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1 Introduction

The recent literature shows a growing interest in modeling and forecasting oil price
volatility due to its impact on the global and regional economies (cf. Wang et al., 2012;
Rahman and Serletis, 2012). How oil price shocks may affect economic growth is well-
documented in a large body of research. Different transmission mechanisms were de-
veloped in the literature. Examples include Rotemberg and Woodford (1996) and Finn
(2000), among others. Papers by Hamilton (1983) Davis and Haltiwanger (2001), and
Lee and Ni (2002) clearly demonstrated that positive oil price shocks induce a slow-
down in aggregate measures of growth or employment and that negative oil price shocks
lead to an increase in aggregate measures of growth or employment. Recently, Elder
and Serletis (2010) found that increased uncertainty about oil price changes causes a
significant drop in real output and heavily affects measures of durable consumption and
fixed investment in the United States. Their finding is also confirmed by Rahman and
Serletis (2012) for the Canadian economy. In his seminal paper, Hamilton (2003) con-
firmed the existence of a strong relationship between oil price changes and GDP growth
and showed that this relationship is of a nonlinear nature. Jones and Kaul (1996) and
Sadorsky (1999) showed that oil price shocks have direct or indirect influence on fi-
nancial markets. According to Backus and Crucini (2000) they may be responsible for
fluctuations in the international terms of trade. Oil price volatility also represents an im-
portant input for macro-econometric models (cf. Ferderer, 1996), pricing of derivatives
(cf. Wang et al., 2008) and portfolio selection models (cf. Geman and Kharoubi, 2008).
So, it is of primary importance for firms, financial market participants and policy mak-
ers to have models available that can properly reproduce the stylized facts of oil price
volatility and provide accurate forecasts.

The widespread tool used in the literature to analyze oil price volatility consists in
GARCH-type models (cf. Kang et al., 2009; Cheong, 2009; Mohammadi and Su, 2010;
Wei et al., 2010). All these papers have attempted to find the most appropriate GARCH-
type models, linear or nonlinear, that can properly reproduce the stylized facts of oil
price volatility, and thus, produce accurate forecasts. While some results speak in favor
of fractionally integrated GARCH (FIGARCH) models (cf. Kang et al., 2009), others
provide evidence that the standard GARCH and FIAPARCH (cf. Cheong, 2009), and
the APARCH models (cf. Mohammadi and Su, 2010) could be more appropriate. In
contrast to the previous papers, Wei et al. (2010) consider nine GARCH-type models
and compare their forecasting performance based on six different loss functions. They
found that none of these models can consistently outperform each other, despite the
fact that the nonlinear models can properly capture long memory volatility and/or the
asymmetric leverage effect in volatility.

This paper extends the work of Wei et al. (2010) in two important respects: (i) we add
to the set of GARCH models used in Wei et al. (2010) a new type of volatility model,
namely the Markov switching multifractal (MSM) model, (ii) we consider a large data
set that contains oil price observations of the pre- and post-1900 eras. Our objective is to
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compare the forecasting performance of the MSM model with that of GARCH models.
Availability of daily data for a twenty-year period within the 19th century provides the
valuable opportunity to compare the statistical features of the modern oil market with
those of a much earlier phase of the same market. The multifractal5 model provides a
completely new approach to the modeling of financial volatility which it conceives as
a multiplicative, hierarchically structured process. Via its particular principles of con-
struction, it allows to estimate a Markov-switching model with a high number of states
without falling victim to the curse of dimensionality. This structure gives it an interme-
diate nature between "true" long-memory processes and simple regime-switching pro-
cesses allowing to modulate the temporal dependency via its parameters and the number
of hierarchical components. The flexible regime-switching nature makes it attractive for
time series that show pronounced differences between highly volatile and more tranquil
periods (as oil prices do). Research on stock and foreign exchange markets has doc-
umented superior forecasting capabilities of MSM against traditional GARCH models
(Calvet and Fisher, 2004; Lux and Kaizoji, 2007; Lux et al., 2014). It seems interest-
ing to explore in how far these findings can be confirmed with important commodities
such as oil. As in Wei et al. (2010), we also use six different loss functions as criteria
for comparison, and then apply the predictive ability test of Hansen (2005) in order to
infer whether one particular model is outperformed by others or not. Here we prefer the
predictive ability test of Hansen (2005) to other powerful evaluation techniques existing
in the literature (cf. Diebold and Mariano, 1995; West, 1996; White, 1996) due to its
robustness, and the fact that it allows to compare a benchmark (possibly nested) model
for a whole set of competitors.

The remainder of the paper is organized as follows. Section 2 presents the descriptive
statistics of our data sets. Section 3 introduces the different volatility models. The
forecasting evaluation methodologies are presented in Section 4 and results are provided
in Section 5. Finally, Section 6 concludes.

2 Data

We use daily closing oil prices (in US dollars per barrel) of West Texas Intermediate
(WTI) over two different sample periods. The first one covers the period from January
02, 1875 to December 31, 1895 and the second one runs from January 03, 1977 to March
24, 2014. For the more recent era, we also split the sample into two different parts. This
will help us to better observe the time evolution of oil prices. The samples are driven
purely by availability of daily data at the time of writing this paper, with the data being
sourced from the Global Financial Database, https://www.globalfinancialdata.com. We

5The term multifractal refers to the fractal structure of the resulting volatility process. The MSM has
actually been adapted from very similar models that have first been developed for turbulent flows (cf.
Mandelbrot, 1974). Fractality is also a concept that plays an important role in geophysical research and
petroleum geology (cf. Barton and La Pointe, 1995), but it seems unlikely that the two aspects - fractality
of oil fields and fractality of oil price volatility - are materially related to each other.
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compute the percent continuously compounded returns rt as

rt = 100 ∗ [ln(pt) − ln(pt−1)], (1)

where pt denotes the oil price at the end of period t and pt−1 is the oil price on the
previous day.

To get some first impression of our data sets we first plot the oil prices, their log-
returns and squared log-returns (cf. Figs. 1 through 8). Their descriptive statistics are
reported in Tables 1, 2, 3 and 4. The data sets exhibit high variability, in other words the
standard deviations are very high compared to the sample means. We observe positive
skewness for the data set of pre-1900 and a negative one for the data set of post-1900.
Both data sets exhibit excess kurtosis. These results show that the computed log-returns
do not follow a Normal distribution. This observation is confirmed by the Jarque-Bera
test, which rejects the null hypothesis of Normally distributed log-returns at any level of
significance. We also apply the augmented Dickey-Fuller (ADF) unit-root test of Dickey
and Fuller (1979) to oil returns and the results clearly speak for the stationarity of both
data sets. The Hurst indices reported in Tables 1, 2, 3 and 4 are computed via Detrended
Fluctuation Analysis (DFA) (cf. Weron, 2002). The Hurst index values for log-returns
are close to 0.5 and not significantly different from this value at the 95% confidence level,
implying absence of long memory features in oil price returns. For absolute and squared
returns the Hurst index values are significantly above 0.5, indicating the presence of long
memory in oil price volatility. Finally, in order to show the decay of the unconditional
distribution of oil price returns in its extremal region, we compute the so-called Hill
estimator for the tail index (cf. Hill, 1975). We find that the estimates for the tail indices
are in the vicinity of 3 and these results are in harmony with typical findings for other
commodities and financial assets, cf. Tables 1, 2, 3 and 4.

Figs. 2, 4, 6 and 8 depict the autocorrelation functions of log-returns, absolute and
squared log-returns. We observe that the absolute and squared log-returns are highly
correlated and this observation is in conformity with the Ljung-Box statistics, Q(10) and
Q(20). The Ljung-Box tests also reject the null hypothesis of no serial correlation for
raw log-returns at the 5% significance level. This indicates the presence of some serial
dependence in the oil price log-returns. The higher statistics of the Ljung-Box statistics
for the raw returns in the 19th century might indicate a lower degree of "financialisation"
of this commodity at earlier times.

3 Model Framework

In this section we briefly present the volatility models used for our forecasting exercises.
In general, financial returns in these models are formalized as

rt = µt + σtet, (2)

4
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where rt = 100 ∗ [ln(Pt) − ln(Pt−1)], ln (Pt) is the log asset price, µt = Et−1[rt] is
the conditional mean of the return series, σt is the volatility process and et is standard
Normally distributed. Defining xt = rt − µt, the centered returns are given by

xt = σtet. (3)

In this paper we assume that µt follows an AR(1) process and consider two different
types of volatility models for describing σt, namely the linear and nonlinear GARCH-
type models and the Markov switching multifractal (MSM) model.

3.1 GARCH-type Models

The underlying idea of the autoregressive conditional heteroskedasticity (ARCH) model
was developed by Engle (1982) in his seminal paper. The ARCH model and its subse-
quent generalized versions are well known in the literature for their ability to capture the
most important stylized facts (e.g. clustering effects, long-memory and short-memory
effects, asymmetric leverage effects) observed in all measures of volatility (e.g. abso-
lute log-returns, squared log-returns, etc...). In the following we list the eight different
GARCH models used in this study.

3.1.1 The GARCH and IGARCH Models

Introduced by Bollerslev (1986) the linear GARCH model is the most popular volatility
model in the literature. In the simple, but effective GARCH(1,1) (cf. Bollerslev et al.,
1994) the conditional variance is modeled as

σ2
t = ω + αx2

t−1 + βσ2
t−1, (4)

where ω > 0, α > 0, β > 0 and α + β < 1. The nonnegativity constraints on ω, α and
β guarantee the positivity of σ2

t .
h-step ahead forecasts from GARCH(1,1) are obtained recursively as

σ̂2
t+h = ω + (α + β) σ̂2

t+h−1

= σ̄2 + (α + β)
(
σ̂2

t+h−1 − σ̄
2
)

= σ̄2 + (α + β)h−1
(
σ̂2

t+1 − σ̄
2
)
.

