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ABSTRACT 
 

GTL Regression: 
A Linear Model with Skewed and Thick-Tailed Disturbances 
 
If the disturbances of a linear regression model are skewed and/or thick-tailed, a maximum 
likelihood estimator is efficient relative to the customary Ordinary Least Squares (OLS) 
estimator. In this paper, we specify a highly flexible Generalized Tukey Lambda (GTL) 
distribution to model skewed and thick-tailed disturbances. The GTL-regression estimator is 
consistent and asymptotically normal. We demonstrate the potential gains of the GTL 
estimator over the OLS estimator in a Monte Carlo study and in five applications that are 
typical of applied economics research problems: log-wage equations, hedonic housing price 
equations, an analysis of speeding tickets, the issue of trade creation and trade diversion that 
result from preferential trade agreements, and the familiar CAPM model in financial 
economics. 
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1 Introduction

In estimating models of economic behavior, researchers pay more attention to the specifica-

tion of the systematic component of the regression model than to the disturbances. After all,

the researcher has full control over the manner in which the systematic component is built

up from observable factors. The disturbance combines all unobservables in a single compos-

ite term that is both a nuisance because it prevents a perfect explanation of the outcome

variable and a blessing because it permits a parsimonious representation of ignorance.

A researcher may resort to classical assumptions about the disturbances (independently

and identically distributed with a zero mean and a constant finite variance), or he may choose

to describe this aggregate disturbance factor with familiar tools such as heteroskedasticity,

serial correlation, and ARCH and GARCH modeling. Such tools address patterns in the

behavior among the disturbances. But consider a situation where such patterns do not exist:

what options exist then? What is actually the nature of the distribution of the disturbances?

The classical assumptions imply that the Ordinary Least Squares (OLS) estimator is efficient

within the class of linear unbiased estimators. Moreover, if the disturbances are normally

distributed, the OLS estimator coincides with the Maximum Likelihood (ML) estimator,

which has optimality properties itself by virtue of the Cramer-Rao theorem. However, nor-

mality of the disturbances is not guaranteed by economic theory; in fact, economic theory

rarely has anything to say about the distribution of the disturbances. Rather, the researcher

is implicitly relying on the Central Limit Theorem, assuming that many unobservables play

a role and none is dominant, thus yielding an approximately normally distributed aggregate

disturbance. But that is an untested assumption.

This paper addresses the situation where disturbances are independently and identically

distributed but are not “standard”: they may be skewed; they may have long or short

tails; and their moments may not even be defined. The Ordinary Least Squares estimator
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may not work well under these circumstances. We offer an ML estimator based on a highly

flexible Generalized Tukey Lambda (GTL) distribution, that approximately nests the normal

distribution but can also handle thick, skewed tails and nonexisting moments. We show that

a flexible description of the distribution yields a more efficient estimator than OLS.

The literature offers several other approaches. First, tail data may be dealt with by means

of data trimming or winsorizing (Chen and Dixon, 1972; Yale and Forsythe, 1976; Chen

et al., 2001). These techniques view tail observations as data contaminations arising from a

different data generating process; the interior of the scatterplot contains the information that

is relevant for the process under focus. However, for processes with thick-tailed data, while

the interior of the scatterplot is indeed relevant for the location parameters, the tails are

not considered contaminations but rather provide information about scale and shape (and

also location) parameters. Moreover, trimming and winsorizing leads to biased parameter

estimates if the disturbances are generated with a skewed distribution.

Second, M-estimation maximizes an objective function that may or may not coincide

with the log-likelihood function but, more importantly, may be selected so as to downplay

extreme values in order to reduce their impact on the slope (or other) estimates (Huber,

1964; Huber and Ronchetti, 2009). The least squares estimator that follows the trimming

or winsorizing of the data may be seen as a special case of the M-estimator. Ultimately,

the objective of M-estimation is to estimate particular characteristics of the data generating

process, such as location (intercept and slope), dispersion, or skewness; the objective is not

to describe the distribution of the disturbances per se. As a result, the information content

of tail observations is not (fully) utilized. The same may be said about L-estimation, which

formulates estimators from order statistics (or sample quantiles) and of which the Least

Absolute Deviation estimator is a special case (Koenker and Bassett, 1978; Koenker and

Portnoy, 1987; Koenker, 2005).

Third, by design, the semi-parametric estimation approach allows the distribution of the
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disturbances to be more arbitrary. For example, the various semiparametric estimators of the

single index model only require the existence of several moments of the dependent variable;

at the very least, the variance of the disturbance must be finite.1 Heavy-tailed disturbances,

especially those for which higher-order moments do not exist, are likely to cause estimation

problems for location parameters, and the nature of the distribution of the disturbances is

not directly addressed.

The fourth approach is more direct, explicitly specifying the distribution of the distur-

bances. This paper fits within this approach. The current literature offers several alter-

natives. The first to come to mind is the Student’s t(ν) distribution where variation in

the degrees of freedom ν yields varying degrees of tail thickness. Other examples are the

skewed-t, skewed generalized error, and asymmetric power distributions as well as a mixture

of the beta and t distributions (e.g., Fernandez and Steel, 1998; Ferreira and Steel, 2006;

Komunjer, 2007; Harvey and Sucarrat, 2014).2 Recently a series of studies rely on the family

of so-called stable distributions, members of which are typically heavy-tailed and potentially

skewed. Blattberg and Sargent (1971) and Samorodnitsky et al. (2007) develop a linear esti-

mator for a model with a single explanatory variable in which both the disturbance and the

explanatory variable are drawn from a stable distribution. Nolan and Ojeda-Revah (2013)

develop an ML estimator of a multivariate linear (and nonlinear) model, and Hallin et al.

(2011, 2013) use rank estimation as the strategy to deal with heavy-tailed stable distur-

bances. The family of stable distributions nests normality, but all other members do not

have a second or higher moment and some even lack a first moment. All of these studies

demonstrate the relative inefficiency of OLS estimators. Stable distributions are sometimes

proposed as a way to model heavy-tailed disturbances in regression models especially in fi-

1For example, see Powell et al. (1989), Ichimura (1993), Carroll et al. (1997), Horowitz (1998), and Li
and Racine (2007).

2However, Fernancez and Steel (1999) shows that the likelihood function of a t(ν)-based regression model
is unbounded for ν approaching 0, raising questions about models based on the t distribution.
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nance applications, but the fact that the variance of the disturbance does not exist for all

but the normal-distribution member of the family could be seen as a disadvantage.

A separate literature examines the tails of the OLS estimator under heavy-tailed dis-

turbances; e.g., see He et al. (1990), Jureckova et al. (2001), Mikosch and de Vries (2013).

The GTL distribution can have tails of a kind that conforms to the type of distributions

analyzed in this literature. One of the conclusions is that the OLS estimator behaves poorly

if the disturbance is non-Gaussian. Moreover, the OLS estimator is adversely affected if the

explanatory variables are heavy-tailed, possibly even when the disturbances are normally

distributed.

This study specifies the GTL distribution as the source of variation in the disturbances.

This distribution is discussed in Section 2 and is entered into the linear regression model in

Section 3, where we prove the consistency and asymptotic normality of the ML estimator.

We also provide an LM test for non-normality that can be applied to OLS residuals and

points towards the GTL regression model if non-normality is discovered. Section 4 presents

results of a Monte Carlo study that compares the performance of the OLS and ML estimators

when data are generated with GTL disturbances and possibly also with heavy-tailed GTL-

distributed explanatory variables. Section 5 presents five examples where OLS and GTL

(ML) estimates are contrasted in common research questions that span the field of economics,

from the standard topics of log-wage equations, hedonic housing prices, and capital asset

pricing models to more specialized questions about the degree of police officer discretion in

setting fines for speeding and the effect of preferential trade agreements on bilateral trade. In

all of these cases, normality of the disturbances is resoundingly rejected. In three examples,

slope estimates prove quite robust and the standard error of the GTL estimator are only

about 5% smaller—but in a fourth example we find an efficiency gain of nearly 10% and

essential differences in many of the main policy effects, and in a fifth example the OLS

estimates are completely misleading and the GTL standard errors are less than one tenth of
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the OLS standard errors. Section 6 concludes.

2 The GTL Distribution

Freimer et al. (1988) developed a generalization of the Tukey lambda distribution that per-

mits not only varying levels of tail thickness (as the Tukey lambda distribution does) but

also skewness and therefore is highly flexible. We refer to this distribution as the Generalized

Tukey Lambda (GTL) distribution; in the literature, it is also known as the GLD-FMKL dis-

tribution.3 In its canonical form, the GTL(α, δ) distribution is described by its link function

G(u) with u ∈ [0, 1]:4

ε = G(u) =
uα−δ − 1

α− δ
− (1− u)α+δ − 1

α + δ
. (1)

α and δ are real-valued parameters potentially anywhere between −∞ and +∞. For α−δ →

0, the first term converges to lnu; for α + δ → 0, the second term converges to ln(1 − u).

Because α and δ often appear in pairs, we define λ1 = α− δ and λ2 = α + δ

A link function is the inverse of a cumulative distribution function (cdf), but for general

values of λ1 and λ2 the cdf does not have an analytical closed-form solution. The probability

density function of ε is given by

f(ε) =
1

uλ1−1 + (1− u)λ2−1
≡ 1

G′(u)
with u = G−1(ε). (2)

3Earlier, a generalization of the Tukey lambda distribution first appeared in the statistics literature in
a paper by Ramberg and Schmeiser (1974) and has become known as the Generalized Lambda distribution
(GLD), sometimes also referred to as GLD-RS. The parameter space of the GLD has gaps: as demonstrated
in Karian et al. (1996), the GLD is not defined in the following regions of the shape parameters λ3 and λ4: (i)
λ3 ≤ 0 and 0 ≤ λ4 ≤ 1; (ii) −1 ≤ λ3 ≤ 0 and λ4 > 1 and (1− λ3)1−λ3(λ4 − 1)λ4−1(λ4 − λ3)λ3−λ4λ4 ≥ −λ3;
and (iii) symmetric regions relative to (i) and (ii) obtained by interchanging λ3 and λ4. As a result, the
feasible parameter space for (λ3, λ4) consists of four non-contiguous areas. The parameter space of the GTL
distribution is free of such gaps and therefore more amenable to maximum likelihood estimation.

4Referring to (1) as “the canonical form” does not imply that the distribution of ε is standardized with
mean 0 and variance 1. A few other well-known distributions that are commonly stated in their canonical
form are the Student’s t, logistic, and χ2 distributions. Many descriptions of the GTL distribution divide
the expression in equation (1) by a scaling parameter and add a location parameter. This is not practical
for our purposes as we fit GTL into a linear regression model that offers its own description of location.
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The range of ε is not necessarily infinite: the lower bound equals −∞ if λ1 ≤ 0 or −1/λ1

if λ1 > 0, and the upper bound equals ∞ if λ2 ≤ 0 or 1/λ2 if λ2 > 0. The kth moment

of ε exists only if min(λ1, λ2) > −1/k.5 In other words, the mean of ε does not exist if

λ1 ≤ −1 or λ2 ≤ −1; if it does exist, E[ε] = −2δ/((λ1 − 1)(λ2 − 1)). Similarly, Var(ε)

exists only if λ1 > −1/2 and λ2 > −1/2.6 We shall denote E[ε] and Var(ε) of a canonical

GTL(α, δ)-distributed ε as µε and σ2
ε .

The GTL distribution closely approximates many well-known distributions (Freimer

et al., 1988; Vijverberg and Vijverberg, 2012). GLT(0.1436, 0) is nearly indistinguishable

from the normal distribution: the main difference is that under GTL ε ranges from −6.96 to

6.96 and not from −∞ to∞. GTL(α, 0) for −0.8416 ≤ α ≤ 0.1436 closely approximates the

t(ν)-distribution with 1 ≤ ν ≤ ∞ degrees of freedom. GTL(0.1422,−0.2290) approximates

the Gumbel distribution. With GTL(0, 0), the GTL family nests the logistic distribution,

and the GTL distribution simplifies to the uniform distribution for four different combina-

tions of (α, δ): (1, 0), (2, 0), (α, α − 1) with α → ∞, and (α, 1 − α) with α → ∞. Many

other distributions can be approximated by matching moments or percentiles. The GTL

distribution is quite flexible, indeed.

