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Abstract 

 

This paper links Hotelling's theory, in recent literature applied to an emission constrained environ‐

ment, with the classical capacity planning framework to describe portfolio time‐paths in electricity 

production. Emission targets are considered by a ceiling on the stock of pollution. We propose condi‐

tions for an efficient production portfolio as a subset of available technologies. We then derive po‐

tential production portfolio time‐paths for a renewable, a fossil and a carbon capturing technology 

that differ according to their fixed and variable costs, their efficiency and their polluting characteris‐

tics. We conclude that the share of the fossil technology will continuously decrease, the scarce re‐

source will be fully exploited. On each constrained path, the stock of pollution will remain at the cei‐

ling for a non‐zero time period. Emission targets push down scarcity rents, an option for carbon cap‐

turing would decrease societal costs and uphold scarcity rents. 
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1 Introduction

While the need for a global reduction of greenhouse gas emissions is widely accepted, the actual

implementation process within individual countries recently stagnated. One reason lies in the high

sensitivity of national economies towards energy prices. And since the energy supply strongly relies

on the combustion of fossil fuels, lower emissions mostly mean also higher energy costs. There is

also consensus that there is no alternative to eventually shift from scarce fuels towards a sustainable

energy supply in the (very) long run. But the point of time and the way raises controversy.

Before global warming has become a centerpiece of political decision making, the main challenge

in the energy markets were the limited reserves of coal, gas and oil. Hotelling (1931) �rst described

the existence of a rent leading to price increases of resources to account for their scarcity. This

holds true for both monopolistic structures and under free competition, (Weinstein and Zeckhauser,

1975; Stiglitz, 1976).

Recently, Hotelling's work has undergone a renaissance now considering targets for reduction

of greenhouse gas emissions, (Tahvonen, 1997; Chakravorty et al., 2006; Smulders and van der

Werf, 2008; Chakravorty et al., 2008; La�orgue et al., 2008). To account for CO2-reduction e�orts

(e.g., aiming for 550 ppm as discussed by Stern (2007)), Chakravorty et al. (2006) introduce

a carbon ceiling which limits the absolute amount of CO2 in the atmosphere. They show the

optimal extraction paths for energy production with coal, solar and a potential CO2-abatement

under di�erent demand trends. They conclude that in all cases the stock of CO2 is build up using

solely coal. At the ceiling the natural dilution and anthropogenic CO2-emissions are balanced and

multiple mixes are possible. The fossil fuel is then used until exploitation.

Chakravorty et al. (2008) also illustrate the extraction paths of coal and gas competing with a

renewable technology. Neglecting any unit cost, the di�erent polluting characteristics and scarcities

of both fossil fuels are the only di�erentiator to satisfy a constant, price-elastic demand. In

traditional Hotelling models where multiple scarce resources are competing, the rule �least cost

�rst� applies (cf. Her�ndahl (1967)). Chakravorty et al. (2008) show that this principle of using the

"better" resource �rst may be reversed. Due to a natural dilution rate proportional to the absolute

amount of CO2 in the atmosphere, the "bad", more polluting resource may be used �rst if gas is

not abundant. Additionally, a switching from dirty coal to clean gas and back to coal is possible.

This e�ect had not been observed in earlier Hotelling literature. Smulders and van der Werf (2008)

show that if the assumption of perfect substitution is released not only carbon content, but also

productivity determines an e�cient energy mix. All models mentioned above assess energy use

from a general primary energy perspective. Though, the characteristics of di�erent energy using

sectors di�er heavily.

Electricity production, followed by transportation is the largest consumer of fossil fuels and

consequently emitter of greenhouse gases. Comparing both sectors shows that the e�ect of rising

energy prices and reduction e�orts has been quite di�erent. E�ciency increases in Transportation

have been a result of mainly cost pressure through high energy prices where relative emission

reductions come as a side e�ect. But oil has stayed the primary energy source until today. In

contrast, tight emission targets have led to a shift in the mix of electricity production in certain

countries. E.g., in Germany, emission targets have led to a share of renewables in the electricity

production of almost 20% and this share is still increasing, (AG Energiebilanzen e.V., 2012). But
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this development was triggered by guaranteed feed-in tari�s, not by a functioning emission market.

An extension of existent Hotelling models to electricity production should contribute to a better

understanding how to implement appropriate policies.

Given the non-storability of electricity, power generation portfolios typically include a diver-

si�ed mix of assets with varying shares of �xed and variable cost components (e.g. coal and gas

power plants).1 To account for this fact, we assess the development of an e�cient electricity pro-

duction portfolio in the context of a scarce polluting and a renewable technology considering both

variable and �xed costs as well as di�erences in productivities. To accommodate these speci�cs,

the present paper applies the classical deterministic capacity planning or peak load pricing problem

within a Hotelling framework. It thereby links existing peak load pricing theories (as described in

e.g., Steiner (1957), Hirshleifer (1958), Boiteux (1960), Crew and Kleindorfer (1979), Chao (1983)

and Weber (2005)), with literature using dynamic optimization to describe optimal extractions

paths for a scarce resource in an emission constrained environment. At given �xed and variable

costs, we derive the conditions that make a technology being part of the e�cient portfolio.

This allows us to forecast the development of an electricity production portfolio depending on

the size of the initial fossil stock and (possibly) an emission target. As expected, the energy mix

tends towards the clean technology over time, though the resource is fully exploited at in�nity. In

contrast to Chakravorty et al. (2006), a carbon capturing technology may complement the portfolio

already in a phase where the carbon stock is still increasing. Its share would then decrease as soon

as the carbon stock has reached the maximum level. In each carbon emission constrained path a

time period of non-zero length exists where the energy mix between the fossil and the renewable is

stable. We further con�rm intuition in the way that resource owners are likely to oppose emission

targets from an pure economic perspective (where possible damage through global warming is

neglected).

The remainder of this paper is structured as follows: First, we de�ne the characteristics to

describe the problem using peak load pricing. Then, we specify the optimization problem using

optimal control theory in a very speci�c case. We then detail the conditions to be ful�lled for a

technology to be part of the e�cient portfolio and extend the problem to a more general case. In

section 4, we apply the model to a case with a clean and a polluting technology and assess the

impact of a possibility of carbon abatement. We show the development of the e�cient portfolio

over time depending on di�erent initial resource stocks and the impact on scarcity rents. In section

5 we draw conclusions. Longer proofs and details of extraction paths are given in the Appendix.

2 De�nitions

2.1 Demand

In classical peak load pricing models, demand is de�ned over a planning period (i.e. one year)

which is divided into sections of equal length (i.e. one hour) and described by a load duration

curve (ldc) as comprehensively explained in Sunderkötter and Weber (2012) and Ste�en and Weber

(2012). Figure 1 brie�y explains the obtention of the ldc D : [0;S] 7→ R+, s → D(s): On the left

1Sunderkötter and Weber (2012) assess the e�ect of diversi�cation on optimality conditions for e�cient genera-
tion portfolios.
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side, the development of the demand Do(a) in the course of multiple consecutive days (a planning

period of S)2 is shown, on the right side the demand is rearranged in decreasing order of magnitude

which forms the load duration curve. Then, D(s) describes which share of total operation time

s per planning period, a load equal or higher than D(s) is requested.3 Consider D(s) to be

continuously di�erentiable and strictly decreasing from D(0) = Dmax to Dmin over the interval

[0;S]. The ldc is assumed to be constant over time, demand to be price-inelastic.4

DoHaL

S0

Dmin

Dmax

DHsL

S0

Figure 1: Chronological load demand development Do(a) over a de�ned planning period S and
respective load duration curve D(s) for the same planning period.

