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ABSTRACT

We introduce wavelet-based methodology for estimation of realized variance allowing its measurement in
the time-frequency domain. Using smooth wavelets and Maximum Overlap Discrete Wavelet Transform, we
allow for the decomposition of the realized variance into several investment horizons and jumps. Basing our
estimator in the two-scale realized variance framework, we are able to utilize all available data and get
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estimator is able to estimate and forecast the realized measures with the greatest precision. Our time-
frequency estimators not only produce feasible estimates, but also decompose the realized variation into
arbitrarily chosen investment horizons. We apply it to study the volatility of forex futures during the recent
crisis at several investment horizons and obtain the results which provide us with better understanding of
the volatility dynamics.
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Realized wavelet-based estimation of integrated variance and
jumps in the presence of noise*

Jozef Barunik! Lukas Véchat

Abstract

We introduce wavelet-based methodology for estimation of realized variance al-
lowing its measurement in the time-frequency domain. Using smooth wavelets and
Maximum Overlap Discrete Wavelet Transform, we allow for the decomposition of the
realized variance into several investment horizons and jumps. Basing our estimator in
the two-scale realized variance framework, we are able to utilize all available data and
get feasible estimator in the presence of microstructure noise as well. The estimator is
tested in a large numerical study of the finite sample performance and is compared to
other popular realized variation estimators. We use different simulation settings with
changing noise as well as jump level in different price processes including long memory
fractional stochastic volatility model. The results reveal that our wavelet-based esti-
mator is able to estimate and forecast the realized measures with the greatest precision.
Our time-frequency estimators not only produce feasible estimates, but also decompose
the realized variation into arbitrarily chosen investment horizons. We apply it to study
the volatility of forex futures during the recent crisis at several investment horizons
and obtain the results which provide us with better understanding of the volatility
dynamics.

Keywords: quadratic variation, realized variance, jumps, market microstructure noise,
wavelets
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1 Introduction

Volatility of asset returns has become one of the primary concerns in financial econometrics
research over the past decades. One of the main improvements in this area has been intro-
duction of high frequency data into the volatility estimation. The most popular Realized
Volatility approach was pioneering work which took advantage of the data in a nonpara-
metric fashion, but as both theoretical insights and data availability have grown rapidly in
the past decade, this research line has brought great improvements in the volatility estima-
tion and forecasting. While simple realized volatility estimator of |[Andersen et al.| (2003)
is still the most popular among researchers due to its simplicity, literature shown that it is
important to improve the estimation as microstructure noise (Zhang et al.l 2005; [Hansen
and Lunde, 2006; Bandi and Russell, [2006; Barndorff-Nielsen et al., 2008]) and relatively
frequent jumps (Barndorff-Nielsen and Shephard, 2006; Huang and Tauchen, [2005; Ander-
sen et al., 2007, 2009; Ait-Sahalia and Jacod,, 2009; Mancini, 2009)) play an important role
in the price process.

Our motivation is to bring the time-frequency insight into volatility estimation for the
first time while most time series models are set in the time domain or frequency domain
separately. This is enabled by the use of the wavelet transform. It is a logical step to
take, as the stock markets are believed to be driven by heterogeneous investment horizons.
In our work, we ask if wavelet decomposition can improve our understanding of volatility
series and hence improve volatility forecasting and risk management.

On the theoretical side, wavelets can be easily embedded into stochastic processes,
as shown by |Antoniou and Gustafson| (1999)) and we can conveniently use them in the
quadratic variation estimation. Several attempts to use wavelets in the estimation of re-
alized variation have emerged in the past few years. |Ho g and Lunde| (2003) were the
first to suggest a wavelet estimator of realized variance. (Capobianco| (2004), for example,
proposes to use a wavelet transform as a comparable estimator of quadratic variation. |Sub-
botin| (2008) uses wavelets to decompose volatility into a multi-horizon scale. Next, Nielsen
and Frederiksen (2008]) compare the finite sample properties of three integrated variance
estimators, i.e., realized variance, Fourier and wavelet estimators. They consider several
processes generating time series with a long memory, jump processes as well as bid-ask
bounce. |Gengay et al. (2010) mention the possible use of wavelet multiresolution analysis
to decompose realized variance in their paper, while they concentrate on developing much
more complicated structures of variance modeling in different regimes through wavelet-
domain hidden Markov models. Work of Fan and Wang] (2007) fully completes the current
literature on using wavelets in realized variation measurement. Authors utilize wavelets to
build the methodology for the estimation of jumps. Finally, Mancino and Sanfelici| (2008)),
Olhede et al.| (2009) propose estimators based on the Fourier transform. While the idea
is very similar, this approach leads to realized volatility measurement in the frequency
domain solely.

In our work, we revisit and extend these results in several ways. Instead of using the



Discrete Wavelet Transform we use the Maximum Overlap Discrete Wavelet Transform,
which is a more efficient estimator and is not restricted to sample sizes that are powers of
two. We also use smooth wavelets, specifically the Daubechies family of wavelets instead
of the Haar type.

An important contribution of this paper is that we allow for decomposition of the re-
alized variance into several investment horizons. Basing our estimator in the two-scale
realized variance framework, we are able to utilize all available data and get feasible esti-
mator in the presence of microstructure noise as well as jumps. To study the finite sample
behavior of the estimator, we run a large numerical study using several price generating
processes including a long memory fractional stochastic volatility model. We use several
different jumps and noise levels to compare our estimator to other commonly used estima-
tors, namely realized variance, bipower variation, realized kernels and two-scale realized
volatility. Next, we also run a simulation study comparing the forecasting ability of the
estimators. The results suggest that under various settings our wavelet-based estimator
proves to have the lowest forecast bias.

In the final part of the paper, we apply the wavelet-based estimator to the modeling
of currency futures volatility. By studying the statistical properties of unconditional daily
log-return distributions standardized by volatility estimated using the different estimators
we find that standardization by our wavelet-based estimator brings the returns close to the
Gaussian normal distribution. The differences to other estimators are quite large, as we
find that the average volatility estimated using our wavelet-based theory is 6.34% lower
than the volatility estimated with the standard estimator. More importantly, we study
the volatility decomposed to several investment horizons and jumps on the recent data
covering financial crisis.

Organization of the paper is as follows. The second Section introduces estimators of
integrated variance commonly used in the literature which will be used as a benchmark in
our study. The third section introduces wavelet decomposition of integrated variance and
derives wavelet-based realized variance estimator and its properties. The fourth Section
tests the theory in a numerical study and compares the small sample behavior of the
wavelet-based estimator with other popular estimators, while assuming different processes
driving the stock market with different amounts of noise and jumps. Specifically, we
consider jump-diffusion stochastic volatility and fractional stochastic volatility. The Section
concludes with a numerical study assessing the forecasting performance of the estimators.
The last Section applies the presented theory and decomposes the empirical volatility of
forex stock markets.

2 Estimation of integrated variance

Consider a univariate risky logarithmic asset price process p; defined on a complete proba-
bility space (2, F,P). The price process evolves in continuous time over the interval [0, 77,



where T is a finite positive integer. Further, consider the natural information filtration,
an increasing family of o-fields (F¢);cjo,7) € F, which satisfies the usual conditions. Fol-
lowing |Andersen et al.| (2003), we define the continuously compounded asset return over
the [t — h,t] time interval, 0 < h < ¢t < T, by 1y, = pr — pt—p. Instantaneous return
can be uniquely decomposed into a predictable and integrable mean (expected return)
component and a local martingale innovation (e.g. [Protter, 1992)). For any univariate,
square-integrable, continuous sample path, logarithmic price process (pt)te[o,T] which is
not locally riskless, there exists a representation such that over [t — h,t], for 0 < h <t < T

t t
Tt,h = / Hsds +/ osdWs, (1)
t—h t—h

where s is an integrable, predictable and finite-variation stochastic process, oy is a strictly
positive cadlag stochastic process satisfying

t
P[/ agds<oo] =1,
t—h

and W; is a standard Brownian motion.

In the observed data the logarithmic asset price is latent as it is contamined with
microstructure noise and moreover contain jumps. Thus we assume that the latent price
process follows a standard jump-diffusion process and is contamined with microstructure
noise.

Let (yt)te[oﬂ be the observed log prices, which will be equal to the latent, so-called
“true log-price process”

dpy = pedt + oy dWy + Edgy, (2)

and will contain microstructure noise ¢;

Yt = Dt T €,y (3)

where ¢; is zero mean i.i.d. noise with variance 72, ¢ is a Poisson process uncorrelated with
W and governed by the constant jump intensity A. The magnitude of the jump in the
return process is controlled by factor & ~ N (&, Jg).

Quadratic return variation over the [t — h,t] time interval, 0 < h <t < T, associated
with py,

t
QVin = / olds+ > Jf (4)
t—h t—h<I<t
N——
I Vt7h JVi, h
can be naturally decomposed into two parts: integrated variance of the latent price process,

IV, p, and jump variation JV; . As detailed by |Andersen et al. (2003), quadratic variation
is a natural measure of variability in the logarithmic price.



A simple consistent estimator of the overall quadratic variation under the assumption
of zero noise contamination in the price process is provided by the well-known realized vari-
ance, introduced by Andersen and Bollerslev| (1998). The realized variance over [t — h, ],
for 0 < h <t <T, is defined by

DU, — 2
th,h - Zrt—h—l-(%)h, (5)

where N is the number of observations in [t — h,t] and r i\, 1s t—th intraday return

t—h+ (%
in the [t — h,t] interval. RV th 2o Vin +JVip as N — oo (Andersen and Bollerslev|,
1998 [Andersen et al.| 2001} 2003} Barndorff-Nielsen and Shephard, 2001} 2002a.b)). In the
subsequent literature, [Zhang et al| (2005)); [Hansen and Lunde| (2006)); Bandi and Russell
(2006); Barndorff-Nielsen et al,| (2008); Barndorff-Nielsen and Shephard| (2006); [Huang
land Tauchen| (2005)); [Andersen et al.| (2007} [2009); |A1t-Sahalia and Jacod| (2009)); Mancini
(2009) show that it is important to account for the microstructure noise and jumps. In
our study, we use these estimators for comparison to our wavelet-based approach, thus we
introduce them in the following Section.

