K + ,\, p, a, r1 and r, and,\ is a constant such 

that ,\v1 measures the volatility risk premium. 

Differentiating with respect to S, the delta of the option is given by 

(6) 

where 

{JC 

{JS 

------- ·-·----
4The variance, Vt follows a square root process and therefore is precluded from being negative 

[Cox, Ingersoll and Ross, {85)]. 
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Differentiating with respect to v, the vega. of the option is given by 

(7) 

where 

The option price and hedge ratios are functions not only of St, vt, r, K, r (that appear in 

the Black-Scholes formula of constant or deterministic volatility) but also of ,.. +A, K.9, p and 

u that are unobservable and have to be estimated. K + >. and ,.. ~ )\ are the mean reversion 

parameter and the long run mean of the risk neutralized volatility process respectively. 

III Data and Methodology 

III-A Data 

Intra day data on S&P 500 index options (ticker symbol SPX) that are traded on the 

Chicago Boa.rd Options Exchange (CBOE) are used to test the model. The market for 

S&P 500 index options is the second most active index options market in the United States 

a.nd, in terms of open interest in options, it is the largest. The options are European and 

settled for a cash amount equal to 100 times the difference between the index level and 

strike price. Unlike options on the S&P 100 index, there are no wild card features that can 

complicate valuation. Also there is a very active market for the S&P 500 futures, making 

the replication of the index much easier. Thus, according to Rubinstein (94) it is one of the 

best markets for testing a European option pricing model. 

The minimum tick for series that trades below $3 is 1/16 and for all other series the tick 

is 1/8. Strike prices are spaced 5 points apart for near months and 25 points for far away 

months. The options expire in the three near-term months in addition to the months from 

the quarterly cycle of March, June, September, December. 

The following rules are applied to filter data needed for the empirical test. 

(1) For each day, a bid-ask quote or a transaction has to occur between 9.00 A.M. 
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(central-time) and 2.30 P.M. (central-time). This criterion excludes quotes and transactions 

that may be influenced by artificial pricing at the beginning or close of the trading day at 

the CBOE (Rubinstein, 85). 

(2) A transaction has to satisfy the no-arbitrage relationships as outlined in Propositions 

1 and 2 of Cox and Rubinstein (85, p. 129-133).5 

(3) A transaction price has to be at least 50 cents to reduce problems arising from 

minimum bid-ask spreads (that can constitute a big percentage of price) in low priced 

options. 

(4) All transactions that were executed electronically are excluded.6 

(5) A transaction cannot be a part of a straddle or a part of trade that involves the 

simultaneous execution of two or more trades. 

Criteria (4) and (5) are used to maintain as much homogeneity in the sample as possible. 

Stale index levels of the S&P 500 (stemming from infrequent trad.ing of the constituent 

securities) could potentially be a problem. One must note that the S&P 500 is a value 

weighted index and the bigger stocks that trade more frequently constitute the bulk of 

the index level. Since intra day data and not the end-of-the-day option prices is used, 

the staleness problem may not be severe enough to undermine the e'.stimation procedure. 

In theory, one could possibly overcome this problem by using implied index levels from 

the put-call parity equation. However, this is conditional on put call parity holding as an 

equality and ·in the presence of transactions costs (bid-ask spreads that are non-negligible), 

the equality becomes an inequality. Thus the implied index levels from the put-call parity 

equation may not equal the true index le-..."el. Also, even if one assumes away transactions 

costs, it is very difficult to create a sample of sufficient size by creating matched pairs of 

puts and calls because the level of the S&P 500 index changes quite frequently through 

the day. As a result, the index levels as reported in the data set are used in parameter 

estimation. However, in the hedging test, S&P 500 futures data is used instead of the spot 

level of the index. The daily dividend yield on the S&P 500 index are taken from Data 