(5)

where σ̄2 = ω (1 − α − β)−1 is the unconditional variance. As h → ∞, it is clear that
the volatility forecast in eq. (5) approaches the unconditional variance σ̄2 and (α + β)
dictates the speed of the mean reversion.

If α + β = 1, the GARCH(1,1) reduces to the IGARCH(1,1) model proposed by
Engle and Bollerslev (1986) in order to account for infinite persistence in the conditional
variance. The h-step ahead forecast representation becomes

5
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σ̂2
t+h = ω̂ + σ̂2

t+h−1

σ̂2
t+h = ω̂h + σ̂2

t .
(6)

3.1.2 The Exponential GARCH Model

The exponential GARCH (EGARCH) model was proposed by Nelson (1991) with the
aim to capture the asymmetric relation between stock returns and volatility changes
noted by Black (1976). The conditional variance in the EGARCH (1,1) model is given
by

ln
(
σ2

t

)
= ω + αet−1 + γ (|et−1| − E [|et−1|]) + β ln

(
σ2

t−1

)
, (7)

where γ represents the asymmetric leverage parameter that quantifies the degree of the
volatility leverage effect in the model and α the magnitude. As in eq. (2), et ∼ N(0, 1)
with E [|et−1|] =

√
2/π. The model parameters are free from nonnegativity constraints.

Following the same procedures as with GARCH(1,1), the h-step ahead forecast for-
mula of the EGARCH(1,1) can be expressed as

ln σ̂2
t+h = σ̄2 + βh−1

(
ln σ̂2

t+1 − σ̄
2
)
, (8)

where σ̄2 = (ω − γ/
√

2/π)/(1 − β).

3.1.3 The Glosten/Jagannathan/Runkle GARCH Model

The GJR-GARCH model developed by Glosten et al. (1993) is designed in a way that
allows the model to account for the potential larger impact of negative shocks on return
volatility. The conditional variance in the GJR-GARCH(1,1) can be formalized as

σ2
t = ω +

[
α + γD(xt−1 < 0)

]
x2

t−1 + βσ2
t−1, (9)

where D(.) is an indicator function that takes the value 1 if xt−1 < 0 (bad news), and
0 (good news) otherwise. The parameter γ quantifies the magnitude of the asymmetric
leverage effect. The h-step ahead forecast representation of the GJR-GARCH(1,1) can
be formalized as

σ̂2
t+h = σ̄2 +

(
α + β +

γ

2

)h−1 (
σ̂2

t+1 − σ̄
2
)
, (10)

where σ̄2 = ω/(1 − α − β − γ/2) is the unconditional or long run variance.

3.1.4 The Asymmetric Power ARCH Model

The asymmetric power ARCH (APARCH) model introduced by Ding et al. (1993) aims
to reproduce both leverage and the Taylor effect, named after Taylor (1986) who first

6
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documented the fact that the sample autocorrelation of absolute returns was usually
larger than that of squared returns. The conditional variance in the APARCH(1,1) model
is given by

σδt = ω + α (|xt−1| − γxt−1)δ + βσδt−1, (11)

where δ > 0 and γ is the leverage coefficient. The APARCH(1,1) model reduces to
GARCH(1,1) when δ = 2 and γ = 0.

The h-step ahead forecast formula of the APARCH(1,1) is given by

σ̂δt+h = ω +
(
αEt

[
(|et+h−1| − γet+h−1)δ

]
+ β

)
σ̂δt+h−1

= κ + (αc + β)h−1
(
σ̂δt+1 − κ

)
,

(12)

where κ = ω(1 − αc − β)−1 is the long run variance to the power δ and c =

Et
[
(|et+h−1| − γet+h−1)δ

]
is given by

c =
1
√

2π

[
(1 + γ)δ + (1 − γ)δ

]
2
δ−1

2 Γ

(
δ + 1

2

)
.

3.1.5 The Fractionally Integrated GARCH Model

By introducing fractional differences in the GARCH process Baillie et al. (1996) ob-
tained the FIGARCH model that can reproduce the long memory property of financial
returns volatility. The FIGARCH(1,d,1) model volatility can be expressed as

σ2
t = ω +

[
1 − β(L) − φ(L)(1 − L)d

]
x2

t + βσ2
t−1, (13)

where ω > 0, φ < 1, β < 1, 0 ≤ d ≤ 1. L denotes the lag operator and d is
the parameter of fractional differentiation. The parameters have to fulfill the following
conditions:

β − d ≤ φ ≤
(2 − d)

3
(14)

and

d
[
φ −

(1 − d)
2

]
≤ β(d − β + φ). (15)

We can rewrite eq. (13) as follows

σ2
t = ω(1 − β)−1 +

[
1 − (1 − β)φ(L)(1 − L)d

]
x2

t

= ω(1 − β)−1 + η(L)x2
t ,

(16)

where η(L) = η1L + η2L2 + . . . , η j ≥ 0 for j = 1, 2, . . . .

7
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η(L) can be computed from the recursions:
η1 = φ̂ − β̂ + d̂,
...

...

η j = β̂η j−1 +
[(

j − 1 − d̂
)

j−1 − φ̂
]
π j−1

(17)

where π j ≡ π j−1
(

j − 1 − d̂
)

j−1 are the coefficients in the MacLaurin series expansion
of the fractional differencing operator (1 − L)d. As in previous research, we set the
truncation order of the infinite series (1 − L)d to 1000 lags.

The FIGARCH model reduces to the GARCH model when d = 0 and the IGARCH
model when d = 1.

From eq. (16) one can easily derive the one-step ahead forecast of σ2
t

σ̂2
t+1 = ω(1 − β)−1 + η1x2

t + η2x2
t−1 + . . . (18)

Using recursive substitution described above the h-step ahead forecasts of the FI-
GARCH(1,d,1) are obtained as

σ̂2
t+h = ω (1 − β)−1 +

h−1∑
i=1

ηiσ̂
2
t+h−i +

∞∑
j=0

ηh+ jx2
t− j. (19)

3.1.6 The Hyperbolic GARCH Model

Recently developed by Davidson (2004), the hyperbolic GARCH (HYGARCH) model
is constructed in a way that allows the model not only to reproduce long memory features
in volatility of many financial time series, but also (unlike FIGARCH) to be covariance
stationary. The HYGARCH(1,d,1) process models the conditional variance as

σ2
t = ω +

{
1 − β(L) − φ(L)

[
(1 − τ) + τ(1 − L)d

]}
x2

t + βσ2
t−1

= ω(1 − β)−1 + λ(L)x2
t

(20)

where λ(L) =
{
1 − (1 − β(L))φ(L)

[
(1 − τ) + τ(1 − L)d

]}
, ω > 0, φ < 1, β < 1, 0 ≤ d ≤

1 and τ ≥ 0. λ(L) = λ1L + λ2L2 + . . . , λ j ≥ 0 for j = 1, 2, . . . . L is the lag operator
and the HYGARCH model reduces to FIGARCH and IGARCH when τ = 1 and τ = 0,
respectively. Eqs. (14) and (15) become

β − τd ≤ φ ≤
(2 − d)

3
(21)

and

τd
[
φ −

(1 − d)
2

]
≤ β(τd − β + φ). (22)

8
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We refer the reader to Conrad (2010) for more details on the non-negativity conditions
for the HYGARCH model and for the proof for the covariance stationarity of the process.
The h-step ahead forecasts of the HYGARCH(1,d,1) are easily obtained by following the
same procedures used for FIGARCH(1,d,1).

3.1.7 The Fractionally Integrated APARCH Model

Inspired by the FIGARCH model Tse (1998) incorporates fractional differences into
the asymmetric power ARCH model of Ding et al. (1993) to obtain the fractionally
intergrated APARCH model. The FIAPARCH(1,d,1) model is defined as

σδt = ω +
[
1 − β(L) − φ(L)(1 − L)d

]
(|xt−1| − γxt−1)δ + βσδt−1, (23)

where ω > 0, φ < 1, β < 1, 0 ≤ d ≤ 1 and −1 < γ < 1.
The FIAPARCH process seems to be a promising model due to the fact that it is able to

simultaneously capture long memory and asymmetric leverage effects in the data. The
FIAPARCH model encompasses the FIGARCH model for γ = 0 and δ = 2. Follow-
ing the same procedures described above the forecasts for future variance can be easily
obtained.

Note that the parameters in all formulas for forecasting future volatility have to be
replaced by their corresponding estimates. All GARCH-type models are estimated via
(quasi-) maximum likelihood as it is customary in the literature.