2.1 Effect of microstructure noise

\Zhang et al.|(2005) propose the solution to the noise contamination by introducing so-called
two-scale realized volatility (TSRV henceforth) estimator. Authors propose a methodology
for measurement of realized variance utilizing all of the available data using an idea of
precise bias estimation. The two-scale realized variation over [t — h,t], for 0 < h <t < T,
is measured by

(TS'RV) ——(average) N —=(all)

RV, = RV, N RV, (6)
—_——— ——
slow time scale fast time scale

—— (average)

where RV,E h Y5 is computed using Eq. on all available data and RV, ), is constructed

by averaging the estimators RV]E,,S obtained on K grids of average size N = N/K as:
afuerage) —(k)
RVy), Zthh (7)

In computing the TSRV, we have to first partition the original grid of observation times,
G = {to,...,ty}, into subsamples G*) k =1,..., K, where N/K — oo as N — oo. For
example, G will start at the first observation and take an observation every 5 minutes,
G® will start at the second observation and take an observation every 5 minutes, etc.

Finally, we average these estimators through the subsamples, so we average the variation
— (TSR

of the estimator as well. RV, , Y provides the first consistent estimator of the quadratic



variation of p; with rate of convergence N~/ |Zhang et al.| (2005) also provide the
distribution theory as well as theory for optimal choice of K grids, K* = ¢N 2/3_ where the
constant ¢ can be set to minimize the total asymptotic variance.

Another estimator, which is able to deal with the noise and which we use for the
comparison in our study is the realized kernels (RK) estimator introduced by Barndorft-
Nielsen et al.| (2008). The realized kernel variance estimator is defined by

H
RV = qno+ 3k (”Hl) (e + Temn): ®)

n=1
with vy p, = Zf\il Tt bt (3 )Rt ht (A1) denoting the n-th realized autocovariance with
n=—H,...,—1,0,1,...,H and k(.) denotes the kernel function. Please note that for
n =0, Vehy = Vtho = RV ¢n is estimate of the realized variance from Eq. 1) For the
estimator to work, we need to choose the kernel function &(.). In our study, we will focus
on the Parzen kernel because it satisfies the smoothness conditions, £'(0) = £’(1) = 0 and
is guaranteed to produce a non-negative estimate. The Parzen kernel function is given by

1—622+623 0<2<1/2
k(z)=¢ 2(1—2x)3 1/2<x<1. 9)
0 z>1

We should note that the realized kernel estimator is computed without accounting for
end effects, i.e. replacing the first and the last observation by local averages to eliminate
the corresponding noise components (so-called “jittering”). Barndorff-Nielsen et al.| (2008)
argue that these effects are important theoretically, but are negligible practically.

2.2 Effect of jumps

By introducing the TSRV and the RK estimators, we will have benchmark estimators which
are able to consistently estimate the quadratic variation from noisy observations. Still,
we are interested to decompose quadratic variation into the integrated variance and jump
variation component. Barndorff-Nielsen and Shephard| (2004, [2006) develop a powerful and
complete way of detecting the presence of jumps in high-frequency data. The basic idea
is to compare two measures of the integrated variance, one containing the jump variation
and the other being robust to jumps and hence containing only the integrated variation
part. In our work, we use the |Andersen et al. (2011)) adjustment of the original Barndortf-
Nielsen and Shephard| (2004) estimator, which helps render it robust to certain types of
microstructure noise. The bipower variation over [t — h,t], for 0 < h <t < T, is defined by

N
—(BV) 5 N
th,h :N12mz‘Tt7h+(i’2)hHrtchr(%)h" (10)

£ N
=3




—~(BV —(BV
where u, = E(|Z]%), and Z ~ N(0,1), a > 0 and RV;h ) 2, ftt_hagds. Thus RV;h )
provides a consistent estimator of the integrated variance. While RV S}I;ame) provides a

consistent estimator of the quadratic variation, the jump variation can be estimated con-
sistently as the difference between the realized variance and the realized bipower variation:

(ﬁvgf,f“’"“) _ ﬁvgf’;”) 2 i (11)

Under the assumption of no jump and some other regularity conditions, Barndorff-Nielsen
and Shephard| (2006) provided the joint asymptotic distribution of the jump variation.
Under the null hypothesis of no within-day jumps,

}/%‘\/i;s};;arse) —ﬁ‘\/gi‘/)

——(sparse)

RV,

Q..
2
(Rvﬁﬁv))

0 -3(_N N .
where TQt,h = N:u4/3(m) Zi:B |rt_h+(%)h|4/3|Tt_h+(%)h|4/3‘rt_h+<%)h|4/3 1S asymp-
totically standard normally distributed. Using this theory, the contribution of the jump
variation to the quadratic variation of the price process is measured by

(52 +m—5) L max [ 1,

n

(sparse) /\(BV))

jt,h = IZt,h><I>a (E‘\/t,h - th,h (13)

where I Zyp>®a denotes the indicator function and ®, refers to the chosen critical value
from the standard normal distribution. The measure of integrated variance is defined as

~ —(sparse) —=(BV)

CtJL = IZt,hS‘I’aRVt,h + IZt,h><I>aRVt,h > (14)
ensuring that the jump measure and the continuous part add up to the estimated variance
without jumps.

We use the described jump detection methodology as the benchmark and we focus on
wavelet methods for detecting jumps in the data, as described in the following sections.

3 Wavelet decomposition of integrated variance

While most realized variance estimators are naturally set in the time domain, or frequency
domain separately, wavelet transform help us to enrich the analysis of realized variance in
the time-frequency domain. It is a logical step to take, as the stock markets are believed
to be driven by heterogeneous investment horizons, so volatility dynamics should be un-
derstood not only in time but at investment horizons as well. We will introduce general
ideas of constructing the estimators here.



3.1 Decomposition of quadratic return variation with wavelet transform

The quadratic variation can be decomposed using the continuous wavelet transform (CWT):

9 t e 1 )
QVin =~ / / / k() Wi, D djds + 3 IR, (15)
Cy JienJo Jr J t—h<I<t
<i<
IVip, IV,

where
(i) =17 [ (225 o2epas (16

Eq. decomposes the quadratic variation both in time and frequency. By decomposition
in the frequency domain we obtain j components representing scales which can be viewed
as investment or trading horizons. For more details about wavelet decomposition, consult
. Further, Eq., allows to define a model-free measure of the integrated variation in
analogy to the simple realized variance estimator.

The continuous wavelet transform is a very important concept which helps us with the
derivation of theoretical behavior on the time-scale space. Since we work with real data,
we need some form of sampling to compute the estimators, i.e., we have to use a suitable
form of discretization. We use the maximal overlap discrete wavelet transform (MODWT),
which is a special form of discrete wavelet transformation, thus we restrict the scale 7 and
the translation k parameters to integers only. Again, we keep the technical details about
the MODWT in[A1]

3.2 Time-frequency decomposition of a stochastic process

For our analysis, it is important to show that we are able to decompose the energy of
a stochastic process on a scale-by-scale basis, i.e., we can obtain the energy contribution
of every level j, with the maximum level of decomposition J" < log, N. The (total)
variance of the intraday returns Tt ht (£ )h fori =1,...,N in the [t — h,t] interval can be

decomposed on a scale-by-scale basis J < logy N so that

Jm
Iell* = W1 + [V | (17)
j=1
N N N
where ||r|? = ;L r§7h+(%)h, (W2 =35, Wj%i, [V |? =3, V}mﬂ- and W; and

V; are N dimensional vectors of the j-th level MODWT wavelet and scaling coefficients.

The Proof of the energy decomposition can be found in Percival and Mofjeld| (1997). It is
central to derivation of wavelet-based estimators of integrated variance. It is worth noting
that the squared norm ||.|| is similar to the realized measure discussed in the preceding



sections. For example, in the case of the realized variance estimator (RV) the variance
decomposition can reveal the contributions of particular scales to the overall energy, hence
we can see what form this realized measure takes. This will be introduced in the next
paragraphs.

For simplicity in notation let us define a vector W that consists of J™+1 and N —dimensional
subvectors, where the first J™ subvectors are the MODW'T wavelet coefficients at levels
j=1,...,J" and the last subvector consists of the MODWT scaling coefficients at level
Jm:

W= (WiWay,...,Wym, V)T, (18)

i.e., for Equation the following holds:

Jm Jm41
2 =D WP+ Va2 = > W) (19)
j=1 j=1

3.3 Wavelet-based realized variance estimator

Now we can return to the estimation of the realized variance and propose its wavelet-based
estimator. The wavelet-based realized variance over [t — h, t], for 0 < h < ¢ < T, is defined

by
Jm4+1

S S o

=1 k=1

where N is the number of intraday observations in [t — h,t] and J™ is the number of
scales we consider. W. jt—htkp ar€ the MODWT coefficients defined in Eq. on re-
turns data 7 on components jg=1,...,J™+ 1, where J™ < logy N. This result comes
readily from the results in the previous paragraphs Using |Percival and Mofjeld (1997)) we

can write that SN t bk = ZJmH SN W2t he ko and thus we have readily that

—(WRV) —(WRV)
RVt n= RV . Moreover, RV, ;, estimator takes asymptotic properties of RVuh

and converges in probability to quadratic variation

— (WRV)
RVy, 5 QVip (21)

The wavelet realized variance estimator in fact only decomposes the realized variance. Thus
with increasing sampling frequency N — oo it is an infeasible estimator of the quadratic
variation in the presence of noise in the data. In the following section, we will introduce
the concept of treating jumps using wavelets and finally propose the estimator, which will
be able to estimate jumps consistently. Inheriting the structure of the TSRV our estimator
will also utilize all the available data and will be feasible estimator of integrated variance
under the microstructure noise.



