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1 Introduction

Financial durations measure the time elapsed between various financial market events re-

lated to transactions arrivals, price fluctuations, or trading volumes. Modeling durations

may be useful for measuring and predicting instantaneous volatility and integrated vari-

ance and so may aid high-frequency volatility trading and risk management. Exploiting

the intimate relationship between durations and volatility, Tse & Yang (2010) employ

parametric duration models to measure daily volatility using high-frequency data. An-

dersen, Dobrev & Schaumburg (2008) propose a nonparametric duration-based approach

to measuring volatility by relying on the properties of Brownian motion. More gener-

ally though, durations are useful for gaining more insight into any information events or

variables which change values at each tick, as implied by the theory of market microstruc-

ture, and thus may be useful for examining a number of interesting economic hypotheses

related to trading and price discovery; see Engle (2000) for an excellent discussion.

A key stylised fact noted in the empirical irregularly-spaced event literature is per-

sistence in financial durations. Ever since the seminal contribution of Engle & Russell

(1998), who introduced the first time-series model for financial durations, a number of

studies have documented the slowly decaying autocorrelation function of transaction,

price and volume durations; see Pacurar (2008) for a detailed literature review. Deo,

Hsieh & Hurvich (2010) recently test for long memory in durations and the associated

counts and find significant evidence to support the presence of long memory in durations.

Despite this empirical regularity, there is currently no paper that explores the alternative

approaches to capturing the persistent autocorrelations of durations and its implications

for forecasting. We aim to fill this gap.

Inspired by the success of the Markov-Switching Multifractal (MSM) stochastic volatil-

ity model of Calvet & Fisher (2004) in forecasting persistent volatility of financial returns,

we start by adapting the MSM model to the duration setting, calling the new model the

Markov-Switching Multifractal Duration (MSMD) model. This model adds to the class

of stochastic durations models of Bauwens & Veredas (2004) and Deo et al. (2010), which

also evolved from the stochastic volatility literature, though the latent process driving

the dynamics of durations in an MSMD is a hidden Markov chain rather than a lin-

ear Gaussian process. The properties of the model are therefore quite distinct from its

competitors and exhibit a number of attractive features.

First, the process possess a very flexible autocovariance structure, which is capable of

generating a wide range of persistence behaviors, including a slowly decaying autocorre-

lation. This long-memory feature of the MSMD process is induced by regime switching of
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heterogenous persistence: the hidden Markov chain is driven by k independent Markov-

switching processes with different transition probabilities. Second, despite begin able

to exhibit high persistence, we show formally that the MSMD process is exponential β-

mixing and short-memory. This property of the model is unique: all the existing duration

models, whether observation-driven or stochastic, exhibit either genuine exponential or

hyperbolic autocovariance functions (ACF). Contrary to these, the MSMD can produce

an ACF that is nearly hyperbolic over a range of lags before smoothly transitioning to

exponential decay. Finally, the flexibility of MSMD model is not traded off against par-

simony. Although the hidden chain consists of k independent components with distinct

transitional probabilities, these probabilities are tightly parametrized, and the number of

parameters of the model does not depend on k. Standard methods and tools for Markov

switching models therefore readily apply.

Since durations and volatility are directly linked, we next explore the properties of

volatility in a pure jump model of Oomen (2006), where the inter-jump durations follow

MSMD. Relying on the recent results of Deo, Hurvich, Soulier & Wang (2009) on the

propagation of memory from durations to counts and realized volatility, we establish

formally that the short memory of MSMD durations translates into short memory in

counts and realized volatility. However, simulation reveal that the shape of the ACF

of MSMD durations - hyperbolic over a range of lags but eventually exponential - is

inherited by realized volatility. Again this feature cannot be generated by the existing

durations models.

Having studied the properties of the MSMD process, we next propose quasi-maximum

likelihood estimation of the MSMD parameters based on the Whittle approximation.

The main motivation for exploring this estimation method as an alternative to exact

maximum likelihood is computational burden associated with the latter in large samples,

and its limitation to the case of an MSM specification with a finite number of states.

Contrary to this, the Whittle estimator works in either case and is computationally

simple and fast. Relying on results from the statistics literature, we formally establish

strong consistency and asymptotic normality of the Whittle estimator under fairly mild

assumptions for a wide range of MSMD specifications.

Note that computational speed is not a mere convenience in our context: given the

increasing importance of algorithmic and high-frequency traders, who are capable of

generating tens of thousands of limit and market orders in a single day, the amount of

data usable for estimation has grown enormously in many markets (Hasbrouck & Saar,

2010). For such environments, fast estimation methods simply become a necessity, even

with ever-faster modern computers. Last but not least, the Whittle estimator can be
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easily adapted to the original MSM stochastic volatility model of Calvet & Fisher (2004),

and thus represents a contribution to the MSM literature that goes beyond the context

of financial durations.

Finally, we compare our estimation and forecasting results with those possible from

established duration models. As noted by Pacurar (2008), there is a scarcity of com-

parisons of duration models, and ideally one would like to undertake a comparison of

all the models she has detailed. However, as noted above, only long memory models

are able to account for the key stylised fact of long-range dependence in durations. We

therefore restrict attention to the Long Memory Stochastic Duration (LMSD) model of

Deo et al. (2010). To investigate the benefits of the relatively complicated MSMD and

LMSD models over their simple and easy to estimate short-memory counterparts, we

also compare our results with those from the widely used Autoregressive Conditional

Duration (ACD) model introduced in the seminal paper by Engle & Russell (1998).

We implement the models on price durations of three major foreign exchange futures

contracts traded on the Chicago Mercantile Exchange (CME) in the period between 9

November 2009 and 29 January 2010: Euro, Japanese Yen, and Swiss Franc. We find that

the LMSD and MSMD models generally perform on par, although MSMD sometimes

produces better results. The forecast combinations of the LMSD and MSMD models

almost always significantly outperform those of the short-memory ACD model. Given

that we provide a simple and computationally cheap method for estimating the MSMD

model parameters from large samples of data, this results is potentially important for

practitioners. Needless to say, our results are limited to three FX futures contracts and

a more comprehensive empirical exercise is needed to confirm a general validity of our

results. Chen, Diebold & Schorfheide (2012) confirm the superiority of MSMD over ACD

for a sample of US equity transactions durations, thought they do not include the LMSD

model in the comparison.

The Markov switching multifractal duration model has been proposed independently

and in parallel to our work in a recent paper by Chen et al. (2012) (henceforth CDS).

The main differences between the two papers can be summarized as follows. We are are

not restricting attention to the binomial MSMD model with exponentially distributed

innovations, but consider more general versions of the model. Allowing for a wider class

of distributions is made possible in practice by employing the Whittle estimator, and it

turns out to be empirically beneficial. In terms of empirical application, we differ from

CDS by modeling and forecasting price durations as opposed to transactions durations,

and focus on foreign exchange futures prices in 2009/2010 rather than individual equities

in 1993. Finally, given the high persistence of the durations in our sample, the natural
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competitor of the MSMD model is the LMSD model rather than the short-memory ACD,

and hence, unlike CDS, we include the LMSD model in our forecasting exercise as well.

The rest of the paper is organized as follows. Section 2 introduces the MSMD model

and discusses its properties. Section 3 discusses estimation and forecasting for the MSMD

model. Section 4 reviews the competing duration models and Section 5 looks at the link

between durations, counts and realized volatility. In Section 6 we describe the data and

in Section 7 we present estimation and forecasting results. Section 8 concludes. Mathe-

matical proofs are provided in the Appendix. Some auxiliary results and derivations are

collected in the Supplemental Appendix.

2 The MSMD Model

Let Xi = ti − ti−1 denote the duration between two event arrival times. The three most

common events studied in the literature relate to transaction arrivals, price changes and

transaction volumes. The Markov-Switching Multifractal Duration (MSMD) model is

defined by:

Xi = ψiεi, i ∈ Z, (2.1)

where ψi is the Markov-switching multifractal process of Calvet & Fisher (2004);

ψi = ψ̄
k∏
j=1

Mj,i, (2.2)

and εi is a sequence of independent unit-mean innovations identically distributed ac-

cording to some parametric distribution. The latent process in (2.2) is determined by k

independent unit-mean multipliers, Mj,i, j = 1, ..., k, and a scaling constant, ψ̄. At every

point in time i, each multiplier Mj,i takes, with probability γj , a new value M drawn

from a common distribution FM , and remains unchanged with probability 1− γj :

Mj,i =

{
M where M is drawn from FM with probability γj

Mj,i−1 with probability 1− γj

The transition probabilities are parsimoniously parametrized by:

γj = 1− (1− γk)(bj−k), j = 1, ..., k, (2.3)

where γk ∈ (0, 1) and b ∈ (1,∞). Two specifications for the distribution of the multipliers

FM have been proposed by Calvet & Fisher (2004) - binomial and log-normal. In the
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binomial specification, each multiplier, if at all, is renewed by drawing the values m0 and

2−m0; m0 ∈ (1, 2), with equal probability, ensuring that the mean is equal to one. The

transition matrix associated with each multiplier is thus given by:

Pj =

(
1− 1

2γj
1
2γj

1
2γj 1− 1

2γj

)
.

Since the multipliers are independent, the transition matrix of the state vector Mi =

(M1,i, ...,Mk,i) is simply P = P1 ⊗ P2 ⊗ · · · ⊗ Pk, where “⊗” denotes the Kronecker

product. The dimension of the transition matrix is 2k × 2k and the state vector takes

values in the finite state space ΩM = {m0, 2−m0}k.
In general, any distribution with positive support can be used to model the multi-

pliers. For example, the log-normal specification of Calvet & Fisher (2004) replaces the

Bernoulli distribution by a log-normal one, i.e. upon switching, the new value of the log

multiplier is drawn from N(−λ, 2λ), where the parameter restriction again imposes unit

means for the multipliers. When drawn from a continuous distribution (with respect to

Lebesgue measure on R+), each multiplier assumes a new value with probability one,

and the transition kernel of the multiplier is given by

P(Mj,i+h ∈ Bj |Mj,i = xj) = (1− (1− γj)h)P(M ∈ Bj) + (1− γj)h1{xj∈Bj}, j = 1, ..., k,

(2.4)

for any Bj ∈ B(R+) and xj ∈ R+, where B(R+) is the Borel σ-algebra on R+. Since

the multipliers are independent, the transition kernel of the chain Mi reads P(Mi+h ∈
B|Mj,i = x) =

∏k
j=1 P(Mj,i+h ∈ Bj |Mj,i = xj) for any x = (x1, x2, ..., xk)

′ and any

B ∈ B(Rk+), a Borel σ-algebra on Rk+, where B = B1 × B2 × · · · × Bk, Bj ∈ B(R+),

j = 1, ..., k. The chain takes values in a state space ΩM ⊆ Rk+.