Figure 1 shows six examples of the GTL density. The distribution is symmetric when

δ = 0 or λ1 = λ2, right-skewed if δ < 0 or λ1 > λ2, and left-skewed if δ > 0 or λ1 < λ2.7

Tails are longer and thicker if α is more negative.

5Equivalently, the kth moment exists only if −α− 1
k < δ < α+ 1

k .
6 Var(ε) = E[ε2] − E[ε]2, where E[ε2] = 2

(λ1+1)(2λ1+1) −
1

λ1λ2
(B(λ1 + 1, λ2 + 1) − 1

λ1+1 −
1

λ2+1 + 1) +
2

(λ2+1)(2λ2+1) and B(·, ·) is the Beta function.
7As Freimer et al. (1988) show, the direction of the skew actually reverses for large values of α but the

size of the skew is then small.
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Figure 1: Standardized GTL densities for selected values of α and δ
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3 The GTL Regression Model

3.1 Specification

The GTL regression model is specified as follows:

yi = x′iβ + σεi where εi ∼ GTL(α, δ). (3)

where i = 1, . . . , n denotes observations (individuals, states, time periods, etc.). xi and β

are k × 1 vectors. ε has a canonical GTL(α, δ) distribution and is assumed independent

of x, such that E[ε|x] = E[ε] if indeed ε has a first moment. The existence of this first

moment cannot be taken for granted if ε is generated by a GTL distribution with unknown

parameters. In particular, if min(λ1, λ2) ≤ −1, E[ε] does not exist. For this reason also, we

do not impose the restriction that E[ε] = 0. σ is merely a scaling parameter. The variance

of the disturbance (σε) equals σ2σ2
ε whenever Var(ε) exists. However, Var(ε) does not exist
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if min(λ1, λ2) ≤ −1/2.

If E[ε] ≡ µε exists, it is a function of (α, δ) and thus not generally equal to 0. Thus, in

that case, E[y|x] = x′β+σµε. If we denote the intercept of the model with β1, it follows that

the magnitude of β1 is sensitive to the mean of ε. For the sake of comparability with other

estimators such as OLS that assume E[ε|x] = 0, we may compute an adjusted estimate of

the intercept as β̂∗1 = β̂1 + σ̂µ̂ε. Its standard error is straightforwardly derived with the delta

method.

Given the linear regression equation (3), the ML estimator maximizes the following like-

lihood function:

L(y, x, θ) = −n lnσ −
n∑
i=1

lnG′(ui) = −n lnσ −
n∑
i=1

ln
(
uλ1−1
i + (1− ui)λ2−1

)
(4)

where ui = G−1( 1
σ
(yi − x′iβ)).

3.2 OLS estimation of a GTL regression model

Equation (3) can still be estimated with Ordinary Least Squares (OLS), provided that ε has

first and second moments. In that case (and subject to other assumptions),8 the OLS estima-

tor is most efficient in the class of linear unbiased estimators, regardless of the distribution

of ε. If ε is normally distributed, the OLS estimator is identical to the maximum likelihood

estimator (MLE), but if ε has a GTL distribution, the MLE generally differs.9 As proven

below, the MLE of β under the GTL distribution is consistent and asymptotically normal,

even when ε does not possess first and second moments. The validity of OLS depends on

the existence of these moments—and when these do exist, OLS is no longer efficient relative

to MLE if the disturbance’s distribution departs from normality.

8 See White (1984) for a technical discussion.
9 Violation of the normality assumption does not necessarily lead to inconsistency of OLS estimator under

the theory of quasi (pseudo)-maximum likelihood (White, 1982; Gourieroux et al., 1984).
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Another way to illustrate the difference between OLS and MLE under GTL disturbances

follows from the first order conditions that are implied by maximization of the respective

criterion functions. The first-order condition of OLS or MLE under a normal distribution

yields:
n∑
i=1

ε̃ixi = 0 (5)

where ε̃i = (yi − x′iβ)/(σσε) is the standardized disturbance. The first-order condition of

MLE under a GTL distribution yields:

n∑
i=1

1

σ

G′′(ui)

(G′(ui))2
xi = 0 ≡

n∑
i=1

w(ε̃i)ε̃ixi ≡
n∑
i=1

ψ(ε̃i)xi (6)

where ui = G−1(σεε̃i + µε). The term w(ε̃i) = 1
σ

G′′(ui)
(G′(ui))2ε̃i

is the weight given to xiεi for

observation i. This weight distinguishes OLS from MLE: under OLS, it equals 1 for all i,

whereas under MLE it varies with ε̃. By varying the weight, the MLE is able to avoid the

disruptive effect of data outliers.

Alternatively, we may define ψ(ε̃i) = w(ε̃i)ε̃i, such that ψ(ε̃i) = ε̃i under OLS. Figure

2 depicts ψ(ε̃) for various (α, δ) combination since it is easier to depict in a graph than

w(ε̃). Figure 2a compares ψ under OLS, or equivalently MLE under standard normality,

with GTL(0.1436,0). Over the range [−3, 3], which contains 99.5% of the distribution, the

two lines are nearly identical; outliers beyond this range have more influence on the MLE

estimator than OLS because for (α, δ) = (0.1436, 0) the feasible range of ε̃ is finite. In

contrast, when tails become thicker (Figure 2b), observations with large ε̃ are increasingly

discounted.10 Thus, a large ε̃ is informative in a distribution with thin tails and a finite

10 See Nolan and Ojeda-Revah (2013, p.193) for a similar pattern in the context of a stable distribution
that permits thick-tailed and skewed disturbances. The distribution is characterized in part by an index of
stability denoted as α (which has a different meaning than the parameter α in the GTL distribution), with
0 < α ≤ 2. The comparision of the GTL and stable distributions is left as a future research topic, but suffice
it to note that stable distributions have no moments of order α or higher—and thus no variance unless α = 2,
which is the special case that corresponds with the normal distribution (Samorodnitsky et al., 2007).
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Figure 2: ψ(ε̃) as a function of ε̃ for selected values of α and δ
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range because it more clearly defines the set of plausible values of β̂, whereas a large ε̃ in

the context of a distribution with thick tails is rather uninformative. Figures 2c and 2d

shows that skewness in the distribution generates asymmetry in the ψ-function around 0.

When δ is negative and the GTL distribution is right-skewed, the right tail is longer than

the left and thus observations with large positive disturbances are weighted less heavily than

observations with large negative disturbances.11

Non-normality may well be common in real-life data. For example, financial data are

often reported to have thick tails and sometimes exhibit skewness as well. A recent study by

Mikosch and de Vries (2013) shows that statistical inference based on OLS can be misleading

if the disturbance has thick tails. GTL regression can gain efficiency by properly accounting

for tail thickness and by properly favouring the information in one tail relative to the other

as a result of asymmetry in the distribution. We examine this further in a Monte Carlo

study in Section 4.

3.3 Asymptotic Properties of MLE of the GTL regression model

Let θ = (β′, σ, α , δ)′ be the complete parameter vector. Let θ0 denote the true parameter

vector. Let Θ be the parameter space.

Assumption A.1 Θ is compact with σ > 0.

Assumption A.2 (α, δ) are such that λ1 = α− δ < 1
2

and λ2 = α + δ < 1
2
.

Assumption A.3 θ0 ∈ int(Θ).

Assumption A.4 (i) x ∈ X ⊂ Rk. (ii) x is weakly exogenous. (iii) x has finite moments

up to the fourth order. (iv) E[xx′] has full rank.

11Graphs of w(ε̃i) may be deduced from Figure 2: w equals the ratio of GTL’s ψ to N(0, 1)’s ψ. Thus, for
configurations of Figure 2b, the typical w-curve exceeds 1 in the middle around the origin and trails off to
0 near the ends of the range. However, for skewed configurations, ψ is negative for some values where ε̃ is
positive or vice versa, giving rise to locally negative values of w near, and vertical asymptotes at, the origin.
Because of this, graphs of ψ provide better intuition.
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Assumption A.5 (i) ε is independently and identically GTL(α, δ)-distributed, with the

GTL distribution defined by the link function in equation (1) and the probability density

function in equation (2). (ii) ε is independent of x.

Define the range of ε as E(θ). As indicated in Section 2, the range of ε may depend on

(α, δ). By equation (3), we may define the range of y as Y(x, θ), where Y(x, θ) is E(θ) scaled

by σ and shifted by x′β.

The first question is whether the MLE estimator θ̂ is consistent.

Theorem 1 Given Assumptions A.1, A.3, A.4, and A.5, θ̂ is a consistent estimator of θ0

for all θ0 ∈ Θ except for those θ0 for which (α0, δ0) = (1, 0) or (α0, δ0) = (2, 0).

Proof See Appendix A.

The exceptions stem from the fact that the GTL density simplifies to a uniform density for

both of the stated (α, δ) values. However, the exceptions are less problematic than they

seem, as will become clear from Theorem 2 below.

As for the asymptotic distribution of θ̂, we verify the conditions of Theorem 13.2 of

Wooldridge (2002, p.395) in relation to, in particular, the values of the parameters α and δ.

Lemma 1 For each (x, y) ∈ X × Y(x, θ), L(y, x, ·) is twice continuously differentiable on

int(Θ) for all θ ∈ Θ except where λ1, λ2 = 1, 2, 3.

Proof Derivatives are provided and examined in Appendix B.

The dependence of Y(x, θ) on θ is usually problematic, because proofs of asymptotic

normality rely on the interchange of differentiation and integration, and the dependence of

the bounds of y on θ may prevent that. The following lemma addresses this issue:
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Lemma 2 Define gy(y|xi; θ) as the conditional density of y. Define `i(θ) = ln gy(y|xi; θ).

Define si(θ) = ∇θ`i(θ). Then, for all xi ∈ X and θ ∈ int(Θ) with λ1 <
1
2

and λ2 <
1
2
, we

have:

(i) ∇θ

( ∫
Y(x,θ)

gy(y|xi; θ)dy
)

=
∫

Y(x,θ)

∇θgy(y|xi; θ)dy , and

(ii) ∇θ

( ∫
Y(x,θ)

si(θ)gy(y|xi; θ)dy
)

=
∫

Y(x,θ)

∇θsi(θ)gy(y|xi; θ)dy .

Proof See Appendix C.

Lemma 3 The elements of ∇2
θL(y, x, θ) are bounded in absolute value by a function b(y, x)

with finite expectation for all θ ∈ Θ where ( i) λ1 <
1
2

and λ2 <
1
2
, or ( ii) λ1 > 2 and λ2 > 2

with λ1, λ2 6= 3.

Proof See Appendix B.

Lemma 4 Define A0 = −E[H(θ0)] where H(θ0) = ∇2
θ`(θ0). Then A0 is positive definite.

Proof ∇2
θ ln f(y|xi; θ0) is a complicated expression, of which the expected value involves

integrals that do not have an analytical solution. A direct proof that A0 is positive definite

is therefore not feasible, but Appendix D evaluates the needed integrals by Monte Carlo

simulation over a grid of representative values of (α, δ) and does not encounter any case

where A0 fails to be positive definite.

In the light of these results, the following theorem defines the asymptotic distribution for

the estimator of the GTL regression model; Assumption A.2 is added because of Lemma 2:

Theorem 2 Given the linear regression model of equation (3) and Assumptions A.1-A.5,

the ML estimator θ̂ is asymptotically normally distributed N(θ0, V0), where V0 = n−1A0 is

estimated as

V (θ̂) = −
( n∑
i=1

∇θθ`i(θ̂)
)−1

(7)
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3.4 An LM test for normality

As mentioned, the normal distribution may be approximated with the GTL(0.1436, 0) distri-

bution. Thus, a Lagrange Multiplier test for normality proceeds as follows. Let the restricted

estimator of θ be denoted as θ̆ = (β̆′, σ̆, 0.1436, 0)′; let s(θ̆) =
n∑
i=1

si(θ̆) (see Lemma 2); and

let V (θ̆) be the negative of the inverted hessian evaluated at θ̆ (see equation (7)).12 Then

approximate normality may be tested with:

LM = s(θ̆)′ V (θ̆)−1 s(θ̆)
a∼ χ2(2) (8)

Since this LM test is a test for approximate normality in the form of GTL(0.1436, 0),

the question arises how much this model actually deviates from true normality. Simulation

results show that the power of the test to be only 7.4% in a large sample (n = 5000) in the

context of the baseline design to be discussed in the next section. The LM does have power

against minor deviations from GTL(0.1436, 0): if disturbances are generated with slightly

thicker tails (α, δ) = (0.10, 0) (which closely approximates a Student’s t(20) distribution),

power equals 84.9%; and similarly for a slightly thinner tail (α, δ) = (0.20, 0) or slight

skewness (0.1436, 0.02), power is 99.5% and 77.0% respectively. Thus, evaluated by the LM

test, pure normality and GTL(0.1436, 0) are virtually indistinguishable.