3.4 Realized jump estimation using wavelets

Wavelets can be utilized for estimating jumps and separating integrated variance from
jump variation. The sample path of p; has a finite number of jumps (a.s.). Following
the theoretical results of Wang] (1995) on the wavelet jump detection of the deterministic
functions with i.i.d. additive noise €;, we use the MODWT as the discretized version of the
continuous wavelet transform. Unlike the ordinary DW'T, the MODWT is not restricted to
a dyadic sample length. For the estimation of jump location we use the universal threshold
(Donoho and Johnstone| |1994) on the first level wavelet coefficients of y, over [t — h, ],

Wi k. If for some Wi i,
Wi k| > dy/21og N, (22)

then 7; = {k} is the estimated jump location with size gz, — ¥z _ (averages over [7, 7 + 6,
and [77, 7] — ], respectively, with §,, > 0 being the small neighborhood of the estimated
jump locationEl 7; £ ) and where d is median absolute deviation estimator defined as
(2Y2)ymedian{|)Wi k|, k = 1,....,N}/0.6745 (Percival and Walden, 2000).

Using the result of Fan and Wang (2007)), the jump variation is then estimated by the
sum of the squares of all the estimated jump sizes:

Ny

—W
TVin = (@ency — Gnn )™ (23)
=1

thus we are able to estimate the jump variation from the process consistently with the
convergence rate N ~1/4

TV 2 Vi (24)

In the following analysis, we will be able to separate the continuous part of the price process

containing noise from the jump variation. This result can be found in [Fan and Wang| (2007))

—W
and it states that the jump-adjusted process yt(‘z) = Yt,n — J V', converges in probability to

the continuous part without jumps, the integrated variance. Thus, if we are able to deal

(/)

with the noise in y,"’, we will be able to estimate the true IV} .

3.5 Jump wavelet two scale realized variance estimator

Finally, let us propose an estimator of realized variance that is able to estimate jumps
from the process consistently and with N — oo, it is be able to recover the true integrated
variance from noisy data. Moreover, we can use it to decompose the integrated variance
into J™+1 components. In the final estimator, we utilize what we already know: the TSRV
estimator of Zhang et al.| (2005)), the wavelet-based realized variance estimator (Eq.

—— (estimator,J
and the jump detection method proposed by previous section. Let RVS; imater. ) denote

'Due to the nature of the MODWT filters, we need to correct the position of the wavelet coefficient to
get the precise position of the jump. For more details see |Percival and Mofjeld| (1997)).

10



an estimator of realized variance over [t — h,t], for 0 < h <t < T, on the jump-adjusted
observed data, yﬂ) = Yt,h —ZlN:tl J;. The jump-adjusted wavelet two-scale realized variance

estimator is defined as:

——(JWTSRV) SUWTSRY) _ iy W.J) N —(WRV,J)
T _ Z WIS _ 5 (RVM - NEv ) (25)
j=

where RV ;t =G Ly g=1 S Jt bk obtained from wavelet coefficient estimates
WRVJ
on a grid of size N = N/G and RVgth =SNw i t Bk obtained from wavelet

coefficient estimates on the jump-adjusted observed data, y(‘])

The estimator JWTSRV in Eq. uses jump-adjusted data yﬁi) = Yt,h — Wﬂ which
are further decomposed by the wavelet transform (MODWT) to j = 1,...,J™ + 1 com-
ponents. Final estimator is the sum of TSRV (Zhang et al. 2005|) estimates on every
particular component j. Since the TSRV estimator has rather slow rate of convergence of
N~Y6 and the wavelet MODWT estimator of realized variance has the rate of convergence
N~1/2 the speed of convergence of the JWTSRV components will be also N~V/6. Tt is
clear however, that the wavelet decomposition do not slow down the overall speed of con-
vergence of the TSRV estimator compared to the JWTSRV, as well as it does not increase
the asymptotic variance. Hence we can write:

/‘\/EiWTSRV) P Vi (26)

Thus the JWTSRYV is a consistent estimator of the integrated variance as it converges

in probability to the true integrated variance IV, j, of the process p;. In the next section, we

will test the finite sample properties and we show that variance of the JWTSRYV is naturally

inherited from TSRV. In small samples, a small sample refinement can be constructed
(Zhang et al., 2005]):

. v (D
—— (JWTSRV,adj) N (JWTSRV)
t.h = (1 - > Vt h (27)

When referring to the realized volatility estimated using our JWTSRV estimator, we will
(JWTSRV,ad
refer to the \/ RVt ¢ ])

4 Numerical study of the small sample performance of the
estimators

In this section, we study the small sample performance of all estimators using Monte Carlo
simulations designed to capture the real nature of the data. We use several experiments
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using different volatility models, including a fractional stochastic volatility model capturing
long memory in volatility and add numerical study of the forecasting performance of the
estimators. Each experiment compares the performance of the realized variation estimator,
the bipower variation estimator, the two-scale realized volatility, the realized kernel, and
the jump wavelet two-scale realized variation defined by Eq. . All the estimators
are adjusted for small sample bias, similarly to Eq. (27). For convenience, we refer to
the estimators in the description of the results as RV, BV, TSRV, RK and JWTSRYV,
respectively. Moreover, we also compare the minimum variance estimators TSRV* and
JWTSRV*, which minimize the total asymptotic variance of the estimators (Zhang et al.,
2005)).

4.1 Jump-diffusion model with stochastic volatility

The first data generating model we assume in our study is a one-factor jump-diffusion
model with stochastic volatility, described by the following equations:

dX; = (u— J?/?)dt + 01 dWy s + ctdNy
do? = Ko o)t + oWy 29

where W, and W, are standard Brownian motions with correlation p, and c;dV; is a
compound Poisson process with random jump size distributed as N ~ (0,07). We set the
parameters to values which are reasonable for a stock price, as in |Zhang et al.| (2005), who
used model 28| without jumps, 4 = 0.05, « = 0.04, Kk =5,y = 0.5, p = —0.5 and o; = 0.025.
The volatility parameters satisfy Feller’s condition 2xa > 2, which keeps the volatility
process away from the zero boundary. We generate 10,000 independent sample pathﬂ of
the process using the Euler scheme at a time interval of § = 1s, each with 6.5 x 60 x 60
(= 23,400) steps, corresponding to a 6.5 trading hour day. On each simulated path, we
estimate IV, over t = 1 day, as the parameter values are annualized (i.e., t = 1/252).
The results are computed for sampling of 5 minutes (78 observations) for RV, BV, TSRV,
RK and JWTSRYV, as well as for the optimal sampling frequency found by minimizing the
total asymptotic variance of the estimators for TSRV* and JWTSRV™*.

We repeat the simulation with different levels of noise as well as different numbers of
jumps. We assume that the market microstructure noise, €, comes from a Gaussian dis-
tribution with different standard deviations: (E[e%])'/2 = {0,0.0005,0.001,0.0015}. Thus,
the first simulated model, (E[€?])’/? = 0, has zero noise. The remaining three models have
levels of microstructure noise corresponding to 0.05%, 0.1% and 0.15% of the value of the
asset price.

Moreover, we add different amounts of jumps, controlled by intensity A from the Pois-
son process c;dN;. We start with A = 0, with model reducing to a modification of

2We have also computed the results for lower number of simulations, up to 1,000 generated independent
sample paths and we found that the results do not change at all. These results are available upon request
from authors.

12



Table 1: Bias (variance in parenthesis) x10* of all estimators from 10,000 simulations of
jump-diffusion model with €; = 0, e = 0.0005, e3 = 0.001, ¢4 = 0.0015. RV — 5 min.
realized variance estimator, BV — 5 min. bipower variation estimator, TSRV — 5 min.
two-scale realized volatility, JWTSRV — 5 min. jump wavelet two-scale realized variance.
TSRV* and JWTSRV* are minimum variance estimators, and RK is Realized Kernel.