2.2 Generation system

The demand is met via a power plant park where technologies of similar type are clustered. Each

technology u ∈ A = {1, . . . , n} is characterized by �xed costs per period cinv,u and variable costs

per electricity unit produced cop,u. cop,u includes variable operating, maintenance and extraction

cost. It does not include the resource owner's scarcity rent as a result of scarce resources as well as

cost of CO2-allowances as a result of emission reduction targets. These costs are derived explicitly

within the model. For simplicity reasons cinv,u and cop,u are assumed to be constant over time.

2.3 Scarce resources as input factors and CO2-limits

Fuels (e.g., coal or gas) are the only input factors for electricity production. Each technology is

assumed to burn only a single fuel type. Let X0
u be the initial reserve and Xu,t the stock available

of resource u at time t. Then,

Ẋu,t = −xu,t for all u ∈ A and t ∈ [0;∞) (1)

with Xu,0 = X0
u.

Converting the chemical energy of the fuels into electrical energy comes with a loss which we

describe by a time-stable heat rate hu which is assumed to depend on the technology.

Emission reduction e�orts to stabilize the CO2-content in the atmosphere (e.g., at 550ppm) is

accounted for through a CO2 ceiling Z̄. Let Z0 be the initial amount of CO2 in the atmosphere.
2Note that a representative load duration curve has to be de�ned over a representative period which is typically

one year.
3For illustrative purposes we call the de�ned planning period `year' and the share of total operating time

`operating hours' in the following.
4Bohi (2010) discusses how a peak load pricing framework can be adapted to account for an elastic demand.
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The actual amount of CO2 in the atmosphere Zt is assumed to be below or at the ceiling at each

point in time. A natural dilution proportional to the absolute amount of CO2 in the atmosphere,

and the speci�c emissions ζu when burning the fossil fuels determine the amount of CO2 in the

atmosphere. So,

Żt =

n∑
u=1

ζu · xu,t − α · Zt with Zt ≤ Z̄ and 0 < α < 1. (2)

2.4 Peak load pricing

We base our approach on the classical peak load pricing model as comprehensively described in the

existing literature. Installed capacities Ku and produced energy Qu per technology are thereby

optimized to meet an in�exible demand D(s) at minimum cost. As illustrated in �gure 2, at given

variable and �xed costs per technology, a technology is part of the e�cient portfolio when it is cost-

minimal (considering both �xed and variable cost) for a non-zero operating time interval within

[0;S]. When the technologies of the e�cient portfolio are arranged in decreasing order of �xed

costs, each technology u is framed by a maximum su−1,u and a minimum operating time su,u+1.

Since two di�erent technologies cannot be optimal at the same point of operating time the upper

bound of one technology has to be the lower one of another. Exceptions apply for the �rst and last

technologies, since these are framed via the operating hours per year S for the technology with

highest �xed costs and zero for the technology with lowest. We de�ne D(s0,1) = D(S) = Dmin = 0

and D(sn,n+1) = Dmax = D(0). Consequently, we specify the e�cient portfolio via a vector ~s∗

describing all operating boundaries which specify the e�ciency border.5

Installed capacities per technology u at time t are then implicitly described by

Ku,t(su−1,u,t, su,u+1,t) =D(su,u+1,t)−D(su−1,u,t), (3)

and electricity produced by

Qu,t(su−1,u,t, su,u+1,t) =

∫ su−1,u,t

su,u+1,t

D(s)ds+D(su,u+1,t) · su,u+1,t (4)

−D(su−1,u,t) · su−1,u,t

for all u ∈ {1, 2, . . . n} , s ∈ [0, S] and t ∈ [0,∞).6 Figure 2 describes the characteristics and the

interaction of technology-speci�c cost curves Cu and boundaries of e�cient operating time ~s∗. It

is important to note that whenever ~s∗ is clear, the composition of energy produced per technology

and installed capacities are de�ned implicitly. In contrast to the most classical peak load pricing

models, we arrange the technologies in decreasing order of �xed costs instead of variable costs.

The reason behind is that in the long-run variable costs are much more volatile than �xed costs.

This allows us to keep the order consistent over time.

Beside the concept of a ldc, the economical meaning of su,u+1 is key for the result established

5The superscript * in ~s∗ marks boundaries between two technologies (i.e. control variables) that de�ne the
e�ciency border. A similar vector ~s characterizes all intersection of existing cost curves.

6Consequently the use of resource u at time t xu,t equals the produced electricity Qu,t times the respective heat
rate hu.
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below. su,u+1 marks the borderline operating hours between the technologies u and u + 1. For

operating hours s > su,u+1, the higher �xed cost technology u is economical to use. For operating

hours s < su,u+1, technology u+ 1 is the preferred technology.

Q1

Q2

Q3

Q4

s4,n+1=0 s3,4 s2,3 s1,2 s0,1=S

DHsL
K4

K3

K2

K1

C1

C2

C3
C4

s4,n+1=0 s3,4 s2,3 s1,2 s0,1=S
s

cinv,3

cinv,2

$

cinv,1

$

Figure 2: Formation of the e�ciency border (fat line in lower graph) in a 4-technology-case and
derivation of the e�cient installed capacities Ku and the energy produced per technology Qu.
Technologies are described via operating time dependent cost curves Cu(s) = cinv,u + cop,u · s.

3 Development of a Hotelling model

3.1 Optimal solution for a speci�c n-technology scenario

Making use of optimal control theory as pioneered by L. S. Pontryagin et al. (1962) and others,

it is possible to optimize the previously outlined system dynamically over time. State variables

thereby describe the actual state of the system at each point of time and are in�uenced via control

variables, of which the optimal values are to be determined. In our set-up ~s∗t may be used as

a vector of control variables, since it implicitly de�nes which capacity per technology is to be

installed and consequently which amount of energy is produced at each point of time t. Relevant

state variables are Zt describing the amount of CO2 in the atmosphere and Xu,t describing the

available stock at time t. The optimization problem is then formulated as a cost minimization

problem (=maximization of negative cost) over time. For the time being we assume that all
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technologies u are part of the e�cient solution. With a constant discount rate ρ, making use of

(3) and (4), the time-integral cost function to be minimized is then

max
su,v,t

∫ T

0

[
−

n∑
u=1

cinv,u ·Ku,t(su−1,u,t, su,u+1,t) (5)

−
n∑
u=1

cop,u ·Qu,t(su−1,u,t, su,u+1,t)

]
e−ρjdt.

Subject to (1) and (2), the Lagrangian then writes

Lt =−
n∑
u=1

cinv,u ·Ku,t(su−1,u,t, su,u+1,t) (6)

−
n∑
u=1

cop,u ·Qu,t(su−1,u,t, su,u+1,t)

−
n∑
u=1

λu,t · hu ·Qu,t(su−1,u,t, su,u+1,t)

+ λp,t

[
n∑
u=1

ζu ·Qu,t(su−1,u,t, su,u+1,t)− α · Zt

]
+ νc,t ·

(
Z̄ − Zt

)
,

and �rst order conditions for an interior solution are as follows

∂Lt
∂su,u+1,t

=Dsu,u+1,t · (−cinv,u+1,t + cinv,u,t − cop,u,t · su,u+1,t

+cop,u+1,t · su,u+1,t − λu,t · hu · su,u+1,t + λu+1,t · hu+1 · tu,u+1,t

+µp,t · (ζu − ζu+1) · tu,u+1,t) = 0 for all u ∈ {1, 2, . . . , n− 1},

together with the complementary slackness condition

νc,t ≥ 0, Z̄ − Zt ≥ 0, νc,t
(
Z̄ − Zt

)
= 0. (7)