Of course, LM is not the only feasible test statistic. Alternative tests are a Wald test that

uses (α̂, δ̂) and V (θ̂); a likelihood ratio test; a Vuong test that examines the observations’

contributions to the likelihood function under GTL(α̂, δ̂) and under normality; and a Jarque-

12Rather than actually estimating a GTL(0.1436, 0) regression model, a simpler test procedure would be
to estimate the linear regression model with OLS, deduce the proper estimate of σ from the root mean
squared error of the residuals, evaluate s(θ̆) and V (θ̆), and compute LM . In our experience, it does happen
occasionally that the largest OLS residuals fall outside the feasible range E(θ) of ε, which for (α, δ) =
(0.1436, 0) equals (−6.694, 6.694) if ε is GTL in canonical form or (−4.819, 4.819) if ε is a standardized GTL
disturbance (i.e., ε̃). Since s and V are derived in terms of ui = G−1(εi) ∈ [0, 1] (see Appendix B), we might
set ui = 0 if ε̃i < −4.819 and ui = 1 if ε̃i > 4.819 and proceed with the computation, which then typically
yields a large LM value. However, if ε is truly normally distributed, the chance of this happening is less
than 1.5× 10−6, so such range violations indicate that ε may not be normally distributed anyway.
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Bera test of normality of OLS residuals.

4 Monte Carlo evidence: the effect of GTL disturbances

By the Gauss-Markov Theorem, skewed and unusually-tailed data do not bias the OLS

estimator or render it inefficient relative to other linear unbiased estimators, provided that

the disturbance has first and second moments. Yet, non-linear estimators may exist that

are efficient relative to OLS. The GTL-regression estimator is such an estimator. In this

section, we report the results of a Monte Carlo analysis where data are generated with GTL

disturbances. We employ two designs. In the first, observables are modelled as the outcome

of a process that is conventional in Monte Carlo analyses; in the second, observables are

thick-tailed as well.

4.1 The first design: a baseline

The data generating process is as follows: yi = β1 + β2x2i + β3x3i + εi for i = 1, . . . , n with

n = 250 or 5000, where x2i is a standard normal random variate, x3i is a χ2(5) random

variate that is standardized to have mean 0 and variance 1 and is independent of x2i, and

εi is a scaled GTL(α, δ) variate for various combinations of α and δ. The values of β1, β2

and β3 are all equal to 1. The skewness of x3 inserts a bit of skewness into y. Because of

the range of (α, δ) combinations we cannot standardize the GTL distribution. Instead, we

scale ε such that the range of the GTL distribution from the 0.1% quantile to the 99.9%

quantile has the same length as that of a normal N(0, 2) distribution; this scaling parameter

is denoted as σ. This keeps the R2 of the OLS regression in the neighborhood of 0.50 as

long as the standard deviation of ε is defined, but the R2 diminishes as the tails of the GTL

distribution become longer. We replicate each design 1000 times, drawing new explanatory

variables each time and using the same sets of draws across the different experiments.

Table 1 presents the root mean squared error (RMSE) of the OLS and GTL estimators
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Table 1: RMSE of OLS and GTL estimators of slopes and intercept for GTL-generated data

DGP RMSE of OLS RMSE of GTL
α δ σ β2 β3 β1 β2 β3 β1

A: GTL as an approximation of the standard normal distribution, N = 250
0.1436 0.00 1.188 0.107 0.110 0.110 0.108 0.111 0.126

B: Various GTL distributions, small sample, N = 250
0.33 -0.10 1.477 0.106 0.108 0.199 0.089 0.094 0.132
0.33 0.00 1.508 0.107 0.109 0.109 0.097 0.101 0.133
0.33 0.10 1.477 0.106 0.108 0.200 0.091 0.093 0.132
-0.33 -0.10 0.454 0.133 0.144 0.255 0.066 0.068 0.066
-0.33 0.00 0.482 0.118 0.122 0.124 0.071 0.073 0.071
-0.33 0.10 0.454 0.127 0.126 0.239 0.067 0.069 0.067
-0.67 -0.25 0.136 1.737 1.667 1.932 0.025 0.026 0.025
-0.67 0.00 0.202 0.336 0.337 0.341 0.038 0.040 0.037
-0.67 0.25 0.136 1.046 0.823 1.126 0.025 0.026 0.025
-1.00 -0.50 0.024 112.585 89.227 103.243 0.005 0.005 0.005
-1.00 0.00 0.079 2.503 2.217 2.408 0.018 0.019 0.018
-1.00 0.50 0.024 39.742 27.930 35.099 0.005 0.005 0.005

C: Various GTL distributions, large sample, N = 5000
0.33 -0.10 1.477 0.023 0.024 0.169 0.018 0.019 0.032
0.33 0.00 1.508 0.023 0.024 0.025 0.021 0.021 0.030
0.33 0.10 1.477 0.023 0.024 0.171 0.019 0.019 0.033
-0.33 -0.10 0.454 0.034 0.032 0.209 0.015 0.014 0.015
-0.33 0.00 0.482 0.027 0.028 0.029 0.016 0.015 0.016
-0.33 0.10 0.454 0.031 0.032 0.210 0.014 0.014 0.015
-0.67 -0.25 0.136 6.075 3.868 4.933 0.005 0.005 0.006
-0.67 0.00 0.202 0.233 0.180 0.220 0.008 0.008 0.008
-0.67 0.25 0.136 1.903 1.456 2.512 0.005 0.005 0.006
-1.00 -0.50 0.024 9916.534 5631.352 7274.680 0.001 0.001 0.001
-1.00 0.00 0.079 12.606 7.908 10.359 0.004 0.004 0.004
-1.00 0.50 0.024 1997.902 832.310 2381.450 0.001 0.001 0.001

of the slopes and intercept for different values of (α, δ). In Panel A, a GTL(0.1436,0) distri-

bution closely approximates a standard normal distribution. Not surprisingly, the OLS and

GTL estimators perform nearly identically even when the sample at n = 250 is rather small.

In Panel B with n = 250 and Panel C with n = 5000, the GTL distribution varies from

having truncated tails (for α = 0.33) to having very long tails (for α = −1), with right skew

if δ is negative and left skew if δ is positive. The direction of the skewness matters somewhat

for the RMSEs because of the skewness inherent in one of the explanatory variables (x3),

but the overriding concern is the length of the tails. The more negative α is, the worse OLS
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performs. The GTL estimator is hardly affected by the thickness or skewness of the tails; in

fact, the RMSEs diminish as the GTL distribution becomes more heavy-tailed. For a larger

negative α, the GTL estimator outperforms the OLS estimator by a vast margin.

Detailed inspection of simulation results shows that the RMSEs of the slope estimators

represent mostly the standard deviation of the simulated slope estimates. Given the exo-

geneity of the explanatory variables, the OLS estimator is unbiased as long as the mean of ε

exists, but even when (α, δ) is such that the first moment of ε no longer exists and the OLS

estimator loses its theoretical moments also, the average of the simulated values is still close

to 1. For the GTL estimator, the intercept estimator shows a bias as expected (Section 3.1),

but it is minor compared to the standard deviation of the simulated values.

Table 2 examines the biases and standard deviations of the GTL estimator of the param-

eters of the GTL distribution that generates the disturbance, namely the shape parameters

α and δ as well as the scaling parameter σ that is determined by linking the length of the

quantile range of the normal and GTL distributions as described above. σ varies with α and

δ as indicated in the table. Table 2 indicates a small bias for α = 0.33, regardless of δ; the

reason is that the maximum likelihood function is augmented with a small regularity penalty

function13 to keep (α, δ) within the feasible parameter area where the GTL estimator is con-

sistent and asymptotically normal (Theorem 2). The penalty function is no longer needed

when the values of α and δ of the data generating process are solidly inside this feasible area.

The Monte Carlo results indicate that even for relatively small samples, bias in the GTL

estimator of σ, α and δ is no issue.

Separate from concerns about bias and precision is the question whether the small-sample

distribution of the estimators is approximately normal. One way to examine the small-sample

properties is to compute coverage ratios, i.e., the rate at which the confidence intervals con-

tain the population parameter values. Table 3 illustrates our findings with three experiments;

13See Appendix E for details.
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Table 2: Bias and precision of GTL parameters for GTL-generated data

DGP Bias Standard deviation
α δ σ σ α δ σ α δ

A: GTL as an approximation of the standard normal distribution (N = 250)
0.1436 0.00 1.188 0.028 0.022 -0.001 0.128 0.064 0.033

B: Various GTL distributions, small sample (N = 250)
0.33 -0.10 1.477 -0.090 -0.032 0.005 0.101 0.041 0.028
0.33 0.00 1.508 -0.060 -0.017 -0.001 0.112 0.046 0.028
0.33 0.10 1.477 -0.090 -0.032 -0.006 0.097 0.040 0.029
-0.33 -0.10 0.454 0.001 0.006 -0.001 0.056 0.081 0.052
-0.33 0.00 0.482 0.001 0.006 -0.001 0.059 0.081 0.052
-0.33 0.10 0.454 0.001 0.006 0.000 0.056 0.081 0.052
-0.67 -0.25 0.136 0.000 0.003 -0.002 0.019 0.100 0.069
-0.67 0.00 0.202 -0.001 0.002 -0.001 0.028 0.099 0.068
-0.67 0.25 0.136 0.000 0.003 0.000 0.019 0.100 0.069
-1.00 -0.50 0.024 0.000 0.002 -0.002 0.004 0.120 0.088
-1.00 0.00 0.079 0.000 -0.001 -0.001 0.012 0.118 0.085
-1.00 0.50 0.024 0.000 0.001 0.000 0.004 0.119 0.086

C: Various GTL distributions, large sample (N = 5000)
0.33 -0.10 1.477 -0.085 -0.037 0.004 0.022 0.009 0.006
0.33 0.00 1.508 -0.066 -0.028 0.000 0.025 0.009 0.005
0.33 0.10 1.477 -0.085 -0.037 -0.004 0.022 0.009 0.005
-0.33 -0.10 0.454 0.000 0.001 0.000 0.012 0.018 0.011
-0.33 0.00 0.482 0.000 0.001 0.000 0.013 0.018 0.011
-0.33 0.10 0.454 0.000 0.001 0.000 0.012 0.018 0.011
-0.67 -0.25 0.136 0.000 0.001 0.001 0.004 0.023 0.015
-0.67 0.00 0.202 0.000 0.000 0.001 0.006 0.023 0.015
-0.67 0.25 0.136 0.000 0.000 0.000 0.004 0.023 0.015
-1.00 -0.50 0.024 0.000 0.001 0.001 0.001 0.027 0.019
-1.00 0.00 0.079 0.000 0.000 0.001 0.003 0.027 0.019
-1.00 0.50 0.024 0.000 0.000 0.001 0.001 0.028 0.020

the detailed results for all experiments are provided in Appendix E. Surprisingly, in Panel

A of Table 3, the coverage rates of the OLS slope estimators are essentially 95% in all ex-

periments; the intercept is biased when the GTL distribution of ε is skewed as the GTL

distribution is utilized in its canonical form. This would suggest that perhaps the sampling

distribution of the OLS estimators is nearly normal after all. However, the Jarque-Bera test

in Panel B squashes that conclusion: in the presence of GTL disturbances, the sampling

distribution of the OLS estimator is not normal even for n = 5000.