RV BV TSRV TSRV* RK JWTSRV JWTSRV*
No Jumps
€1 0.90 (0.65) -4.13 (0.82) -6.03 (0.43) -0.28 (0.02) -15.18 (2.51) -6.08 (0.43) -0.37 (0.02)
€3 100.10 (0.93) 97.36 (1.18) -5.25 (0.45) 0.98 (0.51) -4.40 (2.63) -3.86 (0.45) 2.29 (0.52)
€3 394.14 (2.10) 412.43 (2.87) -5.15 (0.45) -1.31 (0.90) 19.66 (2.91) 0.19 (0.48) 3.95 (0.93)
€4 885.81 (5.40) 949.39 (8.00) -4.52 (0.43) -0.47 (1.34) 52.94 (3.13) 7.71 (0.58) 11.93 (1.48)
One Jump
€1 247.73 (19.31) 53.84 (1.85)  236.63 (18.64)  245.55 (18.09)  225.41 (23.19) -5.64 (0.44) -0.25 (0.02)
€ 354.79 (20.91) 164.24 (2.77)  246.24 (19.67)  253.69 (19.61)  241.88 (23.10) -0.35 (0.48) 4.36 (0.52)
€3 648.69 (23.12) 495.58 (5.15)  241.06 (19.79)  251.24 (20.44)  260.10 (25.62) 18.12 (0.64) 23.94 (1.10)
€4 1139.00 (27.54) 1044.80 (10.79) 248.00 (20.30) 256.50 (21.02) 303.39 (25.25) 58.29 (1.41) 64.39 (2.29)
Two Jumps
€1 503.32 (41.12) 117.87 (3.84) 489.24 (39.47) 501.61 (38.99) 471.67 (47.36) -5.27 (0.43) -0.36 (0.02)
€3 616.80 (41.99) 237.65 (4.56) 500.37 (39.51) 513.15 (39.69) 489.82 (45.65) 3.43 (0.49) 7.41 (0.54)

3 910.28 (44.71) 582.94 (7.67)  499.52 (39.83)  508.95 (39.52)  517.36 (48.27) 38.99 (0.81) 43.39 (1.25)
€4  1398.40 (47.55)  1160.20 (15.04)  496.34 (39.15)  505.27 (38.93)  551.50 (47.75)  108.73 (2.34)  113.95 (3.06)
Three Jumps

€1 772.53 (62.38) 191.00 (6.58)  753.28 (60.11)  766.80 (58.86)  730.70 (72.17) -5.62 (0.46) -0.37 (0.02)
€2 858.07 (61.60) 312.01 (7.34)  741.10 (58.62)  759.90 (58.56)  720.73 (68.89) 6.04 (0.51) 10.21 (0.53)
e3  1169.30 (68.71) 671.31 (10.71)  756.73 (61.89)  767.36 (60.72)  769.49 (74.86) 59.15 (0.95) 61.90 (1.37)
eqs  1650.50 (69.52)  1257.80 (18.55)  742.31 (58.93)  757.31 (59.37)  787.06 (71.48)  160.10 (3.19)  167.24 (3.94)

the standard Heston volatility model without jumps, and continue with jump coefficients
implying up to three jumps per day in the process. This number is realistic according to
findings in the literature. The size of the jumps is controlled by parameter oy, which is
set to 0.025, implying that a one standard deviation jump changes the price level by 2.5%.
Finally, we have 16 models with different levels of noise and numbers of jumps, and we
compare the bias of all the estimators for each simulated day.

Table [1] shows the results. The first model, without jumps, corresponds to the findings
of |Zhang et al. (2005) and Ait-Sahalia and Mancini (2008]), although we add a higher level
of noise to the simulations as suggested by the literature. The results show how robust
the TSRV-based and RK estimators are to an increase in noise. Even a small increase in
the magnitude of noise causes large bias in the other estimators, but the TSRV-based and
RK estimators contain bias of order less than 1074, What we add to the original results of
Zhang et al. (2005) and |ATt-Sahalia and Mancini| (2008) are jumps. While TSRV and RK
are robust to an increase in noise, they are not robust to an increase in jumps. From the
rest of the results, we can see how the wavelets detect all of the jumps in the process and the
JWTSRV stays unbiased. From the results we can also see that with a mixture of relatively
high noise and a large number of jumps in the process even the JWTSRV estimator suffers
from bias. This suggests that jumps are sometimes indistinguishable from noise and remain
undetected under the large noise. We can also see that the BV is able to deal with jumps
to some extent, but is hurt heavily by noise.
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Table 2: Bias (variance in parenthesis) x10* of all estimators from 10,000 simulations of
fractional stochastic volatility model with Hurst parameter H = 0.5 with ¢; = 0, €2 =
0.0005, e3 = 0.001, ¢4 = 0.0015. RV — 5 min. realized variance estimator, BV — 5 min.
bipower variation estimator, TSRV — 5 min. two-scale realized volatility, JWTSRV — 5 min.
jump wavelet two-scale realized variance. TSRV* and JWTSRV* are minimum variance
estimators, and RK is Realized Kernel.

RV BV TSRV TSRV™* RK JWTSRV JWTSRV™*
No Jumps
€1 7.65 (10.51) -19.57 (13.32) -26.55 (6.86) -1.16 (0.23) -66.40 (39.16) -26.80 (6.86) -1.48 (0.23)
€ 104.62 (11.14) 82.08 (14.41) -26.79 (6.70) -0.41 (0.86) -59.74 (38.38) -25.51 (6.71) 0.74 (0.86)
€3 407.48 (15.07) 383.91 (19.41) -23.47 (6.71) -0.98 (1.45) -20.79 (41.69) -18.27 (6.74) 4.32 (1.48)
€4 896.20 (22.25) 888.97 (29.63) -25.28 (6.85) -5.32 (2.23) 19.05 (44.65) -13.75 (7.04) 6.14 (2.36)
One Jump
€1 254.70 (32.31) 97.88 (18.00) 219.71 (27.19) 249.51 (19.81) 167.85 (67.92) -27.29 (6.69) -1.42 (0.25)
€2 356.65 (32.73) 196.24 (19.36) 219.05 (26.04) 247.03 (18.80) 184.96 (67.27) -20.04 (6.68) 4.05 (0.84)
€3 654.63 (37.40) 507.79 (24.60) 222.84 (27.44) 249.36 (20.25) 213.83 (70.42) 1.88 (7.19) 24.29 (1.64)
€4 1151.80 (45.69) 1026.90 (36.71) 226.66 (27.63) 251.67 (21.35) 266.50 (73.94) 39.10 (8.15) 60.25 (3.10)
Two Jumps
€1 510.21 (53.31) 217.50 (22.70) 470.75 (47.16) 505.47 (38.33) 411.80 (97.74) -25.56 (6.75) -0.42 (0.26)
€2 611.27 (57.48) 317.64 (24.09) 471.07 (49.70) 506.63 (40.45) 424.19 (101.42) -20.62 (6.88) 5.74 (0.87)
€3 914.79 (60.52) 636.31 (30.92) 476.78 (49.28) 505.09 (40.70) 466.31 (103.95) 21.00 (7.38) 42.32 (1.79)
€4 1396.70 (67.41) 1155.20 (42.77) 474.58 (47.27) 504.16 (40.06) 506.18 (103.54) 93.30 (9.22) 117.05 (4.00)
Three Jumps

€1 765.95 (78.40) 346.13 (28.96) 719.80 (69.95) 750.18 (57.99) 670.56 (134.88) -23.75 (6.88) -1.96 (0.26)
€2 855.63 (76.82) 436.22 (29.67) 713.92 (66.84) 750.49 (58.47) 666.32 (127.53) -15.91 (6.74) 9.47 (0.88)
€3 1161.90 (81.72) 762.38 (37.14) 721.15 (68.21) 758.76 (58.42) 705.35 (134.87) 35.08 (7.65) 61.87 (1.96)

€4 1662.10 (95.44) 1299.40 (52.60) 722.50 (69.09) 758.79 (59.70) 746.30 (136.93) 135.71 (10.19) 162.66 (4.72)

4.2 Fractional stochastic volatility model

Empirical evidence suggests that the volatility process may exhibit long memory. Previous
models approximate this behavior, but a much more powerful class of models designed
to capture long memory is known by the literature, namely, fractional Brownian motion.
Instead of describing the solution and method of simulation of this class of models here,
we rather point the interested reader to Comte and Renault (1999)) and [Marinucci and
Robinson! (1999) for more details.

In our simulations, we use the fractional jump-diffusion model:

dX; = (@ — 0 /2)dt + 00 dW, s + cid N
o, = r(a — ofy)dt +vdWpy, (29)

where W, is a standard Brownian motion, dWpg is a fractional Brownian motion (FBM)
with Hurst parameter H € (0,1] and ¢;dN; is a compound Poisson process with random
jump size distributed as N ~ (0,07). We set the parameters to values p = 0.05, o = 0.2,
k = 20, v = 0.012 and oy = 0.025 as in |ATt-Sahalia and Mancini (2008)), although these
authors use a process without jumps.

We generate 10,000 independent sample pathﬂ of the process using the Euler scheme

3We have also computed the results for lower number of simulations, up to 1,000 generated independent
sample paths and we found that the results do not change at all. These results are available upon request
from authors.
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Table 3: Bias (variance in parenthesis) x10* of all estimators from 10,000 simulations of
fractional stochastic volatility model with Hurst parameter H = 0.7 with ¢; = 0, €2 =
0.0005, e3 = 0.001, ¢4 = 0.0015. RV — 5 min. realized variance estimator, BV — 5 min.
bipower variation estimator, TSRV — 5 min. two-scale realized volatility, JWTSRV — 5 min.
jump wavelet two-scale realized variance. TSRV* and JWTSRV* are minimum variance

estimators, and RK is Realized Kernel.