3.2 The Markov-Switching Multifractal Model

The recently introduced Markov-switching multifractal models are characterized by a
multiplicative rather than additive structure of the volatility process. In the MSM frame-
work instantaneous volatility is modeled as a product of k volatility components or mul-
tipliers M1

t ,M
2
t , . . . ,M

k
t and a positive scale factor σ2 (cf. Calvet and Fisher, 2001, 2004;

Lux, 2008). Formally, we have

σ2
t = σ2

k∏
i=1

M(i)
t . (24)

The multipliers or volatility components are assumed to be independent of each other
at any time and satisfy E

[
Mi

t

]
= 1. Each multiplier Mi

t is renewed at time t with proba-
bility γi depending on its rank within the hierarchy of multipliers and remains unchanged
with probability 1−γi. In their seminal paper Calvet and Fisher (2001) derived a formal-
ization for the transition probabilities, γi, that guarantee the convergence of the discrete-
time MSM to a Poisson multifractal process in the continuous-time limit. Here we are
not interested in the continuous-time process, and therefore, we prefer to use the pre-
specified transition probabilities proposed by Lux (2008) that are given by

9
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γi = 2i−k. (25)

To fully specify the MSM model we assume that the random multipliers follow a
Lognormal6 distribution with parameters λ and ν, i.e.,

Mi
t ∼ LN(−λ, ν). (26)

We normalize the distribution of the multipliers to guarantee E
[
Mi

t

]
= 1 which leads

to

exp
(
−λ +

1
2
ν2

)
= 1. (27)

From eq. (27) it is obvious that the shape parameter ν can be expressed as: ν =
√

2λ.
With this restriction the Lognormal distribution of multipliers is fully defined by the
scale parameter λ. So, the parameters to be estimated in the Lognormal MSM (LMSM)
are only λ and σ. We carry out their estimation for all specifications k = 2, . . . , 20
using the GMM approach proposed by Lux (2008). We then choose the specification
with the lowest GMM criterion as our preferred model for the subsequent forecasting
exercise. Note that higher k increases the number of regimes (which is 2k), and generates
proximity to long memory over a larger number of lags, but comes at no additional
computational cost in our approach. The pertinent moments used for the estimation
can be found in Lux (2008). Note that maximum likelihood would be possible only
for MSM models with a finite, discrete support of the multipliers, and computationally
feasible only for a limited number of hierarchical components up to about 8.

We perform the out-of-sample forecasting on the base of the LMSM model using
the standard approach for best linear forecasts outlined in Brockwell and Davis (1991)
together with the generalized Levinson-Durbin algorithm proposed by Brockwell and
Dahlhaus (2004). The forecasting procedure is performed in two steps.

1. In the first step: We compute the following zero-mean time series

Zt = x2
t − E

[
x2

t

]
= x2

t − σ
2, (28)

where σ̂ is the estimate of the scale factor σ.

2. In the second step: Assuming that the oil price volatility data follow the stationary
process {Zt} defined in the first step, h-step best linear forecasts are given by

Ẑn+h =

n∑
i=1

ψ(h)
ni Zn+1−i = Ψ

(h)
n Zn, (29)

where the vectors of weights Ψ
(h)
n =

(
ψ(h)

n1 , ψ
(h)
n2 , . . . , ψ

(h)
nn

)′
are solutions of

6Other distributional assumptions such as Binomial, Gamma can be used as well, but have been found to
make little difference in previous literature, cf. Liu et al. (2007), Lux (2008).
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ΓΨ
(h)
n = γh

n, (30)

with γh
n = (γ(h), γ(h + 1), . . . , γ(n + h − 1))′ being the auto-covariances for the

data generating process of Zt at lags h and beyond, and Γn =
[
γ(i − j)

]
i, j=1,...,n

the pertinent variance-covariance matrix. The pertinent auto-covariances for the
multifractal model can be found in Lux (2008).

In sum, our portfolio of volatility models includes two linear GARCH mod-
els (GARCH, IGARCH), six nonlinear GARCH models (EGARCH, GJR-GARCH,
APARCH, FIGARCH, HYGARCH, FIAPARCH) and one multifractal model (LMSM).

4 Forecast Evaluation Methodologies

To obtain our forecasts we proceed as follows: We first split the pre-1900 data set con-
taining oil price observations from January 3, 1875 to December 31, 1895 into two
subgroups. The first one covers the period from January 3, 1875 to December 31, 1892
and is used as in-sample data for model estimation. The second one contains oil prices
of the last three years, i.e., from January 3, 1893 to December 31, 1895 and serves as
out-of-sample data that we use for evaluation purposes. The estimation period is rolled
forward by adding one observation and removing one day by day, so that the size of the
data set used for the estimation remains fixed over the out-of-sample period. Forecasts
are computed for horizons of various lengths: 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100 days.

Second, we take a portion of the post-1900 data that contains oil price observations
from January 6, 1992 to December 31, 2009 and split the oil price observations into
in-sample data for volatility estimation covering the period from January 6, 1992 to
December 29, 2006 and out-of-sample data stretching over the period from January 2,
2007 to December 31, 2009, which is in line with Wei et al. (2010). The great recession
of 2008-2009 after the global financial crisis of 2007-2008 caused a demand contraction
of oil and oil prices fluctuated from USD 145.31 (July 03, 2008) to USD 30.28 per barrel
(December 23, 2008). Therefore, we find that this period should be interesting for testing
the performance of our volatility models.

Third, we consider the extended data set covering the period from January 06, 1992
to March 24, 2014. This period of time does not cover only the great recession of 2008-
2009, but also the subsequent recovery of the world economy. During this period the oil
price stabilized at about USD 100 per barrel. We use oil price observations from January
6, 1992 until December 31, 2009 as in-sample data and the remaining observations, i.e.,
oil prices from January 4, 2010 to March 24, 2014 as of-out-sample data.

Finally, we also take the whole post-1900 data, i.e., from January 3, 1977 to March 24,
2014 to evaluate the contribution of a longer in-sample set. We use oil price observations
from January 3, 1977 until December 31, 2009 as in-sample data and the remaining
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observations, i.e., oil prices from January 4, 2010 to March 24, 2014 as of-out-sample
data. Note that forecasts in the second, third and fourth forecasting experiments are
computed as previously done in the first one.

4.1 Forecasting Evaluation Criteria

We evaluate the forecasting ability of our volatility models in all four forecasting exper-
iments by means of the following six different loss functions:

MSE = T−1
T∑

i=1

(
σ2

f ,t − σ
2
a,t

)2
, (31)

MAE = T−1
T∑

i=1

∣∣∣∣σ2
f ,t − σ

2
a,t

∣∣∣∣ , (32)

HMSE = T−1
T∑

i=1

1 − σ2
a,t

σ2
f ,t

2

, (33)

HMAE = T−1
T∑

i=1

∣∣∣∣∣∣∣1 − σ
2
a,t

σ2
f ,t

∣∣∣∣∣∣∣ , (34)

QLIKE = T−1
T∑

i=1

ln (
σ2

f ,t

)
+
σ2

a,t

σ2
f ,t

 , (35)

RLOG = T−1
T∑

i=1

ln
σ2

a,t

σ2
f ,t


2

, (36)

where σ2
f ,t denotes the volatility forecast obtained using a GARCH-type model or

MSM model, σ2
a,t is the daily actual volatility that is computed using the daily squared

returns, and T denotes the number of out-of-sample observations. MSE and MAE are
the mean square error and mean absolute error, respectively, and HMSE and HMAE
are their corresponding heteroscedasticity adjusted statistics. QLIKE quantifies the loss
implied by a Gaussian likelihood and RLOG puts more weight on small observations
(cf. Bollerslev et al., 1994).

All the above-mentioned loss functions are well known in the literature and each of
them can be used depending on the contexts and the objective of the users. However,
based only on these loss function criteria, it is difficult to conclude that the forecasting
performance of one model dominates that of the other one. To draw such conclusions,
we need statistical tests that can provide more reliable information. In the next section,
we briefly describe the superior predictive ability (SPA) test of Hansen (2005).
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4.2 Superior Predictive Ability Test

The superior predictive ability (SPA) test of Hansen (2005) sheds light on the relative
performance of a particular model in comparison with its competitors. In other words, it
answers the question whether any of the alternative models are better than the particular
benchmark model in terms of expected loss. The null hypothesis that the benchmark
model is not dominated by any of the other competitive models is postulated as follows

H0 : max
i=1,...,K

E [dt] ≤ 0, (37)

where dt =
(
di,t, . . . , dK,t

)′ is a vector of relative performances, di,t, that are computed
as di,t = L(0)

t,h − L(i)
t,h. K is the number of the competitive models, h denotes the forecasting

horizon and L(0)
t,h and L(i)

t,h are the loss functions at time t for a benchmark model M0 and
for its competitor models, Mi(i=1,...,K) , respectively.

The associated test statistic is given by

SPA = max
i=1,...,K

√
Td̄i√

lim
T→∞

Var(
√

Td̄i)
, (38)

where d̄ = T−1
∑

dt. We use a stationary bootstrap procedure to obtain the p-values
of the SPA. A high p-value indicates non-rejection of the null hypothesis that a particular
model is not outperformed by its competitors. We refer the reader to Hansen (2005) for
more details on technical issues.

5 Empirical Results

5.1 Estimation Results

We estimate the GARCH models via the ML approach and the results are reported in
Tables 5, 6, 7 and 8. Overall the estimates of β in GARCH, IGARCH, EGARCH, GJR-
GARCH and APARCH models are close to 1 and significant at the 1% level. While the
asymmetric leverage parameters are significant at the 1% level in the EGARCH model
in Tables 5, 6 and 7 and not significant at any level in Table 8, they are insignificant at
any level in the GJR-GARCH and APARCH models.

With the pre-1900 oil price data, the estimate of τ in the HYGARCH model is quite
close to 1 and significant at the 1% level. The estimates of δ are 1.748 in the APARCH
model and 1.315 in the FIAPARCH model. In contrast to the APARCH model the asym-
metric leverage parameter in the FIAPARCH model is significant at the 1% level. The
estimates of d in FIGARCH, HYGARCH and FIAPARCH models are significant at the
1% level and give evidence of the presence of long memory effects in oil price volatility.

13



5.2 Forecasting Results Lux/Segnon/Gupta

With the post-1900 oil price data, we first estimate the GARCH models using oil price
observations from January 6, 1992 to December 31, 2009. Here the estimate of τ in the
HYGARCH model is significant at the 1% level and different from 1. By expanding the
estimation sample, i.e. from January 6, 1992 to March 24, 2014, we do not observe a
dramatic change in the estimation results. The estimates of d are significant at the 1%
level in all long memory GARCH models.