How can the findings of Panels A and B be reconciled? Figure 3 presents QQ plots of the
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Table 3: Diagnostics of the distribution of OLS and GTL estimators: baseline design

DGP OLS GTL
α δ σ β2 β3 β1 β2 β3 β1 σ α δ

A: Coverage rate at a 95% confidence level

Small sample, N = 250
0.1436 0.00 1.188 0.947 0.948 0.954 0.944 0.937 0.943 0.941 0.918 0.924
-0.33 -0.10 0.454 0.958 0.948 0.655 0.952 0.936 0.951 0.943 0.946 0.950
-0.67 -0.25 0.136 0.955 0.959 0.337 0.955 0.933 0.955 0.951 0.948 0.943

Large sample, N = 5000
0.1436 0.00 1.188 0.960 0.948 0.939 0.960 0.946 0.950 0.949 0.932 0.946
-0.33 -0.10 0.454 0.956 0.944 0.000 0.960 0.956 0.951 0.941 0.948 0.944
-0.67 -0.25 0.136 0.952 0.961 0.093 0.953 0.956 0.949 0.938 0.949 0.944

B: p-values of Jarque Bera tests for normality of the sampling distribution of the estimator

Small sample, N = 250
0.1436 0.00 1.188 0.91 0.10 0.62 0.46 0.22 0.55 0.00 0.00 0.01
-0.33 -0.10 0.454 0.00 0.00 0.00 0.23 0.21 0.86 0.00 0.10 0.73
-0.67 -0.25 0.136 0.00 0.00 0.00 0.07 0.70 0.80 0.00 0.06 0.55

Large sample, N = 5000
0.1436 0.00 1.188 0.14 0.88 0.14 0.21 0.94 0.96 0.15 0.78 0.01
-0.33 -0.10 0.454 0.00 0.00 0.00 0.51 0.50 0.99 0.30 0.44 0.06
-0.67 -0.25 0.136 0.00 0.00 0.00 1.00 0.39 0.98 0.71 0.42 0.11

C: Ratio of average variance to Monte Carlo variance

Small sample, N = 250
0.1436 0.00 1.188 1.045 1.000 0.979 1.010 0.961 0.988 0.905 0.878 0.856
-0.33 -0.10 0.454 1.073 0.926 0.915 1.018 0.956 1.031 0.970 0.992 0.929
-0.67 -0.25 0.136 0.875 1.010 0.866 1.005 0.945 1.051 1.007 1.019 0.933

Large sample, N = 5000
0.1436 0.00 1.188 1.051 1.005 0.935 1.048 1.004 0.978 0.951 0.935 0.990
-0.33 -0.10 0.454 1.050 1.046 0.901 1.027 1.036 0.992 0.912 0.908 0.951
-0.67 -0.25 0.136 1.839 1.897 0.998 1.006 1.058 0.996 0.918 0.932 0.940

OLS slope estimators, together with the 95% confidence intervals for each replication and

a dashed reference line at 1. Thus, the coverage rate reflects how many of these confidence

interval bracket the dashed line. Panels 3a and 3b illustrate the case of (α, δ) = (0.1436, 0),

where OLS is the best linear unbiased estimator: the QQ plot is completely supportive of

the conclusion that the sampling distribution is normal, and the width of the confidence

interval is stable across replications. In Panels 3c and 3d, the QQ plots gives evidence of
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a sampling distribution with fat tails and a slight but systematic “sling” around the 45 ◦

line. The confidence interval is more irregularly sized and, unlike in Panels 3a and 3b, do

not systematically fail to bracket the dashed line near the ends of the range. These patterns

are all more prevalent for the experiment in Panels 3e and 3f, where the variance of the

GTL(−0.67,−0.25)-distributed disturbance is not even defined, implying that Var(β̂OLS) is

not defined. In all, the fact that the coverage rate happens to be 95% in all cases is purely

incidental and not at all evidence that the usual statistical inference methods apply.

In contrast, the MLE results indicate a good coverage rate and a highly satisfactory QQ

plot; Figure 4 shows the QQ plots for the experiment with (α, δ) = (−0.67,−0.25), which

gave OLS the most trouble in Figure 3. Other experiments yield similar results.

Panel C of Table 3 contributes one more facet about the small-sample behavior of the

estimators. Figure 3 shows the confidence intervals becoming more variable in width as the

GTL distribution differs more substantially from normality. The variance of the estimator,

OLS or MLE, is itself estimated as well. Each replication yields another estimate of the

variance, as well as an estimate of θ: the average of the estimated variances ought to be

close to the variance of the replicated θ̂. As the ratios of these two quantities in Panel C of

Table 3 shows, the estimated OLS variance becomes problematic as GTL distribution differs

more greatly from normality, and the ratio of the MLE variances stays close to 1.

4.2 The second design: thick-tailed observables

One might question the wisdom of a Monte Carlo design that specifies thick-tailed unobserv-

ables but regular-tailed observable determinants. Regression designs that contain thick-tailed

explanatory variables may be problematic (e.g. Huber, 1981; He et al., 1990; Jureckova et al.,

2001): the OLS estimator may lose its consistency property when the data generating pro-

cess creates a few observations with outlying values of x that have an outsized influence on

the position of the regression line. However, such problems appear to be alleviated when the
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Figure 3: QQ plots of OLS estimators of β2 and β3, n = 250
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(a) β̂2 for (α, δ) = (0.1436, 0)
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(b) β̂3 for (α, δ) = (0.1436, 0)
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(c) β̂2 for (α, δ) = (−0.33,−0.10)
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(d) β̂3 for (α, δ) = (−0.33,−0.10)
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(e) β̂2 for (α, δ) = (−0.67,−0.25)
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(f) β̂3 for (α, δ) = (−0.67,−0.25)
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Figure 4: QQ plots of MLE estimators of β2 and β3, n = 250
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(a) β̂2 for (α, δ) = (−0.67,−0.25)
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(b) β̂3 for (α, δ) = (−0.67,−0.25)

disturbance is normally distributed (Jureckova et al., 2001). Table 4 contains a few cases

with thick-tailed disturbances and both regular- and thick-tailed x-variables, generated as

GTL variates. As before, the GTL distribution of these GTL variates is scaled such that the

distance between the 0.1% quantile and the 99.9% quantile is the same as that of a standard

normal distribution.

The disturbances in Panel A are distributed GTL(−0.67, 0.25) and thus are thick-tailed

and skewed. The explanatory variables change from two standard normal ones to two thick-

tailed skewed ones: the performance of the OLS estimator actually improves, as does the

GTL estimator. Panel B shows that this also happens when the disturbances are standard

normal (or, closely similar, GTL(0.1436,0)). These results seem at odds with the research of

Huber (1981) that the OLS estimator is inconsistent with heavy-tailed explanatory variables.

However, Panels A and B of Table 4 do not address the matter of consistency as sample

size is unchanged between these experiments. The reason for the improved performance is

that despite the scaling of the GTL distribution the variation in the explanatory variables

increases dramatically as the tails thicken. The R2 rises for many of these OLS regressions
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Table 4: RMSE of OLS and GTL estimators of β with thick-tailed determinants

DGP for x2 DGP for x3 OLS MLE
αx2 δx2 αx3 δx3 β2 β3 β1 β2 β3 β1

A: GTL-Disturbances are generated with (α, δ) = (−0.67, 0.25) for n = 250
0.1436 0.00 0.1436 0.00 1.0466 0.9638 1.1273 0.0250 0.0259 0.0248
0.1436 0.00 -0.33 0.00 1.0464 0.5981 1.1254 0.0249 0.0152 0.0249
0.1436 0.00 -0.33 0.10 1.0486 0.6754 1.1130 0.0249 0.0156 0.0250
0.1436 0.00 -0.67 0.00 1.0456 0.5650 1.1226 0.0249 0.0134 0.0249
0.1436 0.00 -0.67 0.25 1.0484 0.7007 1.1037 0.0249 0.0151 0.0252
-0.67 0.00 -0.67 0.00 0.4929 0.5712 1.1231 0.0135 0.0134 0.0248
-0.67 0.25 -0.67 0.25 0.4370 0.7064 1.1105 0.0155 0.0151 0.0255
-0.67 0.25 -0.67 -0.25 0.4355 0.3487 1.1504 0.0155 0.0144 0.0253
-0.67 -0.25 -0.67 -0.25 0.3201 0.3622 1.1519 0.0145 0.0146 0.0253

B: GTL-Disturbances are generated with (α, δ) = (0.1436, 0) for n = 250
0.1436 0.00 0.1436 0.00 0.107 0.111 0.110 0.108 0.113 0.126
-0.67 0.00 -0.67 0.00 0.049 0.049 0.110 0.049 0.050 0.125
-0.67 0.25 -0.67 0.25 0.051 0.051 0.113 0.052 0.052 0.129
-0.67 0.25 -0.67 -0.25 0.051 0.051 0.113 0.052 0.051 0.128
-0.67 -0.25 -0.67 -0.25 0.052 0.051 0.113 0.052 0.051 0.128

C: GTL-Disturbances are generated with (α, δ) = (−0.67, 0.25) for n = 5000
0.1436 0.00 0.1436 0.00 1.8968 1.5547 2.5085 0.0054 0.0054 0.0056
0.1436 0.00 -0.33 0.00 1.9060 0.4835 2.5109 0.0054 0.0028 0.0056
0.1436 0.00 -0.33 0.10 1.9043 0.4290 2.5738 0.0054 0.0026 0.0056
0.1436 0.00 -0.67 0.00 1.9124 0.0693 2.5149 0.0054 0.0015 0.0056
0.1436 0.00 -0.67 0.25 1.9111 0.0313 2.5252 0.0054 0.0009 0.0056
-0.67 0.00 -0.67 0.00 0.2560 0.0697 2.5241 0.0015 0.0015 0.0055
-0.67 0.25 -0.67 0.25 0.0940 0.0328 2.5778 0.0009 0.0009 0.0056
-0.67 0.25 -0.67 -0.25 0.0940 0.0303 2.5676 0.0009 0.0010 0.0056
-0.67 -0.25 -0.67 -0.25 0.0784 0.0303 2.5334 0.0010 0.0010 0.0056

from around 0.33 to nearly 1. Across replications, the largest diagonal element of the hat-

matrix (i.e., X(X ′X)−1X ′) averages 0.0523 when both explanatory variables are standard

normal and averages 0.7315 (ranging from 0.1223 to 0.9999) when both explanatory variables

are drawn from a GTL(-0.67,0.25) distribution.

This leaves the question what happens when n increases. In Panel C, we raise n to

5000. If the estimator is n1/2-consistent, the standard errors should diminish by a factor of

201/2 = 4.47, and the RMSE should follow suit since bias is not much of an issue (except for

in the intercept). However, as x-variables are drawn from GTL(−0.33, δ) and GTL(−0.67, δ)

for several values of δ, they are so thick-tailed that the fourth moment of x no longer exists
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and Assumption A.4 is violated. Whenever x2 is standard normal, the RMSE of β̂2OLS rises

with n, but when x2 is GTL(−0.67, δ) for any δ, it falls by a factor of approximately 4.5.

As for the RMSE of β̂3OLS, it rises when x3 is standard normal; it falls slightly when x3 is

GTL(−0.33, δ) for any δ; and when x3 is GTL(−0.67, δ) for any δ, it falls by a factor of up to

22. The distinction between these cases is that the second moment of a GTL distribution is

finite for GTL(−0.33, δ) but is not defined for GTL(−0.67, δ). It appears to be the relative

thickness of the tails of the explanatory variables and the disturbances that determines the

large-sample behavior of the OLS estimator.

As for the GTL estimator, the RMSE of β̂jOLS decreases by a factor of approximately

4.5 when xj is standard normal or GTL(−0.33, δ), which indicates
√
n-consistency, and it

decreases by a factor of 15 to 17.5 when xj is GTL(−0.67, δ), which might indicate a type

of super consistency.