Having specified the law governing the multipliers, it remains to choose a distribution

for the innovations, εi. As is common in the literature, we consider here the exponential

and Weibull distributions (Supplemental Appendix A2). With these specifications of εi,

the law governing the durations, xi, is a mixture of exponentials and a mixture of Weibull

distributions, respectively. Other, more flexible multi-parameter alternatives have been

proposed in the context of modeling financial durations: the Burr distribution (Grammig

& Maurer, 2000) and the generalized gamma distribution (Lunde, 1999), both of which

encompass the exponential and Weibull cases. As we are primarily interested in point

forecasts in this paper, for the sake of parsimony we confine our attention to the latter

two distributions.

To illustrate the behavior of the multipliers and durations in the MSMD model, we
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plot in Figure 1 simulated samples from the binomial and log-normal MSMD processes

with k = 6 multipliers and parameters b = 3, γk = 0.5, m0 = 1.4 and λ = 0.15. In this

MSMD specification, γ1 = 0.0028 implies that the most persistent multiplier, (M1,i),

switches, on average, around 3 times in a sample of 1,000 observations if it is drawn from

the log-normal distribution, and 1.5 times if it is drawn from the Bernoulli distribution.

The least persistent multiplier, (M6,i), switches with probability 0.5 and 0.25 in the log-

normal and binomial MSMD specifications, respectively. Clearly, both specifications can

produce rich dynamics: the duration process is highly persistent but can exhibit sudden

erratic movements as observed in empirical data.

2.1 Stationarity, ergodicity and strong mixing

It is relatively easy to establish that the Markov chain Mi driving the MSMD process

is geometrically ergodic as long as the conditions b > 1 and 0 < γk < 1 are satisfied.

Starting with the binomial MSMD specification, we see that under these conditions all

elements of the transition matrix of the chain P are strictly positive since 0 < γj < 1

for all j, and it follows directly from the proof of Theorem 1 in Shiryaev (1995, Chapter

1, Section 12) that the chain is geometrically ergodic. The ergodic distribution is given

by πl = 1/2k, l = 1, ..., 2k.

If upon switching the multipliers, Mj,i, j = 1, ..., k, are drawn randomly from a

continuous distribution, FM , with support R+, the transition kernel associated with the

j-th multiplier is given in equation (2.4) and the ergodic distribution of the multiplier

reads π(Bj) := limh→∞ P(Mj,i+h ∈ Bj |Mj,i = Xj) = P(M ∈ Bj), Bj ∈ B(R+). Then for

any Xj ∈ R+, j = 1, ..., k and h ∈ N, supBj∈B(R+) |P(Mj,i+h ∈ Bj |Mj,i = Xj)− π(Bj)| ≤
(1− γ)h, where 0 < γ := min{γ1, ..., γk} < 1. Since the multipliers Mj,i, j = 1, ..., k, are

independent it follows that the chain Mi is geometrically ergodic.

Geometric ergodicity of the Markov chain Mi in turn implies that the duration

process {Xi} is strictly stationary β-mixing with an exponential rate of decay, provided

that the chain is initialized from the ergodic distribution. To see this, observe that the

duration process belongs to the class of generalized hidden Markov models in the sense

of Definition 3 in Carrasco & Chen (2002): the hidden Markov chain Mi is strictly

stationary and, conditionally on Mi, the durations Xi are independently distributed

where the conditional distribution only depends on Mi and not on i. Given geometric

ergodicity of the hidden chain, Proposition 4 of Carrasco & Chen (2002) then implies

that the duration process is exponential β-mixing.
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2.2 Moments, autocovariance function and spectral density

In the Supplemental Appendix A.1 we show that the first two moments of the MSMD

process are given by

E(Xi) = ψ̄, (2.5)

Var(Xi) = ψ̄2[E(M2)kE(ε21)− 1]. (2.6)

The model can exhibit both under- and over-dispersion depending on the distributional

assumptions about M and εi, since the ratio of the variance to the squared mean,

E(M2)kE(ε21) − 1, can in general be smaller or larger than one. An MSMD process

with exponential innovations, however, always exhibits over-dispersion since for an ex-

ponentially distributed εi, we have E(ε21) = 2, and by construction E(M2) > 1.

An attractive property of the MSMD model is that it possesses a very flexible au-

tocorrelation function (ACF) that can exhibit behaviour similar to long-memory. In

the Supplemental Appendix A.1 we show that for a general MSMD process with finite

E(M2) and E(ε21), we have:

Cov(Xi, Xi−h) = ψ̄2

( k∏
j=1

[1 + Var(M)(1− γj)h]− 1

)
. (2.7)

Although (2.7) implies that the MSMD process is short-memory as the autocovariance

function declines exponentially fast and the spectral density is bounded at origin, it is

capable of mimicking hyperbolic decay over a wide range lags. More specifically, it follows

directly from Proposition 1 in Calvet & Fisher (2004) that the autocorrelation function of

the MSMD durations decays hyperbolically over a large range of lags before transitioning

smoothly into exponential decay as the number of multipliers, k, grows without bound.

So despite being a short-memory process, the MSMD model can mimic the persistence of

a genuine long-memory process with a hyperbolically decaying autocorrelation function.

For illustration purposes, Figure 2 plots the autocorrelation function of a binomial

MSMD process with exponential innovations and various sets of parameter values. We

take the case of k = 8 multipliers and parameters b = 2, γk = 0.5 and m0 = 1.4, as

a benchmark and vary each parameter separately to study how it affects the shape of

the autocorrelation function. Increasing b or decreasing γk both increase the persistence

of the process since the switching probabilities of the multipliers decrease (panels (a)

and (b)). In the former case, the increase is more pronounced at the long end of the

ACF, while in the latter case it affects the short lags of the ACF more. This is due
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to the different impact of a change in b and γk on the various switching probabilities

as illustrated in panel (a). Increasing the volatility of the multipliers by reducing m0

lowers the multipliers’ persistence and thus the persistence of the MSMD process (panel

(c)). Finally, increasing the number of multipliers (k) while keeping the parameters of

the model fixed increases persistence (panel (d)).

2.3 Exogenous and predetermined variables

Exogenous or predetermined variables can be easily incorporated into the model by

setting ψ̄ = ψ̄i = exp(β0 +β′zi), for some vector of variables zi. This is useful for several

reasons. First, to incorporate the deterministic intraday duration pattern observed in

most durations data (Engle & Russell, 1998, Bauwens & Veredas, 2004, Fernandes &

Grammig, 2006 and Deo et al., 2010, among many others). Due to the deterministically

varying trading activity during the day, the durations tend to be shorter during the

early and late trading hours, and relatively longer over lunchtime. Second, one may

wish to include additional predictive variables to enhance the forecasting power of the

model. A natural candidate when forecasting price durations may be option-implied

volatility for which high-frequency data is either available readily (e.g. VIX) or can be

constructed from high-frequency options data. Finally, it may be interesting to include

some predetermined variables related to market microstructure as in Engle & Russell

(1998), Bauwens & Veredas (2004) and others.

3 Estimation, inference and forecasting

3.1 Maximum likelihood and optimal forecasting

The binomial MSM with finite k implies a finite number of states of the hidden Markov

process and hence can be estimated by exact maximum likelihood (MLE) via Bayesian

updating. This approach has been advocated by Calvet & Fisher (2004) for the binomial

MSM model of stochastic volatility, and has been shown to work well for sample sizes

typically used for estimating models of time-varying volatility. Moreover, the Bayesian

filter allows for estimation of the unobserved state probabilities, which in turn permits

optimal forecasting. To save space, we omit the details here and refer the reader to

Calvet & Fisher (2004).

A disadvantage of the exact maximum likelihood estimator is that it becomes com-

putationally demanding for k ≥ 10, since the dimension of the transition matrix grows

at a rate of 2k. Also, it is not applicable to the log-normal MSM process, where the state
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space of the hidden Markov chain is infinite. These issues have motivated Lux (2008)

to develop a generalized method of moments (GMM) approach, which works for a wide

range of MSM specifications and requires only moderate computational resources1. The

drawback of the GMM estimator of Lux (2008) is that it is applied to the first differences

rather than levels of the process and this makes the identification of the parameters b and

γk difficult even when the sample size is very large. Lux (2008) circumvents this problem

by setting these parameters to some pre-specified values that seem to work well for a

number of data sets, and estimates by GMM the remaining two parameters only. This

may be quite restrictive, however, especially in our context where no previous evidence

exists to suggest reasonable values of b and γk for modeling and forecasting financial

durations.

3.2 Whittle estimation

We propose an alternative autocovariance-based estimator of the MSMD parameters. In

contrast to Lux (2008) and Bacry, Kozhemyak & Muzy (2008, 2012) we work in the fre-

quency domain and employ the Whittle quasi-likelihood. An advantage of the Whittle

estimation compared to GMM is that it takes into account the entire autocovariance

function rather than just a finite subset of lags, and thus avoiding the problem of which

autocovariances to match. To obtain better finite-sample properties, we implement the

Whittle estimator on logarithmic durations, as the logarithmic durations are much closer

to being Gaussian than the durations themselves (see Section 6 for some empirical evi-

dence). Defining xi := logXi, i ∈ Z and taking logs of both sides of equation (2.1) we

have

xi = log ψ̄ +

k∑
j=1

mj,i + ei, i ∈ Z,

where mj,i := logMj,i and ei := log εi. We further define σ2
m := Var(m) and σ2

e :=

Var(e1).

It is well-known that for a stationary Gaussian process maximizing the frequency

domain representation of the log-likelihood turns out to be asymptotically equivalent to

the usual maximum likelihood estimator (Whittle, 1962). The so-called negative Whittle

log-likelihood is given by

Qn(θ) =
1

n

n−1∑
i=1

(
log f(ωi;θ) +

In(ωi)

f(ωi;θ)

)
, (3.1)

1Similarly, Bacry, Kozhemyak & Muzy (2008, 2012) use a GMM approach to estimate parameters of
the Multifractal Random Walk (MRW).
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where f(ωi;θ) is the spectral density of the logarithmic MSMD process with param-

eter θ, i.e. the spectral density associated to {xj} and In(ωi) = 1
2πn

∣∣∣∑n
j=1 xje

−ιωij
∣∣∣2

is the periodogram of the observations x1, x2, ..., xn, both evaluated at the i-th Fourier

frequency, ωi = 2πi/n. The Whittle estimator of θ is obtained by minimizing Qn(θ):

θ̂n = arg min
θ∈Θ

Qn(θ),

Now if the process is not Gaussian, which is our case, minimizing the negative Whittle

log-likelihood still works but the resulting estimator is no longer asymptotically equiv-

alent to MLE. The intuition for θ̂n in the non-Gaussian case is straightforward: under

a mixing assumption, the periodogram In(ωi) is asymptotically distributed as an expo-

nential random variable with parameter f(ωi), and for any two Fourier frequencies, ωi

and ωj , i 6= j, In(ωi) and In(ωj) are asymptotically independent (Rice, 1973). Hence

(3.1) has a quasi-likelihood interpretation and θ̂n has been shown to be consistent for θ

and asymptotically normally distributed under appropriate regularity conditions.