The dynamics of the covariates are de�ned by

λ̇u,t = ρ · λu,t −
∂Lt
∂Xu,t

= ρ · λu,t ⇒ λu,t = λu,0 · eρt (8)

and

λ̇p,t = ρ · λp,t −
∂Lt
∂Zt

= (ρ+ α)λp,t + νc,t. (9)

And consequently the internal solution of a cost minimal portfolio is de�ned as follows:
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su,u+1,t =
cinv,u − cinv,u+1

(cop,u+1 − cop,u) + (hu+1 · λu+1,t − hu · λu,t)− λp,t (ζu+1,t − ζu,t)
, (10)

or when grouping costs per technology, by

su,u+1,t =
cinv,u − cinv,u+1

(cop,u+1 + hu+1 · λu+1,t − λp,t · ζu+1,t)− (cop,u + hu · λu,t − λp,t · ζu,t)
, (11)

which allows to further combine variable cost components by

cvar,u,t = cop,u + hu · λu,t − λp,t · ζu,t (12)

in

su,u+1,t =
cinv,u − cinv,u+1

cvar,u+1,t − cvar,u,t
, (13)

with u ∈ {1, 2, . . . , n − 1} and a �nite time horizon t ∈ [0;T ]. Graphically su,u+1,t represents

the intersection of the cost curves of technology u and u + 1 (cf. �gure 2). Each technology u is

directly competing against the adjacent technologies u − 1 and u + 1. If the resources were not

constrained and there was no emission target, the upper and lower bound of e�cient operation

would be de�ned via the �xed costs cinv,u and 'pure' operating costs cop,u (which is similar to the

optimality condition in classical peak load pricing models). If scarce resources lead to a di�ering

scarcity rent hu · λu,t between neigbouring technologies, the operating bounds of u change over

time. Similar considerations apply if CO2-targets are tight and CO2-cost λp,t become < 0. With

rising CO2-cost, the cleaner technologies have a cost advantage proportional to the di�erences in

the speci�c emissions (as can be seen in (10)). As displayed in (12), 'pure' operating costs must

be replaced by variable costs including also a scarcity rent and CO2-cost.

Under these circumstances a time-dependent covariable may obviously lead to an alteration of

the e�cient portfolio over time.

3.2 Conditions for an e�cient portfolio

Releasing the prerequisite that all technologies are part of the e�ciency border, it is possible

that either some technologies are entirely dominated7 by a combination of the other ones or that

a technology u is not cost-minimal in the relevant operating time range [0;S] (Refer to �gure

3 for illustration). Then, an e�cient portfolio A∗ may consist of any possible combination of

technologies while the technology with lowest �xed cost (u = n) is always part of it.8 For n

technologies 2n−1 possible permutations of technologies being part of the e�cient portfolio are

then possible.

Now, we show how to derive the technologies part of the e�cient portfolio and hence the shape

of the e�ciency border if the cost curve of each technology is known. su,v now describes any

intersection of two arbitrary cost curves u and v with u < v. We maintain the assumption that all

7In the context of this paper, a technology that dominates another one in terms of cost shows lower cost.
8Accordingly to ~s∗, A∗ with (A∗ ⊆ A) marks technologies that are part of the e�ciency border.
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0 s3,4s4,5 s1,3S
s

cinv,5

cinv,2

cinv,1

cinv,4

cinv,3

$

Figure 3: Formation of the e�ciency border (fat line in graph) in a 5-technology-case. Technology
2 is dominated by a combination of other technologies, technology 1 is not cost-minimal during
the relevant operating time interval [0;S].

technologies are arranged in decreasing order of �xed costs, for variable costs no speci�c ordering

is assumed in the following.

Proposition 1. Consider a technology u in a set of technologies A = {1, 2, . . . , n} strictly orga-

nized in decreasing order of �xed cost cinv,u. For technology u ∈ A \ {n} to be part of the e�cient

portfolio it is su�cient that

∀w > u, 0 < su,w < S and (14)

∀v < u, {sv,u < 0 ∨ ∀w > u, su,w < sv,u}. (15)

The technology n with lowest �xed costs is part of the e�cient portfolio in any case.

Proof. See B.1.

(14) describes the necessary condition that a technology w with lower �xed costs (w > u)

has to have su�ciently high variable costs, so that the cost curve crosses the one of technology u

within the time range [0;S]. Otherwise technology w will dominate technology u over the entire

time range.

The second condition ensures that a combination of multiple technologies does not disqualify

technology u. Because the technologies are strictly ordered by decreasing �xed costs, a technology

v with higher investment cost than u and with a cost curve crossing the one of u before the low-

capital technology w must be also subsequently cheaper than u before u would be cheaper than

w. Hence u would not be part of the e�cient portfolio since it is �rst dominated by w and then

by v.

Corollary 1. Consider a technology u ∈ A meeting Proposition 1. The e�cient operating time

8



of technology u ∈ A \ {n} is then limited by

a lower bound sminu = max
w

(su,w) , w > u and

an upper bound smaxu = min
{
min
v

(sv,u) ;S
}
, v < u.

The lower bound of technology n equals 0 and the upper bound is as described above.

Proof. See B.1.

If a technology u is cost-minimal within a non-zero operating time range, this range is either

limited by the maximum operating hours S (zero) if the technology has lowest (highest) variable

cost or by other technologies. If this is the case, all technologies with higher �xed cost, crossing

the cost curve of u have lower cost from the operating point of time on of the intersection.

The minimum intersection consequently speci�es the adjacent technology, respectively the upper

operating time bound. For the lower bound similar conditions apply.

3.3 Optimal solution for a general n-technology case

In the following we further develop the speci�c optimization problem (5) building on the �ndings

from the previous section. We extend it to a more general optimization problem factoring in the

possibility that technologies might be dominated by others for e.g., a certain time period, but

are part of the e�cient portfolio otherwise. For this reason we �rst calculate a set of all possible

solutions ~s, than develop ~s∗, meaning the set of all sv,u that describe the e�ciency border. From

here installed capacities and resource use can be derived straightforwardly.

In section 3.1 we make the implicit assumption that strictly su,u−1 < su−1,u−2 < . . . < s2,1 < S

as a necessary condition for (4) and (3) to hold true. When this requirement is released, we might

experience an e�cient portfolio A∗ consisting of only a subset of technologies as described in

section 3.2.

So, consider a sequence of time intervals [ti; ti+1) denoted by i ∈ 1, 2, . . . , I with t1 = 0 and

tI+1 = ∞. We assume that within each time interval i the subset of technologies Wi does not

change. The optimization problem within each time range can then be de�ned in a very similar

way compared to the speci�c one in (5). We just replace the pool of available technologies in (3)

and (4) by the pool of e�cient technologies in the respective time interval:

max
smin
u′ ,smax

u′ u′∈Wi

∫ ti+1

ti

[
−
∑
u′∈Wi

cinv,u′ ·Ku′,t(s
min
u′ , smaxu′ )

−
∑
u′∈Wi

cop,u′ ·Qu′,t(sminu′ , smaxu′ )

]
e−ρtdt. (16)

Subject to (1) and (2) where (3) and (4) are adjusted similar to (16), with sminu′ , smaxu′ ∈ R+,
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optimality conditions are equivalently to (10)-(13) de�ned by

su′,v′,t =
cinv,u′ − cinv,v′

(cop,v′ − cop,u′) + (hv′ · λv′,t − hu′ · λu′,t)− λp,t (ζv′,t − ζu′,t)
(17)

=
cinv,u′ − cinv,v′
cvar,v′,t − cvar,u′,t

(18)

for all u′ < v′ with u′, v′ ∈Wi ⊆ A and t ∈ [ti; ti+1). Time-range speci�c parameters do not occur

in the optimality conditions. Hence, ~s describing the intersections of all available technologies A

does not depend on the subsetWi or the time interval i.9 So, at time t when actual cost parameters

are given, A∗t is a subset of A after applying Proposition 1, ~st∗ derives respectively. Since we have
extended the time horizon to in�nity, the transversality conditions are de�ned as follows:

lim
t→+∞

e−ρt · λu,t ·Xu,t = 0

lim
t→+∞

e−ρt · λp,t · Zt = 0

Summing, we advance the program (5) by (16) and propose the following:

Proposition 2. There exists an optimal solution to the program

max
su,v,t,sw,u,t u,v,w∈A

∫ T

0

[
−

n∑
u=1

cinv,u ·Ku,t(sw,u,t, su,v,t) (19)

−
n∑
u=1

cop,u ·Qu,t(sw,u,t, su,v,t)

]
e−ρjdt

with (1)-(4) if there exists one non-polluting sustainable backstop technology with lowest operating

costs.