As with the baseline, we also examine the proximity to normality of the small-sample

distribution of the estimators; see Tables E.4-E.6 in Appendix E. Thick-tailed explanatory

variables cause problems for the OLS estimator even if ε is normally distributed. As for the

GTL estimator, the slopes of thick-tailed explanatory variables also deviate from normality

even for n = 5000, but the estimator of the GTL parameters α, δ, and σ is still close to

normally distributed, similar to the baseline case.

5 Applications

We apply the GTL regression model to five examples that are representative of many empir-

ical research projects: a log-wage equation, a hedonic housing price equation, a study of the

determinants of fines for speeding, the question whether preferential trade agreements are

trade-creating or trade-diverting, and the familiar capital asset pricing model. In each case,

we find some degree of skewness and a greater degree of kurtosis than the normal distribution

allows for. In each example, we highlight the changes in the slopes estimates and the gain in
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the precision of these estimates. Appendix F provides the data sources, variable definitions,

and descriptive statistics.

5.1 Hourly wages

For the first example with real-world data, we estimate a log-wage equation that is specified

in a typical fashion with data that are common. The data source is the Merged Outgoing

Rotation Group (MORG) file of 1998, which is derived from information provided in the

Current Population Survey. The sample consists of wage employees; self-employed workers

are dropped from the MORG data. The sample is also restricted to individuals between the

age of 16 and 65 and working full-time (between 30 and 70 hours in the week prior to the

survey). The wage rate is computed as the earnings per week divided by the usual hours of

work per week and refers to the current job of the respondent. Observations with a computed

wage of less than $1.00 per hour are discarded, as are observations for which information is

allocated rather than directly measured. These restrictions leave us with a sample of 54,687

males and 46,045 females.

The log-wage equation contains the usual explanatory variables: years of schooling, a

quadratic age profile (rather than experience which is likely endogenous for female workers),

region, and race and ethnicity. Table 5 presents OLS and GTL estimates for male workers.

Residuals of the OLS equation prove to be distinctly non-normally distributed: (i) a Jarque-

Bera test examines the skewness and kurtosis of the residuals and rejects normality; (ii) a

Wald test of the GTL estimates of (α, δ) indicates that (α, δ) is significantly different from

(0.1436, 0), with which the GTL distribution closely approximates a normal distribution; (iii)

the p-value of the LM test is also less than 0.001, and there are as many as 46 range violations

(nearly 1% of the sample); and (iv) a Vuong test that contrasts the OLS (modeled as a

maximum likelihood estimator under normally distributed disturbances) and GTL estimators

comes up strongly in favor of the GTL distribution. OLS estimates of the slopes deviate
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Table 5: Log-wage equations, male wage and salaried workers, MORG 1998

OLS GTL

Estimate Stan.Err. Estimate Stan.Err. β̂OLS−β̂GTL

β̂GTL

SEGTL

SEOLS

Years of Schooling 0.093 0.001 0.096 0.001 -0.033 0.983
Age−16/10 0.453 0.007 0.460 0.007 -0.015 0.960
(Age−16)2/100 -0.069 0.001 -0.069 0.001 0.000 0.971
MidAtla 0.054 0.009 0.061 0.009 -0.126 0.968
EastNoC 0.039 0.009 0.041 0.008 -0.067 0.961
WestNoC -0.108 0.009 -0.108 0.009 0.002 0.962
SouthAtl -0.031 0.009 -0.032 0.008 -0.030 0.965
EastSoC -0.105 0.011 -0.104 0.011 0.008 0.958
WestSoC -0.082 0.010 -0.080 0.009 0.020 0.969
Mountain -0.063 0.009 -0.060 0.009 0.051 0.965
Pacific 0.051 0.009 0.055 0.009 -0.078 0.970
Afr. American -0.175 0.007 -0.176 0.007 -0.006 0.967
Hispanic -0.185 0.007 -0.186 0.007 -0.003 0.970
Asian -0.124 0.010 -0.116 0.010 0.064 1.000
Indian -0.141 0.019 -0.134 0.018 0.043 0.970
Intercept 0.830 0.015 0.783 0.015
σ 0.262 0.002
α 0.030 0.004
δ 0.029 0.002
logL -34199.7 -33548.0
(Absolute) Average 0.038 0.969

Dependent variable: Log of hourly wage. Number of observations = 54674. Skewness and kurtosis of OLS
residuals equal −0.23 and 4.26; the Jarque-Bera test of normality of the OLS residuals has a p-value of less
than 0.001. The Wald test of the GTL estimates of (α, δ) equals 1127.5, rejecting normality with a p-value
of less than 0.001. The LM test equals 583.7 with a p-value of less than 0.001 and with 42 range violations.
The Vuong test that compares OLS and GTL equals −11.16 in favor of the GTL model with a p-value of
less than 0.001.

by an average of 3.8 percent from the GTL estimates (which are preferred by virtue of the

tests for normality); the largest deviation is nearly 12 percent. The GTL estimator is more

precise, yielding an improvement of 3.1 percent in the standard errors. In Appendix G,

Table G.1 offers the results of the same analysis of female workers: the gain achieved with

GTL estimation is larger, as parameter estimates deviate by an average of 4.9 percent and

GTL standard errors are 4.7 percent smaller. Figure 5 shows the estimated densities under

the OLS (normal) and GTL estimation approaches for both male and female samples: GTL

densities are thicker-tailed and left-skewed. The male-estimated GTL distribution implies a
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Figure 5: Distributions estimated for male and female logwage equations

0 

0.2 

0.4 

0.6 

0.8 

1 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Normal 

GTL 

(a) Male

0 

0.2 

0.4 

0.6 

0.8 

1 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Normal 

GTL 

(b) Female

skewness κ3 of −0.21 and a kurtosis κ4 of 3.92; for females, the implied skewness and kurtosis

are −.11 and 4.18.

5.2 Hedonic housing price equation

The second application concerns a hedonic housing price equation, estimated with data of

housing sales in Windsor, Canada, in 1987. These data were first used in a study by Anglin

and Gencay (1996) and subsequently in a nonparametric analysis by Parmeter et al. (2007)

and Haupt et al. (2010), which led to the conclusion that the benchmark parametric model in

Anglin and Gencay (1996) appears to be adequate. It is a slight variation of this parametric

model that we reestimate now with GTL disturbances rather than with normally distributed

disturbances.

For these data, the GTL estimator is preferred to the OLS estimator: the Jarque-Bera

test rejects normality of the OLS residuals; the Wald and LM tests indicate that the GTL

estimates (α̂, δ̂) = (0.010, 0.034) differ significantly from (0.1436, 0); and the Vuong test

favors the GTL estimator. Because the sample is rather small (546 observations), the p-
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Table 6: Hedonic housing price model, Windsor, Canada, 1987

OLS GTL

Estimate Stan.Err. Estimate Stan.Err. β̂OLS−β̂GTL

β̂GTL

SEGTL

SEOLS

lnLot 0.302 0.026 0.292 0.025 0.033 0.957
bdms3 0.067 0.024 0.065 0.023 0.020 0.941
bdms4 0.075 0.032 0.062 0.031 0.210 0.970
fb2 0.170 0.023 0.167 0.023 0.014 0.958
fb3 0.347 0.065 0.385 0.064 -0.100 0.970
sty 0.088 0.013 0.091 0.012 -0.030 0.909
drv 0.112 0.028 0.115 0.027 -0.021 0.956
rec 0.055 0.026 0.053 0.025 0.036 0.948
ffin 0.102 0.021 0.100 0.021 0.020 0.968
ghw 0.172 0.043 0.160 0.045 0.077 1.025
ca 0.163 0.021 0.158 0.020 0.037 0.944
gar1 0.078 0.023 0.077 0.022 0.023 0.949
gar2 0.104 0.024 0.095 0.024 0.095 0.966
reg 0.126 0.022 0.120 0.021 0.044 0.938
Intercept 7.972 0.214 8.065 0.208
σ 0.116 0.009
α 0.010 0.050
δ 0.034 0.025
log Likelihood 85.46 91.18
(Absolute) Average 0.054 0.957

Dependent variable: Log of home price. Number of observations = 546. Skewness and kurtosis of OLS
residuals equal −0.19 and 3.51; the Jarque-Bera test of normality of the OLS residuals equals 7.84 with a
p-value of 0.02. The Wald test of the GTL estimates of (α, δ) equals 8.50, rejecting normality with a p-value
of less than 0.015. The LM test equals 8.17 with a p-value of 0.017 and with no range violations. The Vuong
test that compares OLS and GTL equals −1.69 in favor of the GTL model with a p-value of less than 0.046.

values of these tests are not as low as 1 percent but this application shows that even in a

sample of this small size (n = 546), it is possible to detect departures from normality. The

effect on the slope estimates averages 5.4 percent, varying from 2 to 21 percent, and the

GTL standard errors are 4.3 percent smaller than those of OLS. The GTL distribution is

thicker-tailed (κ4 = 4.26) and left-skewed (κ3 = −0.28) relative to the normal distribution

that best fits these data (Figure 6).

5.3 Speeding tickets, Massachusetts

Makowsky and Stratmann (2009) examine the determinants of traffic citations and fines for
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Figure 6: Distributions estimated for the hedonic home price equation
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speeding, using a database that contains all speeding-related stops in Massachusetts from

April 1, 2001 through May 31, 2001.

A traffic stop results in either a ticket or a warning. When a ticket is issued, a driver has

to pay a fine. Whether a police officer issues a ticket or gives a warning is at the officer’s

discretion; in this database, about 46% of the 68,357 stops resulted in a speeding ticket. If

a ticket is issued, state law provides a formula for the amount of the fine: $50 + $10 ×

(speed − (speed limit + 10)). Makowsky and Stratmann (2009, p.513) discuss the political

economy hypothesis and the opportunity-cost hypothesis of officer behavior. The former

relates the officers’ decision to “the fiscal condition of the government that employs them

and to whether the driver is a potential voter in local elections,” and the latter predicts that

“officers have a higher likelihood of issuing a ticket and issuing a larger fine amount when

the opportunity cost for contesting the ticket is higher for drivers.”

For the purpose of this paper, we ignore the selection issue whether a ticket is issued

and concentrate on the amount of fine, which in this database averages $122. The regression

model expresses this outcome variable in logarithmic form. The explanatory variables include

the excess speed of the driver (“Mph over”, in log form), driver characteristics (residence,
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Table 7: Speeding tickets, Massachusetts, 2005

OLS GTL

Estimate Stan.Err. Estimate Stan.Err. β̂OLS−β̂GTL

β̂GTL

SEGTL

SEOLS

ln(Mph over) 0.8649 0.0144 1.2332 0.0057 -0.299 0.396
OutTown 0.0071 0.0107 0.0001 0.0006 119.524 0.054
OutState 0.0353 0.0070 0.0007 0.0004 52.026 0.062
Afr.American -0.0207 0.0095 -0.0010 0.0004 20.402 0.045
Hispanic 0.0216 0.0101 -0.0003 0.0007 -85.838 0.064
Female -0.0564 0.0375 0.0003 0.0017 -204.497 0.046
ln(Age) 0.0002 0.0073 0.0015 0.0007 -0.878 0.092
Female × ln(Age) 0.0092 0.0105 0.0000 0.0005 946.064 0.049
ln(CourtDist) 0.0158 0.0035 -0.0002 0.0003 -81.445 0.074
ln(Pvalue.pc) -0.0043 0.0218 -0.0007 0.0011 5.209 0.050
OR 0.0202 0.0700 0.0058 0.0020 2.502 0.028
OR × OutTown 0.0083 0.0630 -0.0082 0.0019 -2.008 0.031
OR × ln(CourtDist) 0.0019 0.0089 0.0003 0.0004 5.139 0.042
SP 0.0299 0.2949 -0.0016 0.0155 -19.662 0.053
SP × OutTown 0.0258 0.0187 0.0000 0.0008 -4569.156 0.041
SP × ln(CourtDist) 0.0059 0.0040 0.0007 0.0004 7.853 0.101
SP × ln(Pvalue.pc) -0.0018 0.0265 -0.0002 0.0014 9.790 0.051
SP × OR -0.0164 0.0319 -0.0018 0.0017 8.270 0.053
Intercept 2.2716 0.2551 1.4817 0.0190
σ 0.0030 0.0005
α -1.7612 0.0833
δ 1.3083 0.0483
log Likelihood -9440.55 25066.89
(Absolute) Average 360.723 0.075

Dependent variable: Log of amount of fine. Number of observations = 31674. Skewness and kurtosis of OLS
residuals equal −1.20 and 5.07; the Jarque-Bera test of normality of the OLS residuals has a p-value of less
than 0.001. The Wald test of the GTL estimates of (α, δ) equals 791.1, rejecting normality with a p-value
of less than 0.001. The LM test equals 5072 with a p-value of less than 0.001 and with 8 range violations.
The Vuong test that compares OLS and GTL equals −52.67 in favor of the GTL model with a p-value of
less than 0.001.

race, ethnicity, gender, age, and the distance to court), and measures of the fiscal condition

of a municipality (a dummy “OR” whether a municipality rejected a tax increase via an

override referendum applicable to the operating budget of the 2001 fiscal year; property

value per capita; and a dummy “SP” whether the traffic stop was made by a state police

officer, who may have different incentives than a local police officer). The regression model

includes several interactions as well, as indicated in the tables of results below.