Finally, we estimate the whole post-1900 oil price data. The estimates of d in FI-
GARCH, HYGARCH and FIAPARCH models are now equal to 1 and significant at the
1% confidence level. These results indicate the presence of infinite persistence in the oil
price data post-1900.

When we look at the estimation diagnostics, it seems that the three long memory
GARCH models perform better in terms of fitting oil price observations over all different
periods of time. In sum, the Log(L), AIC and BIC for the long memory models are
smaller than those of short memory models. Furthermore, the Ljung-Box tests on the
squared residuals and the ARCH tests also speak in favor of the long memory models.
For all three long memory models the Ljung-box tests mostly cannot reject the null
hypothesis of no serial correlation in the squared standardized residuals at the 5% level
and the ARCH tests mostly accept the null hypothesis that the standardized residuals
consist of independent identically distributed (i.i.d) Gaussian disturbances.

We now turn to the estimation of the Lognormal MSM. The best GMM objective
function implies a high number of hierarchical levels, k = 20. The estimates of the
Lognormal parameter, λ̂, and the scale factor parameter, σ̂, are reported in Table 9.
Higher λ̂ in the pre-1900 era indicates a higher degree of fractality of the series in the
19th than the 20th and 21st centuries, i.e. more pronounced changes between tranquil
and turbulent phases which is in harmony with the visual impression of more "spikyness"
in the years 1875-1895.

5.2 Forecasting Results

The results of the SPA test for our three forecasting exercises for all our volatility mod-
els are reported in Tables 10, 11, 12, 13, 14, 15, 16, and 17. The first column in each
table contains the benchmark models and each model is tested against the remaining
eight models. It also contains individual model combination forecasts that are tested
against all nine single models. The p-values of the SPA test are computed based on 5000
bootstrap samples in the empirical test under any pre-specified loss function. First, we
observe that in each case of the four forecasting exercises none of our volatility mod-
els can outperform all other models at short and long horizons across all six different
loss functions. The forecasting performance of our volatility models also differs from
one sample period to another. Often, a volatility model that provides relatively accurate
forecasts for a period of time might perform poorly in terms of forecasting performance
when expanding or reducing the sample size. However, all in all it seems that the long
memory volatility models are more appropriate to forecast oil price volatility. We also
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observe that for the more standard loss functions such as MSE or MAE, the MSM model
mostly cannot be outperformed. Based on the SPA results, we count for each of our
volatility models the cases where it cannot be outperformed by others across all time
spans and criteria. The results indicate that in 99 cases the LMSM cannot be outper-
formed by its competitor models at the 10% confidence level, followed by HYGARCH
(94 cases), FIAPARCH (89 cases), GARCH (74 cases), EGARCH (70 cases), IGARCH
(49 cases), FIGARCH (45 cases), GJR-GARCH (42 cases), and APARCH (28 cases).
Overall, the new multifractal model, therefore, appears to perform better on average
than any particular model from the GARCH family. This is particularly remarkable as
(i) it has fewer parameters than all GARCH-type models (i.e., only two while the second
best, the HYGARCH model, comes with five parameters that have to be estimated), (ii)
our estimation and forecasting methods used for the multifractal model are not the most
efficient ones, while we have used the most efficient ML estimates and conditional ex-
pectations based upon those to compute forecasts for the GARCH family. Across time
periods and criteria we find the following tendencies: First, the MSM and FIAPARCH
do well and cannot be rejected as non-dominated models for the 19th century data and
for the 2010-2014 out-of-sample period. Both do not perform well for the 2007-2009
out-of-sample period. The HYGARCH model gains its prominent rank particularly from
its better performance in this period, but also other short-memory GARCH-type models
do better in this period than in the others. Presumably, the higher volatility in the cri-
sis period rewards a concentration on the short-run dynamics rather than long trends in
volatility. Across criteria, the RLOG statistic is typically an outlier in its patterns of SPA
results which is not surprising given the higher weight it attributes to small rather than
large events.

The difficulty to discover a uniformly best model across all six different loss func-
tions at short and long horizons motivates us to also try simple average forecast com-
binations. Granger and Teräsvirta (1999) and Aiolfi and Timmermann (2006) pointed
out that it is often preferable to combine forecasts from competitive models in a lin-
ear way and thereby generate hopefully superior predictions. Following this idea, we
adopt two different combination strategies. The first combination strategy is given by
equally weighted linear combinations of short memory GARCH-type models (GARCH,
IGARCH, GJR-GARCH, EGARCH and APARCH) and long memory GARCH-type
and MSM models (FIGARCH, HYGARCH, FIAPARCH and LMSM). The second one
is also obtained by equally weighted linear combinations of long memory GARCH-type
models and the LMSM. Both combination strategies shed light on the complementarities
of the short- and long-memory GARCH models on the one side and the complementar-
ities of two classes of volatility models, GARCH-type and MSM, on the other side.
In fact, both strategies lead to a high number of forecast combinations. To reduce the
number of forecast combinations we only considered GARCH-type models that have
the highest p-values according to the SPA test results for our single volatility models.
Note that this selection criterion does not hold for the LMSM, so that we always com-
bined the best GARCH-type models in terms of their p-values with the LMSM in order
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to explore their complementarities. This selection criterion for GARCH-type models
led to different forecast combinations for different loss functions. The new predictor is
tested against the single models and the test results are reported in Tables 10, 11, 12,
13, 14, 15, 16, and 17. The results are diverse: First, one often observes that forecast
combinations of two relatively successful models do not necessarily improve perfor-
mance against single models. This holds particularly for combinations of short-memory
GARCH specifications. Combinations of long-memory GARCH models with the MSM
model are more often successful, but we nevertheless find cases where the combination
of well performing single models can be outperformed by the forecasts from one or more
of those single models. This exercise underlines that forecast combination is a delicate
operation: There is apparently no guarantee that two good models are complementary
in their virtues, they could also lead to an overall deterioration when applied in combi-
nation. This underscores the necessity of finding more elaborate rules for combinations
that are data-driven and react on the single models’ advantages and disadvantages.

6 Conclusion

This paper has analyzed the forecasting performance of two classes of volatility models,
namely the GARCH-type models and the MSM model via six different loss functions
and the superior predictive ability test. The analysis is performed by using a large sam-
ple of oil prices of the pre- and post-1900 period. Results were largely uniform for the
data of the 19th century and the later record of the 20th/21st centuries with the crisis
period 2007 - 2009 showing somewhat unusual behavior. Empirical results of the SPA
test indicate that none of the volatility models including the MSM model can outper-
form their competitor models under all loss criteria. As it turned out, however, the new
MSM model most often cannot be outperformed when standard loss functions are used.
Across all forecasting horizons and subsamples used, it is the model that in the high-
est number of cases cannot be outperformed by any other models, and, in this respect,
it beats all simple models from our broad selection of GARCH-type processes. Fore-
cast combination exercises point to more robustness of combinations of long-memory
GARCH and MSM models rather than short-memory GARCH models. However, supe-
rior forecast performance of combined models against their single components is in no
way guaranteed.

All in all, the MSM model appears a valuable addition to the toolbox of volatility
models not only for financial assets, but also for commodities like oil. Given its highest
number of non-rejections by the SPA test, it comes out as the more robust model com-
pared to any GARCH specification, and it also is the most parsimonious one among all
candidates considered.
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Table 1: Descriptive statistics of the data pre-1900

Log-returns Absolute returns Squared returns

6376 observations (from January 02,1875 to Decem 31, 1895)

Minimum -16.186 0 0

Maximum 33.647 33.647 1.132E+3

Mean -0.007 1.439 5.129

Standard deviation 2.265 1.749 21.291

Skewness 0.752 3.715 29.944

Kurtosis 18.240 34.497 1.460E+3

Hurst index 0.540 0.842∗∗∗ 0.868∗∗∗

Hill tail index at 5% tail 2.547 [2.485 2.610]

Q(10) 79.177 2.467E+3 659.798

Q(20) 100.685 3.169E+3 712.731

JB 5.343E+4

ADF - 73.875

Note: ∗∗∗ indicates 1% significance of Hurst coefficients based on the simulated boundary values of Weron (2002) for
Wiener Brownian motion. For the tail index estimates, the brackets contain the 95% percent confidence intervals of the
point estimate based upon the limiting distribution of the estimator.

Table 2: Descriptive statistics of the data post-1900 containing oil prices from Jan
06,1992 to December 31, 2009

Log-returns Absolute returns Squared returns

4521 observations (from January 06,1992 to December 31, 2009)

Minimum -17.092 0 0

Maximum 16.414 17.092 292.129

Mean 0.031 1.748 6.078

Standard deviation 2.466 1.739 16.326

Skewness -0.154 2.700 8.361

Kurtosis 8.222 15.256 99.210

Hurst index 0.490 0.856∗∗∗ 0.905∗∗∗

Hill tail index at 5% tail 2.797 [2.716 2.879]

Q(10) 31.015 1099.7 875.701

Q(20) 42.686 2051.1 1556.1

JB 5155.4

ADF - 68.396

Note: ∗∗∗ indicates 1% significance of Hurst coefficients based on the simulated boundary values of Weron (2002) for
Wiener Brownian motion. For the tail index estimates, the brackets contain the 95% percent confidence intervals of the
point estimate based upon the limiting distribution of the estimator.
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Table 3: Descriptive statistics of the data post-1900 containing oil prices from Jan
06,1992 to March 24, 2014

Log-returns Absolute returns Squared returns

5590 observations (from January 06,1992 to March 24, 2014)

Minimum -17.092 0 0

Maximum 16.414 17.092 292.129

Mean 0.030 1.654 5.482

Standard deviation 2.341 1.657 15.030

Skewness -0.145 2.753 8.889

Kurtosis 8.525 15.993 113.634

Hurst index 0.471 0.868∗∗∗ 0.910∗∗∗

Hill tail index at 5% tail 2.899 [2.823 3.975]

Q(10) 31.447 1.419E+3 1.127E+3

Q(20) 41.038 2.647E+3 1.999E+3

JB 7.129E+3

ADF -75.996

Note: ∗∗∗ indicates 1% significance of Hurst coefficients based on the simulated boundary values of Weron (2002) for
Wiener Brownian motion. For the tail index estimates, the brackets contain the 95% percent confidence intervals of the
point estimate based upon the limiting distribution of the estimator.