Implementing the Whittle estimator for the MSMD model is easy since the spectral

density is available in closed form. In the Supplemental Appendix A.1 we show that

provided the logarithmic MSMD durations possess finite second moments, the spectral

density reads:

f(ω) =
σ2
m

2π

 k∑
j=1

1− (1− γj)2

1 + (1− γj)2 − 2(1− γj) cosω

+
σ2
e

2π
, (3.2)

for ω ∈ [−π, π]. In the rest of the paper, we will always assume that E(m2) < ∞ and

E(e2
1) <∞ so that (3.2) are well-defined.

We see from equation (3.2) that the logarithmic MSMD process {xi} is a signal-plus-

noise process, where the signal is given by a sum of k independent Markov chains and the

noise is an iid process independent of the signal. Whittle estimation of signal-plus-noise

models has been studied by Hosoya & Taniguchi (1982) and Zaffaroni (2009). Compared

to Whittle estimation of linear processes, a complication arises here from the fact that

the spectral density of a signal-plus-noise model cannot be easily factored in the sense

that the Whittle log-likelihood cannot be expressed as a sum of two components that

depend on disjoint parameter sets. In general, this gives rise to a more complicated

limiting distribution of the Whittle estimator.

The asymptotic results obtained by Hosoya & Taniguchi (1982) and Zaffaroni (2009)

can be applied in our context despite the fact the both the signal and the noise processes

have different specifications in these papers. In case of Hosoya & Taniguchi (1982), the
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signal is an AR(1) process with iid innovations, uncorrelated with, thought not neces-

sarily independent of, the iid noise process. Zaffaroni (2009) considers a class of models

where the signal is an MA(∞) process with iid innovations and potentially hyporbolically

declining MA coefficients (long memory) and allows for correlation between the signal

and the iid noise. In case of the logarithmic MSMD, while the signal is independent of

the noise, it is not a linear process. Given strict stationarity and ergodicity, which was

established in Section 2.1, we can, however, invoke the results of Hannan (1973) and

establish stong consistency of θ̂n for an MSMD model.

Proposition 1 Let {Xi} be an MSMD process with parameter θ0 ∈ Θ, where Θ is a

compact subset of the parameter space such that for all θ1,θ2 ∈ Θ, θ1 6= θ2 implies

f(ω;θ1) 6= f(ω;θ2) on a set of positive Lebesgue measure. Then θ̂n
a.s.−→ θ0 as n→∞.

The proof is given in section A.1 of the Appendix. The only assumption in Proposition

1 is an identification assumption. Clearly, the Whittle estimator cannot in general work

with multi-parameter distributions for the multipliers M and innovations ε; it is easy to

see from (3.2) that the Whittle estimator can only identify σ2
m and σ2

e . The functions

mapping the parameters of the distribution of M and ε into σ2
m and σ2

e have to be

continuous, differentiable, one-to-one and onto. This is clearly satisfied for the Bernoulli,

log-normal and Weibull distributions. In addition, the Whittle estimator cannot identify

the mean of the duration process, ψ̄, but this is of lesser concern in our application

since durations are typically seasonally pre-adjusted and the model is estimated using

the seasonally adjusted durations that have unit mean by construction. Nonetheless, the

sample mean can be always used to consistently estimate ψ̄ if needed.

Turning to the central limit of θ̂n, we exploit the fact that despite non-linearity, {xi}
has a simple vector MA(∞) representation (see equation (A.1) in the Appendix), which

allows us to utilize the general results of Hosoya & Taniguchi (1982) provided we verify

the relevant regularity conditions. This is done in Section A.2 of the Appendix and

proves the following.

Proposition 2 Let the assumption of Proposition 1 hold with E(m4+r) <∞, r > 0 and

E(e4
1) <∞. Then as n→∞,

√
n(θ̂n − θ0)

d−→ N(0,M(θ0)−1V (θ0)M(θ0)−1), (3.3)

where

M(θ0) =
1

2π

∫ π

−π

[
g(ω;θ)g(ω;θ)′

]
θ=θ0

dω, (3.4)
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V (θ0) =
1

π

∫ π

−π

[
g(ω;θ)g(ω;θ)′

]
θ=θ0

dω (3.5)

+
1

2π

∫ π

−π

∫ π

−π

[
g(ω1;θ)

f(ω1;θ)

g(ω2;θ)′

f(ω2;θ)
S(−ω1, ω2,−ω2;θ)

]
θ=θ0

dω1dω2,

g(ω;θ) = ∂ log f(ω;θ)
∂θ and S(ω1, ω2, ω3;θ) denotes the model trispectrum.

The trispectrum entering the limiting variance through (3.5) is defined as the Fourier

transform of the fourth-order cumulants of xi (see e.g. Mendel, 1991, for details). It is

very difficult to obtain the trispectrum in closed form, except for some special cases. The

most simple case arises when both Mi and εi are log-normally distributed, since then

mi and ei, and thus xi, are Gaussian implying that the fourth-order cumulants of xi are

identically zero and S(ω1, ω2, ω3;θ) ≡ 0. The limiting variance of the Whittle estimator

in (3.3) then reduces to 4πM(θ0)−1.

Relaxing the Gaussianity of ei while maintaining Gaussianity of mi leads to a limiting

variance matrix that is no longer robust to fourth-order cumulants, but is still available

in closed form. Due to the independence of the multipliers and ei, the cumulants and

hence the trispectrum are additive, and since ei is iid with finite fourth moment, the

fourth-order cumulants satisfy cum(ei, ei+h1 , ei+h2 , ei+h3) = E(e4
1) if h1 = h2 = h3 = 0,

and equal zero otherwise. Thus, S(ω1, ω2, ω3;θ) = E(e4
1)/(2π)3 (e.g. Mendel, 1991).

From this point of view, the log-normal specification of the MSM multipliers appears to

be particularly attractive in practice, as the limiting variance of the Whittle estimator

takes a manageable form and can be easily estimated by the plug-in estimators provided

below.

Before we turn to the estimation of the asymptotic variance, we remark that the

requirement in Proposition 2 that 4 + r moment of mi exist for some r > 0, rather than

for r = 0, is dictated precisely by the fact that we are unable to derive the trispectrum

in closed form and verify directly that it is well-defined for a general MSMD process.

Instead, we have to rely on a mixing inequality to establish that the fourth-order cumu-

lants are absolutely summable, and this requires r > 0. Given strict stationarity and

exponential strong mixing of xi we nonetheless conjecture that Proposition 2 holds with

r = 0 as well.

To estimate the asymptotic variance, we can use the plug-in estimators M(θ̂) and

V (θ̂) for M(θ0) and V (θ0), respectively, provided in the Supplemental Appendix A3.

Consistency of M(θ̂) follows from the consistency of θ̂n and stochastic equicontinuity of

M(θ̂) where the latter is implied by the smoothness of the third-derivatives of the model

spectral density on Θ, see Zaffaroni (2009) for details. For V (θ̂) the consistency cannot
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be in general established unless one knows the trispectrum in closed form. When this is

not the case, we propose a Newey-West estimator V̂ (θ0), see the Supplemental Appedix

A3 for details. Alternatively, one can use a similar estimator proposed by Taniguchi

(1982). A rigorous proof of consistency of V̂ (θ0) is beyond the scope of this paper and

is left for future work.

3.3 Linear forecasting

When optimal forecasting discussed in the previous subsection is not feasible due to

the dimensionality of the state space, Lux (2008) suggests using best linear forecasts

(e.g. Brockwell & Davis, 1991). This forecasting rule only requires the knowledge of the

autocovariance function of the model and thus works as long as one has a set of consistent

parameter estimates at hand, regardless of the estimation method used to obtain them.

Formally, an h-step ahead forecast based on the most recent n observations, denoted

by X̂n+h|n, is obtained from X̂n+h|n =
∑n

j=1 φ
(h)
nj Xn+1−j = φ

(h)
n Xn, where the vector of

weights φ
(h)
n is a solution to Γnφ

(h)
n = c

(h)
n , in which c

(h)
n = (c(h), c(h+1), ..., c(n+h−1))′

denotes the vector of autocovariances of the true process from lag h to lag n+h−1, and

Γn = {c(i− j)}i,j=1,...,n is the variance-covariance matrix of Xn = (X1, X2, ..., Xn)′. The

autocovariance function of the MSMD process is provided in (2.7) and the weights φ
(h)
n

can be efficiently calculated using the generalized Levinson-Durbin algorithm developed

by Brockwell & Dahlhaus (2004).

3.4 Specification testing

To test the goodness of fit of the MSMD model, we employ the specification test of

Chen & Deo (2004). The idea of the test is to compare the estimated model’s spectral

density with the smoothed periodogram of the data. Under the null hypothesis of correct

model specification, the two should be close. The main advantage of this approach is

that the test statistic does not require residuals, which makes it particularly suitable for

specification testing of stochastic durations models.

The test statistic is given by

Tn =

(
2π

n

n−1∑
i=0

f̃(ωi)

)−2(
2π

n

n−1∑
l=0

f̃2(ωi)

)
,

where

f̃(ω) =
2π

n

n−1∑
i=0

W (ω − ωi)In(ωi)

f(ωi; θ̂)
, W (ω) =

1

2π

∑
|h|<n

k(h/pn)e−ιhω
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k is a symmetric kernel function with k(0) = 1, and pn is a bandwidth parameter.

Provided that (i) θ̂ is
√
n-consistent, (ii) the underlying process {xi} can be written as

xi =
∑∞

l=0 ψlεi−l, where εi is iid with zero mean, constant variance, and finite eighth

moment, and
∑∞

l=0 |ψl|l1/2 < ∞, (iii) the model spectral density is bounded away from

zero on [−π, π], (iv) the bandwidth satisfies log6 n/pn → 0 and p
3/2
n /n → 0, and (v)

the kernel satisfies certain regularity conditions, Chen & Deo (2004) show that n(Tn −
Cn(k))/Dn(k)

d→ N(0, 1), where the centering and scaling terms, Cn(k) and Dn(k), are

provided in the Supplemental Appendix A4.

The assumptions underlying this result are clearly not satisfied for the logarithmic

MSMD as the process is not linear and cannot be written in the form required by

(ii) above. The process nonetheless possess a vector MA(∞) representation (A.1) with

geometrically declining coefficients and martingale-difference innovations, which leads

us to conjecture that the asymptotic normality of the test statistics still holds, thought

it remains unclear whether the limiting variance involves fourth-order cumulants. To

shed some light on this issue, we examine the distribution of the test statistic Tn for

a variety of MSMD specifications by Monte Carlo simulation, leaving the development

of a rigorous limit theory for future work. The results are reported at the end of next

section.