RV BV TSRV TSRV™* RK JWTSRV JWTSRV™*
No Jumps
€1 9.47 (10.57) -14.18 (13.44) -25.81 (6.87) -0.62 (0.24) -61.83 (39.91) -26.17 (6.86) -0.94 (0.23)
€2 106.09 (11.24) 78.59 (14.57) -22.93 (6.73) -0.29 (0.84) -49.16 (39.28) -21.66 (6.75) 0.86 (0.84)
€3 404.06 (14.44) 380.66 (18.75) -23.64 (6.79) -1.01 (1.45) -13.44 (43.10) -17.93 (6.88) 4.50 (1.48)
€4 899.67 (22.67) 895.53 (29.96) -21.95 (6.89) -1.66 (2.19) 32.94 (45.65) -9.40 (7.12) 10.72 (2.33)
One Jump
€1 260.24 (32.42) 99.77 (17.58) 226.07 (27.77) 252.00 (19.93) 175.24 (71.81) -24.61 (6.75) -0.66 (0.24)
€2 361.23 (33.51) 204.48 (19.56) 222.55 (26.96) 250.42 (19.87) 194.31 (70.22) -20.36 (6.68) 3.47 (0.85)
€3 658.78 (36.67) 507.47 (24.81) 229.15 (26.77) 253.33 (20.29) 221.70 (71.31) 1.16 (7.28) 21.96 (1.62)
€4 1140.50 (47.95) 1014.50 (37.09) 221.27 (28.05) 248.39 (22.10) 260.55 (74.86) 35.43 (8.07) 61.22 (3.19)
Two Jumps
€1 514.66 (55.01) 219.27 (23.17) 473.71 (48.22) 503.64 (39.76) 430.23 (100.78) -23.00 (6.69) -1.45 (0.24)
€2 615.38 (57.57) 318.85 (24.74) 481.64 (49.01) 508.26 (39.87) 453.16 (102.60) -14.61 (6.95) 5.80 (0.87)
€3 903.32 (59.69) 630.21 (30.51) 470.80 (47.55) 498.66 (39.14) 467.10 (102.37) 20.01 (7.23) 41.69 (1.78)
€4 1400.90 (66.50) 1164.00 (43.24) 467.00 (46.26) 505.48 (39.79) 500.94 (102.72) 86.73 (9.19) 115.27 (4.02)
Three Jumps

€1 765.72 (78.57) 340.76 (28.99) 720.49 (70.78) 754.51 (59.35) 676.34 (135.14) -28.45 (6.80) -1.85 (0.25)
€2 873.97 (79.58) 452.01 (30.08) 731.76 (70.61) 765.04 (59.59) 682.13 (134.89) -12.12 (6.85) 12.12 (0.88)
€3 1164.00 (82.53) 767.45 (36.59) 718.24 (67.72) 752.01 (58.67) 704.64 (132.81) 38.63 (7.86) 63.43 (1.96)

€4

1663.50 (91.73)

1299.90 (48.60)

731.80 (69.58)

758.67 (59.03)

756.10 (138.55)

141.26 (10.54)

161.96 (4.84)

at a time interval of 6 = 1s, each with 6.5 x 60 x 60 (= 23,400) steps, corresponding to 6.5
trading hours. The results are computed for sampling of 5 minutes (78 observations) for
RV, BV, TSRV, RK and JWTSRYV, as well as for the optimal sampling frequency found
by minimizing the total asymptotic variance for TSRV* and JWTSRV*. We again repeat
the simulation with different levels of noise as well as different numbers of jumps. We
assume that the market microstructure noise, €, comes from a Gaussian distribution with
different standard deviations: (E[e%])'/? = {0,0.0005,0.001,0.0015}, and we again start
without jumps, and continue with jump coefficients implying up to three jumps per day in
the process. Finally, we have 16 models with different levels of noise and numbers of jumps,
and we compare the bias of all the estimators for each simulated day on three processes
with different long memory parameters.

Increments of the volatility process with H € (0.5, 1] exhibit the desired long memory.
Thus we will study this model for a Hurst exponent equal to H = {0.5,0.7,0.9}. While
the first case has independent increments, the second and third cases exhibit quite strong
long memory processes in volatility.

Tables andsummarize the results for the different H = {0.5,0.7, 0.9}, respectively.
The results confirm exactly the same behavior for all the estimators as in the previous case
without long memory. Thus we can conclude that our JWTSRV estimator is robust to
jumps and noise on small samples even if we consider the volatility process with long
memory, and it proved to be the best estimator of IV, j, even on small samples. While we
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Table 4: Bias (variance in parenthesis) x10* of all estimators from 10,000 simulations of
fractional stochastic volatility model with Hurst parameter H = 0.9 with ¢; = 0, €2 =
0.0005, e3 = 0.001, ¢4 = 0.0015. RV — 5 min. realized variance estimator, BV — 5 min.
bipower variation estimator, TSRV — 5 min. two-scale realized volatility, JWTSRV — 5 min.
jump wavelet two-scale realized variance. TSRV* and JWTSRV* are minimum variance
estimators, and RK is Realized Kernel.

RV BV TSRV TSRV™* RK JWTSRV JWTSRV™*
No Jumps
€1 5.90 (10.50) -19.58 (13.51) -26.67 (6.78) -0.50 (0.25) -61.72 (40.10) -27.11 (6.78) -0.92 (0.25)
€ 110.47 (11.65) 84.15 (14.78) -22.39 (7.05) 0.18 (0.83) -47.77 (40.61) -21.14 (7.07) 1.33 (0.84)
€3 399.57 (15.33) 372.67 (19.88) -29.78 (6.77) -1.92 (1.45) -34.79 (42.18) -25.00 (6.83) 3.31 (1.47)
€4 882.50 (22.98) 879.81 (30.30) -28.32 (6.74) -0.72 (2.18) 14.36 (44.32) -17.21 (6.93) 10.63 (2.30)
One Jump

€1 269.61 (35.26) 100.30 (17.80) 233.23 (29.92) 258.49 (21.56) 184.42 (73.31) -25.58 (6.86) -2.19 (0.25)

€2 364.35 (34.40) 200.35 (19.23) 226.94 (28.28) 258.79 (21.54) 201.67 (71.72) -21.96 (6.82) 4.05 (0.85)

€3 648.93 (38.20) 498.06 (24.94) 218.29 (27.72) 249.82 (20.78) 214.87 (74.11) -5.09 (7.19) 23.16 (1.66)

€4 1143.10 (44.73) 1017.00 (35.55) 221.50 (27.14) 250.37 (21.52) 255.73 (71.84) 36.01 (8.13) 60.87 (3.15)
Two Jumps

€1 507.64 (54.73) 217.73 (23.69) 468.53 (48.86) 499.98 (37.75) 422.53 (106.44) -27.23 (7.05) -1.50 (0.25)
€2 618.08 (57.83) 323.80 (24.72) 475.53 (49.28) 505.72 (39.53) 446.02 (102.66) -13.93 (6.99) 6.57 (0.88)
€3 902.48 (63.40) 620.44 (30.54) 470.85 (50.44) 502.56 (40.29) 462.64 (106.41) 15.21 (7.49) 43.52 (1.81)
€4 1399.10 (70.64) 1156.50 (43.00) 470.35 (49.76) 498.97 (40.92) 504.29 (109.07) 87.73 (9.16) 114.08 (3.94)
Three Jumps
€1 767.20 (77.56) 337.59 (28.64) 721.80 (68.54) 755.62 (56.93) 674.80 (130.51) -25.42 (6.82) -2.66 (0.25)
€2 866.12 (78.84) 443.31 (30.34) 720.71 (69.21) 754.90 (58.38) 689.69 (134.96) -13.72 (6.83) 11.64 (0.91)
€3 1164.80 (83.67) 759.78 (36.66) 730.27 (69.86) 758.64 (59.37) 713.23 (135.13) 41.37 (7.85) 60.48 (1.93)

es  1661.80 (93.00)  1303.50 (50.63)  724.24 (69.10)  752.55 (59.56)  762.91 (145.29)  142.24 (10.54)  163.84 (4.82)

studied only the in-sample performance of the estimator, we present the out-of-sample, or
forecasting, performance in the next section.

4.3 One-day-ahead forecasts of IV using JWTSRV

One of the many potential useful applications of the proposed framework is volatility
forecasting. In particular, the one-day-ahead return variation forecast, var(pi+1|F:), is
of huge interest for practitioners. Thus we would like to study the forecasting ability of
the proposed methodology as well. While we showed that the in-sample performance of
the estimators is the same for different models and that the JWTSRV estimator tends
to consistently estimate I'V; j, regardless of the level of noise and number of jumps in the
process, we will reduce our simulation scheme to model in Eq. with a fixed level of
noise and number of jumps. This setting will allow us to study the impact of noise and
jumps on the forecasting performance of the estimators and to see if the JWTSRV holds
its power and is able to perform well in the forecasting.

In this exercise, we follow the framework of |Ait-Sahalia and Mancini| (2008)) closely.
While exact analytical forecast of return variation is infeasible, we can simply replace the
integrated variance by its estimates. As a forecasting vehicle, we choose the AR(1) process.
In empirical applications the true underlying volatility model parameters are unknown and
the properties of the observed data differ from the simulated ones. Hence, the estimation
is required to be realistic, and the AR(1) process serves well in this case as a simplest
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benchmark. We are aware of the fact that another more sophisticated models can be used
to obtain more precise results. Referring to early work in realized volatility (Andersen
et al, 2003), AR(1) is found to model the volatility process reasonably well and hence can
serve as a benchmark model.

We use the simulation scheme for model in Eq. from the previous section. This time,
we simulate 101 “continuous” sample paths over days [0,T1],. .., [T99, T100], [Th00,T101]s
that is, 101 x 23,400 log returns. We split each simulated path into two parts. The first
part, of 100 x 23,400, is used to estimate the time series of 100 daily integrated variations
using the tested estimators. Then, the AR(1) model is used to estimate the coefficients of
forecast. The last (101th) day, is saved for out-of-sample comparison purposes as the true
integrated variance of the day, which is compared with the AR(1) forecast of the integrated
variance for the m + 1th day. This procedure is repeated for each simulated sample path
of 101 x 23,400 log returns and all the estimators tested in the previous exercise.

We employ the traditional Mincer and Zarnowitz (1969) approach to assess the forecast-
ing performance of the individual estimators and we compare alternative variance forecasts
by projecting the true integrated variance on day m+1, fTTT:‘“ o2dt, on a constant and var-
ious estimator forecasts. For example, we evaluate the JWTSRV forecasting performance
by running the following regression:

IVg, 41 = a+ BVVTSEY 4 ¢ (30)

Tt 11T

JWTSRV
where VTmme

m + 1 using the AR(1) prediction, and € an 4d term. Thus, Eq. regresses the true
realized variance IV, ., from day m + 1 on a constant and the variance forecast using
the JWTSRV estimator. If the JWTSRV estimator performs well, the forecast should be
unbiased and the forecast error is small. In other words, & = 0 and § = 1, and the R?
of the regression is close to 1. Thus we will test the null hypothesis of Hy : o = 0 and
Hy : 6 =1 against the alternatives Hq : a«# 0 and Hy : 8 # 1.