Proof. See B.2.

4 Application of the model with a polluting and a clean tech-

nology

In the following, we consider a two-technology case including a renewable technology u = 1 and

a fossil technology indexed by u = 3. Later on we will extend the case to include also a CO2

abatement technology. The renewable is characterized by highest �xed and variable costs equal

zero.10 Without loss of generality technology u = 3 should burn gas and have relatively low �xed

and operating costs > 0. It should be polluting (ζ3 > 0) and its productivity is described via a

time-stable heat-rate h3 > 1. We further assume the renewable technology not to be part of the

9Precisely, it depends in the way that the values will change over time, but its values are always de�ned by (18).
10The in the following derived solutions hold true also for operating costs cop,1 > 0 (but still lowest) if we decrease

the operating costs of the fossil technology by its di�erence to the actual operating costs of the renewable.
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e�cient portfolio if no fossil scarcity or emission targets exist, i.e.

s1,3 =
cinv,1 − cinv,3

cop,3
≥ S. (20)

The control variable

s1,3,t =
cinv,1 − cinv,3

(cop,3 − cop,1) + h3 · λ3,t − ζ3 · λp,t

describes the relevant control paths if technology 1 is part of the e�cient portfolio.

4.1 A small initial reserve making CO2-restrictions obsolete

Let us �rst assume that X0
3 is small enough, so an emission ceiling would never be binding. This

results in a pure Hotelling price path with λ3,t = λ3,0 · eρt (compare with (8)) from the very

beginning (λp,t ≡ 0). The time derivative ∂s1,3,t
∂t = − (cinv,1−cinv,3)ρ·h3·λ3,0·ep·t

(cop,3−h3·λ3,0·eρ·t)2 is strictly negative

and leads to a continuously decreasing s1,3,t which converges to 0 when time approaches in�nity.

Because of (20), on a cost minimum time path the initial resource stock must be consumed

completely. So, by
∫∞

0
x3,tdt = X0

3 there's a well-de�ned price path λ3,0(X0
3 ). Refer to Appendix

B.4 for details.

The larger the initial stock, the larger s1,3,0 and respectively the initial share of gas within

the energy mix. XR
3 should de�ne the critical reserve which leads to an s1,3,0 exactly equal to S.

Then, for all X0
3 < XR

3 , s1,3,0 < S. If the initial reserve X0
3 is larger than XR

3 , gas is exclusively

used in the beginning and the renewable resource complements the energy mix as soon as X3,t

has decreased to a critical reserve. We label the time when the renewable technology enters the

portfolio with θR.11 At a �xed initial reserve, the more competitive the renewable technology is,

the earlier it complements the energy mix and hence the longer lasts the scarce resource. Figure

4 illustrates the control path as described and the corresponding cost curves of the renewable

and gas at t1 when the renewable is not yet part of the portfolio and at t2 where we see a two-

technology mix. Compare the right-hand side with �gure 2 which displays similar curves with

�ipped axes. Contrarily to the pure Hotelling model without emission constraint, there is not a

one-time �ip from the scarce resource to the backstop technology. Rather we see a coexistence of

both technologies.

4.2 A large initial reserve making CO2-restrictions relevant

If the initial reserve is large enough, the optimal consumption path depends on a politically

de�ned carbon ceiling. We �rst develop the condition which makes the carbon ceiling relevant.

Subsequently, we describe potential extraction paths.

λ3,0 decreases with increasing X0
3 . The continuously over time decreasing s1,3,t leads to a

decreasing use of gas.12 Hence, if the initial carbon emission is less or equal to the natural dilution

at t = 0, the carbon content in the atmosphere continuously decreases. If the carbon emission

exceeds the natural dilution in the beginning, the carbon content Zt continuously increases, peaks

11It is de�ned via the time t > 0 when s1,3,t equals S.
12An initial phase where the renewable energy is not yet part of the e�cient portfolio would lead to a constant

use of gas for t ≤ θR.
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Figure 4: Portfolio time-path with a scarce resource (u=3) and a backstop technology (u=1) and
corresponding cost curves (see right hand side) at two distinct points of time.

at a certain time t and decreases afterwards. The larger X0
3 , the higher the maximum. Hence,

there exists a XH
3 which leads to a carbon content peaking at exactly Z̄. If the initial reserve is

lower than XH
3 , the carbon ceiling is obsolete, if it is higher λp,0 < 0 within a non-zero initial time

period (cf. Chakravorty et al. (2008)).

Under the assumptions we make, the e�cient path should imply an initial phase of exclusive use

of the polluting resource if the ceiling is relevant. We then see a three-phase extraction sequence

as shown in �gure 5: In the �rst phase, the demand is exclusively met via the polluting resource,

Zj continuously increases and the renewable resource enters the portfolio at θR. The variable costs

of gas rise with

cvar,3,t(λ3,0, λp,0, t) = cop,3 + h3 · λ3,0 · eρ·t − ζ3 · λp,0 · e(ρ+α)·t.

sc1,3,t =
cinv,1−cinv,3

cvar,3,t
, where the superscript stands for relevant ceiling (≡ λp,t < 0), decreases

respectively. Żt > 0, but decreasing over time until Zt reaches the ceiling at θC where the subscript

stands for ceiling. During the second phase, carbon emissions through resource use and natural

dilutions are balanced, Zt = Z̄ and s̄1,3, where the bar stands for constant and balanced emissions,

are consequently constant. This ceiling phase is de�ned by ζ3·
∫ s̄1,3

0
D(s)− s̄1,3ds = α·Z̄. It implies,

at a constantly increasing scarcity rent, decreasing CO2-cost. They phase out as soon as the

scarcity rent is high enough to limit emissions to Żt < α · Z̄ at θH = ρ−1 ln(− cinv,3−cinv,1+cop,3·s̄1,3
h3·λ3,0·s̄1,3 )

when the third phase begins. Gas is then used until in�nity at a constantly decreasing share. See

B.4 for a detailed characterization of the control paths.

Proposition 3. Consider initial endowments with fossil resources large enough to make a CO2-

ceiling relevant. A consequential initially emission constrained control path always results in a

ceiling phase before a pure Hotelling path begins. This ceiling phase, where the CO2-content in the

atmosphere stays at the maximum level, is characterized by a net-emission equal zero while natural

dilution is balanced by emissions through fossil combustion.

Proof. See B.3.

4.3 Introduction of an option for carbon capturing

Carbon capture and storage (CCS) provides a technology that allows the use of fossil fuels for

electricity production while a large share of the CO2 produced is held back. This comes with
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Figure 5: Portfolio time paths with one initial stock available and CO2-restrictions (Note: sc1,3,t =

f(λ3,0, λp,0, t) and s1,3,t = f(λ3,0, t) with λ1,3,t = λ3,0 · eρt and λp,t = λp,0 · e(ρ+α)t)

increased costs as well as an e�ciency malus compared to the non-CCS counterparts. Hence,

without tight emission targets, the CCS technology can never be economical.