3.5 Simulations

Before taking the model to the data it is worthwhile exploring the finite-sample prop-

erties of the maximum likelihood and Whittle estimators. To do that, we run a simple

Monte Carlo experiment for the binomial and log-normal MSMD models with k = 8

multipliers and either exponential or Weibull innovations2. Following Lux (2008) we set

the parameters of the MSM process as b = 2, γk = 0.5, m0 = 1.4 (binomial) and λ = 0.15

(log-normal), and the parameter in the Weibull distribution of innovations as κ = 1.45.

Due to the computational burden associated with the exact maximum likelihood

estimator, the number of Monte Carlo replications for MLE is limited to 500, 250, and

100 replications for n = 1000, 2500, and 5000, respectively. All simulation results for

the Whittle estimator are based on 1,000 replications, and we also consider very large

samples of 10,000 observations, as the application of the Whittle estimator to the MSMD

model is new and the large-sample properties have not been investigated by simulation

before.

2In an earlier version of the paper we also reported MLE simulation results for the MSMD model with
Burr and generalized gamma distributions of the innovations. The results are qualitatively similar to the
exponential and Weibull cases and show that the ML estimator works well even when the innovations
are drawn from multi-parameter distributions.
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Table 1 summarizes the simulation results. Starting with the maximum likelihood

estimator in the binomial MSMD model, we find that MLE delivers accurate and almost

unbiased estimates for both exponential and Weibull specifications; the simulated stan-

dard errors scale with
√
n as dictated by asymptotic theory. As expected, the Whittle

estimator is less precise than MLE, and it also entails a significant bias in samples smaller

than 5,000 observations, particularly for the parameter b. The bias, however, disappears

in large samples, and the standard errors also scale with
√
n as claimed in Proposition

2.

Table 2 reports the simulated size of the goodness-of-fit test discussed in the previous

section. The test is implemented using the Bartlett kernel and setting the bandwidth

according to pn = 3n0.4 as in Chen & Deo (2004). We use the same MSMD specifications

as in the previous simulations and report results for samples of size n = 10, 000. We

find that the simulated size is relatively close to the nominal levels across the different

MSMD specifications.

4 Competing duration models

Models in the duration literature mimic those in the stochastic volatility literature, and

might be similarly divided into observable or GARCH-type models and latent factor or

Stochastic Volatility (SV)-type models. The Autoregressive Conditional Duration (ACD)

model of Engle & Russell (1998) is a member of the former class, and was extended by

Jasiak (1998) to the Fractionally Integrated ACD (FIACD) model to incorporate long

memory. Bauwens and Veredas’ (2004) Stochastic Conditional Duration (SCD) model

is a latent factor model, and was modified by Deo, Hsieh & Hurvich (2006) to create the

Long-memory Stochastic Duration model (LMSD) by letting the latent factor follow a

long-memory process.

It is beyond the scope of this paper to review and compare all existing durations

models; we refer the reader to a survey by Pacurar (2008). Since we are interested in

modeling and forecasting persistent durations, we focus here on those models that can

capture slowly decaying autocorrelations. As noted by Deo et al. (2010), the FIACD

model in a not a long-memory model in the usual sense, as it has infinite mean and

hence the autocorrelation function does not exist. We are therefore left with the LMSD

model as the only genuine long-memory duration model with well-behaved moments. To

assess the benefits of using the relatively more complicated MSMD and LMSD models

in practice, we also compare their performance with the short-memory ACD model of

Engle & Russell (1998). The Supplemental Appendix A5 provides a brief description of
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these models.

5 Relation to counts and realized volatility

Deo et al. (2009) and Deo et al. (2010) recently investigate the propagation of memory

of durations to counts and thereby realized volatility3. They show that if durations

have long (short) memory, then under certain conditions the counts have long (short)

memory as well. They also note that, alternatively, long memory in realized volatility

can be generated by iid infinite-variance durations, as originally modeled by Liu (2000),

where the memory parameter associated to realized volatility is inversely proportional to

the tail index of the distribution of durations. These are, of course, two fundamentally

different approaches to generating long memory in volatility, and we naturally focus on

the former here, not only because the MSMD durations are not iid, but also because we

find no empirical evidence supporting the infinite variance assumption required by Liu

(2000).

To fix notation, recall that ti denotes the time of the i-th event, Xi = ti− ti−1 is the

duration between two consecutive events, and let N(t) denote the counting process that

counts the number of events that have occurred up to time t. In more detail, counts

and durations are stationary under different measures, since they define the irregularly-

spaced event process (a point process) in terms of different sets of events. We refer

to these measures as PN and P, respectively. As illuminated by Deo et al. (2009), the

relevant measure depends on how N(t) is calculated: if it is calculated from the opening

of the market on a given day, the relevant measure is PN , while if from the first event

on that day, the relevant measure is P. Since most assets tend to be heavily traded after

market opening, the difference may be empirically small.

By making use of equivalence theorems (e.g. Nieuwenhuis, 1989), Deo et al. (2009)

establish conditions under which memory propagates from durations to counts, then

to squared returns and realized volatility. In particular, they show that under certain

conditions, the short memory of durations generated by a stationary ACD model implies

short memory in the associated counts and realized volatility, while the long memory of

durations in the LMSD model implies long memory in counts and realized volatility. With

respect to the MSMD process now, the following proposition establishes the conditions

under which the short-memory feature of the MSMD (for finite k) translates into short

memory in the induced counts.

Proposition 3 Let {Xi} be an MSMD process with finite k, E(M3+r) <∞ and E(ε3+r
1 ) <

3See McAleer & Medeiros (2008) for a review of the literature on realized volatility.
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∞ for some r > 0. Then the induced counting process N(t) satisfies VarN (N(t)) ∼ ct

for some c <∞, where VarN denotes the variance under PN .

The proof is provided in Section A.3 of the Appendix. To link the counts and realized

volatility, we follow Deo et al. (2009) and employ the simple continuous-time pure-jump

model of Oomen (2006). The logarithmic price process, p(t), is assumed to have the

following dynamics:

p(t) = p(0) +

N(t)∑
j=1

ξj , ξj
iid∼ N(0, σ2

ξ ), (5.1)

where N(t) is the counting process defined above and ξj is the size of the j-th jump, which

is assumed to be independent from the counting process. This assumption significantly

simplifies the analysis, but it may not be appropriate for all asset classes: a recent study

by Renault & Werker (2011) shows that it is indeed violated in the case of selected

individual stocks traded on the New York Stock Exchange.

A natural measure of variation in the model in equation (5.1) is the quadratic vari-

ation given by:

〈p〉t =

N(t)∑
j=1

ξ2
j .

The quadratic variation can be estimated consistently by realized variance. Dividing

the time interval [0, t] into n non-overlapping intervals of length ∆t = t/n, the realized

variance is defined as:

RVt,n =
n∑
i=1

(p(i∆t)− p((i− 1)∆t))2. (5.2)

It follows from Deo et al. (2009) that for the MSMD process satisfying the assumptions

of Proposition 1, the realized volatility is a short-memory process.

It is difficult to derive analytically the autocorrelation functions of counts and realized

volatility induced by the MSMD process and its competitors. We therefore proceed by

simulation. For each duration model, we simulate a trajectory of the induced counting

process N(t) and via (5.1) a trajectory of the associated logarithmic price process p(t).

From the simulated price process we then calculate a time series of daily realized variance

according to (5.2), where we define one day to have 6.5 hours, or 23,400 seconds. For

all duration models, we set the unconditional mean of durations equal to 2 minutes, so

that there are around 195 price changes on a typical day in the simulation. The price

innovations, ξj , are drawn randomly from the normal distribution with zero mean and

variance σ2
ξ = 1/195, implying that the average daily realized variance is around 1%.
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Finally, to facilitate comparison we calibrate the parameters of the duration models so

that they share the same first-order autocorrelation coefficient, which we set equal to

0.45; see the caption of Figure 3 for the exact parameters values used in the simulations.

Figure 3 plots the theoretical autocorrelation functions of the ACD, MSMD and

LMSD durations and their corresponding simulated autocorrelation functions for real-

ized variance as implied by model (5.1). The figure clearly illustrates how memory

propagates from durations to realized volatility. The short-memory ACD model gener-

ates realized variance with little persistence, while the long-memory LMSD generates a

highly persistent realized variance. The MSMD model is capable of generating both:

when the number of multipliers is small (k = 4), the autocorrelation function of real-

ized variance decays very quickly despite the ACF of durations being quite persistent.

Increasing the number of multipliers to 8, the persistence of realized volatility increases

dramatically and its ACF now clearly exhibits long-memory features. Thus, despite

being short-memory, the MSMD model is capable of generating both highly persistent

durations as well as highly persistent realized volatility in the pure jump model (5.1).

6 Data Description

We now apply the MSMD model and its competitors to price durations of three major

foreign exchange (FX) futures contracts traded on the Chicago Mercantile Exchange

(CME). Our dataset includes all transactions for the Swiss Franc (CHF), Euro (EUR)

and Japanese Yen (JPY) futures contracts between 9 November 2009 and 29 January

2010. The data is supplied by TickData, Inc. We focus on the most liquid (front)

contracts and restrict attention to the main CME trading hours of 7:20 - 14:00 Chicago

time. US and UK Bank holidays are discarded.

Price durations are defined as the minimum time it takes for the price to move by a

certain amount. We construct them from the transactions durations, which are simply

the durations between successive trades, by a process called thinning. Due to microstruc-

ture frictions, such as bid-ask bounce, the price durations may be more informative about

the underlying prices process and its volatility as thinning reduces the distortions due to

microstructure noise and eliminates duplicate prices, that is transactions with zero price

changes. Also, Engle & Russell (1998) show that price durations are closely related to

the instantaneous volatility: low price durations imply high instantaneous volatility of

the underlying price process, and vice versa.

Correspondingly, we construct the price durations by successively measuring the

minimum time required for the futures price to move by at least c, starting from the first
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transaction on each day and discarding overnight durations. The FX futures contracts

are highly liquid and usually trade with a tight bid-ask spread of 1-2 ticks, where the tick

size equals 0.0001 for CHF, EUR and 0.01 for JPY. To eliminate spurious price changes

due to the bid-ask bounce, we set c = 0.0003 for CHF and EUR and c = 0.03 for JPY. To

facilitate comparison across the different currencies, we work with the first 12,000 prices

durations for each FX futures contract available in our sample period. The sample size

is therefore kept fixed at 12,000 but the sample period varies across the three data sets,

though they all start on the 9th November 2009.

Table 3 reports the descriptive statistics for the FX futures price durations data. The

mean of the price durations is 118s, 106s and 90s for CHF, EUR and JPY, respectively,

while the median is around half the mean at 66s, 59s and 43s, respectively, indicating

that the distributions of the price durations are heavily positively skewed. The minimum

price duration equals 1s for all currencies, while the maximum price duration reaches

42 minutes, 1 hour and 53 minutes, respectively. Consistent with previous empirical

evidence, we find that the distribution of price durations exhibits over-dispersion, i.e.

the standard deviation of the price durations significantly exceeds the mean by a factor

of 1.351, 1.337 and 1.512 for CHF, EUR and JPY, respectively.