Table 4: Descriptive statistics of the complete data post-1900

Log-returns Absolute returns Squared returns

9417 observations (from January 03,1977 to March 24, 2014)

Minimum -40.204 0 0

Maximum 19.861 40.204 1614.4

Mean 0.021 1.363 4.922

Standard deviation 2.219 1.751 22.929

Skewness -0.832 3.962 40.176

Kurtosis 22.738 42.191 2624.4

Hurst index 0.517 0.938∗∗∗ 0.944∗∗∗

Hill tail index at 5% tail 2.668 [2.614 2.722]

Q(10) 52.030 7.804E+3 1.458E+3

Q(20) 75.992 1.458E+4 1.681E+3

JB 1.540E+5

ADF -98.326

Note: ∗∗∗ indicates 1% significance of Hurst coefficients based on the simulated boundary values of Weron (2002) for
Wiener Brownian motion. For the tail index estimates, the brackets contain the 95% percent confidence intervals of the
point estimate based upon the limiting distribution of the estimator.
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Table 5: Estimation results using oil prices from January 2, 1875 to December 31, 1895

GARCH IGARCH EGARCH GJR-GARCH APARCH FIGARCH HYGARCH FIAPARCH

ω 0.066 0.065 0.083 0.066 0.074 0.301 0.277 0.224
(0.033) (0.029) (0.016) (0.035) (0.052) (0.040) (0.054) (0.051)

α 0.127 0.128 0.007 0.127 0.131
(0.027) (0.033) (0.012) (0.028) (0.029)

β 0.871 0.872 0.961 0.872 0.869 0.550 0.550 0.524
(0.030) (0.033) (0.011) (0.031) (0.038) (0.080) (0.078) (0.097)

γ 0.302 0.001 0.002 -0.239
(0.037) (0.003) (0.001) (0.062)

δ 1.748 1.315
(0.776) (0.114)

φ 0.254 0.255 0.302
(0.052) (0.051) (0.056)

d 0.493 0.489 0.396
(0.049) (0.047) (0.062)

τ 1.012
(0.019)

Diagnostic

Log(L) -12806 -12806 -12757 -12806 -12802 -12749 -12749 -12729

AIC 25618 25618 25522 25620 25614 25506 25508 25470

BIC 25638 2538 25550 25647 25648 25533 25541 25511

Q(20) 37.248 37.240 34.517 37.263 37.349 32.905 32.782 32.309
[0.011] [0.011] [0.023] [0.011] [0.011] [0.035] [0.036] [0.040]

Q2(20) 28.591 28.561 30.376 28.585 31.990 16.956 16.862 22.671
[0.090] [0.097] [0.064] [0.096] [0.043] [0.656] [0.662] [0.305]

Arch(20) 27.544 27.525 29.137 27.536 30.653 16.490 16.395 22.105
[0.121] [0.121] [0.085] [0.121] [0.060] [0.686] [0.692] [0.335]

Note: The numbers in parentheses are standard errors of the estimations. Log(L) is the logarithm maximum likelihood
function. AIC and BIC are the Akaike and Bayesian information criterion respectively. Q(20) and Q2(20) are the Ljung-
Box Q-statistics of order 20 obtained from the standardized residuals and squared standardized residuals respectively.
ARCH(20) denotes the no conditional heteroscedasticity statistic of order 20. The values reported in square brackets are
the p-values of the statistics.
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Table 6: Estimation results using oil prices from January 06,1992 to December 31, 2009

GARCH IGARCH EGARCH GJR-GARCH APARCH FIGARCH HYGARCH FIAPARCH

ω 0.052 0.033 0.027 0.051 0.046 0.569 0.255 0.197
(0.022) (0.017) (0.016) (0.022) (0.026) (0.132) (0.106) (0.186)

α 0.064 0.068 -0.005 0.068 0.072
(0.017) (0.019) (0.008) (0.029) (0.019)

β 0.929 0.932 0.988 0.930 0.928 0.469 0.414 0.382
(0.017) (0.019) (0.028) (0.019) (0.002) (0.083) (0.026) (0.090)

γ 0.156 -0.008 0.003 -0.132
(0.019) (0.028) (0.021) (0.068)

δ 1.63 1.889
(0.241) (0.175)

φ 0.214 0.204 0.211
(0.092) (0.056) (0.072)

d 0.364 0.290 0.261
(0.046) (0.059) (0.052)

τ 1.112
(0.281)

Diagnostic

Log(L) -10024 -10026 -10022 -10023 -10020 -10014 -10013 -10008

AIC 20054 20056 20052 20055 20054 20037 20035 20029

BIC 20073 20069 20078 20081 20082 20062 20068 20067

Q(20) 19.655 19.418 21.498 19.502 20.389 22.225 22.506 22.991
[0.480] [0.495] [0.368] [0.489] [0.434] [0.328] [0.314] [0.289]

Q2(20) 43.085 42.259 49.062 43.338 45.733 30.682 29.907 30.403
[0.002] [0.003] [<0.001] [0.002] [<0.001] [0.060] [0.071] [0.064]

Arch(20) 37.525 36.912 41.822 37.727 39.417 28.478 27.943 28.193
[0.010] [0.012] [0.003] [0.010] [0.006] [0.099] [0.111] [0.105]

Note: The numbers in parentheses are standard errors of the estimations. Log(L) is the logarithm maximum likelihood
function. AIC and BIC are the Akaike and Bayesian information criterion respectively. Q(20) and Q2(20) are the Ljung-
Box Q-statistics of order 20 obtained from the standardized residuals and squared standardized residuals respectively.
ARCH(20) denotes the no conditional heteroscedasticity statistic of order 20. The values reported in square brackets are
the p-values of the statistics.
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Table 7: Estimation results oil prices from from January 06,1992 to March 24, 2014

GARCH IGARCH EGARCH GJR-GARCH APARCH FIGARCH HYGARCH FIAPARCH

ω 0.041 0.028 0.022 0.041 0.039 0.431 0.149 4.982E-5
(0.020) (0.013) (0.010) (0.019) (0.071) (0.105) (0.153) (3.558E−5)

α 0.063 0.067 0.144 0.057 0.069
(0.017) (0.017) (0.038) (0.021) (0.034)

β 0.931 0.933 0.989 0.932 931 0.491 0.431 0.135
(0.018) (0.017) (0.005) (0.017) (0.053) (0.138) (0.124) (0.049)

γ 0.221 0.011 -0.017 -0.999
(0.026) (0.020) (0.009) (0.312)

δ 1.610 1.574
(0.817) (0.195)

φ 0.251 0.238 0.111
(0.132) (0.127) (0.041)

d 0.360 0.285 0.070
(0.044) (0.054) (0.020)

τ 1.113
(0.069)

Diagnostic

Log(L) -12074 -12076 -12069 -12073 -12068 -12061 -12059 -12069

AIC 24154 24156 24147 24154 24146 24130 24128 24149

BIC 24174 24170 24173 24181 24179 24157 24161 24189

Q(20) 17.345 17.195 19.311 17.682 18.507 20.055 20.352 22.334
[0.631] [0.640] [0.502] [0.608] [0.554] [0.455] [0.436] [0.323]

Q2(20) 47.267 46.878 55.311 47.102 50.154 29.610 28.514 36.200
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [0.076] [0.098] [0.015]

Arch(20) 41.457 41.263 47.483 41.304 43.473 27.511 26.755 33.973
[0.003] [0.003] [<0.001] [0.003] [0.001] [0.122] [0.142] [0.026]

Note: The numbers in parentheses are standard errors of the estimations. Log(L) is the logarithm maximum likelihood
function. AIC and BIC are the Akaike and Bayesian information criterion respectively. Q(20) and Q2(20) are the Ljung-
Box Q-statistics of order 20 obtained from the standardized residuals and squared standardized residuals respectively.
ARCH(20) denotes the no conditional heteroscedasticity statistic of order 20. The values reported in square brackets are
the p-values of the statistics.
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Table 8: Estimation results oil prices from from January 03,1977 to March 24, 2014

GARCH IGARCH EGARCH GJR-GARCH APARCH FIGARCH HYGARCH FIAPARCH

ω 3.852E-4 3.846E-4 0.031 3.791E-4 2.098E-4 0.004 0.004 0.011
(1.986E−4) (1.946E−4) (0.006) (1.949E−4) (4.187E−4) (0.002) (0.002) (0.013)

α 0.079 0.079 0.221 0.074 0.088
(0.008) (0.009) (0.027) (0.015) (0.017)

β 0.921 0.921 0.987 0.921 912 0.924 0.914 0.921
(0.009) (0.009) (0.004) (0.009) (0.033) (0.014) (0.018) (0.016)

γ -0.016 0.010 -0.029 -0.203
(0.015) (0.019) (0.268) (0.016)

δ 2.250 1.591
(0.893) (0.097)

φ 4.632E-8 3.123E-8 1.898E-7
(1.405E−8) (1.173E−8) (9.175E−7)

d 1.000 1.000 1.00
(0.023) (0.038) (0.031)

τ 1.017
(0.006)

Diagnostic

Log(L) -16182 -16180 -15963 -16180 -16131 -16114 -16047 -16030

AIC 32370 32365 31933 32368 32273 32236 32103 32072

BIC 32392 32379 31962 32397 32308 32264 32139 32115

Q(20) 177.286 177.450 132.202 179.483 177.855 187.193 193.544 204.216
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Q2(20) 12.904 12.866 7.523 13.313 12.836 11.969 9.567 8.820
[0.882] [0.883] [0.995] [0.864] [0.884] [0.917] [0.974] [0.984]

Arch(20) 12.708 12.672 7.530 13.110 13.073 11.764 9.807 8.824
[0.890] [0.891] [<0.0.994] [0.873] [0.874] [0.924] [0.972] [0.985]

Note: The numbers in parentheses are standard errors of the estimations. Log(L) is the logarithm maximum likelihood
function. AIC and BIC are the Akaike and Bayesian information criterion respectively. Q(20) and Q2(20) are the Ljung-
Box Q-statistics of order 20 obtained from the standardized residuals and squared standardized residuals respectively.
ARCH(20) denotes the no conditional heteroscedasticity statistic of order 20. The values reported in square brackets are
the p-values of the statistics.