Stream. For the risk free rate, I use a series of monthly yields from the daily· treasury yield 

~~~~~~~--~~~~~-

t.The propositions are adapted from Merton (73). 
6 0nly a small fraction of the trades is electronically executed. 
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curves prepared by Salomon Brothers and interpolate to match the yield to the expiration 

date of the option. 7 The filtered data set on which the estimation of the parameters of the 

SV model is carried out consists of 22,134 transactions, from 01/21/91 to 04/10/92, a total 

of 310 trading <lays. Of these 7,853 are calls and 14,281 are puts. 

III-B Methodology 

Central to the 'empirical test is the estimation of the unobservable parameters, K + >., ,,.,(}, 
p, r:r and vt for the stochastic volatility model that appear in the pricing and hedging 

formulae. 8 Since the variance Vt is unobservable, the estimation of these parameters from 

the time serif's of v1. is difficult. Although one has high frequency intra day data, the 

construction of a <laily Vt series from the intra day <la.ta is subject to question due to the 

bi<l·ask bounce p~nt in the intra day data. For the SV model, the moments of the 

logarithm of the spot price in the original probability measure are unknown to this author. 

Although the moments of the log spot price in the risk neutral measure can be computed in 

this mo<lel using Heston's (93) formula for the characteristic function of the log spot price, 

one cannot use log spot price data to estimate the parameters for the SV model, unless it 

is assumed that the risk premium of the asset price process is zero. Therefore it does not 

seem to be feasible to estimate the parameters from the index returns data by using the 

Generalized Method of Moments of Hansen (82) (henceforth GMM) unless one makes some 

questionable assumptions about the risk premium of the asset price process. Even if the 

risk premium is assumed to be zero, Kearns (92) has shown that using GMM to estimate 

parameters from the returns data. is sensitive to the choice of moments. Foster and Nelson 

{94} <lE"scribe a procedure to estimate the parameters (i.e., K, 6, p, r:r) of the unobservable 

volatility process from the returns data. Unfortunately, their procedure to estimate the 
' parameters from the daily data of S&P 500 returns did not work on this data. set. The 

procedure involves drawing standard normals and numerical overflow occurred during the 

unconstrained optimization procedure with some standard normals being drawn from the 

extreme tail of the distribution. Further, this procedure is not able to identify >.that has 

71 thank Sa.njiv Das for letting me use this da.ta set. 
8 Note that one does not have to separately estimate 11: and 8 because the pricing and hedging formulae 

are in terms of 11: + >. and ,.JJ. 
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to be estimated from the options data conditional on the estimates of other parameters. 

Since closed-form solutions are available for the option price, a natural candidate for the 

estimation of the parameters that enter into the pricing and hedging formulae is a non-linear 

least squares procedure involving minimization of the sum of squared en·ors between the 

model and market prices. Let Oi,t denote the market price of option 7, on day t and fi,t(iI!, Vt) 

denote the model price of the option i at time t as a function of the set of parameters 111, vt, 

where W = (K+A. tdJ,p, CT) for the SV model. It is assumed that the variance vt for day t does 

not vary intra day. Admittedly, this assumption is somewhat inconsistent with the spirit of 

the model because Vt and St are correlated. However, Vt is a parameter to be estimated and 

allowing vt to change every time t changes will increase the number of parameters by tens of 

thousands given the size of the data set. Also the variation in Vt through a typical trading 

day is rather small (with some of the variation resulting from spurious bid-a.sk bounce ) 

making this assumption not very unrealistic. Let, 

(8) 

If eit are i.i.d., the criterion function is 

(9) 

where T is the number of trading days in the sample and Nt is the number of options on a 

particular day tin the sample. However, (9) cannot be used if the errors are autocorrelated. 

Time series correlation or autocorrelation in the residuals (difference between model and 

market prices) can arise from a misspecification of the model, such as the omission of a 

relevant state variable or from bid-ask bounce. Since all models are simplifications of the 

real world, autocorrelation in the residuals is an important issue that ought to be addressed 

in our testing. A preliminary estimation of the model using (9) indicates that the errors are 

first order serially correlated. Therefore it is assumed that the residuals evolve as follows 

€.i,t = p*ei,t-1 +Vt 
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···············~~---

where Lit is i.i.d. 
Given this, it can be shown that the appropriate sum of squared errors (SSE) that one 

needs to minimize over \Jl,p• and Vt is (refer to Judge et al. (85), pp 283-290) 
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N, 
S(.V,p",vt) I;(l - p•2)I0.,1-/;,1(.V,v1)]2 

i=l 
T N, 

(10) +LL [Oi,t - p*Oi,t-1 - fi,t(ifl, vt) + p*fi,t-1(W, vt-1)] 2 

t=2i=l 

Note that if p• = 0, then the above criterion function reduces to the one with i.i.d. residuals. 

(10) is the total SSE for the sample and is the sum of the SSE of the individual days. The first 

expression in the RHS representing SSE for day 1 and the next the sum of all SSE 'V t 2 2. 

The SSE fort 2. 2 is given by 'Er;:1 [0;,t - p*Oi,t-1 -fi,t(iI!,vt) +p"ft,t-1('11,vt-1)]2. To 

see why the above criterion function is appropriate, note that the inefficiency of the estimates 

based on the i.i.d. assumption result from the fact that E\ee'] of. u;,IN· where I is the 

N* x N* identity matrix (N* is the total number of observations) and u;_ is the variance of 

the residuals. This implies that we need to transform the residuals such that the transformed 

residuals a.re i.i.d. If 0 denotes the covariance matrix of the residuals eit, then we can find 

a matrix Q such that QOQ1 =IN•- Since 0 is positive definite, such a matrix always exists 

[Strang, (88)]. Now if we consider the transformed residuals e• = Qe, then it is the case 

that the covariance matrix of the transformed residuals is 

E [«e•'] E [Qee'Q1 

= QE [ee1 Q' 

= cr;QOQ' 

- cr';IN• 

If the residuals are first order autocorrelated, then the appropriate Q is given in Judge et 

al. (78, p. 285) and one minimizes the sum of squares of the transformed rf'..siduals which 

is equation (10). 

As mentioned before, Vt is a parameter to be estimated. Since it is assumed that Vt 

is fixed for da;y t (i.e., does not vary through the day), the number of parameters to be 

estimated, other than (W,p•), increases by the number of days in the sample. One could 