It is well-known that the trading activity in most financial markets varies considerably

over the course of the day, see e.g. Engle & Russell (1998) who note a hump-shaped

pattern for transaction and price durations of individual stocks traded on the New York

Stock Exchange (NYSE), with relatively shorter durations at the start and end of the

trading day, and longer durations during lunchtime. Consequently, the duration process

contains a significant seasonal component that has to be accounted for when estimating

a duration model.

There are in principle two ways to do that. First, by incorporating seasonality into

the duration models directly and estimating the seasonal parameters jointly with the

dynamic parameters of the duration process (Rodŕıguez-Poo, Veredas & Espasa, 2007).

Alternatively, one can first estimate the seasonal component semi- or non-parametrically

and fit the duration model to the seasonally-adjusted durations (e.g. Engle & Russell,

1998, and Fernandes & Grammig, 2006 among many others). Engle (2000) notes that the

large sample sizes typically available in empirical work make the loss of efficiency of the

two-step procedure relatively small. Given the complexity of the duration models we are

considering in this paper, we opt for the two-stage approach and employ nonparametric

regression (the Nadaraya-Watson estimator) to estimate the seasonal component of the

price durations, separately for each day of the week as in Bauwens & Veredas (2004).

The estimated intraday seasonal patterns are reported in the top panel of Figure
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4. The diurnal pattern is relatively stable across the days of the week and currencies

up to around 11:00 Chicago time. During this period the U.S. and European trading

hours overlap and trading activity in the market is at its peak. After 11:00, trading in

London, where a large proportion of global FX trading takes place (King, Osler & Rime,

2011), gradually ceases and the average price durations become progressively longer.

The exception is Wednesdays, for which we observe a significant dip in the average price

durations around 13:30, most likely due to elevated volatility surrounding macroeconomic

announcements.

Figure 4 plots the autocorrelation function of the adjusted durations obtained by di-

viding the raw durations by the estimated intraday component. Clearly, the persistence

in the price durations is not induced by the seasonal component. The descriptive statis-

tics for the adjusted durations are reported in Table 3. The mean is, by construction,

close to one, the median remains significantly lower than the mean, and over-dispersion

is slightly attenuated by the adjustment. The empirical densities of the standardized

durations, estimated in Figure 4 by a boundary-corrected kernel estimator, are non-

monotonic and heavily positively skewed. Finally, we examine the descriptive statistics

for the logarithmic standardized durations. We find that the logarithmic durations ex-

hibit negative skewness but almost no excess kurtosis. The tail index estimates obtained

by the method of Huisman, Koedijk, Kool & Palm (2001) indicate that the first 8-9 mo-

ments exist, which is in stark contrast to the non-logarithmic durations that only seems

to possess the first three moments. The asymptotics for the Whittle estimator discussed

in Section 3.2 therefore applies to our logarithmic durations data.

7 Empirical Results

The following section compares the estimation and forecasting performance of our MSMD

model to the competing ACD and LMSD models. We use the first 10,000 observations for

estimation and in-sample specification tests and reserve the remaining 2,000 observations

for evaluating out-of-sample forecasting performance. As is common in the durations

literature, in the rest of the paper we work exclusively with the seasonally-adjusted

durations. Since the mean of the standardized durations is, by construction, close to

one, we impose this restriction in all models and do not report the (restricted) estimates

of the various constant terms (ψ̄ in the MSMD model and ω in the ACD and LMSD

models).

21



7.1 Estimation results

We start by describing the in-sample estimates of MSMD for the three currencies in

our sample. We estimate the MSMD model with k = 4, 6 and 8 multipliers; increasing

the number of multipliers beyond 8 does not improve the in-sample and out-of-sample

performance of the model. We use exact maximum likelihood to estimate the MSMD

model with binomial multipliers and the Whittle estimator for both the binomial and

log-normal multipliers. All models are estimated with either the exponential or the

Weibull distribution of innovations. Since the MSMD parameter space is not compact

(0 < m0 < 1, λ > 0, b > 1 and 0 < γk < 1) some constraints are generally required

to achieve numerical stability of the optimization routines. For both MLE and Whittle

estimation, we use the MaxSQP function in the Ox language of Doornik (2006) to maximize

the respective objective functions and search over the following parameter space: m0 ∈
[1.001, 1.999], λ ∈ [0.001, 10], b ∈ [1.001, 10] and γk ∈ [0.001, 0.999].

Tables 4, 5 and 6 show the estimation results for the CHF, EUR and JPY, respec-

tively. All estimated parameters have reasonable standard errors. The goodness-of-fit

test of Chen & Deo (2004) strongly rejects the null hypothesis of correct model specifica-

tion for all MSMD models with exponentially distributed innovations. This is generally

true for all k’s, and across currencies. On the contrary, both the binomial and the log-

normal MSMD models with Weibull innovations seem to be correctly specified as we can

not reject the null hypothesis at the 5% level for any of the estimated models. In addi-

tion, the log-likelihood is uniformly higher for the binomial MSMD models with Weibull

innovations. Thus, the additional flexibility of the Weibull distribution seems to improve

the in-sample fit of the MSMD models significantly.

Turning to the number of multipliers, we find that the log-likelihood increases with

increasing k in all MSMD models with Weibull innovations. In the case of exponential

innovations, the models with six multipliers yield the highest log-likelihood. We have

initially experimented with a wider range of values of k and found that going beyond 8

multipliers offers little improvement in terms of both in-sample as well as out-of-sample

performance, while reducing k below 4 diminishes performance considerably. The results

are available upon request.

Comparing the MLE and Whittle parameter estimates for the binomial MSMD spec-

ifications, we find that the latter are typically smaller than the former, but generally

exhibit a similar pattern. Specifically, both the MLE and Whittle estimates of b tend to

decrease with increasing k, while the estimates of γk tend to increase. Intuitively, hold-

ing all parameters fixed, increasing the number of multipliers increases the persistence

of the MSMD process (see Figure 2(d)), and hence to fit a given persistence in the data
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the parameters b and γk must fall and/or rise, respectively, to compensate (see Figure 2

(b)). Additionally, we observe that the estimates of m0 fall with increasing k, in order to

compensate for the increase in unconditional variance of the MSMD process associated

with rising k (see equation (2.6)). A similar pattern is found for the parameter λ in

the specification with log-normal multipliers. Note that it is not surprising to find that

the Whittle estimates of b, γk and κ (when applicable) are the same across the bino-

mial and log-normal specifications; the two model spectral densities only differ in the

parametrization of Var(logM), see equation (3.2). This does not, however, imply that

the linear forecasts of durations obtained from these models will be the same. The linear

forecasts of durations depend on E(M2) and Var(M) (see equations (2.6) and (2.7)), and

the fact that Var(logM) is the same across the binomial and log-normal specifications

does not imply that E(M2) and Var(M) are as well. This will generally be the case

whenever the parameter estimates are obtained by implementing the Whittle estimator

on non-linearly transformed durations (logs in the present application), rather than the

durations themselves.

Having estimated the MSMD model, we now turn to the competing duration mod-

els. Table 7 shows the results from estimating the exponential and Weibull ACD and

LMSD models for the three FX futures price durations. All estimated parameters have

reasonable standard errors. The ACD model with Weibull innovations achieves higher

log-likelihood than the ACD model with exponentially distributed innovations, but none

of these models generate higher log-likelihoods than the corresponding binomial MSMD

models estimated by maximum likelihood. The ACD parameter estimates are qualita-

tively similar (relatively high β and small α) and imply very high persistence as (α+ β)

is close to one. High persistence is also implied by the LMSD parameter estimates,

where the long memory parameter estimates (d) lie between 0.37 and 0.50. It is difficult

to assess the relative in-sample fit of the Weibull and exponential LMSD specifications,

since the Whittle quasi-likelihoods are not directly comparable.

7.2 Out-of-sample forecasting performance

Our main interest lies in relative forecasting performance rather than in the in-sample fit

of the various duration models. As we experiment with alternative estimation methods

(MLE vs. Whittle) and forecasting schemes (optimal vs. linear), we are really going to

be comparing alternative forecasting methods rather than models (Giacomini & White,

2006). The goal is to shed light not only on the relative ability of the alternative models to

capture persistence in the data, but also on the impact of parameter uncertainty and the

choice of forecasting rule on relative predictive performance. Specifically, we compare
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the following methods: (a) optimal forecasts from binomial MSMD(6) or MSMD(8)

models estimated by maximum likelihood; (b) linear forecasts from binomial and log-

normal MSMD(6) or MSMD(8) models estimated by the Whittle estimator; (c) Kalman

filter-based forecasts from the LMSD model estimated by the Whittle estimator; and

(d) ARMA representation-based forecasts from the ACD model estimated by maximum

likelihood. We also experiment with equally-weighted combinations of (a) and (c), and

(b) and (c), as model averaging may help reduce model uncertainty.

We compute and evaluate one step ahead and cumulative 5, 10 and 20 step ahead

forecasts of price durations. The cumulative h-step ahead forecast, which we denote by

xn,h, are obtained from the usual multi-step ahead forecast by xn,h =
∑h

j=1 xn+j|n. Thus,

xn,h forecasts the time it takes for h price changes to occur, as opposed to xn+h|n, which

forecasts the time elapsed between the (h − 1)-th and h-th price changes. We focus

on the cumulative forecasts as they are more interesting in applications, for example

in predicting realized variance. We evaluate the accuracy of the forecasts using two

common loss functions, the mean square error (MSE) and the mean absolute deviation

(MAD), and assess the differences between models statistically by the Diebold & Mariano

(1995) test for equality of forecast accuracy; the Newey-West estimator is used in the

denominator of the Diebold-Mariano test statistic to account for autocorrelation in the

multi-step forecasts. Our benchmark against which we assess the MSMD and LMSD

models is the short-memory ACD, and we compare models with exponential and Weibull

innovations separately.

Tables 8 and 9 report the results of the forecasting performance of the different

methodologies. Although there is no uniform ranking across the currencies, forecast

horizons and loss functions, a few clear patterns emerge from the exercise. Both the

LMSD and MSMD forecasts generally outperform the ACD forecasts in terms of both

the MSE and MAD. The gains in forecasting performance increase with the forecast

horizon and are generally statistically significant at the 5% level. The MSMD model

performs better when the parameters are estimated by maximum likelihood and the

optimal forecasting rule is used, but the linear forecasting scheme coupled with parameter

estimates obtained by Whittle estimation also deliver better performance than the ACD,

although the difference is not always statistically significant. The superior in-sample fit

of the models with Weibull innovations that we documented in the previous section

does not necessarily translate into better our-of-sample performance. Similarly, while

the MSMD(8) has a higher log-likelihood in-sample, it does not always outperform the

MSMD(6) specification.