We introduce gas CCS as an additional technology u = 2 with highest operating costs (cop,2 >

cop,3), medium investment costs (cinv,3 < cinv,2 < cinv,1) and lowest e�ciency (h2 > h3), as

generally proposed in literature (e.g., �³legen and Reichelstein (2011)).13 Consider a potential

time path where a CCS technology becomes part of the e�cient portfolio and refer to �gure

6 for illustration. The path shows the three-phase appearance which characterizes every path

with relevant CO2-targets. In the beginning, gas is the only technology used, until at θR the

renewable complements the portfolio and its share continuously increases. The variable costs of

non-CCS gas rise quicker than those of gas CCS which does not show any CO2-costs.14 As soon

as ζ3 · λp,t > cop,2 − cop,3 + λp,t · (h2 − h3), gas CCS has lowest variable costs. It becomes distinct

by an intersection between the cost curves of technology u = 2 and u = 3 (appearance of sc2,3,t
in the positive range).15 But still, due to the higher investment costs in comparison to non-CCS

gas, gas CCS is dominated by the combination of the remaining two technologies. At t = θCCS1
,

the increased CO2-costs have also compensated the investment malus and gas CCS enters the

portfolio. The following equotation re�ects this situation when sc1,3 equals sc1,2:

cinv,1 − cinv,2
cinv,1 − cinv,3

=
cop,2 + h2 · λ3,t

cop,3 + h3 · λ3,t − ζ3 · λp,t
(21)

We see the ratio of cost advantage compared to the renewable in terms of �xed costs on the

left-hand side compared to the ratio of variable costs of gas and gas CCS on the right-hand side.

Now, the share of non-CCS gas decreases to s̄2,3 at θC when Zt = Z̄. The following ceiling

phase is characterized by a constant share of non-CCS gas and a continuously decreasing share of

gas CCS until it leaves the portfolio at t = θCCS2
. Before a pure Hotelling path begins, a stable

non-zero time path t ∈ [θCCS2
; θH ] with non-CCS gas and the renewable technology follows,

13Both technologies gas and gas CCS use the same resource and show the same scarcity rent λ3,t.
14Compare cvar,2,t = cop,2 + h2 · λ3,0 · eρt and c3,var,t = cop,3 + h3 · λ3,0 · eρt − ζ3 · λp,0 · e(ρ+α)t
15Before, (18) is negative with u = 2 and v = 3 since the di�erence in operating costs is still positive and the

di�erence in investment costs is negative.
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de�ned via s̄1,3(= s̄2,3).
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Figure 6: Portfolio time paths with one initial stock available, a CCS technology and CO2-
restrictions

We now describe the conditions that lead for CCS to be part of the e�cient portfolio and

specify its entry and exit point of time. Referring to Proposition 3, a non-zero time ceiling phase

exists if emission targets are tight. This is a necessary condition for CCS to become part of the

e�cient portfolio. Hence, it can only be part of the portfolio as long as λp,t < 0, so the constrained

paths scu,v,t are relevant. According to Proposition 1, gas CCS is part of the e�cient portfolio

if sc1,3,t < sc1,2,t and s
c
1,3,t < S. (21) describes the situation where sc1,3,t = sc1,2,t. And sc1,2,θCCS1

should specify the operating hours at this point of time. Then, if sc1,2,θCCS1 > s̄1,3 (=s̄2,3), gas CCS

will be part of the e�cient portfolio for a non-zero time period. Otherwise it will not since sc1,2,t
is strictly larger than sc2,3,t from that point of time on and, according to Proposition 1, technology

1 and 3 dominate gas CCS.16

Gas CCS will leave the portfolio as soon as sc1,2 equals s̄2,3. At this point of time the further

increased scarcity rent and decreased CO2-costs make the CCS technology no further economical.

This is strictly before a pure Hotelling path begins and results in a stable non-CCS gas-renewable

mix until CO2-costs λp,t have further decreased to zero at θR. It is the case because sc1,2,t (which

equals s1,2,t since technology 2 is clean) is strictly lower than s1,3,t due to the higher costs and

lower e�ciency of CCS compared to normal gas. Hence, sc1,2,t must cut s̄2,3, respectively s̄1,3

before s1,3,t does.

4.4 Review on scarcity rents

The response of economic sectors to reduction e�orts has been widely discussed in the literature

(e.g., in Eisenack et al. (2012)). In our assessment, a complete exploitation of scarce resources

16If sc1,2,θCCS1
> S, CCS will enter the e�cient portfolio before the renewable does, the entry point of time is

then between θCCS1 and θR. It would be de�ned by the time when sc2,3,t equals S.
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is necessary for a cost-minimum solution. We conclude that resource owners would likely oppose

emission targets from an economic perspective, while CCS could decrease societal costs while

upholding scarcity rents.

Consider a resource owner that maximizes pro�t in the way that he fully exploits resources at

maximum scarcity rent.17 Further consider the initial resource stock as given and so is also the

scarcity rent in the case described in section 4.1 (≡ non-constrained path). We now introduce an

e�ective carbon ceiling as shown in section 4.2 (≡ constrained non-CCS path) and hold on to the

scarcity rent. Hence, the Hotelling path s1,3,t is congruent with the one in the non-constrained

case. But the initial constrained path sc1,3,t and the ceiling path s̄1,3 are strictly below s1,3,t during

their e�ective phase. So, the resource exploited at θH is less than on the non-constrained path.

For t > θH , the relevant control paths of both cases are identical and so is the consumption of

gas during this time interval. Hence, to ensure a complete exploitation at in�nity, the scarcity

rent λ3,0 must be strictly lower on the constrained path. So, considering the scarcity rent only, a

resource owner would consequently oppose emission targets from an economic perspective.18 The

CCS technology allows to retain a higher share of the scarce resource in the portfolio for t < θH .

Though, it was still lower than in the unconstrained one. So, CCS could help to soften scarcity

rent losses to resource owners if emission targets are introduced.

5 Conclusion

This paper combines Hotelling's theory, that was for the �rst time extended to an emission con-

strained environment by Tahvonen (1997), with a peak load pricing approach to adequately de-

scribe electricity production systems with simultaneous resource and emission constraints. The

maximum amount of CO2 in the atmosphere as well as the resource stocks are constrained. The

demand is �xed and characterized by a load duration curve which is used to illustrate the relation-

ship between generating capacity requirements and capacity utilization in electricity production.

Our approach singles out from existing literature by focusing on the electricity production which

allows us to take �xed costs and �uctuating demand into consideration which are essential to de-

scribe electricity markets. For the illustration of possible extraction paths, we use di�erent cases

which include a polluting technology which relies on a fossil fuel (e.g. gas) as input factor and is

characterized by relatively low �xed, but high operating cost. A green, supply-independent, tech-

nology with high �xed and no variable costs complements the technology portfolio. Furthermore,

an option for carbon capturing is introduced.

One general result is that in all cases gas is exploited completely at in�nity. In the beginning

it is used exclusively. Beyond this interval, the share of the renewable will continuously increase

while the use of gas continuously decreases. When the initial stocks are high enough (or emission

targets tight enough), a ceiling phase results. During this ceiling phase, the share of gas will remain

stable. This phase will, if once reached, last relatively long. An also gas-based carbon capturing

technology, which has higher investment and operating costs than its non-CCS counterpart, could

complement the portfolio as an intermediate technology. It would then enter the portfolio before

17We still stick to the optimization approach as described in (19).
18A damage function that would also take economic impacts of climate change into account may revert this

conclusion.
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the ceiling is reached and leave it before a �nal Hotelling path begins.