Table 9: Estimation results of LMSM model

Parameters Jan 2, 1875 to Dec 31, 1895 Jan 6, 1992 to Dec 31, 2009 Jan 6, 1992 to March 24, 2014 Jan 3, 1977 to March 24, 2014

λ 1.320 1.016 1.034 1.011

σ 2.252 2.465 2.341 2.218

Note that the optimal objective function of the GMM estimation is obtained for k = 20.
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Table 10: Superior predictive ability (SPA) test results using oil price observations from
January 3, 1875 to December 31, 1892 as in-sample and from January 3, 1893
to December 31, 1895 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

MSE

GARCH 0.020 0.062 0.156 0.090 0.070 0.040 0.074 0.046 0.134 0.432 0.012 0.004

IGARCH 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.008 0.032 0.016 0.022 0.084 0.058 0.338 0.080 0.226 0.226 0.604 0.632

EGARCH 0.020 0.118 0.740 0.644 0.656 0.688 1.000 0.766 0.980 0.752 0.578 0.170

APARCH 0.004 0.014 0.002 0.004 0.018 0.014 0.542 0.032 0.234 0.400 0.928 0.836

FIGARCH 0.012 0.092 0.700 0.554 0.040 0.016 0.076 0.066 0.088 0.018 0.004 0.000

HYGARCH 1.000 0.380 0.148 0.032 0.024 0.038 0.038 0.034 0.038 0.026 0.020 0.014

FIAPARCH 0.044 0.732 0.602 0.450 0.176 0.052 0.078 0.050 0.050 0.028 0.022 0.018

LMSM 0.042 0.170 0.880 0.924 0.404 0.312 0.316 0.270 0.240 0.204 0.130 0.126

FCOM1 0.004 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM11 0.026 0.202 1.000 0.931 0.992 1.000 0.846 0.305 0.348 0.305 0.185 0.139

FCOM111 0.049 0.216 0.999 0.864 0.468 0.086 0.209 0.127 0.153 0.231 0.047 0.012

MAE

GARCH 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.002 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 1.000 0.512 0.360 0.098 0.060 0.066 0.058 0.046 0.052 0.080 0.062 0.080

FIAPARCH 0.020 0.488 0.984 1.000 0.574 0.292 0.344 0.276 0.192 0.170 0.142 0.144

LMSM 0.000 0.018 0.250 0.056 0.486 0.708 0.656 0.724 0.808 1.000 1.000 1.000

FCOM2 0.000 0.000 0.005 0.000 0.007 0.048 0.015 0.062 0.131 0.102 0.073 0.076

FCOM21 0.000 0.045 0.460 0.207 0.725 0.485 0.988 0.505 0.355 0.222 0.198 0.193

HMSE

GARCH 0.102 0.118 0.070 0.058 0.042 0.062 0.034 0.054 0.014 0.022 0.038 0.032

IGARCH 0.024 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

GJR-GARCH 0.020 0.032 0.066 0.046 0.008 0.022 0.010 0.036 0.022 0.016 0.032 0.018

EGARCH 0.008 0.056 0.042 0.038 0.018 0.032 0.024 0.028 0.020 0.016 0.028 0.024

APARCH 0.008 0.036 0.076 0.050 0.014 0.030 0.018 0.040 0.008 0.020 0.034 0.030

FIGARCH 0.084 0.130 0.072 0.058 0.032 0.062 0.032 0.054 0.020 0.022 0.042 0.030

HYGARCH 1.000 0.048 0.082 0.064 0.022 0.088 0.010 0.050 0.006 0.034 0.058 0.030

FIAPARCH 0.040 0.112 0.072 0.052 0.014 0.052 0.008 0.026 0.020 0.030 0.056 0.014

LMSM 0.068 0.040 0.032 0.036 0.026 0.050 0.036 0.046 0.022 0.016 0.034 0.030

FCOM3 0.007 0.232 0.079 0.061 0.033 0.053 0.036 0.047 0.032 0.035 0.041 0.021

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is
that a base model cannot be outperformed by other competitor models. The values in bold face repre-
sent the p-values that are greater than or equal to the 10% confidence level under a pre-specified loss func-
tion. We combine: FCOM1=EGARCH+APARCH, FCOM11=EGARCH+LMSM, FCOM111=FIAPARCH+LMSM,
FCOM2=HYGARCH+FIAPARCH+LMSM, FCOM21=FIAPARCH+LMSM, and FCOM3=IGARCH+HYGARCH+

LMSM.
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Table 11: Superior predictive ability (SPA) test results using oil price observations from
January 3, 1875 to December 31, 1892 as in-sample and from January 3, 1893
to December 31, 1895 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

HMAE

GARCH 0.012 0.060 0.046 0.046 0.018 0.044 0.012 0.020 0.004 0.012 0.006 0.006

IGARCH 0.006 1.000 1.000 1.000 1.000 0.016 0.008 0.012 0.000 0.002 0.012 0.002

GJR-GARCH 0.010 0.020 0.040 0.034 0.012 0.014 0.010 0.020 0.010 0.014 0.022 0.016

EGARCH 0.006 0.006 0.006 0.006 0.005 0.030 0.012 0.006 0.004 0.004 0.006 0.002

APARCH 0.006 0.008 0.020 0.016 0.006 0.026 0.008 0.012 0.004 0.004 0.022 0.008

FIGARCH 0.002 0.064 0.042 0.038 0.006 0.028 0.008 0.014 0.004 0.006 0.014 0.002

HYGARCH 1.000 0.010 0.018 0.010 0.000 0.026 0.000 0.004 0.000 0.002 0.004 0.000

FIAPARCH 0.050 0.094 0.042 0.020 0.004 0.018 0.002 0.002 0.000 0.002 0.004 0.000

LMSM 0.002 0.008 0.006 0.006 0.004 1.000 1.000 1.000 1.000 1.000 1.000 1.000

FCOM4 0.000 0.695 0.089 0.058 0.017 0.025 0.011 0.031 0.013 0.018 0.019 0.000

FCOM41 0.000 0.165 0.056 0.044 0.015 0.024 0.007 0.017 0.004 0.007 0.012 0.000

QLIKE

GARCH 0.000 0.566 0.960 0.846 0.160 0.032 0.260 0.154 0.362 0.500 0.066 0.024

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.006 0.540 0.606 0.778 0.664 0.508 0.546 0.650 0.870

EGARCH 0.000 0.060 0.520 0.250 0.992 0.962 0.570 0.846 0.714 0.878 0.432 0.162

APARCH 0.000 0.000 0.000 0.004 0.600 0.524 0.402 0.308 0.632 0.604 0.524 0.302

FIGARCH 0.000 0.518 0.220 0.172 0.072 0.052 0.014 0.022 0.006 0.014 0.022 0.000

HYGARCH 1.000 0.786 0.224 0.128 0.062 0.062 0.022 0.030 0.010 0.014 0.024 0.004

FIAPARCH 0.000 0.156 0.146 0.082 0.042 0.042 0.018 0.024 0.012 0.014 0.014 0.004

LMSM 0.000 0.164 0.930 0.616 0.396 0.366 0.344 0.238 0.192 0.128 0.082 0.076

FCOM5 0.000 0.002 0.893 0.322 0.997 0.676 0.742 0.666 0.758 0.600 0.324 0.075

FCOM51 0.000 0.000 0.939 0.275 0.775 0.997 0.671 0.698 0.554 0.462 0.347 0.239

FCOM511 0.000 0.001 0.793 0.382 1.000 1.000 1.000 0.540 0.619 0.593 0.560 0.330

FCOM5111 0.000 0.494 0.870 0.676 0.455 0.143 0.247 0.100 0.155 0.088 0.074 0.038

RLOG

GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

FIAPARCH 0.834 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LMSM 0.023 0.902 0.453 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM61 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM611 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is that a base model cannot
be outperformed by other competitor models. The values in bold face represent the p-values that are greater than or equal
to the 10% confidence level under a pre-specified loss function. We combine: FCOM4=IGARCH+HYGARCH+LMSM,
FCOM41=HYGARCH+LMSM, FCOM5=GARCH+GJR-GARCH+EGARCH, FCOM51=GJR-GARCH+EGARCH+

HYGARCH, FCOM511=EGARCH+GJR-GARCH+LMSM, FCOM5111=HYGARCH+LMSM, FCOM6=GARCH+

HYGARCH, FCOM61=HYGARCH+FIAPARCH, and FCOM611=HYGARCH+LMSM.
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Table 12: Superior predictive ability (SPA) test results using oil price observations from
January 6, 1992 to December 29, 2006 as in-sample and from January 2, 2007
to December 31, 2009 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