possibly overcome this problem by estimating Vt and W (treating p* to be zero) every 
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day from the daily minimization of the sum of squared errors between model and market 

option prices as done in Bakshi et al. (96). In this way one has a different 11' and Vt 

every <lay. However, it must be noted that according to the model, I]! is constant and only 

Vt varies and estimating I]! along with Vt daily runs contrary to the model. This paper 

treats (W, p•) to be constant through the sample (i.e., the same W is used 'r/ t) and Vt is 

estimated simultaneousl.v with (W,p•) under the criterion function (10). The procedure is 

as follows: Given a particular value of (W,p•), one uses the SSE for day t to estimate vt, 

conditional on vt-I (note that the sum of squared errors for day t, 'r/ t ;::-_ 2, contains both 

Vt and vt-i). Since the sum of squared errors for the first day contains only v1, at the 

beginning, given (W,p'"), vi is estimated from the SSE expression for day l. Thereafter, 

for each t ~ 2, Vt is estimated, conditional on the given W, p• and the estimated Vt-I, from 

the SSE expression for day t. Having estimated vt for ea.ch day t for the given (W,p•), one 

goes back and E'.stimates (W, p'") conditional on the estimated Vt by minimizing the entire 

SSE for the sample (i.e., the sum of SSE for the individual days) which is (10). Thereafter, 

given the new ( 1/J, p'"), re-estimate vt as described above and keep on iterating between 

(W, p•) and Vt until convergence according to some particular criterion is achieved.9 For the 

estimation of vt (each day given (W, p'")}, we have on an average 50 options transactions that 

should be sufficient for the reliable E>.stimation of one parameter. Note that this procedure 

yields estimates for 11' conditional on the estimatE'.s for vt and similarly yield estimates for 

vt conditional on W. Thus the standard errors obtained are conditional standard errors. 

Implicitly, the variance vt is being concentrated out of the criterion function [conditional 

on (11',p•)J where as ideally one would want to integrate out Vt from the criterion function. 

( 10) assumes that '11 is constant over the time period of estimation and this crite-

rion function enables one to utilize both the cross-sectional and time series information 

in the sample. Heteroscedasticity in the residuals is taken into account in constructing 

the asymptotic variance-covariance matrix using White's (84} procedure. r;. + A, Kl) and 

vt are constrained to be non-negative by an exponential transfonnation. 10 p and p• are 

constrained between -1 and 1 by a sine/cosine transformation. The SV model price for the 

~-"~"----

9The basic NLS routine used is Marquardt's method as given in Press et al. (92). 
to K + >. has to be non-negative for sta.tionarity of the risk neutralized variance processes and ,..9 has to be 

positive for the long-run mean of the risk neutralized variance process to be non negative. 
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option is evaluated by Gaussian quadrature (with hermite polynomials) and the number of 

quadrature points used is 80. 11 Derivatives of the model option price with respect to W are 

evaluated numerically. 

Ideally parameter estimation would use all the information in the index values and option 

prices. For example, in the SV model, one could maximize the full likelihood function which 

recognizes innovations in the index values, innovations in the volatilit.v and errors in the 

option prices. Because volatility is a latent variable, it should be integrated out to arrive 

at the full likelihood function. In contrast to our procedure, full information likelihood 

would identify all the parameters K, 9 and A. Unfortunatel.v, maximizing the full likelihood 

function seems infeasible given current technology. Even the Gibbs sampling procedure 

[Gefiand and Smith (90)] is difficult to apply because the non-linearity of the option prices 

in the index values and variance makes the required conditional densities intractable. 

The results of the estimation for call and put options are discussed in section IV. 

III-C Minimum Variance Hedging 

A complete test of an option pricing model should take into account not only how well the 

model prices match observed Option prices, but also, and equally importantly, the ability of 

the model to hedge against changes in the underlying state val'iables. The hedging issue is 

of interest not only to academics, but also to actual traders in the option market who often 

have to hedge their positions in the underlying asset or options market. 

In the BS model of option pricing, if one creates a portfolio consisting of a long position 

in a certain number of units of the underlying asset {as given by the option's delta) and 

short one unit of the call option, then the portfolio has no risk over the next instant. In 

this case, there is only one state variable (the asset price) and one can create a hedge 

portfolio by trading only in the underlying asset and one option. However, if there are two 

state variables as in the SV model, then one more option is needed to hedge the additional 

volatility risk and three assets are needed to form an instantaneously iisk-free portfolio. 

11 For most option records, we need a maximum of 20 quadrature points to arrive at a reliable option 
price. However, experimentation with artificial data indicates that a greater number of quadl'ature points is 
needed for out-of-the-money options. The quadrature routine that we use is "gauher" in Press et al. 
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In theory, one can compare the hedging performance of the two models by constructing 

the respective instantaneous risk free portfolios. However, the SV model does not specify a 

unique three asset hedge. As a result a controlled comparison of the hedging performance 

of the two models is difficult using this type of criterion. So this paper takes a different 

approach, using one option in each case to compare the hedging performance of the SV and 

BS models 

Let us suppose that we create a portfolio consisting of a long position in 1 unit of the 

underlying asset and a short position in h units of an option. Then the variance of the 

change in the portfolio value over the next instant is var(dS - hdC). One can choose h to 

minimize the variance of this portfolio over the next instant. It can be shown that for the 

BS model, the minimum variance hedge ratio h. is ds and for the SV model, the minimum 

variance hedge ratio is c2s2 csgl t c~sc----s (the proofs are in the appendix). In the 
S t + vu + S vfXT t 

BS model, the minimum variance hedge ratio is the same as the reciprocal of the delta of 

the option.12 On the other hand, the minimum variance hedge ratio for the SV model not 