The LMSD and MSMD models generally perform on par if optimal forecasting and
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MLE estimates are used for the latter model, with the MSMD sometimes producing

slightly better results. The forecast combinations of the LMSD and MSMD models

almost always significantly outperform the ACD model, and this is generally true re-

gardless of the estimation method and forecasting rule used for the MSMD model. This

is a potentially important result for practitioners, for the Whittle estimators of both

MSMD and LMSD parameters are very easy to implement regardless of the size of the

sample or the various distributional assumptions made. Thus, we conclude that the

long-memory duration models do provide better forecasts than the simple short-memory

ACD model.

8 Conclusion

This paper introduces a new model for financial durations, featuring persistence that

translates from durations to realized volatility. We establish the main properties of the

model and propose the Whittle estimator of its parameters as an alternative to maximum

likelihood. The asymptotics we obtain for the estimator is by no means confined to the

MSMD specifications explored in this paper, and can be readily adapted to other MSM

applications, such as stochastic volatility modeling. In an empirical application, we show

that the MSMD model performs well in multi-step forecasting.

There are several avenues for future research. It would be worthwhile to experiment

with the “enhanced” Whittle estimator proposed by Deo, Hurvich & Lu (2006) in order

to improve the finite-sample properties. The idea of this approach is to apply the Whittle

estimator to durations transformed as 1
vX

v, v > 0, rather than to logarithmic durations

as we did in this paper, as the distribution of 1
vX

v may be closer to Gaussian for some v

than the distribution of logX. Abadir & Tailman (2005) show that this transformation

is smooth in the sense that the autocovariance function of 1
vX

v approaches the autoco-

variance function of logX as v → 0. The moments and spectral density of 1
vX

v can be

obtained in closed form, which facilitates implementation.

On the empirical side, it would be interesting to use the MSMD model in various

risk-management applications. Given the success of the model in multi-step forecasting,

one may for example explore its ability to forecast realized volatility over short time-

horizons, such as 1 hour, and compare the resulting forecasts with those obtained from

popular time-series models for realized volatility. Similarly, the model may be fit to

volume durations, and used to predict market trading activity with the aim to optimally

time trade execution. We will explore these applications in future work.
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A Proofs

A.1 Proof of Proposition 1

We follow Zaffaroni (2009, Theorem 1) and rely on the proof of Hannan (1973, Lemma 1). In partic-
ular, we show that supθ∈Θ |Qn(θ) − Q(θ)| a.s.−→ 0 as n → ∞, where Q(θ) = 1

2π

∫ π
−π log(f(ω;θ))dω +

1
2π

∫ π
−π f(ω;θ0)f−1(ω;θ)dω, and that Q(θ) ≥ Q(θ0) for any θ ∈ Θ with equality holding only if θ = θ0.

The statement in the proposition then follows.
Starting with 1

n

∑n−1
i=1 In(ωi)/f(ωi;θ), observe that the continuity and boundedness away from zero

of f(ω;θ) on [−π, π] implies that the Cesaro sum of the Fourier series of f−1(ω;θ) taken to M terms
converges to f−1(ω;θ) uniformly on [−π, π] × Θ as M → ∞ (e.g. Brockwell & Davis, 1991, Theorem
2.11.1). Thus the uniform convergence a.s. of 1

n

∑n−1
i=1 In(ωi)/f(ωi;θ) follows by the same argument

as in Hannan (1993, Lemma 1), provided that (a) 1
n

∑n−1
i=h+1 xixi−h

a.s.−→ E(xixi−h) as n → ∞ for all

h, 0 ≤ h ≤ M , and (b) xjxn−m+j/n
a.s.−→ 0 as n → ∞ for any fixed j > 0 and m > 0. Since {xt} is

strictly stationary, ergodic and has finite and constant second moments, the almost sure convergence
in (a) and (b) follows from the Ergodic Theorem (e.g. Davidson, 1994, Theorem 13.12). Uniform
convergence of the non-random term 1

n

∑n−1
i=1 log f(ωi;θ) follows by the same argument as in Zaffaroni

(2009, Lemma 6). Finally, for all θ ∈ Θ such that θ 6= θ0, the first assumption in the proposition implies
that f(ω;θ0)/f(ω;θ) − 1 > log f(ω;θ0) − log f(ω;θ) on a set of positive Lebesgue measure, and hence
Q(θ) > Q(θ0) unless θ = θ0. �

A.2 Proof of Proposition 2

Define δj = 1 − γj , ηj,i = (mj,i − E(m)) − δj(mj,i−1 − E(m)), j = 1, .., k, η0,i = log εi − E(log ε1),
ψh = (1{h=0}, δ

h
1 , δ

h
2 , ..., δ

h
k ), ηi = (η0,i, η1,i, ..., ηk,i)

′, and µ = ψ̄ + E(log ε1) + kE(m), and observe that
xi can be written as

xi = µ+

∞∑
l=0

ψlηi−l, i ∈ Z. (A.1)

Now define Fj,i = σ(ηj,i, ηj,i−1, ..., ), j = 0, ..., k and observe that E|ηj,i| < ∞, E(ηj,i|Fj,i−1) = 0 and
E(η2

j,i) = c < ∞, so {ηj,i,Fj,i} is a homoskedastic martingale difference sequence, j = 1, ..., k. Now
εi − E(ε1) is iid and the components of ηi are independent, and hence {ηi,Fηi }, where Fηi = ⊗kj=0Fj,i,
is also homoskedastic martigale difference. Thus the statement in the proposition follows from Hosoya
& Taniguchi (1982, Theorem 3.1) provided we verify that (a) the model spectral density satisfies the
regularity conditions required by the theorem, and (b) the conditions (i)-(v) of the theorem are satisfied.
Note that the non-zero constant term µ in (A.1) is inconsequential since the periodogram is evaluated at
Fourier frequencies, and hence the constant can be ignored in the sequel. If need be, it can be consistently
estimated by the sample mean of xi.

(a) Regularity conditions for spectral density. We need to show that the model spectral density is
bounded away from zero on [−π, π], twice continuously differentiable function in θ on Θ, and that the
second derivatives are continuous in ω ∈ [−π, π]. This follows directly from (3.2) and the fact that Θ is
a compact subset of the parameter space (i.e. γk is bounded away from zero and one and b is bounded
away from one).

(b.i) Conditional second moments. We need to show that for each j1, j2 and q

Var[E(ηj1,iηj2,i+h|F
η
i−q)− 1{j1=j2}σ

2
ηj1

] = O(q−2−r), r > 0, (A.2)

uniformly in i. Since the elements of ηi are independent and second-order stationary, this follows imme-
diately whenever j1 6= j2. For j1 = j2, we simplify notation by writing j = j1 = j2 and further by writing
mj,i = mj,i−E(m), mj,i = mi, ηj,i = ηi and δ = δj , j = 1, ..., k. The case of j = 0 follows trivially since
η0,i is iid. Now for all h ≥ 0 and p = 1, ..., 4,

E(mp
i+h|mi) = δhmp

i + (1− δh)E(mp), (A.3)

and for all 0 ≤ h1 < h2 and q ≥ 1, by LIE,

E(mi+h1mi+h2 |mi−q) = E(mi+h1E(mi+h2 |mi+h1)|mi−q),
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= δh2+qm2
i−q + δh2−h1(1− δh1+q)E(m2).

For h ≥ 1 and q ≥ 2, we therefore have

E(ηiηi+h|Fηi−q) = E(mimi+h|mi−q)− δE(mi−1mi+h|mi−q)

−δE(mimi+h−1|mi−q) + δ2E(mi−1mi+h−1|mi−q),

= 0.

For h = 0 and any q ≥ 2, we have

E(η2
i |Fηi−q) = E(m2

i |mi−q)− 2δE(mimi−1|mi−q) + δ2E(m2
i−1|mi−q),

= (δq − δq+1)m2
i−q + [(1− δq)− δ2(1− δq−1)]E(m2),

and by fourth-order stationarity,

Var[E(η2
i |Fηi−q)− E(η2

i )] = Var[(δq − δq+1)m2
i−q + {(1− δq)− δ2(1− δq−1)}E(m2)− (1− δ2)E(m2)],

= (δq − δq+1)2Var(m2
i−q − E(m2)),

= O(δ2q),

which verifies (A.2) since O(δ2q) decays faster than O(q−2−r) for any r <∞.
(b.ii) Conditional fourth-moments. We need to show that for each j1, j2, j3, j4 and h1, h2, h3,

E|E(ηj1,iηj2,i+h1ηj3,i+h2ηj4,i+h3 |Fi−q)− E(ηj1,iηj2,i+h1ηj3,i+h2ηj4,i+h3)| = O(q−1−r), r > 0, (A.4)

uniformly in i, where 0 ≤ h1 ≤ h2 ≤ h3. To save space, we establish this for j1 = j2 = j3 = j4, noting
that the other cases can be shown analogously, and are easier since the elements of ηi are independent.
We again simplify notation by writing j = j1 = j2 = j3 = j4 , mj = mj,i and δ = δj . Now

ηiηi+h1ηi+h2ηi+h3 = (mi − δmi−1)(mi+h1 − δmi+h1−1)(mi+h2 − δmi+h2−1)(mi+h3 − δmi+h3−1), (A.5)

where for any 0 ≤ h1 ≤ h2 ≤ h3 the sum on the right-hand side contains sixteen terms, each being
a product of four terms with either zero, one, two, three or four lags in common depending on the
particular choice of h1, h2 and h3. Starting with the case when all the lags are distinct, we obtain by
iterated conditioning and repeated use of (A.3)

E(mimi+l1mi+l2mi+l3 |mi−q) = δl3 [δqm4
i−q + (1− δq)E(m4)] + δl3−l1(1− δl1)E(m3)δqmi−q

+δl3−l2+l1(1− δl2−l1)E(m2)[δqm2
i−q + (1− δq)E(m2)]

E(mimi+l1mi+l2mi+l3) = δl3E(m4) + δl3−l2+l1(1− δl2−l1)E(m2)2,

0 < l1 < l2 < l3, q ≥ 2.

Thus by fourth-order stationarity

E|E(mimi+l1mi+l2mi+l3 |mi−q)− E(mimi+l1mi+l2mi+l3)|
≤ δq{δl3E|m4

i−q − E(m4)|+ δl3−l1(1− δl1)|E(m3)|E|mi−q|}
+δl3−l2+l1(1− δl2−l1)E(m2)E|m2

i−q − E(m2)|
= O(δq).

Turning to the case when all the lags are equal, i.e. 0 = l1 = l2 = l3, we have

E|E(mm4
i |mi−q)− E(m4

i )| ≤ δqE|m4
i−q − E(m4)|,

= O(δq).