In our simulations, we study a Mincer-Zarnowitz style regression combining several
estimators:

{IVTm+1 }j = ath {an‘:lle }j + A {an‘ilu‘m }j +hs {Vgnsﬁl‘;m }j

15, {VRK }j + By {VJWTSRV}j +e (31)

Tt 1T Trt1|Tm,

is the one-day-ahead forecast of integrated variance from day m to day

for j = 1,...,10,000 simulated sample paths. V%\T:H‘Tm
integrated variance from day m to day m + 1 given by the AR(1) model for the time
series of daily variance estimated by the M estimator of realized variance. Eq. can
be naturally interpreted as a variance forecast encompassing regression, as a coeflicient
significantly different from zero implies that the information in that particular forecast is

not included in the forecasts of other models. To test the robustness of the results, we also

is the one-day-ahead forecast of
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Table 5: Out-of-sample Mincer-Zarnowitz regressions (Eq. on model with no jumps.
Results significant at 95% are in bold; OLS standard errors in parenthesis.

Joint Mincer-Zarnowitz regression

const. RV BV TSRV RK JWTSRV R?
-0.055 (0.003)  1.568 (0.099) -0.440 (0.103) 0.895
0.009 (0.003)  0.072 (0.093) -0.172 (0.078) 1.070 (0.039) 0.941
0.009 (0.003)  0.082 (0.090) -0.108 (0.077)  1.184 (0.0407)  -0.199 (0.027) 0.944
0.009 (0.003)  0.082 (0.090) -0.109 (0.077) 1.054 (0.293)  -0.199 (0.027)  0.131 (0.294)  0.944

Individual Mincer-Zarnowitz regression

const. RV BV TSRV RK JWTSRV R?
RV -0.059 (0.003)  1.145 (0.013) 0.893
BV -0.063 (0.003) 1.167 (0.014) 0.869
TSRV -0.002 (0.002) 0.995 (0.008) 0.940
RK -0.002 (0.003) 1.017 (0.016) 0.807
JWTSRV 0.001 (0.002) 0.997 (0.008)  0.939

Mincer-Zarnowitz regression for minimum variance TSRV estimators

const. TSRV* JWTSRV* R?
TSRV* -.002 (0.001) 0.993 (0.006) 0.959
JWTSRV* 0.001 (0.001) 0.996 (0.006)  0.959

run individual regressions where we consider only a constant and a single forecasting model.
Thus we run four separate regressions to supplement the joint regression from Eq.(31]).

4.3.1 Forecasting without jumps

We run the simulations for two model settings using model in Eq. with one jump and
with no jumps. Let us start with the model without jumps first. The OLS estimates of all
the forecast evaluation regressions for the model without jumps are reported in Table
The results suggests that the TSRV performs as the best forecasting vehicle. Comparing
the individual regressions, the TSRV has the highest R? and the coefficient closest to 1
with an insignificant coefficient, which suggests that the forecasts of the TSRV are biased
only very slightly (as the coefficient is significantly different from 1). When looking at
the joint regressions, we can see that the addition of all the other estimators does not
improve this result. Moreover, when the TSRV is included in the regression, it is the only
significant estimator, meaning that none of the other estimators has additional information
not included in the TSRV forecast. In other words, adding the other estimators’ forecasts to
the TSRV brings no additional explanatory power to the regression. The JWTSRYV forecast
has the same performance as the simple TSRV, as there are no jumps in the simulated
process, thus the asymptotic behavior of these two estimators should be the same. The
JWTSRY is expected to have much better performance in the simulations where we include
jumps. All the estimators are estimated with a 5-minute sampling frequency.

In addition, we provide results for the optimal sampling minimizing variance of the
estimator in the last part of the table. The TSRV* with optimally chosen sampling out-
performs the 5 min. TSRV. The JWTSRV* again has the same performance as expected.
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Table 6: Out-of-sample Mincer-Zarnowitz regressions (Eq. on model with 1 jump.
Results significant at 95% are in bold; OLS standard errors in parenthesis.

Joint Mincer-Zarnowitz regression

const. RV BV TSRV RK JWTSRV R?
-0.032 (0.006)  -0.500 (0.045)  1.538 (0.037) 0.811
0.032 (0.010)  -1.857 (0.185)  1.512 (0.036)  1.251 (0.166) 0.822
0.032 (0.010) -1.873 (0.186)  1.514 (0.036)  1.182 (0.183) 0.088 (0.098) 0.822
0.000 (0.006) 0.129 (0.122)  -0.045 (0.043)  -0.042 (0.113)  -0.204 (0.059)  1.078 (0.026)  0.936

Individual Mincer-Zarnowitz regression

const. RV BV TSRV RK JWTSRV R2
RV -0.100 (0.009) 1.123 (0.037) 0.480
BV -0.079 (0.005) 1.181 (0.019) 0.788
TSRV -0.050 (0.007) 1.028 (0.032) 0.500
RK -0.051 (0.008) 1.041 (0.035) 0.476
JWTSRV -0.003 (0.002) 1.024 (0.009)  0.935

Mincer-Zarnowitz regression for minimum variance TSRV estimators

const. TSRV* JWTSRV* R?
TSRV* -0.049 (0.007) 1.021 (0.032) 0.506
JWTSRV* -0.003 (0.002) 1.014 (0.007)  0.957

4.3.2 Forecasting with jumps

Let’s see how the results change when we add a single jump to the simulated model.
The OLS estimates of all the forecast evaluation regressions for the model with jumps are
reported in Table [l Looking at the results of the individual regressions, one can see that
the JWTSRV largely outperforms all the other estimators, with R? close to the results
from the model without jumps from the previous section. This suggests that the JWTSRV
is robust to jumps even when we consider forecasting. The joint regression confirms this
result. The regression including all the forecasts using the four considered estimators has
the largest explanatory power. Moreover, the coefficient of the JWTSRV is significant,
while the other coefficients are not significant, suggesting that the other estimators carry
no additional information. Taking the JWTSRV forecasts away from the regression results
in much lower R2. It is interesting to note that in this case all the other coefficients are
significant, suggesting multicollinearity caused by jumps in the process. The reader can
also note how the addition of the BV improves the result. In fact, the BV rules the TSRV,
with much higher R?. In fact, the BV is used for jump detection, so this finding confirms
the results from the literature.

In addition, we include results for optimal sampling, which minimizes the variance of
the TSRV-based estimators. In this case, we can see that the result improves and the
JWTSRV* yields the best result.

To conclude this section, the results suggest that when the JWTSRV estimator is used
for variance forecasting in the presence of jumps and noise, the forecasts will be unbiased.
This makes the JWTSRV estimator a very powerful tool for forecasting the variance of
stock market returns. With the theoretical results in hand, we can move to empirical
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examples and use the JWTSRV to forecast the volatility of real-world data.

5 Decomposition of empirical volatility

In this section, we turn our focus to real-world data estimation of the proposed theory. We
will test several integrated volatility estimators in comparison to our JWTSRV estimator
and study their distributional properties. The JWTSRV proved to have lowest bias in the
Monte Carlo simulations, thus we also expect it to have the best performance on the real
data set.

5.1 Data description

Foreign exchange future contracts are traded on the Chicago Mercantile Exchange (CME)
on a 24-hour basis. As these markets are among the most liquid, they are suitable for
analysis of high-frequency data. We will estimate the realized volatility of British pound
(GBP), Swiss franc (CHF) and euro (EUR) futures. All contracts are quoted in the unit
value of the foreign currency in US dollars. It is advantageous to use currency futures data
for the analysis instead of spot currency prices, as they embed interest rate differentials and
do not suffer from additional microstructure noise coming from over-the-counter trading.
The cleaned data are available from Tick Data, Inc[]

It is very important to look first at the changes in the trading system before we proceed
with the estimation on the data. In August 2003, for example, the CME launched the
Globex trading platform, and for the first time ever in a single month, the trading volume
on the electronic trading platform exceeded 1 million contracts every day. On Monday,
December 18, 2006, the CME Globex(R) electronic trading platform started offering nearly
continuous trading. More precisely, the trading cycle became 23 hours a day (from 5:00
pm on the previous day until 4:00 pm on current day, with a one-hour break in continuous
trading), from 5:00 pm on Sunday until 4:00 pm on Friday. These changes certainly had
a dramatic impact on trading activity and the amount of information available, resulting
in difficulties in comparing the estimators on the pre-2003 data, the 2003-2006 data and
the post—2006 data. For this reason, we restrict our analysis to a sample period extending
from January 5, 2007 through November 17, 2010, which contains the most recent financial
crisis. The futures contracts we use are automatically rolled over to provide continuous
price records, so we do not have to deal with different maturities.

The tick-by-tick transactions are recorded in Chicago Time, referred to as Central
Standard Time (CST). Therefore, in a given day, trading activity starts at 5:00 pm CST
in Asia, continues in Europe followed by North America, and finally closes at 4:00 pm in
Australia. To exclude potential jumps due to the one-hour gap in trading, we redefine the
day in accordance with the electronic trading system. Moreover, we eliminate transactions

‘http://www.tickdata.com/
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Table 7: The table summarizes the daily log-return distributions of GBP, CHF and EUR
futures. The sample period extends from January 5, 2007 through November 17, 2010,
accounting for a total of 944 observations.