only takes into account the sensitivity of the option price to the underlying asset price and 

the variance, but also the correlation between the asset price and variance as well as the 

volatility of variance. Since S&P 500 futures data are used instead of the spot level of the 

S&P 500 index (that is available in the options data set), one has to take a long position in 

exp(rf,t - dt) units of futures in the hedge portfolio, where Tf,t is the risk free _yield on day 

t corresponding to the selected futures and dt is the dividend .vield on day t for the S&P 

500 index. 

In order to perform the out-of-sample hedging analysis, Vt is estimated each day by 

minimizing the sum of squared errors between model and market prices, conditional on W 

that has been estimated from the past data. Note that according to our convention, if h is 

negative, one has a long position in that option. The way a time series of hedging returns 

is created is as follows: On day t, (given ii' and Vt_ 1for the SV model and the previous 

day's implied volatility for the BS model), an option in a particular moneyness-maturity 

12Note that for the DV model the minimum variance hedge ratio is the reciprocal of the delta of the option 
because a portfolio short in aelta units of the option and long one unit of the asset is riskless over the next 
instant with zero variance. 
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class is selected for the first bid-ask quote in that option after 9 A.M. by buying/selling 

h units at the ask/bid. Immediately after that, one takes a long position in S&P 500 

futures by selecting the next futures transaction (from the futures data set) that occurs 

after the selected bid-ask quote in the options data set. Thus one has a portfolio of a long 

position in a given number of units of the S&P 500 index futures and a long/short position 

in h units of the option. Then on day t + 1, or t + 4 (two rebalancing intervals are used) 

the value of the portfolio is computed from the first bid-ask quote in that option after 9 

A.M. and the next available futures transaction. The value of the option position on day 

t + l/t + 4 is calculated by liquidating the previous long/short position at the bid/ask i.e., 

if one bought/sold options on the day t, these options are sold/bought on day t + l/t + 4, 

thus recognizing the round trip transactions costs in the options market. The normalized 

change in the hedge portfolio is computed by dividing the change in the portfolio value by 

the value of the portfolio on day t. 13 This portfolio is formed for all options belonging to 

a particular maturity /moneyness class and the normalized change of the hedge portfolio of 

a particular option class is the sum of normalized changes of the individual portfolios in 

that class. Repeating this procedure for all days in our sample, time series of normalized 

changes of the minimum variance hedge portfolios of options belonging to various maturity 

and moneyness classes are created with one and three da.v rebalancing intervals. 

Trades in the S&P index options are for a minimum of one contract (100 options) and 

multiples thereof and the bid-ask quotes on index options is firm only for ten contracts (i.e., 

1000 options). The required number of options to be traded (as given by the models} at 

the quoted bid/ask may be in excess of ten contracts. However, in order to get around 

this apparent problem, one has to model bow market makers revise their e,xtant quotes in 

response to trades that exceed the minimum trade size, an issue outside the scope of this 

paper. 

The minimum variance portfolio is being rebalanced at discrete intervals where as the 

minimum variance formula is based on the notion of continuous rebalancing. The dis-

crete rebalancing interval introduces an additional error term that has the effect of making 

13With future> as part of the portfolio, returns of the hedge portfolios a.re not well defined, hence the 
normalized change 
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the returns of the minimum variance portfolio heteroscedastic [Boyle and Emanuel, (80)] 

and possible model misspecification will introduce autocorrelation in the portfolio returns. 

Therefore, a GMM statistic is used to compare the normalized changes of the minimum 

variance portfolio of the two models and is discussed below. 

In order to assess the hedging performance of the two models, one has to compare how 

the variances of the daily normalized changes in the hedge portfolios from the two models 

compare with each other. Let rbs,t and rSl!,t denote the normalized changes in the hedge 

portfolio minus the population mean (estimated by the sample mean) of the hedge portfolios 

corresponding to the BS and the SV models respectively. We want to test whether 

(11) 

E(rbs,t)2 - E(rsv,t) 2 - 0 

or,E[(rbs,t) 2 - (rsv,t) 2] - 0 

Let Zt = Tbs,t 2 - rsv,t2. Then we want to test whether E(Zt) =a. A GMM statistic (in the 

Newey-West framework) for testing this is given by 

(12) 

where µ.z represents the sample mean of Zt and Vis distributed asymptotically as a standard 

normal. The choice of m is somewhat ad hoc. However, different values of m are tested 

with and the results discussed in a following section remain essentially unchanged. 

IV Results 

IV-A Parameter Estimates 

The estimates of the various parameters of the two models from are reported in Table 1 

for calls and puts separately. All the reported estimates are from using transaction prices. 

Although one may want to use the mid-point of bid-ask as the option price in the estimation, 

the number of bid-ask quotes in the data set is enormous as compared to the number of 

transactions, making it extremely time consuming to estimate the parameters of the SV 
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model for the entire sample period using bid-ask quotes.14 However, for a smaller sample, 

the mid-point of bid-ask quotes was used for estimating the parameters of the SV model 

and there were not any discernible changes in the parameter estimates relative to using 

transaction prices. 

For the SV model, the long-run volatility (standard deviation} of the risk-neutralized 

variance process is 16. 733 (as measured b.v J,.. t! X) . The half-life of the variance proce.ss 

is 2.47 months for calls and 3.01 months for puts (as measured by ( ( !11121)) under the 

risk neutral distribution. As noted before, the estimation procedure is unable to identify 

,\ and, therefore, cannot identify ,.. and 8 which are the mean reversion coefficient and the 

long run mean under the empirical measure. However, one does not need the values of A, K 

and () separately to price and hedge options as only the risk neutralized parameters enter 

the pricing and hedging formulae. For the SV model, u is around 0.19 for both calls and 

puts. pis -0.82 for calls and -0.88 for puts indicating that volatility and the S&P 500 index 