The terms with one, two and three common lags in (A.5) can be established analogously. (A.4) then
follows from the triangle inequality and the fact that O(δq) decays faster than O(q−1−r) for any r <∞.

(b.iii) Square-integrability of model spectral density. We need to show that the MSMD spectral
density is square-integrable. This follows directly from the continuity and boundedness of the spectral
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density on [−π, π], uniformly on Θ.
(b.iv) Absolute summability of fourth-order cumulants. We need to show that

∞∑
h1=−∞

∞∑
h2=−∞

∞∑
h3=−∞

|cum(ηj1,i, ηj2,i+h1 , ηj3,i+h2 , ηj4,i+h3)| <∞ (A.6)

for any j1, j2, j3, j4, jl = 0, ..., k and l = 1, 2, 3, 4. Since the elements of ηi are independent and fourth-
order stationary all cross-cumulants are zero, so we only need to focus on the case j1 = j2 = j3 = j4.
Now since η0,i is iid with finite fourth moment, the absolute summability of its fourth-order cumulants
follows directly. For an ηj,i, j = 1, ..., k, we use the fact that ηj,i is fourth-order stationary exponential
strong mixing with 4 + r moment finite and hence

∑∞
s=0(s + 1)p−2α(s)r/(p+r) < ∞, p = 1, ..., 4, where

α(s) is the strong mixing coefficient associated to ηj,i satisfying α(s) = O(ρs) for some ρ ∈ (0, 1). Thus
by Doukhan & Leon (1989, Proposition 2.2), the inequality (A.6) holds.

(b.v) Lipschitz continuity of f(ω;θ0). This follows directly for the smoothness of the first derivatives
of f(ω;θ) uniformly on Θ.

The statement of the proposition now follows by simplifying the formulae for Mf and Ṽ in Hosoya
& Taniguchi (1982, Theorem 3.1) in view of the fact that the true spectral density of xi is given by
f(ω;θ0), together with the fact that the matrix M(θ0) is full rank by the identification assumption
stated in Proposition 1. �

A.3 Proof of Proposition 3

We need to show that the assumptions of Theorem 1 in Deo et al. (2009) are satisfied. Assumption
(ii) requires the duration process to be exponential strong mixing, and this was established in Section
2.1; it is well-known that exponential β-mixing implies exponential strong mixing since the β-mixing
coefficients dominate the strong mixing coefficients, e.g. Davidson, 1994, Chapter 14.

Turning to Assumption (i) of Theorem 1 in Deo et al. (2009), we first note that the long-run variance
of Xi is strictly positive, i.e. limn→∞

1
n

Var(
∑n
i=1 Xi) = σ2 > 0 for some constant σ2. Since {Xi} is

stationary with exponentially declining autocovariances, this is equivalent to showing that the spectral
density of Xi is strictly positive at the zero frequency. This follows directly from expression (0.2) in
the Supplemental Appendix A1 since when ω = 0 each summand in (0.2) is strictly positive implying

2πfX(ω) > 0. Write σ2 = 2πfX(ω) and define Yn(s) = n−1/2 ∑bnsc
i=1 (Xi − ψ̄). Since by assumption εi is

iid with 3 + r moments finite for some r > 0 and independent of ψi, which also has 3 + r moments finite,
it follows that Xi has 3 + r moments finite. Then by Deo et al. (2009), Yn ⇒ σW , as n→∞, where W
is a standard Brownian motion. This verifies Assumption (i) of Theorem 1 in Deo et al. (2009).

Finally, by the same argument as in the proof of Theorem 3 in Deo et al. (2009), the expo-
nential strong mixing property and the existence of 3 + r (where r > 0) moments of xi imply for
yn = n−1/2 ∑n

i=1 xi, and some constant c that E(|yn − E(yn)|3+r) ≤ c < ∞ as required by Assumption
(iii) of Theorem 1 in Deo et al. (2009). �
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B Tables and Figures

Exp W(κ)

1,000 2,500 5,000 10,000 1,000 2,500 5,000 10,000

A. Binomial multipliers - MLE
m0 1.382 1.393 1.395 - 1.393 1.3993 1.400 -

(0.035) (0.021) (0.016) ( - ) (0.036) (0.022) (0.015) ( - )
b 1.832 1.936 1.949 - 1.982 1.998 2.022 -

(0.346) (0.250) (0.162) ( - ) (0.438) (0.258) (0.180) ( - )
γk 0.501 0.499 0.494 - 0.506 0.502 0.509 -

(0.164) (0.107) (0.069) ( - ) (0.160) (0.101) (0.064) ( - )
κ - - - - 1.465 1.458 1.453 -

( - ) ( - ) ( - ) ( - ) (0.098) (0.064) (0.037) ( - )

B. Binomial multipliers - Whittle
m0 1.425 1.409 1.400 1.400 1.437 1.411 1.403 1.401

(0.080) (0.047) (0.018) (0.007) (0.088) (0.045) (0.019) (0.013)
b 2.608 2.231 1.996 1.999 2.883 2.222 2.022 2.012

(1.871) (1.190) (0.214) (0.131) (2.263) (1.145) (0.247) (0.152)
γk 0.467 0.497 0.499 0.502 0.514 0.524 0.523 0.514

(0.221) (0.146) (0.101) (0.075) (0.273) (0.208) (0.158) (0.104)
κ - - - - 1.617 1.523 1.491 1.466

( - ) ( - ) ( - ) ( - ) (0.415) (0.244) (0.161) (0.098)

C. Log-normal multipliers - Whittle
λ 0.206 0.167 0.153 0.150 0.214 0.168 0.155 0.151

(0.143) (0.076) (0.031) (0.015) (0.137) (0.068) (0.030) (0.015)
b 2.803 2.279 2.034 1.994 2.924 2.257 2.046 2.008

(2.089) (1.282) (0.483) (0.182) (2.267) (1.216) (0.455) (0.195)
γk 0.474 0.498 0.501 0.499 0.525 0.531 0.528 0.516

(0.247) (0.173) (0.124) (0.086) (0.296) (0.225) (0.176) (0.128)
κ - - - - 1.583 1.515 1.487 1.465

( - ) ( - ) ( - ) ( - ) (0.315) (0.192) (0.137) (0.075)

Table 1: Monte Carlo simulation of the maximum likelihood (MLE) and Whittle es-
timators of the parameters of the MSMD model with k = 8 binomial or log-normal
multipliers and exponential or Weibull innovations. We report average parameter es-
timates obtained in the simulation together with standard errors in parentheses. The
true parameters used in the simulations are b = 2, γk = 0.5, m0 = 1.4, λ = 0.15 and
κ = 1.45. The results for MLE are based on 500, 200 and 100 replications for the samples
of n = 1, 000, 2, 000 and 5, 000 observations, respectively. All simulations of the Whittle
estimator are based on 1,000 replications.
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Distribution of ε

exp W(κ) LN(λ)

A. 10% nominal
Binomial multipliers 11.3 9.2 9.9
Lognormal multipliers 11.0 11.7 13.6

B. 5% nominal
Binomial multipliers 6.2 6.0 5.6
Lognormal multipliers 6.2 6.4 7.0

Table 2: Monte Carlo simulation of the goodness-of-fit test for the MSMD model with k =
8 binomial or log-normal multipliers and exponential, Weibull or log-normal innovations.
We report the simulated size for 5 and 10% nominal level. The true parameters used
in the simulations are b = 2, γk = 0.5, m0 = 1.4, λ = 0.15 and κ = 1.45. The sample
size used in the simulations is n = 10, 000 observations and the simulations are based on
1,000 replications.

CHF EUR JPY

raw adj log-adj raw adj log-adj raw adj log-adj

Mean 117.8 1.000 -0.602 105.5 1.002 -0.580 89.50 1.002 -0.720
Median 66.00 0.618 -0.481 59.00 0.619 -0.479 43.00 0.536 -0.623
Minimum 1.000 0.004 -5.613 1.000 0.004 -5.482 1.000 0.007 -5.028
Maximum 2498 15.78 2.759 3574 20.55 3.023 3160 20.31 3.011
Std.dev. 159.1 1.194 1.204 141.1 1.205 1.167 135.3 1.386 1.296
Dispersion 1.351 1.194 - 1.337 1.204 - 1.512 1.383 -
Skewness 3.775 3.307 -0.497 4.410 3.731 -0.439 4.586 4.053 -0.322
Kurtosis 26.43 22.10 3.187 49.99 29.71 3.140 46.06 30.60 2.817
Left tail - - 10.16 - - 9.409 - - 12.88

- - (0.002) - - (0.002) - - (0.002)
Right tail - 3.976 9.703 - 3.501 7.949 - 3.206 7.955

- (0.003) (0.002) - (0.003) (0.003) - (0.003) (0.003)

Table 3: Descriptive statistics for Swiss franc (CHF), Euro (EUR) and Japanese Yen
(JPY) futures price durations. The sample period runs between 9 November 2009 and
29 January 2010 and the sample size is n = 12, 000 for all datasets. The columns labeled
“raw” report descriptive statistics for the raw price durations, the columns “adj” give
descriptive statistics for the seasonally adjusted durations and the columns “log-adj”
report descriptive statistics for the logarithmic seasonally adjusted durations. The rows
labeled “Left tail” and “Right tail” report the estimated tail indexes (with standard
error in parentheses) for the left and right tail, respectively.
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Exp W(κ)

k = 4 k = 6 k = 8 k = 4 k = 6 k = 8

A. Binomial multipliers - MLE
m0 1.356 1.328 1.316 1.439 1.394 1.355

(0.009) (0.008) (0.010) (0.008) (0.009) (0.007)
b 2.339 1.962 2.045 7.059 6.075 4.188

(0.551) (0.311) (0.308) (0.779) (0.621) (0.336)
γk 0.067 0.059 0.064 0.533 0.973 0.999

(0.014) (0.013) (0.014) (0.062) (0.031) (0.002)
κ - - - 1.346 1.485 1.566

( - ) ( - ) ( - ) (0.024) (0.041) (0.045)
Tn 20.078 22.644 24.322 -1.150 -1.252 -1.295

(0.000) (0.000) (0.000) (0.875) (0.895) (0.902)
logL -8881.967 -8859.848 -8863.670 -8661.562 -8614.860 -8594.576

B. Binomial multipliers - Whittle
m0 1.293 1.243 1.212 1.369 1.308 1.269

(0.014) (0.012) (0.010) (0.017) (0.017) (0.015)
b 1.876 1.477 1.326 4.150 2.600 2.045

(0.222) (0.121) (0.083) (0.836) (0.449) (0.250)
γk 0.058 0.058 0.058 0.476 0.568 0.608

(0.015) (0.016) (0.016) (0.213) (0.299) (0.287)
κ - - - 1.376 1.380 1.379

( - ) ( - ) ( - ) (0.047) (0.059) (0.054)
Tn 35.836 36.270 36.480 -1.084 -1.079 -1.077