MSE

GARCH 0.002 0.282 0.780 0.820 0.294 0.532 0.410 0.894 0.302 0.314 0.100 0.100

IGARCH 0.002 0.004 0.002 0.004 0.000 0.004 0.016 0.088 0.960 0.938 0.550 0.828

GJR-GARCH 0.004 0.008 0.004 0.002 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.002 0.000 0.004 0.006 0.000 0.006 0.010 0.036 0.128 0.260 0.626 0.172

APARCH 0.000 0.002 0.002 0.004 0.000 0.002 0.000 0.000 0.008 0.002 0.004 0.040

FIGARCH 0.000 0.122 0.020 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 1.000 0.838 0.332 0.222 0.706 0.536 0.654 0.170 0.294 0.010 0.000 0.000

FIAPARCH 0.000 0.006 0.004 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000

LMSM 0.002 0.080 0.018 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM1 0.003 0.068 0.027 0.042 0.012 0.014 0.089 0.006 0.000 0.000 0.001 0.002

FCOM11 0.002 0.235 0.111 0.124 0.383 0.767 0.573 0.286 0.004 0.000 0.000 0.000

FCOM111 0.003 0.310 0.500 0.670 0.636 0.993 0.994 0.302 0.012 0.000 0.000 0.000

MAE

GARCH 0.000 0.016 0.016 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.826 0.680 0.268 0.810 0.238 0.180 0.002 0.002 0.000 0.000 0.000

GJR-GARCH 0.000 0.596 0.420 0.114 0.930 0.970 1.000 1.000 1.000 1.000 1.000 1.000

EGARCH 0.000 0.074 0.254 0.798 0.786 0.444 0.064 0.012 0.000 0.000 0.000 0.000

APARCH 0.000 0.202 0.760 0.184 0.310 0.058 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.006 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 0.124 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIAPARCH 0.902 0.084 0.054 0.028 0.518 0.144 0.078 0.056 0.038 0.126 0.036 0.116

LMSM 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM2 0.002 0.342 0.002 0.194 0.858 0.706 0.086 0.015 0.000 0.000 0.000 0.000

FCOM21 0.002 0.588 0.166 0.017 0.909 0.394 0.255 0.016 0.009 0.000 0.000 0.000

FCOM211 0.025 0.456 0.297 0.043 0.868 0.640 0.426 0.333 0.252 0.414 0.179 0.382

HMSE

GARCH 0.038 0.152 0.796 0.104 1.000 0.854 0.148 0.806 0.390 0.282 0.086 0.000

IGARCH 0.000 0.002 0.002 0.000 0.000 0.022 0.018 0.104 0.308 0.874 0.408 0.734

GJR-GARCH 0.000 0.002 0.002 0.000 0.000 0.004 0.000 0.008 0.006 0.000 0.002 0.002

EGARCH 0.000 0.002 0.002 0.000 0.000 0.000 0.010 0.030 0.036 0.512 0.592 0.266

APARCH 0.000 0.000 0.006 0.000 0.000 0.002 0.006 0.012 0.008 0.010 0.008 0.004

FIGARCH 0.008 0.128 0.096 0.010 0.054 0.028 0.020 0.024 0.026 0.008 0.006 0.000

HYGARCH 1.000 1.000 0.204 1.000 0.108 0.146 0.852 0.240 0.874 0.144 0.056 0.020

FIAPARCH 0.000 0.086 0.070 0.018 0.040 0.028 0.002 0.000 0.002 0.010 0.000 0.010

LMSM 0.078 0.122 0.020 0.026 0.050 0.034 0.022 0.016 0.034 0.018 0.012 0.006

FCOM3 0.000 0.001 0.015 0.002 0.011 0.033 0.175 0.032 0.007 0.011 0.016 0.007

FCOM31 0.000 0.027 0.057 0.031 0.022 0.064 0.831 0.158 0.013 0.020 0.019 0.012

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is that a base model can-
not be outperformed by other competitor models. The values in bold face represent the p-values that are greater than or
equal to the 10% confidence level under a pre-specified loss function. We combine: FCOM1=GARCH+IGARCH,
FCOM11=GARCH+IGARCH+HYGARCH, FCOM111=HYGARCH+LMSM, FCOM2=GJR-GARCH+EGARCH,
FCOM21=GJR-GARCH+IGARCH, FCOM211=GJR-GARCH+FIAPARCH, FCOM3=GARCH+IGARCH and
FCOM31=GARCH+IGARCH+HYGARCH.
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Table 13: Superior predictive ability (SPA) test results using oil price observations from
January 6, 1992 to December 29, 2006 as in-sample and from January 2, 2007
to December 31, 2009 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

HMAE

GARCH 0.000 0.136 0.292 0.062 0.594 0.490 0.060 0.518 0.216 0.758 0.068 0.000

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.038 0.666 0.798 1.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.144 0.312 0.026

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.030 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 1.000 1.000 0.708 1.000 0.406 0.510 1.000 0.482 0.784 0.412 0.010 0.000

FIAPARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LMSM 0.000 0.016 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM4 0.000 0.302 0.721 0.216 0.837 1.000 0.517 0.167 0.000 0.000 0.000 0.000

FCOM41 0.000 0.018 0.002 0.003 0.005 0.003 0.001 0.012 0.001 0.000 0.000 0.000

QLIKE

GARCH 0.000 0.286 0.662 0.158 0.808 0.764 0.116 0.772 0.546 0.068 0.010 0.002

IGARCH 0.000 0.000 0.000 0.000 0.000 0.002 0.014 0.098 0.752 1.000 0.560 1.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.034 0.138 0.238 0.440 0.084

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.144 0.022 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 1.000 0.790 0.338 0.842 0.192 0.236 0.884 0.316 0.564 0.076 0.000 0.000

FIAPARCH 0.000 0.004 0.002 0.002 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LMSM 0.000 0.022 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM5 0.000 0.034 0.011 0.026 0.013 0.015 0.090 0.005 0.000 0.000 0.001 0.001

FCOM51 0.000 0.379 0.995 0.360 0.532 0.641 0.925 0.054 0.000 0.001 0.002 0.000

FCOM511 0.000 0.170 0.129 0.131 0.167 0.141 0.025 0.043 0.001 0.001 0.002 0.000

RLOG

GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.002

IGARCH 0.002 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.002 0.014 0.006 0.002 0.004 0.016 0.012 0.012 0.008

EGARCH 0.742 0.882 1.000 1.000 0.082 0.004 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.458 0.118 0.008 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIAPARCH 0.444 0.000 0.000 0.080 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LMSM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM6 1.000 0.006 0.031 0.200 0.180 0.016 0.002 0.002 0.006 0.006 0.002 0.000

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is
that a base model cannot be outperformed by other competitor models. The values in bold face repre-
sent the p-values that are greater than or equal to the 10% confidence level under a pre-specified loss func-
tion. We combine: FCOM4=GARCH+HYGARCH, FCOM41=HYGARCH+LMSM, FCOM5=GARCH+IGARCH,
FCOM51=GARCH+HYGARCH, FCOM511=HYGARCH+LMSM and FCOM6=EGARCH+FIAPARCH.
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Table 14: Superior predictive ability (SPA) test results using oil price observations from
January 6, 1992 to December 31, 2009 as in-sample and from January 4, 2010
to March 24, 2014 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

MSE

GARCH 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.004 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.000 0.020 0.040 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.002 0.024 0.002 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000

HYGARCH 1.000 0.032 0.000 0.012 0.008 0.100 0.094 0.076 0.086 0.002 0.042 0.076

FIAPARCH 0.018 0.106 0.160 0.186 0.196 0.370 0.694 0.526 0.728 0.754 0.864 1.000

LMSM 0.004 1.000 1.000 0.866 0.872 0.704 0.306 0.558 0.334 0.246 0.136 0.082

FCOM1 0.104 0.495 0.400 0.387 0.484 0.824 0.852 0.850 0.997 0.967 0.678 0.716

FCOM11 0.018 0.652 0.606 0.695 0.808 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MAE

GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.007 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.008 0.006

HYGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.011

FIAPARCH 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000

LMSM 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.876 0.901

FCOM2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM211 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HMSE

GARCH 0.054 0.068 0.008 0.178 0.194 0.560 0.450 0.314 0.104 0.098 0.072 0.110

IGARCH 0.004 0.002 0.004 0.008 0.008 0.004 0.010 0.018 0.022 0.012 0.044 0.020

GJR-GARCH 0.004 0.002 0.004 0.006 0.006 0.008 0.008 0.014 0.004 0.008 0.018 0.008

EGARCH 0.006 0.002 0.006 0.012 0.004 0.028 0.032 0.720 1.000 1.000 1.000 1.000

APARCH 0.006 0.004 0.004 0.008 0.004 0.014 0.006 0.010 0.000 0.026 0.054 0.066

FIGARCH 0.052 0.194 1.000 0.908 0.826 0.440 0.762 0.156 0.036 0.052 0.086 0.060

HYGARCH 1.000 0.888 0.040 0.124 0.076 0.064 0.090 0.032 0.026 0.024 0.046 0.058

FIAPARCH 0.004 0.032 0.022 0.014 0.008 0.010 0.000 0.004 0.000 0.000 0.000 0.002

LMSM 0.012 0.212 0.088 0.018 0.044 0.084 0.076 0.054 0.056 0.036 0.054 0.038

FCOM3 0.035 0.005 0.014 0.013 0.005 0.097 0.134 0.995 0.067 0.066 0.086 0.084

FCOM31 0.039 0.006 0.016 0.019 0.012 0.130 0.092 0.957 0.051 0.061 0.078 0.083

FCOM311 0.002 0.482 0.068 0.134 0.076 0.270 0.111 0.040 0.083 0.065 0.072 0.085

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is that
a base model cannot be outperformed by other competitor models. The values in bold face represent the
p-values that are greater than or equal to the 10% confidence level under a pre-specified loss function.
We combine: FCOM1=HYGARCH+FIAPARCH, FCOM11=FIAPARCH+LMSM, FCOM2=GARCH+FIAPARCH,
FCOM21=GARCH+LMSM, FCOM211=FIAPARCH+LMSM, FCOM3=GARCH+EGARCH, FCOM31=EGARCH
+FIGARCH and FCOM311=FIGARCH+HYGARCH.
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Figure 1: Plot of oil prices, log-returns and squared returns (from January 2, 1875 to
December 31, 1895)