The difference in the estimates is striking (Table 7). The first sign of the relative in-
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Figure 7: Distributions estimated for the speeding ticket equation
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adequacy of the OLS estimator is seen in the skewness (−1.20) and kurtosis (5.07) of the

residuals. Among the five applications discussed in this section, this application stands out

in that none of the moments of the estimated GTL distribution exists. Obviously, then,

the estimates of (α, δ) = (−1.761, 1.308)) are far from (0.1436, 0) that represents normality.

The disturbances are sharply peaked and have thick tails, with the left tail thicker than the

right; see Figure 7 where the GTL density that peaks at 33.23 at ε = 0.0075 is actually

top-truncated to show the tails better. The two densities are drawn such that the median

of both falls at 0. They intersect at −0.8468, −0.0611, 0.0362, and 1.5974, dividing the real

axis in five segments. For normality, the probability of these segments equals 0.0047, 0.4210,

0.1185, 0.4558, and 4.9E-07; for GTL, the probability equals 0.1102, 0.1413, 0.7275, 0.0211,

and 5.5E-06. This highlights the thick tails, especially on the left, and the great concentra-

tion of the GTL disturbances in the range from −0.0611 to 0.0362. That means that the

actual log-fine generally deviates little from the predicted log-fine—but if it deviates, it can

deviate much.

About the determinants of the log-fine, both estimates show that excess speed (ln(Mph

over)) is the major determinant, as it should be, but the two estimates have different im-
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plications. The OLS slope estimate is less than 1, indicating that the fine is inelastic with

respect to the severity of the speeding violation (miles over the speed limit). On the other

hand, the GTL estimate indicates an elasticity greater than 1: the fine is elastic. This is

more intuitive: a more severe speeding violation draws an increasingly severe penalty; this

also corresponds with the prescription in state law.14

The other slopes are also much different. The OLS estimates suggest that African-

Americans (and perhaps young females) pay lower fines, and that Hispanic and out-of-state

drivers as well as those living farther away from the courthouse pay more. Regardless of

whether these effects are intuitively plausible, the GTL estimates of none of these variables

is economically significant any longer, even if a few of them are still statistically significant.

In other words, the amount of fine is not varying at the discretion of the police officer in

response to observable factors, in contrast with the findings by Makowsky and Stratmann

(2009), but unobservable factors can occasionally cause major deviations from the fine that

state law prescribes.

5.4 Trade creation and diversion

Many studies have examined the effect of preferential trade agreements (PTAs) on trade.

Two trading partners signing on to the same PTA may trade more with each other than before

and less with other partners who are not part of the PTA because of changes in the relative

cost of trading. Thus, following work by Ghosh and Yamarik (2004) and Subramanianl and

Wei (2007), Eicher et al. (2012) estimate a regression model that relates bilateral imports

from country j to country i to (a) trade creation dummy variables that indicate whether

countries i and j are both members of various PTAs and (b) trade diversion dummy variables

that indicate whether only one of the (i, j) country pair belongs to a given PTA, augmented

14Simple algebra with the formula for the amount of fine reveals that the elasticity exceeds 1 as long as
the driver exceeded the speed limit by 5 miles, and the elasticity is not constant as it is in the estimated
double-log model. In the entire sample, only 1% of the stopped drivers were going less than five miles over
speed limit; one fifth of them received a ticket.
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Figure 8: Distributions estimated for the trade creation and diversion equation
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with (c) various control variables such as the national income of each country, the distance

between them, the colonial history between them, the similarity in language, differences in

human capital and income level, indices of remoteness, trade policy, exchange rate volatility,

and so forth. These variables are defined in Table F.4 in the Appendix, which also provides

descriptive statistics.15 The data describe trade between 97 countries arranged in 4069

importer-exporter country pairs over five-year intervals from 1960 to 2000 with a total of

37983 observations in an unbalanced panel.

The estimation results in Table 8 correspond with specification 2 in Table III of Eicher

et al. (2012). Table 8 highlights the estimates of the trade creation and trade diversion effects,

whereas further results concerning the slopes of the control variables may be found in Table

G.2 in the Appendix. The normality assumption that is consistent with the OLS estimation

method is rejected convincingly by every indicator; the distribution of the disturbances is

left-skewed (as δ̂ > 0, with κ3 = −2.34) and quite thick-tailed (as α̂ < 0, with κ4 = 40.17).

Figure 8 illustrates the density functions.

More importantly, the OLS and GTL slopes differ by an average of nearly 30 percent, and

15More precise definitions of the PTAs may be found in Ghosh and Yamarik (2004), Subramanianl and
Wei (2007), and Eicher et al. (2012).
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Table 8: Trade creation and diversion, 1960-2005

OLS GTL

Estimate Stan.Err. Estimate Stan.Err. β̂OLS−β̂GTL

β̂GTL

SEGTL

SEOLS

Trade creation dummy variables
tc.nafta 0.371 0.252 0.500 0.220 -0.257 0.874
tc.eu 0.427 0.115 0.196 0.098 1.182 0.853
tc.efta 0.685 0.129 0.518 0.116 0.323 0.896
tc.eea 0.179 0.095 0.261 0.079 -0.312 0.837
tc.caricom 2.823 0.513 2.417 0.459 0.168 0.894
tc.ap 0.828 0.186 0.804 0.159 0.030 0.852
tc.mercosur 1.086 0.306 1.035 0.315 0.049 1.030
tc.asean 0.467 0.216 0.492 0.185 -0.051 0.858
tc.anzcerta 0.969 0.141 0.748 0.130 0.295 0.920
tc.apec 1.599 0.095 1.291 0.085 0.238 0.889
tc.laia -0.133 0.141 -0.432 0.134 -0.691 0.950
tc.cacm 2.314 0.150 1.931 0.139 0.198 0.927
tc.bilateralPTA 0.110 0.128 0.098 0.117 0.122 0.916

Trade diversion dummy variables
td.nafta 0.151 0.073 0.081 0.061 0.875 0.841
td.eu 0.651 0.051 0.434 0.047 0.500 0.908
td.efta 0.376 0.059 0.202 0.054 0.866 0.921
td.eea -0.142 0.048 -0.101 0.043 0.409 0.894
td.caricom -0.577 0.100 -0.539 0.097 0.071 0.972
td.ap 0.105 0.074 0.115 0.068 -0.088 0.925
td.mercosur 0.030 0.073 -0.019 0.063 -2.554 0.869
td.asean 0.474 0.070 0.395 0.061 0.198 0.869
td.anzcerta -0.759 0.098 -0.657 0.086 0.156 0.879
td.apec 0.439 0.049 0.341 0.042 0.288 0.871
td.laia -0.561 0.060 -0.533 0.054 0.051 0.913
td.cacm -0.174 0.078 -0.120 0.074 0.451 0.945
td.bilateralPTA -0.292 0.054 -0.275 0.045 0.064 0.832
σ 0.809 0.013
α -0.078 0.008
δ 0.139 0.005
log Likelihood -74773.2 -72585.9
(Absolute) Average 0.294 0.911

Dependent variable: Log of bilateral imports. The model also includes control variables (reported in Table
G.2 in the Appendix) and time dummy variables (not reported). Number of observations = 37983. Skewness
and kurtosis of OLS residuals equal −0.71 and 4.90; the Jarque-Bera test of normality of the OLS residuals
has a p-value of less than 0.001. The Wald test of the GTL estimates of (α, δ) equals 1326.8, rejecting
normality with a p-value of less than 0.001. The LM test equals 1299 with a p-value of less than 0.001 and
with 24 range violations (all in the left tail). The Vuong test that compares OLS and GTL equals −24.96 in
favor of the GTL model with a p-value of less than 0.001.

the standard errors of the GTL slopes are 8.9 percent smaller on average. The degree of trade

creation varies substantially by estimation method. For example, the European Union (EU)
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effect drops from 42.7 percent to 19.6 percent; NAFTA rises from 37.1 percent to 50 percent;

the effect of the ANZCERTA agreement between Australia and New Zealand is nearly one

third smaller than the OLS suggests (though still large); and the negative effect of LAIA

(the Latin America Free Trade Association/Latin America Integration Agreement) is tripled

and statistically significant under GTL relative to OLS. As for the trade diversion effect of

PTAs, the GTL estimates that correspond with the five positive and statistically significant

OLS estimates are all substantially smaller, whereas all of the negative OLS slopes estimates

are matched by similar GTL estimates. Thus, the evidence in favor of a PTA trade diversion

effect is actually stronger than the OLS estimates suggest, although the GTL estimates still

present a mixed picture.

Eicher et al. (2012) estimate more elaborate models than the one presented in Table 8.

Their preferred model appears to be one with import-export-pair fixed effects in order to

account for unobserved time-invariant country-pair heterogeneity (their specification 4 in

Table IV). This introduces 7342 dummy variables, which in OLS estimation are dealt with

by computing within-pair deviations. GTL estimates are obtained by maximum likelihood,

which does not permit within-pair deviations as an estimation shortcut. This implies that,

because of the short panel, the inconsistency of the fixed effects estimator spills over to the

estimator of all other slopes.16 Practically, however, estimating another 7342 slopes is not

even feasible. As a substitute, we explore a specification with 36 continent import-export

dummies, which are likely to pick up at least some of the unobserved time-invariant country-

pair heterogeneity. These results are presented in Table G.3, which yields similar conclusions

as Table 8, though the magnitude of the estimated trade effects differ.

16A country pair may be in the sample for a maximum of nine period. The average number of times a
country pair appears is 5.17.
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5.5 The extended CAPM model

The capital asset pricing model (CAPM) is a standard example of OLS regression analysis

in econometrics; yet, it is estimated with financial data that are regularly found to be heavy-

tailed. Thus, we compute both OLS estimates and GTL estimates of standard formulations

of the CAPM model17, of which we consider the standard one-factor model

Rit −Rft = β1i + β2i(Rmt −Rft) + εit (9)

and the extended three-factor model

Rit −Rft = β1i + β2i(Rmt −Rft) + β3iFSMB,t + β4iFHML,t + εit (10)

In these equations, Rit is the return to portfolio i in month t; Rft is the risk-free interest

rate, which is the one-month treasury bill rate; Rmt is the market return; FSMB,t is the factor

that measures the difference in returns of portfolios of small and big stock; and FHML,t is

the factor that measures the difference in returns of portfolios of stocks with high and low

book-to-market ratios (e.g., Fama and French (2004)).

We use monthly data from the Fama-French website that pertain to the time period Jan-

uary 1960 - December 2012. Specifically, we examine the 25 portfolios that are constructed

on the basis of the intersection of five size (market equity) and five book-to-market ratio

portfolios.