(0.000) (0.000) (0.000) (0.861) (0.860) (0.859)
q-log L -2923.704 -2924.308 -2924.557 -3381.884 -3381.712 -3381.651

C. Log-normal multipliers - Whittle
λ 0.096 0.064 0.048 0.162 0.107 0.079

(0.010) (0.007) (0.005) (0.017) (0.014) (0.009)
b 1.876 1.477 1.326 4.150 2.600 2.045

(0.222) (0.121) (0.083) (0.836) (0.449) (0.250)
γk 0.058 0.058 0.058 0.476 0.568 0.608

(0.015) (0.016) (0.016) (0.213) (0.299) (0.287)
κ - - - 1.376 1.380 1.379

( - ) ( - ) ( - ) (0.047) (0.059) (0.054)
Tn 35.835 36.270 36.479 -1.084 -1.078 -1.077

(0.000) (0.000) (0.000) (0.861) (0.860) (0.859)
q-log L -2923.704 -2924.308 -2924.557 -3381.884 -3381.712 -3381.651

Table 4: MSMD parameter estimates for de-seasonalised CHF price durations. (A) Max-
imum likelihood estimates (MLE) of the binomial MSMD models with exponential and
Weibull innovations, (B) Whittle estimates of the binomial MSMD models with exponen-
tial and Weibull innovations and (C) Whittle estimates of the log-normal MSMD models
with exponential and Weibull innovations. Standard errors are reported in parentheses.
The specification test Tn is reported with p-values in parentheses.
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Exp W(κ)

k = 4 k = 6 k = 8 k = 4 k = 6 k = 8

A. Binomial multipliers - MLE
m0 1.349 1.281 1.331 1.452 1.397 1.342

(0.011) (0.011) (0.020) (0.007) (0.008) (0.008)
b 3.001 1.932 3.000 7.241 5.491 3.289

(0.636) (0.299) (0.525) (0.737) (1.032) (0.563)
γk 0.086 0.088 0.089 0.881 0.999 0.999

(0.015) (0.022) (0.017) (0.032) (0.004) (0.004)
κ - - - 1.554 1.675 1.670

( - ) ( - ) ( - ) (0.029) (0.068) (0.067)
Tn 33.655 36.987 36.923 -0.935 -0.975 -1.041

(0.000) (0.000) (0.000) (0.825) (0.835) (0.851)
logL -9007.010 -8998.909 -9001.426 -8706.568 -8652.807 -8649.950

B. Binomial multipliers - Whittle
m0 1.272 1.224 1.195 1.402 1.354 1.308

(0.013) (0.011) (0.010) (0.062) (0.023) (0.017)
b 1.643 1.353 1.242 5.060 3.391 2.459

(0.343) (0.197) (0.139) (2.837) (0.585) (0.260)
γk 0.058 0.058 0.058 0.901 0.999 0.999

(0.017) (0.019) (0.021) (0.438) (0.008) (0.005)
κ - - - 1.588 1.719 1.701

( - ) ( - ) ( - ) (0.302) (0.173) (0.136)
Tn 53.333 53.720 53.887 -1.614 -1.619 -1.619

(0.000) (0.000) (0.000) (0.947) (0.947) (0.947)
q-log L -3071.748 -3071.930 -3072.001 -3648.922 -3648.827 -3648.782

C. Log-normal multipliers - Whittle
λ 0.081 0.053 0.040 0.199 0.147 0.106

(0.008) (0.005) (0.004) (0.076) (0.023) (0.014)
b 1.643 1.352 1.242 5.060 3.391 2.459

(0.343) (0.197) (0.139) (2.835) (0.585) (0.263)
γk 0.058 0.058 0.058 0.901 0.999 0.999

(0.017) (0.019) (0.021) (0.438) (0.008) (0.005)
κ - - - 1.588 1.719 1.701

( - ) ( - ) ( - ) (0.301) (0.173) (0.139)
Tn 53.333 53.720 53.888 -1.614 -1.619 -1.619

(0.000) (0.000) (0.000) (0.947) (0.947) (0.947)
q-log L -3071.748 -3071.930 -3072.001 -3648.922 -3648.827 -3648.782

Table 5: MSMD parameter estimates for de-seasonalised Euro futures price durations.
(A) Maximum likelihood estimates (MLE) of the binomial MSMD models with expo-
nential and Weibull innovations, (B) Whittle estimates of the binomial MSMD models
with exponential and Weibull innovations and (C) Whittle estimates of the log-normal
MSMD models with exponential and Weibull innovations. Standard errors are reported
in parentheses. The specification test Tn is reported with p-values in parentheses.
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Exp W(κ)

k = 4 k = 6 k = 8 k = 4 k = 6 k = 8

A. Binomial multipliers - MLE
m0 1.415 1.343 1.343 1.481 1.424 1.376

(0.010) (0.014) (0.013) (0.007) (0.007) (0.008)
b 3.348 2.188 2.454 4.848 4.006 2.933

(0.552) (0.285) (0.263) (0.366) (0.340) (0.253)
γk 0.152 0.164 0.180 0.826 0.985 0.999

(0.018) (0.025) (0.025) (0.047) (0.012) (0.002)
κ - - - 1.481 1.590 1.672

( - ) ( - ) ( - ) (0.035) (0.040) (0.063)
Tn 26.401 28.896 30.695 1.006 1.508 1.459

(0.000) (0.000) (0.000) (0.157) (0.066) (0.072)
logL -8255.173 -8252.226 -8256.733 -8053.231 -8008.807 -8000.278

B. Binomial multipliers - Whittle
m0 1.342 1.283 1.247 1.434 1.367 1.323

(0.013) (0.011) (0.010) (0.012) (0.015) (0.015)
b 1.991 1.560 1.391 3.954 2.574 2.046

(0.315) (0.157) (0.103) (0.422) (0.285) (0.185)
γk 0.084 0.091 0.095 0.569 0.723 0.784

(0.014) (0.016) (0.018) (0.079) (0.170) (0.183)
κ - - - 1.396 1.422 1.430

( - ) ( - ) ( - ) (0.031) (0.063) (0.073)
Tn 49.062 49.129 49.138 0.757 0.748 0.745

(0.000) (0.000) (0.000) (0.225) (0.227) (0.228)
q-log L -2501.523 -2501.468 -2501.450 -2883.415 -2883.466 -2883.507

C. Log-normal multipliers - Whittle
λ 0.136 0.088 0.065 0.241 0.160 0.119

(0.012) (0.008) (0.007) (0.017) (0.016) (0.012)
b 1.991 1.560 1.391 3.954 2.574 2.046

(0.315) (0.157) (0.125) (0.422) (0.284) (0.185)
γk 0.084 0.091 0.095 0.569 0.723 0.784

(0.014) (0.016) (0.011) (0.079) (0.170) (0.183)
κ - - - 1.396 1.422 1.430

( - ) ( - ) ( - ) (0.031) (0.063) (0.073)
Tn 49.061 49.128 49.514 0.757 0.748 0.745

(0.000) (0.000) (0.000) (0.225) (0.227) (0.228)
q-log L -2501.523 -2501.468 -2501.347 -2883.415 -2883.466 -2883.507

Table 6: MSMD parameter estimates for de-seasonalised Japanese Yen futures price du-
rations. (A) Maximum likelihood estimates (MLE) of the binomial MSMD models with
exponential and Weibull innovations, (B) Whittle estimates of the binomial MSMD mod-
els with exponential and Weibull innovations and (C) Whittle estimates of the log-normal
MSMD models with exponential and Weibull innovations. Standard errors are reported
in parentheses. The specification test Tn is reported with p-values in parentheses.
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ACD LMSD

Exp W(κ) Exp W(κ)

A. Swiss Franc
α 0.152 0.151 - -

(0.005) (0.000) ( - ) ( - )
β 0.830 0.858 0.879 -0.043

(0.007) (0.000) (0.043) (0.099)
d - - 0.500 0.477

( - ) ( - ) (0.074) (0.033)
σ2
u - - 0.005 0.382

( - ) ( - ) (0.001) (0.143)
κ - 0.996 - 1.519

( - ) (0.002) ( - ) (0.125)
logL -8953.300 -8930.917 q-log L -2928.500 -3376.700

B. Euro
α 0.157 0.155 - -

(0.006) (0.006) ( - ) ( - )
β 0.811 0.812 0.850 -0.054

(0.008) (0.007) (0.054) (0.046)
d - - 0.500 0.387

( - ) ( - ) (0.073) (0.037)
σ2
u - - 0.006 0.640

( - ) ( - ) (0.002) (0.186)
κ - 1.034 - 1.951

( - ) (0.007) ( - ) (0.369)
logL -9068.800 -9058.900 q-log L -3074.600 -3643.700

C. Japanese Yen
α 0.188 0.193 - -

(0.005) (0.006) ( - ) ( - )
β 0.780 0.775 0.848 -0.081

(0.007) (0.008) (0.043) (0.025)
d - - 0.367 0.373

( - ) ( - ) (0.076) (0.034)
σ2
u - - 0.020 1.022

( - ) ( - ) (0.004) (0.231)
κ - 0.949 - 2.570

( - ) (0.007) ( - ) (1.067)
logL -8500.100 -8473.900 q-log L -2515.400 -2888.600

Table 7: Maximum likelihood estimates of exponential and Weibull ACD models and
Whittle estimates of exponential and Weibull LMSD models for de-seasonalised (A)
Swiss franc, (B) Euro and (C) Japanese Yen futures price durations. Standard errors
are reported in parentheses.
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Figure 1: Simulated binomial and log-normal MSMD processes with six multipliers and
exponentially distributed innovations. The parameters of the processes are b = 3, γk =
0.5, m0 = 1.4 and λ = 0.15.
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Figure 2: Transition probabilities and the autocorrelation function of a binomial MSMD
process with exponentially distributed innovations.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Lags

A
ut

oc
or

re
la

tio
n

fu
nc

tio
n

HaL Theoretical ACF of durations
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Figure 3: (a) Theoretical autocorrelation functions of durations from i) the ACD model
with parameters α = 0.24, β = 0.69, ii) the binomial MSMD(4) model with parameters
m0 = 1.84, b = 3.30, γk = 0.047, iii) the binomial MSMD(8) model with parameters
m0 = 1.55, b = 3.00, γk = 0.076, and iv) the LMSD model with ω = 1.028, β = 0.73,
d = 0.47, σ2

u = 0.029. (b) Simulated autocorrelation functions of daily realized volatility
generated by the corresponding duration models i)-iv).
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Figure 4: Foreign exchange price durations data. The top row shows the diurnal pattern
estimated by kernel regression separately for each day of the week. The second row shows
the time series of standardized durations and the third row reports the autocorrelation
functions of raw and standardized durations. The bottom row plots the empirical density
of standardized durations obtained by a boundary-corrected kernel estimator.
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