level are highly negatively correlated. 
~-~-···--

("""t=T ( ' 
A h • f d• f L..,~ V.-Vr-1) 15 roug estimate o a, given a IBCrete time series o Vt is -.. L:::; t11 - • 

The estimated values of a seems unusually high given the estimated Vt series in Figure 

1 and Figure 2 for calls and puts, thus driving a wedge between a estimated from option 

prices and a rough estimate of a from the estimated time series of vt- A similar result 

for the volatility of the square root variance process has been reported by Bates (96) for 

currency options using Heston's SV model. This may indicate that the square root variance 

process is misspecified. In this context, one must note that for index options a deterministic 

volatility model i.e., BS is known to severely underprice out-of-the-money puts and overprice 

out-of-the-money calls IDumas et. al (96)] that indicates extreme left skewness in the risk 

neutral distribution of the index returns. The SV model, while minimizing the sum of 

squared errors, perhaps tries to account for this skewness through an increased a and a 

highly negative p. 

14The estimation of the parameters of the SV model takes around 3.5 days on a non-dedicated SPARC 
10 workstation, using transaction prices for the entire sample period. 

15The rough estimate of CT is computed from the fact that dv, 2 = v,CTdt and approximating the integration 
in both sides by summation. 
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IV-B Out-of-Sample Pricing and Pricing Biases 

The results of out-of-sample pricing from 04/13/92 to 11/05/92 (132 days) are shown in 

Table 2 for the SV and BS models. For the BS model a daily implied volatility is computed 

by minimizing the sum of squared errors (SSE) between model and market prices. For the 

SV model, conditional on the estimates of \II obtained from the previous period, a dail.v 

variance Vt is computed by minimizing the SSE between model and market prices. The 

implied volatility on day t is then used to price the options on day t + 1 for all options 

under both models. Note that in doing this the BS model is getting an unfair advantage 

because the BS model is based on the notion of a constant volatility and one is estimating 

the volatilit.v daily instead of estimating a single volatility from the previous period (over 

which \II was estimated for the SV model) and using this volatility to price options in the 

second period. However, since volatility is indeed time varying, doing such an exercise would 

yield unacceptably high SSE in-sample and perhaps even more in out-of-sample for the BS 

model. What one is interested in here is that if someone had carried out the estimation 

of the SV model and priced options in a subsequent period on the basis of that, would it 

have resulted in prices that were closer to the market than BS prices, where the BS price 

is computed {as is normally done in the industry) by estimating a daily implied volatility 

on the previous day? The option prices that are used now are the mid-points of bid-ask 

because in computing the actual out-of-sample mispricing, one would want to avoid the 

spurious mispricing from the bid-ask bounce that results from using transaction prices. In 

addition, similar to Longstaff (95), one would want to check the effects of bid-ask spreads on 

options mispricing which is possible only if one is using the bid-ask records. This may raise 

the question as to whether using estimates obtained from using transaction prices should be 

used to compute mispricings with respect to the mid-point of bid-ask. However, as noted 

before this was done to avoid computational burden and the use of a smaller sample for the 

SV model did not show any particular change in the parameter estimate-.s from using either 

of the two price series. 

The average absolute dollar mispricing for calls {with 318,197 observations and an aver-

age bid-ask spread of 63.4 cents) under BS is 67 cents and under SV is 43 cents Thus one is 

able to improve mispricing by around 24 cents using the SV model for calls and bring the 
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average option price within the bid-ask spread. For puts (with 333,390 observations and an 

bid-ask spread of 62.4 cents), the average absolute dollar mispricing is 77 cents using BS 

and 62 cents using SV, an improvement of 15 cents. Looking at Table 2, one can see that the 

pricing differences between the BS and the SV model are especiall.v significant for deep out.-

of-the-money puts and out-of-the-money calls. For example the average absolute percentage 

mispricing for deep out-of-money calls ( ~ - 1 > 0.06) in the 0-3 months maturity range is 

149% for BS and 743 for SV. In fact out-of-the-money calls are significantly mispriced b~· 

both models for all maturities. Similarl.v, for deep out-of-the-mone._v puts in the 3-9 months 

range, the average absolute mispricing is 523 for BS and 173 for SV. If one computes the 

raw (not absolute) mispricings (market price - model price) for out-of-thp.-money options, 

one finds that both models significantly underprice out-of-the-mane:--· puts anJ overp1ice 

out-of-the-money calls, although the amount of mispricing is much lower for the SV model. 

The directions of mispricing for out-of-the-money options are in contra.c;t to those for in-

dividual equity options reported in Rubinstein (85) who found that out-of-the-mane:--· calls 

are always underpriced by the BS model indicating a thicker right tail in the risk-neural 

distribution of spot equity returns. The direction of mispricing for out-of-the-money options 

is consistent with an unusual high concentration of probability mass in the left tail of the 

risk-neutral distribution of the index returns that could have resulted from a crash-phobia 

regarding the market and have also been reported by Dumas et. al (96) for S&P 500 index 

options and Bates (94) for options on S&P 500 futurC':s. Although thl" SV model can put 

extra mass in the left tail of the risk-neutral distribution by increasing a that makes the 

tails fatter and a negative p that makes the distribution skpv:ed to the left, it seems that 

market priced these options under a risk-neutral distribution that seems implausible under 

this SV model. It is also to be noted that the SV model doe,s not yiel<l better prices than the 

BS model for all mone~yness and maturity categories, though it Joes for most. For example, 

for near-the-money puts in the (-0.01,0.01) mone:vness range (moneyness is defined to be 

~ - 1) and maturity range of 0-3 months, the absolute percentag;e misp1icing under BS is 

83 as compared o 163 for the SV model. Also for call options. un<ler both mo<lels, the 

mispricing seems to decrease with an increase in maturit:v. 

Following Longstaff (95), the effects of market frictions likE' bid-ask spreatl and measure 