Mean  St.dev. Skew. Kurt.

GBP 0.0001 0.0119 -0.3852  4.4356
CHF 0.0002  0.0068 0.2440  5.4662
EUR 0.0002  0.0099 0.1536  4.4951

executed on Saturdays and Sundays, US federal holidays, December 24 to 26, and December
31 to January 2, because of the low activity on these days, which could lead to estimation
bias. Finally, we are left with 944 days in the sample. Looking more deeply at higher
frequencies, we find a large amount of multiple transactions happening exactly at the same
time stamp. We use the arithmetic average for all observations with the same time stamp.

5.2 Statistical properties of unconditional return and integrated volatil-
ity

Having prepared the data, we can estimate the integrated volatilities and study their
statistical properties as well as the properties of the daily unconditional returns. For each
futures contract, the daily integrated volatility is estimated using the square root of realized
variance estimator, the bipower variation estimator, the two-scale realized volatility, the
realized kernel and the jump wavelet two-scale realized variance defined by Eq.. All the
estimators are adjusted for small sample bias. For convenience, we refer to the estimators
in the description of the results as RV, BV, TSRV, RK and JWTSRV, respectively. The
RV and BV estimates are estimated on 5-min log-returns. The TSRV and the JWTSRV
are estimated using a slow time scale of 5 minutes.

Table [7] presents the summary statistics for the daily log-returns of GBP, CHF and
EUR futures over the sample period, ¢t = 1,...,944, i.e., January 5, 2007 to November
17, 2010. The summary statistics display an average return very close to zero, skewness,

and excess kurtosis which is consistent with the large empirical literature started probably
by Fama| (1965) and Mandelbrot| (1963). As observed by Andersen et al. (2001), when
the log-returns are standardized by the integrated volatility, r;/I V;l/ 2, the unconditional
returns are very close to a Gaussian distribution.

Table 8| summarizes the unconditional distribution of the daily log-returns standardized
by the integrated volatility, r;/I th/ 2, and confirms this result. However, quite significant
differences can be found among the estimators. While the high kurtosis (above 4) for the
raw returns is reduced to the range of 2.51-2.81 for the log-returns standardized using the
integrated volatility estimator, there is a notable difference between the estimators. The
RV is expected to perform the worst, as it should be biased by microstructure noise and
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Table 8: The table summarizes the daily standardized daily log-return distributions for
GBP, CHF and EUR futures using r;/I th/ % and daily distributions of integrated volatility
1 th/ 2, Integrated volatility I V;l/ ? is estimated using the RV, the BV on 5-min. log-returns,
and the TSRV and JWTSRYV on 5 minutes for a slow time scale and the RK. The sample
period extends from January 5, 2007 through November 17, 2010, accounting for a total of
944 observations.

RV

BV
TSRV
RK
JWTSRV

RV

BV
TSRV
RK
JWTSRV

RV

BV
TSRV
RK
JWTSRV

Distributions of rt/IV;l/Q

GBP futures
Mean  St.dev. Skew. Kurt.
0.0419 0.8834 -0.0880 2.6029 RV
0.0448  0.9266 -0.0669 2.6941 BV
0.0451 0.9026 -0.0710 2.5744 TSRV
0.0458 0.9406 -0.0757 2.5162 RK
0.0489  0.9035 -0.0710 2.7512 JWTSRV
CHF futures
0.0238  0.8959 0.0380 2.6272 RV
0.0272 0.9424 0.0727 2.7020 BV
0.0278  0.9180 0.0568 2.6161 TSRV
0.0281 0.9530 0.0425 25371 RK
0.0389  0.9253 0.0611 2.7170 JWTSRV
EUR futures
0.0379  0.9550 -0.0215 2.5728 RV
0.0410 0.9970 -0.0271 2.6219 BV
0.0397 0.9638 -0.0133 2.5502 TSRV
0.0415 0.9898 -0.0069 2.4497 RK
0.0452 0.9587 0.0014 2.8144 JWTSRV

Distributions of IV,

1/2

GBP futures

Mean  St.dev. Skew. Kurt.
0.0075 0.0038 1.8394  7.5736
0.0073 0.0037 1.7336  6.7996
0.0073 0.0037 1.7611 7.0767
0.0070 0.0037  1.8201 7.6473
0.0071 0.0037 1.7629 7.0112

CHF futures
0.0076 0.0029 1.6875 8.2794
0.0073 0.0028 1.5696  7.5983
0.0073 0.0028 1.5572  7.3379
0.0070 0.0028 1.8179  9.9149
0.0070 0.0026 1.4359  6.5452
EUR futures
0.0068 0.0031 1.4785 5.8493
0.0066 0.0031 1.5001 5.9803
0.0068 0.0031 1.4263 5.4871
0.0065 0.0031 1.5351 6.2713
0.0064  0.0030 1.4345 5.4716
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Figure 1: QQ plots of normalized daily log-returns r; by RV, BV, TSRV, RK and JWTSRV
estimators. (a) GBP futures, (b) CHF futures and (c) EUR futures
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(a) GBP futures (b) CHF futures (c) EUR futures
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Figure 2: Daily returns, estimated jump variation and IV; estimated by JWTSRV for (a)
GBP, (b) CHF and (c¢) EUR futures.

jumps, which is confirmed. The TSRV as well as the RK are not biased by noise, but it still
contains a jump component of integrated variance. The BV should consistently estimate
the jump components; the statistical distribution of r,/1 V;l/ 2, where IV, is estimated by
the BV, should be closer to Gaussian. Finally, we expect JWTSRV estimator to perform
the best, as it proved to be robust to noise and jumps in the Monte Carlo simulations.
We also borrow the QQ plots plotted in Figure [I] for help. Similarly as [Fleming and Paye
(2011) and Andersen et al.|(2011), we ask whether the jumps account for the non-normality
of the unconditional log-returns standardized by the integrated volatility estimators found
in the literature. We add the TSRV, RK and JWTSRV estimators for comparison. Figure
shows that returns standardized by integrated volatility using the JWTSRV provide the
best approximation of the standard normal distribution. This result is in line with what
we expected, as the JWTSRV proved to be robust to noise and jumps in our large Monte
Carlo study. The result from the BV leaves us puzzled. While it is expected to be robust
to jumps, it should be able to perform better. The returns standardized by the BV have
higher kurtosis than those standardized by the RV, TSRV or RK, thus the BV outperforms
these estimators to some extent. However, the JWTSRV confirms the theory presented in
the previous sections. Moving from the distributional properties of the standardized daily

/2

log-returns, Table also shows the distributional properties of the I V;l estimators. Again,
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the JWTSRV provides lower estimates of I th/ ? and is also less volatile than the RV. This
finding is consistent with the fact that the RV can be affected by microstructure noise,
and, as demonstrated in the Monte Carlo simulations, the JWTSRYV is able to estimate
the true integrated variance with the lowest bias in the presence of noise and jumps in the
data. It is surprising, though, that the average estimate of I th/ 2 using the JWTSRV is
6.34% lower than the average estimate from the RV (computed as arithmetic averages on
the estimators on GBP futures, CHF futures and EUR futures) with kurtosis 12.32% lower

than the RV. The average estimate of I th/ 2 using the JWTSRYV is 3.76% lower than the
average estimate using GBP, with kurtosis 6.34% lower. The average estimate of I th/ 2
using the JWTSRYV is 4.52% lower than the average estimate using the TSRV, with kurtosis
4.39% lower. Finally, the average estimate of 1 th/ 2 using the JWTSRYV is the same as the
average estimate using the RK with kurtosis 25.39% lower. It is thus interesting that while
the TSRV accounts for noise but not jumps and the BV accounts for jumps but is not
able to deal with noise, they have same deviations from the JWTSRV, which seems to
estimate the integrated volatility without jumps and noise. Most interesting is that the
average estimate of the RK is exactly the same as the average estimate of the JWTSRV.
However, the RK estimates has much higher kurtosis. This result shows that the RK is
powerful estimator of the realized variance. Finally let us note that these differences are
economically significant, as they result in different asset pricing.

5.3 [V, decomposition using wavelets

From the numerical analysis, we could see that the JWTSRV provides a feasible estimator
of integrated variance. Another advantage is that by using our estimator, we are able to
decompose the integrated variance into several investment horizons, or components. In our
analysis, we limit ourselvesﬂ to decomposition into four scales corresponding to investment
horizons of 10 minutes, 20 minutes, 40 minutes and 80 minutes, and the rest up to 1
day. As shown in the theoretical part of this work, we can comfortably decompose the
integrated variance into these components, as their sum will always give the integrated
variance estimator.