We con�rm �ndings from related literature that renewables should complement the portfolio

despite of higher unit cost. The same holds true for a carbon capturing technology. With the

assumptions we make, CCS may complement the portfolio and then help to decrease societal cost

of electricity production. Findings suggest that resource owners are likely to oppose emission

targets since a target would always result in an decrease of scarcity rents. CCS would also help

to limit losses of scarcity rents which may increase acceptance among resource owners.

Modeling the development over time of a portfolio consisting of a fossil and a renewable technol-

ogy is a �rst step in including �xed costs into existing theory. An inclusion of an additional fossil

resource with di�erent cost and polluting characteristics could help to understand the potential

paths and policy implications for multiple fossil resources available.

Furthermore, we add to classical peak load pricing literature a new approach to derive the

e�cient production portfolio at known �xed and variable costs using the intersection of multiple

cost curves as a function of operating time. The shortcoming of this peak load pricing framework

which does not accommodate for �uctuating energy feed-in of renewable technologies like solar or

wind and assumes a �xed price-inelastic demand should be addressed in further research.
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A Symbols and model notation

Indices
u, v, w Generation technology, fuel type
s Share of total operating time per period

(e.g., similar to operating hours per year)
t Point of time in the continuous series of multiple analysis periods
i Time interval during which the composition of the e�cient portfolio does not change

Parameters and variables (in order of appearence)
D(s) MW Total system demand at s
Do(a) MW Total system demand at a in the course of a representative period
Dmin MW Minimum system demand in the course of a representative period
Dmax MW Maximum system demand in the course of a representative period
cinv,u $/MWe Annuity of speci�c overnight costs of plant u per installed capacity Ku

S 100% of time of analysis period (e.g. one year)
cop,u $/MWhe Speci�c operating costs of plant technology u per output

(excl. fuel cost, incl. extraction, excl. CO2-cost)
Xu,t GWhth Amount of resource u available at time t
xu,t GWth Amount of resource u used at time t
hu GWhth/GWhe Heat rate of generation technology u
Z0 tons Initial amount of CO2 in the atmosphere
Zj tons Actual amount of CO2 in the atmosphere
Z̄ tons Maximum target amount of CO2 in the atmosphere
ζu tons CO2/GWhe Speci�c CO2-emissions of technology u per electrity unit produced
α Natural dilution rate of atmospheric CO2

Cu $/MWe Total cost per technology u as a function of operation time
Qu,t GWhe Electric energy produced of technology u at time t
Ku,t MWhe Installed capacity of technology u at time t
su,v,t hours Lower operating bound of technology u and upper bound of technology v

(if not dominated by other technologies)
ρ Common interest rate on invested capital
λu,t $/MWhe Hotelling/Scarcity rent of resource u at time t
λp,t $/MWhe Shadow price of pollution/externality cost/CO2-cost
νt $/MWhe Multiplier ensuring Zj ≤ Z̄
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Vectors and other
A Set of available technologies
A∗t Subset of technologies A that are part of the e�cient portfolio at t
Wi Reduced set of technologies that would be part of the e�cient portfolio

in the time interval i)
~st∗ Vector describing relevant limits of operating time

between technologies A∗t that are part of the e�cient portfolio at t
~st Vector describing every intersection between all

cost curves of technologies available A at time t
θu,E Time when resource u is exploited
θC Time when Zt reaches the ceiling
θH Time when a pure Hotelling path begins
XH GWhth Initial amount of coal for which an in�nitesimally

higher initial endowment results in an initial non-Hotelling path
XR GWhth Initial amount of coal for which an in�nitesimally

higher initial endowment results in an initial pure fossil path
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B Proofs and mathematical appendix

B.1 Proof of Proposition 1 and Corollary 1

Part a: u part of the e�cient portfolio implies (14) and (15)

Consider two technologies u,w ∈ A with cinv,u > cinv,w. The costs of both technologies may be

written:

Cu(s) = cinv,u + cvar,u · s Cw(s) = cinv,w + cvar,w · s.

The cost di�erence is then:

Cu(s)− Cw(s) = cinv,u − cinv,w + (cvar,u − cvar,w) · s.

The cost di�erence is decreasing with increasing operating time s if and only if

cvar,w > cvar,u.

The operating time su,w, where both technologies have the same cost, equals

su,w =
cinv,u − cinv,w
cvar,w − cvar,u

.

A necessary condition for technology u to be cost e�cient is hence

su,w > 0.

This corresponds to the �rst inequality in equation (14). Only for s > su,w, the cost of technology

u is then smaller than the cost of w. Since the maximum possible operating time is S, a further

inequality has to be satis�ed:

su,w < S

This is the second inequality in equation (14).

Additionally the technology u may not be undercut in costs by technologies v with higher

investment costs cinv,v > cinv,u, at least not before it had its part on the e�cient cost curve. As

before

sv,u =
cinv,v − cinv,u
cvar,u − cvar,v

.

If sv,u < 0,

then the cost di�erence Cv(s) − Cu(s) is positive and increasing for positive s, thus this is a

su�cient condition for no cost undercut by technology v. Otherwise the cost of technology v is

below the one of u beyond the point sv,u. If for any combination of u, v and w sv,u was smaller

than su,w then u would be dominated by w in cost terms until su,w and beyond su,w u would
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already be dominated by v given that sv,u < su,w. Hence a necessary condition under sv,u > 0 is:

∀v < u, ∀w > u, su,w < sv,u.

This is the second part of equation (15).

Part b: (14) and (15) imply u part of the e�cient portfolio

Given that we are looking at a �nite set of technologies, (14) implies that there is a minimum

operation time sminu from which on technology u undercuts the costs of all technologies w with

lower investment costs:

sminu = max
w w>0

su,w

Equation (14) moreover implies:

sminu < S.

Similarly, there is a maximum operation time smax0
u with

smax0
u = min

v v<u sv,u>0
sv,u.

Below that operation time, technology u has lower costs than all technologies v with higher in-

vestment costs. Equation (15) then implies

sminu < smax0
u .

However, it is not clear a priori whether smax0
u is smaller or larger than S. Since operating times

larger than S are not meaningful we de�ne:

smaxu = min{smax0
u , S}.

Consequently technology u is cost e�cient in the interval
[
sminu , smaxu

]
and thus part of the e�cient

set.

B.2 Existence of an optimal solution

Following Chakravorty and Krulce (1994) and Farzin (1992), we use Seierstad and Sydsæter (1987,

Theorem 15, p. 237) to prove the existence of an optimal solution to the program described. The

backstop technology is assumed to have lowest operating costs. Consequently, it dominates all

other technologies with higher �xed costs for t ≥ 0.19 So, we assume the backstop to be technology

u = 1 with highest �xed costs. We de�ne the integrand of (19) as f0(su,v,t, t), (1) as fu(su,v,t, t)

with xu,t = hu · Qu,t(s∗w,u,t, s∗u,v,t) for u = {1, 2, . . . , n}20 and (2) as fn+1(su,v,t, t) with identical

de�nitions for xu,t. Similar to the main paper we specify the set of all intersections of di�erent

19Both the Hotelling rent and the external cost of pollution equal zero for a backstop technology.
20Recall that backstop technology u = 1 does not rely on depletive input factors, so f1(su,v,t, t) does not exist

and will not be considered further.
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cost curves su,v,t with ~su,v,t; ~s∗u,v,t should specify the relevant control paths where s∗u,v,t limits the

e�cient operating time of two technologies u and v that are part of the e�cient portfolio at time

t.