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of trading activity like trading volume are checked on the amount of mispricing for both 

models by regressing the out-of-sample raw mispricing on these variables after controlling for 

moneyness and maturity biases i.e., by including them as additional independent variables. 

However instead of using all options like Longstaff (95), one checks for the mispricing 

biases by looking at various classes of calls and puts (classified by moneyness and time to 

maturity) separately. The trading volume used is the sum total of options contracts that 

were transacted for a particular class of options on each day. The results of these regressions 

are reported in Table 3(a) and Table 3(b). For the BS model the coefficient on the bid-ask 

spread is significant for all ten classes of options and for the SV model, this coefficient is 

significant for eight out of ten classes of options (out-of-the-money calls and long-maturity 

puts being the exceptions). For the BS model, the coefficient on the bid-ask spread is always 

negative. This suggests that if the option is underpriced/overpriced by BS, then an increase 

in the bid-ask spread increases/decreases the underpricing/overpricing. The effects of the 

bid-ask bias on the SV model are mixed, with some option classes reflect the same bias as the 

BS model and some other the opposite. For both models, the coefficient on trading volume 

is very small and though statistically significant for many classes of options, does not seem 

to have any economic significance. The coefficient on the moneyness is always significant for 

both models, indicating that both models have strike price biares. The coefficient on time 

to maturity is also always significant for both models indicating time to maturity biases, 

although the size of the coefficient is lower than the one on moneyness. 

Thus, although the SV model yields lower pricing errors than thf'. BS model, it still 

suffers from bid-ask, strike price and time to maturity biases. Overall, the adjusted R2 in 

these regressions tend to be somewhat lower for the SV model i.e., the degi:·ee of variation 

in the mispricings that can be explained by the variations in these variables is lower for the 

SV model than the BS model. The bid-ask bias suggests that the bid-ask is proxying for 

variables that are not captured by any of the two models and it is interesting to note in 

this context that in options market the bid-ask spread could be related to the information 

asymmetry about the underlying asset and/or volatility of the underlying asset [see Back 

(93) and Nandi (95)], features that are not captured by the extant option pricing models 

that assume s.vmmetric information among investors about the variables that affect the 
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price of options. 

IV-C Hedging Results 

The minimum variance hedging results are reported in Table 4(a) an<l 4(b) for one <la)• 

and three day rebalancing intervals respectively. For the one day rebalancing interval, the 

SV model yields a lower variance of the hedge portfolio than the BS model for eight of 

the ten classes of options that were considered. Taking into account the autocorrelation 

and heteroscedasticity in the normalized changes in the hedge portfolios, the differences 

in variances of the hedge portfolios are statistically significant at the 5% level. .i\.lthough 

the variances of the hedge portfolios under the BS model are smaller for near-the-mane~' 

calls and long-maturity puts, the differences are not statistically significant according to 

the GMM statistic. Similar results are obtained for the three day rebalancing intervaL 

except that an increase in the rebalancing interval is accompanied with an increase in the 

variance of the hedge portfolios for both models. For all classes of options, with a three 

day rebalancing period, the volatility of the: hedge portfolio under the BS model is greater 

than the daily volatility of the S&P 500 index over this time period (0.06%). For the S\r 

model, such an increase is observed only for shoit-maturity puts and in-thE'-money puts. 

The differences between the two models in terms of hedging are especially p1·onounced for 

out-of-the-money options, a class where there are substantial differences in terms of pricing 

too. Also for both models, the calls are better hedged than the puts. In terms of root mean 

squared· error (RMSE) of the hedge portfolios, where the RMSE is <lefine<l to be the root 

mean squared returns (it is assumed that a perfect hedge portfolio would earn a zero return). 

the SV model also tends to dominate the BS model under both rebalancing intervals, with 

the RMSE also increasing with an increase in the rebalancing interval. 

The hedging results suggest that failure to take into account the risk of a randomly 

changing volatility can result in poor hedges in the index options market for most options 

classes. This result is encouraging in the context of results reported in Dumas et al. (96) 

who found that models based on implied binomial trees [Rubinstein (94)] v.·here volatility 

is implicitly modeled to be a deterministic function of the level of stock price and time 

performed poorly than the simple BS model in an out-of-sample hedging scenario. An 
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important feature of the SV model is that not only does this model allow for volatility 

shocks that are different from the shocks to the returns process, but volatility and spot 

index returns are negatively con·elated (an often documented feature of equity indices) 

allowing this model to capture the changes in the index returns resulting from volatility 

shocks. 

V Conclusion 

The stochastic volatility option pricing model developed by Heston (93) that gives closed 

form solutions for option prices and hedge ratios was tested for its pricing and hedging 

effectiveness in the S&P 500 index options market. In order to avoid the potential incon-

sistency of using either Black-Scholes implied volatilities in a stochastic volatility model or 

P.stimating the time invariant parameters of the model daily, the unobservable time vary-

ing volatility was estimated jointly with the other time invariant parameters, using both 

cross-sectional and time series data. 

Out-of-sample, the SV model yields a lower mean absolute pricing error than the BS 

model. However, both models consistently underprice out-of-the-money puts and overprice 

out-of-the-money calls, although the amount of mispricing is much lower in the stochastic 

volatility model. This type of mispricing indicates an unusual concentration of probability 

mass in the left tail of the risk neutral distribution of the index returns, part of which 

can result from negative correlation between index returns and volatility. The degree of 

options mispricing is related to the bid-ask spreads on options and options trading volume 