For all 25 portfolios, residuals of the standard CAPM model are not normally distributed:

the p-value of the Jarque-Bera test is less than 0.00001 for 24 of 25 cases. Panel A of Figure

9 shows why: estimated GTL regression models yield values of (α, δ) that are far from

(0.1436, 0), which is marked with an ×, indicating that the distribution is considerably

17See, for example, Fama and French (1993, 2004) and Carhart (1997)
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Figure 9: Estimates of α and δ of the basic and extended CAPM models
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(a) (α̂, δ̂) for equation (9)
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(b) (α̂, δ̂) for equation (10)

heavy-tailed (α̂ < 0) and quite often right-skewed (δ̂ < 0). The deviation from normality is

only slightly less severe in the extended CAPM model: 18 of 25 residuals yield Jarque-Bera

tests with a p-value of less than 0.00001, but still all p-values are less than 0.02; all Wald tests

reject normality at a 1.2% significance level or better; and 17 of 25 Vuong tests favor GTL

over OLS at a 5% two-tailed significance level.18 For CAPM, the GTL-implied skewness κ3

ranges from −0.05 to 1.97, averaging 0.49; kurtosis κ4 runs from 3.68 to as high as 48.88

with an average of 9.43. All of these values are tend to be smaller for the extended CAPM

model: −0.10 ≤ κ3 ≤ 0.83 with an average of 0.25, and 3.77 ≤ κ4 ≤ 12.54 with an average

of 6.16. Thus, the addition of the two factors FSMB and FHML remove a little of the extreme

non-normality of the disturbances.

The question arises which types of portfolios the disturbances have the most skewed and

thick-tailed distributions. Table 9 reports the estimates of α and δ by portfolio category

18The rejection of normality in these data is notable, since each separate portfolio blends the performance
of, on average, 146 separate stocks (ranging from a minimum of 5 to a maximum of 1191 stocks). Such
averaging might make a normality assumption plausible, but, as shown, normality still is soundly rejected.

37



Table 9: Basic CAPM and Extended CAPM: estimates of α and δ for 25-portfolio data

B/M:1 B/M:2 B/M:3 B/M:4 B/M:5 B/M:1 B/M:2 B/M:3 B/M:4 B/M:5

Basic CAPM

α̂ δ̂
ME:1 -0.143 -0.113 -0.087 -0.089 -0.072 -0.084 -0.054 -0.063 -0.083 -0.076
ME:2 -0.049 -0.043 -0.042 -0.041 -0.114 -0.019 -0.044 -0.034 -0.030 -0.030
ME:3 -0.093 -0.042 -0.103 -0.080 -0.078 0.003 -0.015 -0.027 -0.020 -0.058
ME:4 -0.081 -0.085 -0.190 -0.045 -0.052 -0.036 -0.035 -0.018 -0.048 -0.048
ME:5 0.048 -0.079 -0.113 -0.157 -0.094 -0.022 0.004 -0.012 -0.001 -0.012
Average -0.081 -0.034

Extended CAPM

α̂ δ̂
ME:1 -0.135 -0.059 -0.013 0.061 -0.040 -0.044 -0.064 -0.037 -0.109 -0.026
ME:2 -0.014 -0.075 -0.082 -0.031 -0.024 -0.004 -0.037 -0.019 0.008 -0.018
ME:3 0.033 -0.118 -0.111 -0.104 -0.094 0.008 0.000 -0.001 0.003 -0.069
ME:4 -0.048 -0.115 -0.140 -0.004 0.034 -0.030 -0.024 -0.019 -0.013 -0.007
ME:5 0.034 -0.026 -0.039 -0.023 -0.089 -0.001 -0.004 -0.022 -0.020 0.008
Average -0.049 -0.022

Estimates of α and δ of the GTL densities belonging to the disturbance ε in equation (9) for the basic CAPM
and equation (9) for the extended CAPM. B/M refers to the book-to-market equity ratio, divided into five
groups; ME refers to market equity, divided into five groups.

(book-to-market and market size). Greater rightward skewness is found in the portfolios of

the portfolios of smallest (ME:1) companies. Thicker-tailed distributions are found both for

portfolios the smallest (ME:1) companies and for portfolios of median type companies in

terms of both size (ME:3 and ME:4) and book-to-market ratio (B/M:2 and B/M:3).

A full description of the estimates of all 25 portfolios is impractical. Table 10 focuses on

the comparison of OLS and GTL estimates of β2 and β1 (which is adjusted in the case of

GTL; see section 3.1). As expected, the portfolios of smaller companies draw estimates of

β2 greater than 1. However, the GTL estimates tend to be greater than the OLS estimates

for portfolios with the smallest B/M ratio and smaller for the other portfolio types; the

intercepts (β1) tend to be smaller for the smallest-B/M portfolio and larger for the other

types.

Most significantly, the GTL estimates of the basic CAPM model tend to have smaller

standard errors, especially for the portfolios built of smaller (ME:1-3 and B/M:1-2) com-
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Table 10: Basic CAPM and Extended CAPM: estimates of β2 and β1 for 25-portfolio data

B/M:1 B/M:2 B/M:3 B/M:4 B/M:5 B/M:1 B/M:2 B/M:3 B/M:4 B/M:5

Basic CAPM

β̂2,GTL β̂∗1,GTL
ME:1 1.399 1.230 1.101 1.015 1.073 -0.637 0.048 0.185 0.398 0.518
ME:2 1.388 1.188 1.065 1.029 1.105 -0.264 0.104 0.349 0.412 0.405
ME:3 1.322 1.104 1.038 0.987 1.016 -0.152 0.211 0.214 0.365 0.449
ME:4 1.207 1.087 1.047 0.965 1.044 -0.027 0.015 0.180 0.339 0.264
ME:5 0.995 0.941 0.892 0.860 0.917 -0.047 0.043 0.057 0.115 0.139

β̂2,OLS − β̂2,GTL β̂1,OLS − β̂∗1,GTL
ME:1 0.025 -0.004 -0.010 -0.001 0.003 0.192 0.105 0.086 0.087 0.072
ME:2 0.007 -0.018 -0.010 -0.015 0.007 0.008 0.023 0.017 0.019 0.048
ME:3 0.007 0.006 -0.035 -0.026 0.010 -0.019 -0.003 0.040 0.022 0.054
ME:4 0.014 -0.011 -0.022 -0.013 -0.006 0.005 0.023 0.026 0.022 0.038
ME:5 0.000 -0.009 -0.023 -0.033 -0.028 -0.006 0.005 0.023 0.014 0.037

SE(β̂2,GTL)/SE(β̂2,OLS) SE(β̂∗1,GTL)/SE(β̂1,OLS)

ME:1 0.856 0.949 0.883 0.900 1.024 0.862 0.946 0.896 0.888 1.029
ME:2 0.920 1.024 1.016 1.038 0.959 0.866 0.967 0.963 0.932 0.922
ME:3 0.996 1.066 0.983 0.886 0.952 0.927 0.972 0.916 0.815 0.898
ME:4 1.017 1.080 1.001 1.013 0.951 0.939 0.973 0.931 0.963 0.838
ME:5 1.015 1.024 0.986 0.985 0.943 0.960 0.907 0.943 0.964 0.915
Average 0.979 0.925

Extended CAPM

β̂2,GTL β̂∗1,GTL
ME:1 1.076 0.968 0.921 0.888 0.970 -0.600 -0.142 -0.054 -0.007 0.082
ME:2 1.107 1.015 0.957 0.970 1.079 -0.200 -0.076 0.072 0.090 -0.053
ME:3 1.090 1.003 0.973 0.982 1.047 -0.035 0.108 0.029 0.076 -0.077
ME:4 1.062 1.045 1.040 1.022 1.132 0.089 -0.101 -0.023 0.023 -0.128
ME:5 0.977 1.003 0.974 0.992 1.059 0.146 0.022 -0.069 -0.162 -0.182

β̂2,OLS − β̂2,GTL β̂1,OLS − β̂∗1,GTL
ME:1 0.003 -0.007 -0.007 -0.005 0.010 0.046 0.015 -0.001 -0.049 0.006
ME:2 0.008 -0.004 0.009 0.000 0.004 -0.005 -0.010 -0.007 -0.008 -0.006
ME:3 0.000 0.030 0.022 0.012 0.014 -0.004 -0.053 -0.039 -0.026 0.043
ME:4 -0.005 0.025 0.036 -0.007 0.008 0.002 -0.018 -0.032 0.011 -0.004
ME:5 -0.002 -0.004 -0.001 -0.006 -0.002 0.004 -0.001 0.001 -0.005 0.013

SE(β̂2,GTL)/SE(β̂2,OLS) SE(β̂∗1,GTL)/SE(β̂1,OLS)

ME:1 0.853 0.971 1.024 0.974 1.012 0.858 0.984 1.014 0.957 1.015
ME:2 0.941 0.953 0.967 1.008 1.027 0.949 0.930 0.894 0.908 0.976
ME:3 0.970 0.927 0.942 0.924 0.982 0.983 0.921 0.907 0.876 0.959
ME:4 0.935 0.974 0.905 1.034 0.967 1.118 0.970 0.901 0.996 0.977
ME:5 0.993 0.999 0.911 1.019 0.967 0.967 0.980 0.917 1.016 0.927
Average 0.967 0.956

Estimates of β2 and β1 of the regression models in equation (9) for the basic CAPM and equation (10) for
the extended CAPM. B/M refers to the book-to-market equity ratio, divided into five groups; ME refers to
market equity, divided into five groups. SE refers to the standard error of the indicated estimator.
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Table 11: CAPM model of a (ME:1,B/M:1) portfolio, Jan.1960 - Dec.2012

OLS GTL

Estimate Stan.Err. Estimate Stan.Err. β̂OLS − β̂GTL SEGTL

SEOLS

A: Simple CAPM
Rm −Rf 1.423 0.043 1.399 0.037 0.025 0.856
Intercept -0.445 0.196 -0.637 0.169 0.192 0.862
σ 2.000 0.138
α -0.143 0.044
δ -0.084 0.026
log-likelihood -1914.1 -1852.3
Average 0.859

B: Extended CAPM
Rm −Rf 1.079 0.025 1.076 0.021 0.003 0.853
FSMB 1.377 0.035 1.359 0.036 0.019 1.015
FHML -0.278 0.038 -0.285 0.034 0.006 0.907
Intercept -0.481 0.104 -0.527 0.089 0.046 0.858
σ 1.068 0.069
α 0.144 -0.135 0.041
δ 0.000 -0.044 0.026
log-likelihood -1498.3 -1443.0
Average 0.908

Dependent variable: Monthly return net of a risk-free interest rate in a portfolio constructed from companies
in the lowest market size (ME:1) and lowest book-to-market ratio (B/M:1) category. Number of observations
= 636. Skewness and kurtosis of OLS residuals equal 1.14 and 9.75 in the case of CAPM and 0.74 and 9.11
in the case of the extended CAPM; for both models, the Jarque-Bera test of normality of the OLS residuals
has a p-value of less than 0.001. The Wald test of the GTL estimates of (α, δ) equals 47.6 for both models,
rejecting normality with a p-value of less than 0.001. The LM test equals 42.7 (1 range violation) and 48.7
(2 range violations), both with a p-value of less than 0.001. The Vuong tests that compares OLS and GTL
equal −2.63 and −2.72, respectively, in favor of the GTL model with a p-value of 0.005 and 0.004.

panies in particular. Overall, the standard errors for the extended CAPM model are 3.3%

smaller for the estimates of β2 and 4.4% smaller for the estimates of β1.

Table 11 provides a more detailed report of the estimates of the basic and extended

CAPM models under OLS and GTL estimation for the portfolio data that appear to be

more affected by non-normality than most: the portfolio constructed from companies in

the lowest market size (ME:1) and lowest book-to-market ratio (B/M:1) category. The

slope estimates are quite robust to the difference in estimation approach; the intercept is

relatively more sensitive; and the standard errors for this portfolio are at least 10% smaller.

The addition of the factors FSMB and FHML has virtually the same impact on the estimate
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Figure 10: Normal and GTL densities for CAPM and Extended CAPM models, portfolio
(ME:1, B/M:1)
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of β2 whether the equation is estimated with OLS or with GTL.