—(JWTSRV
More precisely, the components of the RV;}t’h ) from Eq. correspond to
various investment horizons. Thus, we will refer to these as JWT SRV}, where j =1,...,5

are components corresponding to 10 minutes, 20 minutes, 40 minutes, 80 minutes and the
rest up to 1 day investment horizon. The decomposition of volatility into the so-called
continuous and jump part is depicted by Figure |2 which provide the returns, estimated
jumps and finally integrated variances using JWTSRV estimator for all three futures pairs.
Figure [4] shows the further decomposition into several investment horizons. For better
illustration, we annualize the square root of the integrated variance in order to get the
annualized volatility and we compute the components of the volatility on several investment

5Tt should be noted that any investment horizons of interest may be chosen arbitrarily.
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Figure 3: Contributions of components of integrated volatility IV, corresponding to in-
vestment horizons of 10 minutes (“x” in black), 20 minutes (“x” in black), 40 minutes
(“4” in grey), 80 minutes (“x” light in grey) and up to 1 day (“«” in light grey). (a) GBP
futures, (b) CHF futures and (c) EUR futures.

horizons. Figure [d] (a) to (e) show the investment horizons of 10 minutes, 20 minutes, 40
minutes, 80 minutes and up to 1 day, respectively. It is very interesting that most of the
volatility (around 50%) comes from the fast, 10-minute investment horizon which is a new
insight. In fact, it is a logical finding, as it shows that volatility is created on fast scales
of up to 10 minutes rather than on slower scales. The longer the horizon, the lower the
contribution of the variance to the total variation. We compute the weighted contributions
of various investment horizon volatilities to the total to see its dynamics in time. More
precisely, we compute the contributions of each scale to total variation as:

—(JWTSRV) ,——(JWTSRV)
RV ;4 /RV, , (32)
for each j = 1,...,5. The results are shown in Figure [3| for all investment horizons. Ratio

in Eq. is intuitive. If it equals zero, the investment horizon j has zero contribution to
the overall variance. If it equals one, the corresponding investment horizon j explains all
of the total variance. From Figure [3] we can see that the ratios are the same through all
the currencies tested. They change quite considerably over the sample period. While the
contribution of the first investment horizon, j = 1, corresponding to 10 minutes investment
horizon, to the total IV; is around 51.5%, it is also the one with the largest dispersion.
Over time, it changes from 40% to 60%. The second investment horizon (20 minutes),
corresponding to 7 = 2, accounts for approximately 25% of the variance, followed by the
third and fourth horizons (40 and 80 minutes, corresponding to 7 = 3 and j = 4), which
account for only 12% and 6% approximately. The remaining 5%—6% are in the last j = 5.
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GBP decomposed volatility CHF decomposed volatility EUR decomposed volatility

Figure 4: Decomposed annualized volatility estimates on GBP, CHF and EUR futures
at several investment horizons. (a) volatility on investment horizon of 10 minutes, (b)
volatility on investment horizon of 20 minutes, (c) volatility on investment horizon of 40
minutes, (d) volatility on investment horizon of 80 minutes, (e) volatility on investment

horizon of 1 day. Note that sum of components (a) to (e) give total volatility I th/ 2,
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6 Conclusion

In this paper, we present the wavelet-based methodology for estimation of realized variance
allowing its measurement in the time-frequency domain. To support our estimator, a
numerical study of the finite sample performance of the estimator is carried out. In this
study, we compare our estimator to several of the most popular estimators, namely, realized
variance, bipower variation, two-scale realized volatility and realized kernels. The wavelet-
based estimator proves to have lowest bias of all the estimators in the jump-diffusion model
with stochastic volatility as well as the fractional stochastic volatility model simulated with
different levels of noise and numbers of jumps. While all the other estimators suffer from
substantial bias caused either by jumps or by noise, our theory proves to hold its properties
under both noise and jumps. As predictability of volatility is of interest to researchers as
well as practitioners, a numerical study of the behavior of the forecasts is also carried
out. Again, our theory proves to be the most powerful in forecasting volatility under the
different simulation settings.

In addition, we use the estimator to decompose the empirical volatility and study its
behavior at several different investment horizons. By studying the statistical properties of
unconditional daily log-return distributions standardized by volatility estimated using the
different estimators we find that standardization by our wavelet-based estimator brings the
returns close to the Gaussian normal distribution. All the other estimators are affected by
the presence of jumps in the data. The differences are large, as we find that the average
volatility estimated using our wavelet-based estimator is 6.34% lower than the volatility
estimated with the standard estimators.

Concluding the empirical findings, we show that our wavelet-based estimator brings
a significant improvement to volatility estimation while it offers a time-frequency way of
realized volatility measurement which helps us to better understand the dynamics of stock
market behavior. Specifically, our theory uncovers that most of the volatility is created on
higher frequencies.

A  Wavelets introduction

This appendix briefly introduces the continuous wavelet transform (CWT) and maximal
overlap discrete wavelet transformation (MODWT) needed for understanding of the pro-
posed estimators in this paper.

Firstly, we outline the theoretical framework of continuous wavelet transform (CWT).

Definition 1 Continuous wavelet transform (Daubechies, |1988)
If ¢ € L*(R) satisfies the admissibility condition
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Cy ::/ —

R |

1&(5)) ds < o0, (33)
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where ™ denotes the Fourier transform, then v is called a basic wavelet. Relative to every
basic wavelet 1, the continuous (integral) transform on L?*(R) is defined by

WD) k) = Win ) =1 517 [ w(S;’“)ﬂs)ds fEP®),  (34)

where (.,.) defines the L?-inner product and j, k € R with j # 0.

Next we introduce the Calderén reconstruction formula (Chui, |1992]).

Proposition 1 Calderon reconstruction formula
Let ) € L*(R) be a basic wavelet which defines a continuous wavelet transform (W f) (4, k).
Then for any f € L*(R) and s € R at which f is continuous,

1 ‘ 1 ‘
£6) =g [ [ OWal) G k() ks (35)
Cy Jr Jr j
Furthermore, let 1 satisfy the extra conditions
o[ La s Las= e 36
| ] sas= [ o] Sas = e (36)
Then
2

too . .
s =& [ L L oven Gt ak| 55 (37)
for any f € L2(R) and s € R at which f is continuous.

For the proof, see |Chui| (1992).

Here we introduce the admissibility condition ensures that the Fourier transform of
the wavelet ¢(s) has sufficient decay as s — 0 (Daubechies| 1988)). The finiteness of Cy

is guaranteed if ¢)(0) = 0, which is equivalent to zero mean of the wavelet 1(.) (Mallat,
1998),

d(0) = / " G(s)ds = 0. (38)

Further, we impose the unit energy condition on the wavelet 1(.)
oo
| wiopas =1 (39)
— 0o

Conditions and [39| ensure that the wavelet has some non-zero terms, but all excur-
sions away from zero must cancel out. Detailed discussion about the wavelets and wavelet
transform can be found in Daubechies| (1988), Daubechies| (1992) and |Gencay et al.| (2002]).
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A.1 The maximal overlap discrete wavelet transform

The maximal overlap discrete wavelet transformation (MODWT) is a special type discrete
wavelet transform that is not sensitive to the choice of starting point of the examined
time series, i.e. it is translation-invariant transform. Unlike the discrete wavelet transform
(Mallat), [1998) (DWT), the MODWT does not use a downsampling procedure, therefore,
the wavelet and scaling coefficient vectors at all scales have equal length (Percival and
Walden, 2000; |Gencay et al., [2002). As a consequence, the sample size of the examined
process is not restricted to the powers of two, which makes the transform very useful for
empirical data analysis.

The MODWT wavelet and scaling coefficients can be conveniently used for an analysis of
variance of stochastic processes in the time-frequency domain. |Percival (1995) clearly shows
the advantages of the MODWTT estimator of variance over the DWT estimator. Moreover,
Serroukh et al.| (2000) analyze the statistical properties of the MODWT variance estimator
for non-stationary and non-Gaussian processes. For more details about the MODW'T see
Mallat| (1998]), Percival and Walden| (2000) and |Gengay et al.| (2002)).

A.1.1 Definition of MODWT filters

We begin our description of the MODW'T with introduction of wavelet filters. In a wavelet
transform we use two types of filters; the scaling filter which is a low-pass filter and the
wavelet filter that is a high-pass filter. The MODWT scaling and wavelet filters denoted
as g; and hy, have length L, [ = 0,1,...,L — 1. In our analysis we use the Daubechies
D(4) wavelet filter with the filter length L = 4 (Daubechies, [1992)). There are three basic
properties that both the MODWT filters must fulfill. Let us show these properties for the
MODWT wavelet filter:

L—1 L—1 00
> =0, Y hi=1/2, Y Mhioy =0, N€Zy, (40)
=0 =0

l=—00

then specifically for the MODWT scaling filter:

L—-1 L—-1 [e'S)
Sa=1, > g =1/2, > ggian=0, NeZy. (41)
A.1.2 Pyramid algorithm

With appropriate wavelet and filters we can proceed to compute the wavelet and scaling
coefficients. We obtain the MODW'T wavelet and scaling coefficients using the pyramid
algorithm (Mallat) |1998; |Percival and Walden, 2000). The first scale wavelet coefficients
(j = 1) are computed via filtering the process z; for t = 1,..., N with the MODWT
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wavelet and scaling filters:

-1 -1
Wiy = § hzk—imoan, Vi = E T k—lmodN - (42)
=0 1=0

In the second stage of the pyramid algorithm, we replace z; with the scaling coefficients
Vi, and after the filtering we obtain wavelet coefficients at the second scale j = 2 as:

L-1 L-1
Wy = Z MV k—tmodNs  Vor = Z GV k—lmodN - (43)
=0 =0

We can proceed similar way to get The j-th level MODWT coefficients are in the form:

-1 -1
Wik = Z Vi1 k—tmoan,  Vjr = Zglvjfl,kflmode Jg=12,...,J" (44)
=0 =0

where J™ < loga(N) is the maximum level of decomposition. Vector of MODWT coeffi-
cients wavelet W represents the frequency band f € [1/4,1/2], Wa: f € [1/8,1/4] and
Vy: f €[0,1/8]. The j-th level wavelet coefficients in the vector W represents frequency
bands f € [1/29711/27] whereas the j-th level scaling coefficients in the vector V; repre-
sents f € [0,1/27F1]. For our estimator we use the MODWT wavelet coefficients that are
unaffected by the boundary conditions.

Finally, we define a vector W consisting of J" 4 1 subvectors of dimensions N, where
the first J™ subvectors are the MODW'T wavelet coefficients at levels j = 1, ..., N and the
last subvector is the MODWTT scaling coefficients at a level J™:

W =W, Wy, ...,Wjm, Vym]. (45)
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