after controlling for moneyness and maturity biases, which shows that transaction costs and 

options trading activity are important in explaining intra day options prices. However, it is 

possible that bid-ask spreads are proxying for other effects such as information asymmetry 

about the index and/or volatility of the index as well as discrete rebalancing risk. 

In terms of minimum variance hedging, after taking into account the transactions costs 

(bid-ask spreads) in the index options market and using S&P 500 futures to hedge, the 

SV model rP.sults in lower variance of the hedge portfolio than the BS model for eight out 

of ten classes of options and the differences in variances are statistically significant. This 
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shows that option pricing models that do not incorporate shocks to the volatility process 

and its subsequent effect on returns through the correlation between returns and volatility 

can result in poor hedges in the index options market. Future research can be directed 

tpwards developing and estimating SV models that can account for the transaction costs 

biases in option prices. 
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Appendix 

The purpose of this appendix is to derive a formula for the half-life of the square root 

volatility process and the minimum variance hedge ratios for the SV and the BS model. 

If variance of asset returns follows the process prescribed in {2) and t - s = T then 

(please refer to [Cox,Ingersoll, and Roos(85)]) 

(13) 

Now if T measures the half life of the volatility process, it means that half of the volatility 

shock of time t has been dissipated at time s. This implies 

(14) 

Vt+ (J 

2 
1 =>- vt ( - - e-"7"") = 
2 

vte_,..,. + 9(1 - e_",.) 

6( ~ - e-"') 
2 

If the above equation is to hold for all values of vt it is required that ~ - e_,..,. = 0. This in 

turn yields, T = ln~2 ). Next, we derive the minimu:in variance hedge portfolios in the two 

setups. If the asset price St and volatility Vt follow the processes as in (1) and (2) then, the 

price of an option Ct =!(St, vt, t) follows the process 

dC, f1dt + fs [µSdt + y'VSdz1] + f 0 [~(6 - v)dt + afa dz2] 

(15) 

Hence the variance of a portfolio which is long 1 unit of the asset and short h units of the 

option is 

(16) 

vax(dS - hdC) = vax(dS) + h2vax(dC) - 2hCCN(dS, dC) 

S 2vdt + h2(f§S 2v + J;vcr 2 + 2fsfvSvpu)dt 

- 2h(fsvS2 + f 0 pavS)dt 

Differentiating with respect to h we get the required result for the minimum variance hedge 

ratio in the SV model. A similar calculation for the BS model yields the minimum variance 
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hedge ratio for that model. 
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Table 1 
Eru:run~ter Estimates 

Non-Linear Least Squares parameter estimates of the stochastic volatility model using trans-
action prices from 01/21/91 to 04/10/92 (310 days). Total number of observations= 22,134. 
Number of calls = 7853 and number of puts = 14,281. Half Life of the variance process is 
given by 1,:'121 and is measured in months. Asymptotic standard errors appear in parenthe-
ses. These standard errors are conditional standard errors (conditional on the estimated Vt 

series). The in-sample sum of squared errors (SSE) reported is for the entire sample and is 
the sum of the daily SSEs. 

- . 
Data Set SSE p• ,.e -· . 
Calls 2316.53 0.31 0.094 

(0.19) (0 0015) 
··--· 

Puts 5,183.14 048 0.077 
(0.26) {0.0008) 

~·-·-

K+). 

3.371 
(0.225) 
2.758 
(0.143) 

····--
<T ... 
0.1 94 

013) 
91 
019) 

(0. 
OJ 
(0. 

p Half.Life 
·---~·-_---; 

.Q.82 2.47 
_(0_.0_9.:il_ __ . ..., 
·0.88 3.01 
(0.096) ----·-----



Table 2 
Out-of-Sample Pricing Errors, 04/13/92 - 11/05/92 

Table for average out-of-sarnple absolute mispricing of different classes of options by rno1u~y11ess a11d n1at.t1rity. Mo11ey-
ness is defined as (K/S)-1, where K is the strike price and Sis the spot price. Misprici11g for a single OJlt.io11 is defined 
to be I Model Price - Market Price \/Market Price a11d the market price is measured as the mid poi11t of bid-ask. T11e 
average mispricing in one particular class is the sum of the individ11al mispricings in tl1at. class divided by the tot.al 
number of observations in that class. Also shown is the average absolute dollar mispricng for callli/p11ts which is the 
sum of the absolute mispricings (in$) for all calls/puts divided by tl1e total n111nber of calls/puts. Number of calls= 
3181197 (average bid-ask spread of 63.4 cents) and 11t1mber of puts= 333,390 (average bid-ask spread of 62.4 ce11ts). 
SV is tl1e stochastic volatility model aiid BS is the Black-Scholes 1nodel. 

Short-Term Calls Moneyness BS sv Short-Term Pu ts Moneyness BS sv 
( 0-3 months) < -0.06 0.03 0.024 (0-3 months) < -0.06 0.60 0.42 

(-0.06,-0.01) 0.03 0.04 (-0.06,0.01) 0.21 0.28 
-0.01,0.01) 0.18 0.11 (-0.01,0.01) 0.08 0.16 
0.01,0.06) 0.55 0.23 (0.01,0.06) 0.03 0.03 

> 0.06 1.49 0.74 > 0.06 0.02 0.01 
Medium-Tern1 Calls < -0.06 0.03 0.01 Medium Terrn Jluts < -0.06 0.52 0.17 
(3-9 months) -0.06,-0.01) 0.02 0.02 , (3-9 months) (-0.06,-0.01 0.21 0.06 

-0.01,0.01 0.08 . 0.06 (-0.01,0.01 0.07 0.04 
(0.01,0.06 0.18 0.11 (0.01,0.06) 0.03 0.03 

> 0.06. 0.85 0.45 I> 0.06) 0.03 0.02 
Long-Term Calls < -0.06 0.03 0.01 Long-Tern1 Ptrts < -0.06 0.40 0.11 
(9 mo11ths & above) (-0.06,-0.0lJ 0.04 0.02 ( 9 months & above) (-0.06,-0.01) 0.17 0.03 

(-0.01,0.01) 0.03 0.06 (-0.01,0.01) 0.11 0.04 I (0.01,0.06) 0.10 0.09 (0.01,0.06) 0.04 0.04 
> 0.06 0.35 0.27 > 0.06 0.02 0.03 

Average Absolute $ Misprici11g $0.67 $0.43 $0.77 $0.62 

I 

1 



Table 3(a) 
Mispricing Biases for the Black~Scholes Model 

This table shows tl1e OLS regression of the mispricing of differer1t options classes on the bid-ask spread, moneyness, 
rr1aturity and trading volun1e. Bid-Ask spread is the relative bid-ask spread i.e, o.s:(~id~~sk) and trading volurne is 
the total 11t1mber of contracts transacted in that op.tion category on a particular day. The coefficient on trading 
volume is multiplied by 109. T statistics apear in parentheses. Mispricing is the actual n1ispricing defined as 
(Model price - Market price)/Market price where the market price is 1neas11red as the mid point of bid-ask. A11 
option is near-the-money if l(S-K)/SI <0.01, a call is out-of-the money if (K-S)/S >0.01 and a call is in-the-money 
if (S-K)/S >0.01. Sirnilarly tl1e moneyness for puts is defir1ed. Sl1ort-maturity calls are those that l1ave 0-3 1nonths 
matrity and long-maturity calls are tl1ose that have a time to maturity greater than 3 months. 

Optio11 Type No. of Obs Intercept Bid-Ask Moneyness Maturity Volume Adjusted R2 

In-the-1nor1ey calls 284,666 -0.92 -0.001 0.97 -0.00001 -9.32 0.36 
(-56.15) (-3.42) (81.97) (-14.45) (-1.96) 

Near-tl1e-111oney calls ' 25,076 -6.69 -0.27 6.97 -0.0004 -384.09 0.75 
(-33.56) (-21.58) (35.03) (-11.30) (-4.52) 