32



References Lux/Segnon/Gupta

Table 15: Superior predictive ability (SPA) test results using oil price observations from
January 6, 1992 to December 31, 2009 as in-sample and from January 4, 2010
to March 24, 2014 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

HMAE

GARCH 0.000 0.026 0.010 0.124 0.116 0.074 0.200 0.488 0.170 0.200 0.314 0.242

IGARCH 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.002 0.000 0.002 0.000 0.008 0.186 0.330 0.280 0.308

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.004

FIGARCH 0.000 0.034 1.000 1.000 0.884 1.000 0.800 0.512 0.854 0.752 0.896 0.890

HYGARCH 1.000 1.000 0.132 0.038 0.008 0.006 0.004 0.000 0.002 0.000 0.002 0.014

FIAPARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LMSM 0.000 0.038 0.000 0.000 0.002 0.004 0.004 0.002 0.000 0.004 0.002 0.008

FCOM4 0.000 0.058 0.324 0.121 0.018 0.048 0.010 0.027 0.044 0.003 0.029 0.088

FCOM41 0.000 0.469 0.526 0.496 0.052 0.022 0.005 0.048 0.046 0.009 0.066 0.017

QLIKE

GARCH 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.000 0.000 0.004 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 1.000 0.000 0.000 0.126 0.076 0.686 0.628 0.764 0.796 0.624 1.000 1.000

FIAPARCH 0.034 0.006 0.002 0.012 0.008 0.024 0.050 0.014 0.026 0.036 0.052 0.070

LMSM 0.004 1.000 1.000 0.874 1.000 0.314 0.372 0.236 0.204 0.376 0.080 0.018

FCOM5 0.000 0.058 0.020 0.180 0.408 0.916 0.587 0.966 0.986 0.971 0.137 0.050

FCOM51 0.202 0.602 0.628 0.904 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RLOG

GARCH 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIAPARCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LMSM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM61 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is
that a base model cannot be outperformed by other competitor models. The values in bold face repre-
sent the p-values that are greater than or equal to the 10% confidence level under a pre-specified loss func-
tion. We combine: FCOM4=FIGARCH+HYGARCH, FCOM41=FIGARCH+LMSM, FCOM5=HYGARCH+LMSM,
FCOM51=FIAPARCH+LMSM, FCOM6=GARCH+FIAPARCH and FCOM61=FIAPARCH+LMSM.
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Table 16: Superior predictive ability (SPA) test results using oil price observations from
January 3, 1977 to December 31, 2009 as in-sample and from January 4, 2010
to March 24, 2014 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

MSE

GARCH 0.015 0.007 0.053 0.125 0.392 0.232 0.749 0.772 0.360 0.303 0.538 0.571

IGARCH 0.029 0.094 0.046 0.053 0.037 0.158 0.261 0.010 0.010 0.026 0.005 0.003

GJR-GARCH 0.021 0.106 0.028 0.127 0.773 0.218 0.517 0.364 0.178 0.058 0.014 0.007

EGARCH 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.012 0.044 0.008 0.082 0.368 0.016 0.144 0.084 0.004 0.002 0.000 0.000

FIGARCH 0.014 0.084 0.031 0.156 0.581 0.160 0.817 0.192 0.272 0.026 0.219 0.259

HYGARCH 1.000 0.006 0.001 0.005 0.002 0.009 0.000 0.001 0.002 0.000 0.000 0.000

FIAPARCH 0.021 0.013 0.015 0.040 0.071 0.096 0.323 0.131 0.298 0.397 0.379 0.524

LMSM 0.009 1.000 1.000 1.000 0.814 1.000 0.730 0.732 0.884 0.812 0.872 0.817

FCOM1 0.030 0.242 0.201 0.322 0.695 0.272 0.803 0.883 0.415 0.488 0.895 0.884

FCOM11 0.017 0.117 0.163 0.253 0.645 0.350 0.846 1.000 0.731 0.775 0.850 0.771

MAE

GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIAPARCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.021 0.005 0.004 0.006 0.000

LMSM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000

FCOM2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HMSE

GARCH 0.019 0.003 0.028 0.004 0.067 0.030 0.034 0.000 0.016 0.021 0.074 0.026

IGARCH 0.015 0.013 0.025 0.018 0.087 0.070 0.049 0.018 0.059 0.054 0.074 0.009

GJR-GARCH 0.016 0.013 0.012 0.005 0.086 0.068 0.047 0.020 0.067 0.053 0.074 0.008

EGARCH 0.032 0.023 0.847 0.863 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

APARCH 0.091 0.031 0.003 0.034 0.086 0.011 0.023 0.023 0.043 0.035 0.030 0.120

FIGARCH 0.035 0.001 0.019 0.026 0.052 0.056 0.053 0.017 0.028 0.064 0.069 0.022

HYGARCH 1.000 0.036 0.025 0.010 0.038 0.001 0.056 0.009 0.030 0.055 0.073 0.119

FIAPARCH 0.011 0.024 0.018 0.041 0.073 0.015 0.000 0.014 0.003 0.000 0.000 0.004

LMSM 0.023 1.000 0.153 0.137 0.046 0.018 0.019 0.026 0.019 0.030 0.036 0.050

FCOM3 0.006 0.042 0.046 0.015 0.059 0.026 0.069 0.040 0.047 0.069 0.119 0.140

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is that a
base model cannot be outperformed by other competitor models. The values in bold face represent the p-
values that are greater than or equal to the 10% confidence level under a pre-specified loss function. We
combine: FCOM1=GARCH+GJR-GARCH+FIGARCH, FCOM11=GARCH+GJR-GARCH+LMSM, FCOM2=GJR-
GARCH+FIAPARCH, FCOM21=FIAPARCH+LMSM and FCOM3=EGARCH+HYGARCH+LMSM.
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Table 17: Superior predictive ability (SPA) test results using oil prices observation from
January 3, 1977 to December 31, 2009 as in-sample and from January 4, 2010
to March 24, 2014 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

HMAE

GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.004 0.001

GJR-GARCH 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.006 0.001

EGARCH 0.000 0.002 0.426 1.000 1.000 1.000 1.000 1.000 0.868 0.789 0.546 0.384

APARCH 0.000 0.000 0.000 0.000 0.004 0.001 0.001 0.012 0.011 0.010 0.012 0.012

FIGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.003 0.001

FIAPARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LMSM 0.000 1.000 0.574 0.045 0.006 0.020 0.029 0.083 0.132 0.211 0.454 0.616

FCOM4 0.000 0.045 0.877 0.159 0.043 0.158 0.312 0.646 0.825 0.901 0.773 0.604

QLIKE

GARCH 0.002 0.003 0.042 0.022 0.052 0.032 0.067 0.135 0.045 0.079 0.118 0.076

IGARCH 0.002 0.082 0.208 0.343 0.140 0.419 0.538 0.980 0.315 0.835 0.256 0.817

GJR-GARCH 0.003 0.309 0.485 0.630 0.542 0.569 0.305 0.466 0.172 0.372 0.175 0.415

EGARCH 0.000 0.104 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.003 0.131 0.348 0.315 0.489 0.188 0.416 0.393 0.068 0.036 0.038 0.001

FIGARCH 0.004 0.351 0.135 0.462 0.639 0.465 0.780 0.871 0.697 0.692 0.986 0.869

HYGARCH 1.000 0.373 0.470 0.529 0.735 0.777 0.766 0.396 0.664 0.647 0.779 0.345

FIAPARCH 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LMSM 0.000 0.916 0.854 0.866 0.833 0.714 0.793 0.534 0.783 0.710 0.497 0.524

FCOM5 0.003 0.097 0.186 0.388 0.166 0.618 0.457 0.722 0.193 0.607 0.275 0.659

FCOM51 0.000 0.584 0.652 0.775 0.844 1.000 1.000 0.880 0.902 0.873 0.868 0.890

RLOG

GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIAPARCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LMSM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM61 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is that a base model
cannot be outperformed by other competitor models. The values in bold face represent the p-values that are greater than
or equal to the 10% confidence level under a pre-specified loss function. We combine: FCOM4=EGARCH+LMSM,
FCOM5=IGARCH+GJR-GARCH, FCOM51=FIGARCH+HYGARCH+LMSM, FCOM6=HYGARCH+FIAPARCH
and FCOM61=FIAPARCH+LMSM.
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Figure 2: Plot of autocorrelation functions of log-returns, absolute and squared log-
returns (from January 2, 1875 to December 31, 1895)
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Figure 3: Plot of oil prices, log-returns and squared returns (from January 6, 1992 to
December 31, 2009)
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Figure 4: Plot of autocorrelation functions of log-returns, absolute and squared log-
returns (from January 6, 1992 to December 31, 2009)
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Figure 5: Plot of oil prices, log-returns and squared returns (from January 6, 1992 to
March 24, 2014)
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Figure 6: Plot of autocorrelation functions of log-returns, absolute and squared log-
returns (from January 6, 1992 to March 24, 2014)
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Figure 7: Plot of oil prices, log-returns and squared returns (from January 6, 1977 to
March 24, 2014)
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Figure 8: Plot of autocorrelation functions of log-returns, absolute and squared log-
returns (from January 6, 1977 to March 24, 2014)
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