Condition 1: The paths of the control variables speci�ed in ~s∗u,v,t are piecewise continuous on

[0;∞).

Proof: Each su,v,t may qualify as a relevant control variable.

su,v,t =
cinv,u−cinv,v

(cop,v−cop,u)+(hv·λv,t−hu·λu,t)−λp,t(ζv,t−ζu,t) , where the dynamics of λu,t and λv,t are spec-

i�ed in (7)-(9). Inspection of the curves speci�ed in ~su,v,t reveals that they are all piecewise

continuous. The same holds consequently true for ~s∗u,v,t since A
∗
t ⊆ A.

Condition 2: The control variables speci�ed in ~s∗u,v,t are bounded on [0;∞).

Proof: According to Proposition 1 and since the demand D(s) is de�ned only for s ∈ [0;S],

a s∗u,v,t /∈ [0;S] would disqualify itself from being a relevant control variable. Consequently all

relevant control variables ~s∗u,v,t are bounded.

Condition 3: fu(su,v,t, t) is continuous for all u = {0, . . . , n+ 1}.
Proof: SinceD(s) is assumed to be continuously decreasing in s, Qu,t(s∗w,u,t, s

∗
u,v,t) andKu,t(s

∗
w,u,t, s

∗
u,v,t)

de�ned by (3) and (4) must then also be continuous if all s∗u,v,t are continuous. su,v,t shows only

discontinuities where it changes algebraic signs. Suspection of the function reveals that this takes

place when it switches from −∞ to ∞ or vice versa. According to Proposition 1 and Condition

2, su,v,t is not a relevant control variable where it shows discontinuities. Hence, all ~s∗u,v,t are

continuous and so are Qu,t(s∗w,u,t, s
∗
u,v,t) and Ku,t(s

∗
w,u,t, s

∗
u,v,t). Consequently fu(su,v,t, t) is also

continuous for all u = 2, . . . , n. The same holds true for f0(su,v,t, t) since it is then a sum of

continuous functions. fn+1(su,v,t, t) must then also be continuous for the same reason if α · Zt is
continuous. If we assume fn+1(su,v,t, t) to be continuous its antiderivative Zt is also continuous.

Consequently, fn+1(su,v,t, t) is continuous.

Condition 4: There exists a piecewise continuous function φ0(t) ≥ 0 with
∫∞

0
φ0(t)dt <∞ such

that f0(su,v,t, t) ≤ φ0(t) for any admissible path ~s∗u,v,t with t ≥ 0.

Proof: Since for all u ∈ {1, 2, · · · , n} cinv,u, cop,u, Ku,t and Qu,t are non-negative f0(su,v,t, t) ≤ 0.

So, de�ne φ0(t) = 0 for all t ≥ 0 to obtain the result.

Condition 5: There exists a piecewise continuous functions φu(t) ≥ 0 with
∫∞

0
φu(t)dt < ∞

such that |fu(su,v,t, t)| ≤ φu(t) for any admissible path speci�ed in ~s∗u,v,t for all u = 2, 3, . . . , n and

t ≥ 0.

Proof: |fu(su,v,t, t)| = |−hu ·Qu,t| = |−hu · xu,t| with
∫∞

0
xu,tdt ≤ X0

u for all u = 2, 3, . . . , n. Fur-

ther consider a case where s1,u,t = S and s1,v,t = 0 for all v = {2, 3, . . . , n}/u such that |fu(su,v,t, t)|
forms its maximum possible value which equals |−hu ·Qu,t(0, S)| =

∣∣∣−hu · ∫ S0 D(s)ds
∣∣∣ <∞. So for

any admissible control path |fu(su,v,t, t)| is upward bound and its integral <∞ and consequently

there exists a φu(t) = |fu(su,v,t, t)| with φu(t) ≥ 0 and
∫∞

0
φu(t)dt <∞ for all u = 2, 3, . . . , n and

t ≥ 0.
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Condition 6: There exists a piecewise continuous functions φn+1(t) ≥ 0 with
∫∞

0
φn+1(t)dt <∞

such that |fn+1(su,v,t, t)| ≤ φn+1(t) for any admissible path speci�ed in ~s∗u,v,t for all t ≥ 0.

Proof: Inspection of the function reveals that −α · Z̄ ≤ fn+1(su,v,t, t) ≤ ζw ·
∫ S

0
D(s)ds with

ζw ≥ ζu for all u = 1, 2, · · · , n. So, |fn+1(su,v,t, t)| ≤ max{
∣∣−α · Z̄∣∣ , ∣∣∣ζw · ∫ S0 D(s)ds

∣∣∣} = J < ∞
for t ≥ 0. Furthermore, due to the constrained fossil polluting resources (and the continuity of

Qu,t), the share of all fossil resources must eventually continuously decrease to zero (c.f. also the

�nal Hotelling path in Chakravorty et al. (2008)). De�ne t1 such that −α ·Zt >
∑n
u=1 ζu ·Qu,t for

all t > t1. For this eventual phase |fn+1(su,v,t, t)| =
∣∣∣Żt∣∣∣ = |−α · Zt +

∑n
u=1 ζu ·Qu,t| < |−α · Zt|.

So, there must exist a positive c < ∞ such that |fn+1(su,v,t, t)| ≤ |−c · αe−αt| for all t ∈ (t1;∞).

De�ne φn+1(t) = J for t ∈ [0; t1] and φn+1(t) = |−c · αe−αt| for t ∈ (t1;∞) to obtain the result.

So, φn+1(t) ≥ 0 with
∫∞

0
φn+1(t)dt = t1 · J +

∫∞
t1
|−c · αe−αt| <∞ and |fn+1(su,v,t, t)| ≤ φn+1(t)

for any admissible path speci�ed in ~s∗u,v,t for all t ≥ 0.

Condition 7: There exist piecewise continuous, non-negative functions a(t) and b(t) such that

|fu(su,v,t, t)| ≤ a(t) · |x|+ b(t) for all u = 2, . . . , n+ 1 and t ≥ 0.

Proof: In Condition 5 and 6 we show that |fu(su,v,t, t)| is bounded above by
∫ S

0
huD(s)ds < ∞

for all u = 2, · · · , n and by max{
∣∣−α · Z̄∣∣ , ∣∣∣ζw · ∫ S0 D(s)ds

∣∣∣} < ∞ for u = n + 1. Let b(t) be this

bound and a(t) = 0 to obtain the result.

Condition 8: The set N(su,v,t, t) = {(f0(su,v,t, t) + γ, f2(su,v,t, t), . . . , fn+1(su,v,t)) : su,v,t ∈
[0;S], γ ≤ 0} is convex for all Xu,t and t ≥ 0.

Proof: The production portfolio and consequently f0(su,v,t, t) is speci�ed by ~su,v,t. −f0(su,v,t, t)

shows the system cost in a typical peak load pricing framework. These costs and consequently also

the set N0(su,v,t, t) = {f0(su,v,t, t) : su,v,t ∈ [0;S]} are convex (c.f. Ste�en and Weber (2012)).

The use of resource u is bound from below by 0 and from above by hu ·
∫ S

0
D(s)ds or Xu,t at

each point of time t ≥ 0. If fu(su,v,t, t) > 0, it ful�lls the requirements formulated in Proposition

1 and it is determined by xu,t = hu · Qu,t(s∗w,u,t, s∗u,v,t) using Proposition 1. Assume fu(su,v,t, t)

forms its maximum possible value at time t. If s∗w,u,t and s
∗
u,v,t converge, the use of resource u

and consequently fu(su,v,t, t) continuously approaches 0. So, Nu(su,v,t, t) = {fu(su,v,t, t) : su,v,t ∈
[0;S]} with u = 2, 3, · · · , n is convex.