0\1t-of-the-rnoney calls 8,449 -6.96 -0.35 7.39 -0.001 -233.80 0.84 
(-18.24) (-8.13) (19.88) . (-14.03) (-1.69) 

Sl1ort-Matt1rity calls 173,538 -1.93 -0.06 2.09 -0.0003 -2.17 0.73 
(-98.56) (-23.09) (106.08) (-22.48) (0.43) 

Long-Maturity calls 144,654 -1.26 -0.02 1.35 -0.0003 -197.07 0.94 
(-55.92) (-7.48) (61.10) (-4.40) (-3.92) 

In-the-money p11ts 297,462 -0.28 -0.02 0.29 -0.00004 253.21 0.95 
(-23.97) (-11.48) (25.52) (-12.10) (4.540) 

Near-tl1e-111or1ey puts 18,786 -3.91 -0.25 3.95 -0.00004 169.55 0.98 
' (-5.31) (-5.87) (5.36) (-0.35) (0.90) 

Out-of-tl1e-111011ey puts 17,136 -6.15 -0.11 6.11 0.0003 263.81 0.98 
(-27.51) (-2.53) (26.29) ( 4.32) (l.39) 

Sl1ort-Maturity puts 191,208 -0.92 -0.03 0.88 0.0002 879.86 I o.91 I 
(-42.93) (-8.70) (41.40) (12.88) (5.92) 

Lo11g-Mat11rit.y puts 142, 178 -1.88 -0.01 1.83 -0.0002 i 340.76 0.96 
(-92.28) (-3.92) (89.45) (-24.53) (2.04) 

I 



Table 3(b) 
Mispricing Biases for the Stochastic Volatility Model 

Tliis table sliows the OLS regressio11 of tl1e mispricing of different options classes on the bid-ask spread, rnoneyr1ess1 

1natt1rity a11<l tra<li11g vol111ne. Bid-Ask spread is the relative bid-ask spread i.e, o.s:(~d~:8k) and tradi11g volume is 
the tot.al nun1ber of co11tracts trar1sacted in that option category on a partict1lar day. The coefficient on tradi11g 
V<)lu1ne is rr111ltiplie<l by 109. er statistics apear in parentl1eses. Mis pricing is the actual mispricing defir1ed M 
(Model price - Market 1>rice)/Market price, where the market price is n1east1red as tl1e mid point of bid-ask. An 
option is near-tl1e-r11011ey if l(S-K)/SI <0.01, a call is out-of-the money if (K-S)/S >0.01 a11d a call is in-the-rnoney 
if (S-K)/S >0.01. Similarly the n1011eyness for puts is defined. Short-maturity calls are those tl1at 11ave 0-3 montl1s 
matrity arid loug-111aturity calls are those that have a time to matt1rity greater than 3 months. 

Option Type No of Obs. Intercept. Bid-Ask Moneyness Maturity Volurne Adjusted R' I 

In-tl1e-rno11ey calls 284,666 -0.28 0.50 0.25 0.0002 I -62.87 '0.11 
1 (-69.69) (32.15) (66.61) (92.13) (-9.18) ! 

I Near-tl1e-money calls 25,076 -4.00 -2.39 4.01 0.0008 -608.62 0.63 
(-16.96) (-10.25) (16.97) . (38.91) (-5.42) 

Ot1t-of-the-money calls 8,449 -4.62 -0.10 4.72 . -0.0004 -172.06 0.91 
(-15.45) (-0.16) (16.29) (-11.54) (-1.33) 

Short-Maturity calls 173,538 -0.42 0.15 0.36 0.001 -13.70 0.61 ' ' 
i (-37.09) (2.77) (28.81) (88.08) (-3.34) 

Long-Maturity calls 144,654 -0.14 -0.12 0.12 0.0002 481.82 0.91 ' 
I (-77. 27) (-5.91) (75.09) (5.41) . (-5.05) 

In-tl1e-n1011ey puts 297,462 -0.14 -0.12 . 0.13 0.0002 481.82 0.91 

' (-15.03) (-3.72) ! (14.65) ! (74.18) (10 97) 
. Near-the-rnoney puts 18,786 -5.75 -2.17 5.58 0.001 -114.96 0.87 
I (-9.87) (3.98) (9.60) (27.13) (-0.72) 

Ot1t-of-tl1e-111ouey 1>nts 17,136 -1.81 -1.80 1.65 0.0009 34.87 0.89 
(-10.43) (-3.15) (9.19) (23.92) (0.20) I 

Sl1ort-Mat11rity pt1ts 191,208 -1.78 1.63 1.58 0.0009 483.87 0.81 
i (-98.90) (22.19) (98.53) (48.61) (3.55) 
I Lo11g-Maturity puts 142,178 -0.47 0.13 0.45 ' 0.00003 I 807 12 0.97 

(-27.52) (1.41) (29.53) ( 4.02) (5.17) 

I 



Table 4 (a) 
Out-of-Sample Minimum Variance Hedging - Daily Rebalancing. 

This tal>le shows the mean a11d standard deviation (in absolute nun1bers1 not percentages) of the daily normalized 
changes of the minimum variance hedge portfolios from 04/13/92 - 11/05/92 (132 days) of different classes of options 
for daily rebalancing. Also shown is the root mean squared error (RMSE) of the hedge portfolios. An option is 
near-the-money if J(S-K)/SJ <0.01, a call is out-of-the money if (K-S)/S >0.01 and a call is in-the-money if (S-K)/S 
>0.01. Similarly the moneyness for puts is defined. Short-maturity calls are those that have 0-3 months rnatrity and 
long-maturity calls are those that have a time to maturity greater than 3 months. SV is tl1e stocl1astic volatility 
rnodel a11d BS is the Black-Scholes model. V is the GMM test statistic show11 ir1 the text for testing the equality 
of the variances of tl1e minin1um variance hedge portfolios of the two models and is asymptotically distributed as a 
standard normal. 

Option Type Mea11 RMSE Std-Dev l Vbs,sv I 
BS sv BS sv BS sv 

In-t.he-money calls -0.0027 0.00049 0.004 0.001 0.0024 0.0013 3.14 
Near-the-money calls -0.0019 0.00046 0.002 0.002 0.0014 0.0021 0.34 
Out-of-tl1e-money calls -0.0019 0.00052 0.003 0.0009 0.0025 0.0007 4.22 
Short-maturity calls -0.0021 0.00046 0.003 0.001 0.0023 0.0012 2.19 
Long-Maturity calls -0.0028 0.0006 0003 0.001 0.0016 0.0011 2.05 
In-the-money puts -0.003 -0.022 0.004 0.002 0.0024 0.0015 2.06 
Near-the-money puts -0.0026 0.0008 0.004 0.004 I 0.0035 0.0002 3.05 
Ol1t-of-the-money puts -0.00276 0.0003 0.0038 0.0005 0.0042 0.0026 7.06 
Short-Maturity puts -0.00252 0.000722 0.004 . 0.008 0.0038 i 0.0011 1.95 
Long-maturity puts -0.00332 -0.0248 0.003 0.004 0.0013 I 0.0037 1.05 

Daily mean ret\1rr1 of the S&P 500 index = 0.0002 

Standard deviation of the daily S&P 500 index retur11 = 0.006 



Table 4 (b) 
Out-of-Sample Mini1nu1n Variance Hedging - Three Day Rebala11ci11g. 

This table shows the n1ea11 and standard deviation (i11al)solute11urnbers, not perce11t.ages)of the 11orrnalized changes 
of the minin1um variance hedge portfolios fro1n 04/13/92 - 11/02/92 (129 days) of differe11t classes of options for 
tl1ree day rel>ala11cing. Also sl1own is the root mean squared error (RMSE) of tl1e 11edge port.folio. A11 optio11 is 
near-the-money if l(S-K)/SI <0.01, a call is out.-of-the money if (K-S)/S >0.01 and a call is in-the-money if (S-K)/S 
>0.01. Similarly the money11ess for puts is defined. Short-n1aturit.y calls are those that. have 0-3 111011tl1s mat.rity arid 
long-rnaturity calls are those tl1at l1ave a time to n1aturity greater tha11 3 111011t.hs. SV is t.l1e stochastic volatility 
n1odel a11d BS is tl1e Black-Scl1oles model. V is the GMM test statistic shown in tl1e text for testing the eq11alit.Y 
of the varia11ces of the minimum variance l1edge portfolios of tl1e two 111odels and is asyrr1pt.otically distributed as a 
standard 11ormal. 

Option Type Mean RMSE Std-Dev I Vbs,sv I 
BS sv BS SV BS sv 

In-the-n1oney calls -0.0021 0.0005 0.01 0.002 0.012 . 0.002 . 4.94 
Near-tl1e-1no11ey calls -0.0008 0.0005 0.009 0.001 0.01 ' 0.001 4.45 

Out-of-tl1e-money calls I -0.001 0.001 0.006 0.002 0.0062 0.0017 4.10 
Short-Maturity Calls ! -0.0011 0.0005 0.001 0.001 0.01 0.0015 4.67 
Lo11g-Mat.11rity Calls -0.0021 0.0007 0.01 0.002 0.01 0.002 . 4.73 
111-the-money puts -0.004 0.005 0.013 0.04 0.013 0.043 1.06 

Near-tl1e-money puts -0.004 0.0003 0.01 0.002 O.Oll 0.0022 4.49 
Out-of-the-r11oney puts -0 0041 0.0004 0.008 0.0008 0.007 0.0007 4.11 

Short.-Maturity puts -0.0042 0.003 0.02 0.03 0.011 i 0.034 1.11 
Long-maturity puts -0.0043 0.0012 0.02 0.006 0.009 0.005 3.24 

Daily 111ean ret11rn of the S&P 500 index = 0.0002 

Sta11dard deviation of the daily S&P 500 i11dex ret11rn = 0.006 

J 
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