Similar conditions apply for Nn+1(su,v,t, t) = {fn+1(su,v,t, t) : su,v,t ∈ [0;S]}. Consequently,

the Cartesian product N(su,v,t, t) = {(f0(su,v,t, t) + γ, f1(su,v,t, t), f2(su,v,t, t), . . . , fn+1(su,v,t)) :

su,v,t ∈ [0;S], γ ≤ 0} is also convex for all (su,v,t, t) and t ≥ 0.

B.3 Proof of Proposition 3

The characteristics of an initially below Z̄ emission constrained path scu,v,t are well-de�ned by

(17). The path of the scarcity rents is then speci�ed by (8). Since Zj < Z̄, νc,t = 0 and (9) yields

λp,t = λp,0 · e(ρ+α)t, (22)

where CO2-cost rise exponentially.

The �nal Hotelling path su,v,t, when emissions are no longer constrained, is also de�ned by

22



(17) where λp,t equals zero. If

(ζu − ζv) < 0 then scu,v,t < su,v,t,

and if (ζu − ζv) > 0 then scu,v,t > su,v,t,

for all t ∈ [0;∞). If the speci�c emissions are equal, both paths are congruent. Hence, the curves

of the control paths scu,v,t and su,v,t never cross in the relevant time range t ∈ [0,∞). For a

continuous Hamiltonian, a in-between time interval of length greater than zero, which cuts both

control paths, must connect both of them. Chakravorty et al. (2008) describe multiple potential

paths connecting both phases which may result in leaving the ceiling using the cleaner fuel and

then �lling it up with the dirtier fuel again.

In our approach, during the second phase, Zj must strictly stay at the ceiling: First, consider

a single year t = 0 and neglect any future periods. Since resource or emission constraints cannot

materialize in this single period, the optimization problem from (16) reduces to

max
su,v, u,v∈A

−
∑
A

(cinv,u ·Ku + cop,u ·Qu) (23)

which yields an internal optimality condition for an e�cient portfolio that is de�ned by

su,v =
cinv,u − cinv,v
cop,v − cop,u

. (24)

A shift within the portfolio away from this optimality condition is only motivated through an

inclusion of future periods. The scarcity of resources is regarded via a rent λu,t > 0, tight emission

targets are considered via CO2-costs λp,t < 0. This inequality conditions are still applicable after

having reached the ceiling and still not on a pure Hotelling path (θC < t < θH). But then,

λp,t = 0 would result in a more polluting mix which would break the ceiling. Hence, we pay

additional externality or CO2-cost since we have to switch to a less polluting mix, a non-optimal

one seen from a pure resource perspective. If we left now the emission ceiling, we would switch to

an even less polluting mix which is more expensive as necessary. This would happen in advance

of future (less relevant) periods and would waste natural dilution potential. So, it can never be

cost-minimal. In a sum, a cost-minimal portfolio will, once reached the ceiling, have to stay there

for a non-zero time period until a pure Hotelling path begins.

B.4 Details of selected control paths

In the following, we describe how the actual control paths can be derived for selected exemplary

cases if the technology characteristics, initial endowments and emission targets are known.

B.4.1 Two technologies available and obsolete CO2-restrictions

If there is a renewable (u = 1) and a fossil technology (u = 3) with an initial resource stock scarce

enough to make a ceiling obsolete, but abundant enough to result in an initial exclusive use of the

fossil technology, there are two unknowns λ3,0 and θR, with two equations as follows:

23



� Cumulative use of resource 3:

h3 ·

[
θR ·

∫ S

0

D(s)ds+

∫ ∞
θR

∫ s1,3,t

0

D(s)−D(s1,3,t)dsdt

]
= X0

3

with s1,3,t = f(λ3,0, λp,0 = 0)

� The renewable technology entering the e�cient portfolio:

s1,3,θR(λ3,0, λp,0 = 0) = S

B.4.2 Two technologies available and relevant CO2-restrictions

If there is a renewable (u = 1) and a fossil technology (u = 3) with an initial resource stock

abundant enough to make a ceiling relevant, there are �ve unknowns λ3,0, λp,0, θR, θC and θH ,

with �ve equations as follows:

� Cumulative use of resource 3:

h3 ·

[
θR ·

∫ S

0

D(s)ds+

∫ θC

θR

∫ sc1,3,t

0

D(s)−D(sc1,3,t)dsdt

+(θH − θC) · x̄3 +

∫ ∞
θH

∫ s1,3,t

0

D(s)−D(s1,3,t)dsdt

]
= X0

3

with sc1,3,t = f(λ3,0, λp,0), s1,3,t = f(λ3,0) and x̄3 = α/ζ3 · Z̄

� Continuity of Zj
ZθC (λ3,0, λp,0) = Z̄ and ZθH (λ3,0) = Z̄

� The renewable technology entering the e�cient portfolio:

s1,3,θR(λ3,0, λp,0) = S

� Cumulative emissions

ζ3 ·

[
θR ·

∫ S

0

D(s)ds+

∫ θC

θR

∫ sc1,3,t

0

D(s)−D(sc1,3,t)dsdt

]

−
∫ θC

0

α · Ztdt = Z̄ − Z0

B.4.3 Three technologies available and relevant CO2-restrictions

If there is a renewable (u = 1), a fossil non-CCS (u = 3) and CCS technology (u = 2) with a

single initial resource stock abundant enough to make a ceiling relevant, and in addition the cost,

resource and ceiling characteristics result in CCS entering the portfolio after the renewable, there

are seven unknowns λ3,0, λp,0, θR, θC , θH , θCCS1
and θCCS2

, with seven equations as follows:
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� Cumulative use of resource 3:

h3 ·

[
θR ·

∫ S

0

D(s)ds+

∫ θCCS1

θR

∫ sc1,3,t

0

D(s)−D(sc1,3,t)dsdt

+(θCCS2
− θC) · x̄3 +

∫ ∞
θH

∫ s1,3,t

0

D(s)−D(s1,3,t)dsdt

]
+h2 ·

[∫ θCCS2

θCCS1

∫ sc1,2,t

0

D(s)−D(sc1,2,t)dsdt

]

+(h3 − h2) ·

[∫ θC

θCCS1

∫ sc2,3,t

0

D(s)−D(sc2,3,t)dsdt+ (θH − θC) · x̄3

+

∫ ∞
θH

∫ s1,3,t

0

D(s)−D(s1,3,t)dsdt

]
= X0

3

with sc1,3,t = f(λ3,0, λp,0), s1,3,t = f(λ3,0), sc1,2,t = s1,2,t = f(λ3,0) and x̄3 = α/ζ3 · Z̄

� Continuity of Zj
ZθC (λ3,0, λp,0) = Z̄ and ZθH (λ3,0) = Z̄

� The renewable technology entering the e�cient portfolio:

s1,3,θR(λ3,0, λp,0) = S

� The CCS technology entering the e�cient portfolio:

sc1,2,θCCS1 (λ3,0) = sc1,3,θCCS1 (λ3,0, λp,0), sc1,2,θCCS2 (λ3,0) = s̄2,3

with h3 ·
∫ s̄2,3

0
D(s)−D(s̄2,3)ds = α · Z̄

� Cumulative emissions

ζ3 ·

[
θR ·

∫ S

0

D(s)ds+

∫ θCCS1

θR

∫ sc1,3,t

0

D(s)−D(sc1,3,t)dsdt

+

∫ θC

θCCS1

∫ sc2,3,t

0

D(s)−D(sc2,3,t)dsdt

]
−
∫ θC

0

α · Ztdt = Z̄ − Z0
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