Figure 10 shows the estimated densities of the disturbances. The pair of densities of the

extended CAPM model are less spread out than those of the basic CAPM model, thanks

to the addition of the FSMB and FHML factors to the model that are effective in explaining

variation in the returns of this portfolio. For both the basic and extended CAPM models,

the difference between the normal and GTL densities is dominated more by the difference in

kurtosis than the difference in skewness—GTL has a higher mode and thicker tails and also

is right-skewed, whereas the normal density is symmetric.19 The scale of the GTL density

may seem to be narrower than the normal density for both pairs, but the standard deviation

of the GTL and normal distribution is, respectively, 5.02 and 4.91 for the CAPM model and

2.54 and 2.56 for the extended CAPM model. Thus, the concentration of GTL’s probability

mass around the mode (near 0) is compensated for by long tails, especially on the right side

19The GTL-estimated κ3 and κ4 equal 1.97 and 48.88 for the basic CAPM model and 0.83 and 12.54 for
the extended CAPM model, as opposed to 0 and 3 under normality.
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since the distributions are right-skewed.

6 Concluding remarks

The classical linear regression model is the first model novice applied econometricians are

exposed to; the next concept is often the Gauss-Markov theorem that states that the OLS

estimator is the best linear unbiased estimator. Out of the latter four words, applied econo-

metricians tend to remember the word “best” most vividly. As a result, OLS is the workhorse

approach to linear regression models, to be discarded only if there is a clear violation of its

basic assumptions, such as endogenous regressors.

Skewed and thick-tailed disturbances do not constitute a violation of those assumptions,

but OLS is no longer the best estimator. To be sure, if the moments of the distribution of

the disturbances exist, OLS is still the best linear unbiased estimator, but (i) those moments

do not always exist, and (ii) a nonlinear estimator may have a smaller variance than OLS.

This paper develops the maximum likelihood estimator of a linear regression model with

GTL-distributed disturbances. Statistically, it has good properties (consistent and asymp-

totically normal). Monte Carlo comparisons demonstrate its dominance when disturbances

are non-normally distributed. Five applications highlight the practical relevance of the GTL

regression approach. First, they illustrate the fact that disturbances are often not normally

distributed but rather exhibit skewness and a higher degree of kurtosis than normality. Sec-

ond, they illustrate that in some research problems the location parameters (the slopes and

intercept of the regression model) are highly sensitive to variations in the distributional as-

sumption and in other research problems these parameters are very robust. This difference

in the effect of non-normality is a priori not foreseeable; the only way to find out is to test

for normality of the residuals of OLS and, if normality is rejected, to estimate the regression

model with a GTL estimator. Third, the applications illustrate that, robust or not, the

location parameters can be estimated with greater precision with a GTL estimator. Effi-
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ciency gains vary between research applications and generally are larger when disturbances

are more distinctly non-normal.

Disturbances need not be GTL-distributed. The assumption of a GTL distribution is

one of several alternatives the applied econometrician can choose from when confronted

with non-normal disturbances. But the GTL distribution has much to commend it: it is

highly flexible and can accommodate both thin (truncated) tails and thick tails as well any

shape between symmetry and extreme degrees of skewness. This flexibility also makes the

GTL distribution appealing for, e.g., discrete choice and GARCH modelling, where, just

as in linear regression models, applied econometricians may benefit from a wider range of

modelling tools.
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Appendices

A Proof of Theorem 1

The proof of Theorem 1 relies on Theorem 2.5 of Newey and McFadden (1994), which consists

on three components. First, εi must be i.i.d., as we indeed assume. Second, the log-likelihood

function must be continuous at every θ with probability 1, which is trivial to verify. Third,

θ must be identified. Lemma 2.2 of Newey and McFadden (1994) provides conditions for

identification:

If θ0 is identified and E[| ln g(z|θ)|] < ∞ for all θ, then Q0(θ) = E[ln g(z|θ)] has

a unique maximum at θ0.

We shall first check whether E[| ln g(z|θ)|] <∞ for all θ.

The regression model is given in equation (3). Define the range of ε as E(θ). Define

z = (y, x) with x ∈ X and y ∈ Y(x, θ), where Y(x, θ) is E(θ) shifted by x′β. Given the

independence of x and ε, g(z) = gy(y|x, θ)gx(x) with gy(y|x, θ) = 1
σ
f(y−x

′β
σ
|θ), where f(·|θ)

is the GTL density. Successive transformation of variables (ε = (y−x′β)/σ and u = G−1(ε))

yields

E[| ln g(z|θ)|] =

∫
X

∫
Y(x,θ)

| ln g(y, x|θ)|g(y, x|θ)dydx (A.1)

=

∫
X

∫
E(θ)

| ln{ 1

σ
f(ε|θ)gx(x)}|f(ε|θ)gx(x)dεdx (A.2)

=

∫
X

( 1∫
0

| − lnσ − lnG′(u) + ln gx(x)|du
)
gx(x)dx. (A.3)

since the density of u is uniform on [0, 1]. With σ > 0 and x being properly distributed as

a vector of explanatory variables, the focus of equation (A.3) is on G′(u). Thus, write the
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term in the large parentheses as

1∫
0

|A− lnG′(u)|du =

1∫
0

|A− ln(uλ1−1 + (1− u)λ2−1)|du. (A.4)

G′(u) is well-behaved for any u ∈ [uη, 1 − uη] for a small uη but may have asymptotes at

u = 0 and/or u = 1. Thus, we must check for the behavior of G′(u) in the intervals [0, uη]

and [1 − uη, 1]. For λ1 > 1 and u ↓ 0, G′(u) → 1 since uλ1−1 ↓ 0 and (1 − u)λ2−1 → 1.

For λ1 = 1, uλ1−1 = 1, so as u ↓ 0, G′(u) → 2 since (1 − u)λ2−1 → 1. For λ1 < 1,

consider that G′(u) → ∞ as u ↓ 0. Thus, choose uη such that lnG′(uη) ≥ A. Rewrite

− lnG′(u) = − ln(uλ1−1(1 + u1−λ1(1− u)λ2−1)) ≡ −((λ1 − 1) lnu+ lnB(u)), where B(0) = 1

and B(u) > 1 for u ∈ (0, uη) for a small enough uη. Thus, since A − lnG′(u) ≤ 0 for all

u ∈ [0, uη], we have

uη∫
0

|A−lnG′(u)|du =

uη∫
0

((λ1−1) lnu+lnB(u)−A)du <

uη∫
0

((λ1−1) lnu−A)du+uη lnB(uη) <∞,

since
uη∫
0

lnu = [u lnu− u]
uη
0 = uη lnuη − uη is finite. Thus, G′(u) is sufficiently well-behaved

for any λ1 at the left bound of the interval [0, 1]. By a similar argument, the right bound

yields no problems for any λ2 either. Thus, E[| ln g(z|θ)|] <∞ for all θ.

The other part of Lemma 2.2 of Newey and McFadden (1994) refers to identification of θ0.

As indicated in Section 2, the GTL(α, δ) distribution turns into a uniform distribution for

four parameter pairs: (α, δ) = (1, 0), (2, 0), (α, 1−α) for α→∞, and (α, α− 1) for α→∞.

If the parameter space Θ is compact, the latter two parameter pairs are immediately ruled

out, but that still leaves two parameter pairs: (1, 0) and (2, 0). Thus, β0 and σ0 are always

identified; α0 and δ0 are identified anywhere in a compact Θ except at (1, 0) and (2, 0).

Note that Theorem 2 implies that these two parameter pairs fall in a region where the MLE
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estimator is not asymptotically normally distributed.

B Proof of Lemmas 1 and 3

In this appendix, we first examine derivatives of the function G(u) and then list the deriva-

tives of the log-likelihood function. This leads directly to the proof of Lemma 1 and sets up

the examination of the second order derivatives for 3.

We have G(u) = 1
λ1

(uλ1 − 1) − 1
λ2

((1 − u)λ2 − 1), where λ1 = α − δ and λ2 = α + δ.

In the following, apostrophes refer to derivatives with respect to u, and subscripts indicate

derivatives with respect to parameters.

G′(u) = uλ1−1 + (1− u)λ2−1 (B.1)

G′′(u) = (λ1 − 1)uλ1−2 − (λ2 − 1)(1− u)λ2−2 (B.2)

G′′′(u) = (λ1 − 1)(λ1 − 2)uλ1−3 + (λ2 − 1)(λ2 − 2)(1− u)λ2−3 (B.3)

Gα(u) =
1

λ1

uλ1 lnu− 1

λ2
1

(uλ1 − 1)− 1

λ2

(1− u)λ1 ln(1− u) +
1

λ2
2

((1− u)λ2 − 1) (B.4)

G′α(u) = uλ1−1 lnu+ (1− u)λ2−1 ln(1− u) (B.5)

G′′α(u) = uλ1−2(1 + (λ1 − 1) lnu)− (1− u)λ2−2(1 + (λ2 − 1) ln(1− u)) (B.6)

Gαα(u) =
1

λ1

uλ1 lnu
(

lnu− 2

λ1

)
+

2

λ3
1

(uλ1 − 1)

− 1

λ2

(1− u)λ2 ln(1− u)
(

ln(1− u)− 2

λ2

)
− 2

λ3
2

((1− u)λ2 − 1) (B.7)

G′αα(u) = uλ1−1(lnu)2 + (1− u)λ2−1(ln(1− u))2 (B.8)

Gδ(u) = − 1

λ1

uλ1 lnu+
1

λ2
1

(uλ1 − 1)− 1

λ2

(1− u)λ1 ln(1− u) +
1

λ2
2

((1− u)λ2 − 1)(B.9)

G′δ(u) = −uλ1−1 lnu+ (1− u)λ2−1 ln(1− u) (B.10)

G′′δ(u) = −uλ1−2(1 + (λ1 − 1) lnu)− (1− u)λ2−2(1 + (λ2 − 1) ln(1− u)) (B.11)

Gδδ(u) =
1

λ1

uλ1 lnu
(

lnu− 2

λ1

)
+

2

λ3
1

(uλ1 − 1)

− 1

λ2

(1− u)λ2 ln(1− u)
(

ln(1− u)− 2

λ2

)
− 2

λ3
2

((1− u)λ2 − 1) (B.12)
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G′δδ(u) = uλ1−1(lnu)2 + (1− u)λ2−1(ln(1− u))2 (B.13)

Gαδ(u) = − 1

λ1

uλ1 lnu
(

lnu− 2

λ1

)
− 2

λ3
1

(uλ1 − 1)

− 1

λ2

(1− u)λ2 ln(1− u)
(

ln(1− u)− 2

λ2

)
− 2

λ3
2

((1− u)λ2 − 1) (B.14)

G′αδ(u) = −uλ1−1(lnu)2 + (1− u)λ2−1(ln(1− u))2 (B.15)

λ1 and λ2 appear in the denominator in G, Gα, Gδ, Gαα, Gαδ and Gδδ. Nevertheless, these

functions are well-defined when λ1 → 0 or λ2 → 0. Because of symmetry, it is necessary to

show this only for λ1 → 0. In G(u), we have

lim
λ1→0

uλ1 − 1

λ1

=
uλ1 lnu

1
= lnu. (B.16)

by L’Hôpital’s Rule. Similarly, in Gα(u) and Gδ(u), we find

lim
λ1→0

λ1u
λ1 lnu− (uλ1 − 1)

λ2
1

= lim
λ1→0

uλ1 lnu+ λ1u
λ1 lnu− uλ1 lnu

2λ1

=
1

2
(lnu)2, (B.17)

and in regard to Gαα(u), Gαδ(u) and Gδδ(u), we find

lim
λ1→0

λ2
1u

λ1(lnu)2 − 2λ1u
λ1 lnu+ 2(uλ1 − 1)

λ3
1

= lim
λ1→0

λ2
1u

λ1(lnu)3

3λ2
1

=
1

3
(lnu)3. (B.18)

A more serious issue exists at λ1 = 1. For example, as u ↓ 0, G′(u) → 1 when λ > 1;

G′(u) → 2 when λ1 = 1; and G′(u) → ∞ when λ < 1. Thus, G′(0) is not a continuous

function of λ1. Other derivatives (G′α and others) are similarly impacted at λ1 = 1. Moreover,

G′′(0) is discontinuous in λ1 at λ1 = 2 and G′′′(0) is discontinuous in λ1 at λ1 = 3. Similar

discontinuities exist at u = 1 for λ2 = 1, 2, 3.

Next, we present the first and second order derivatives of the log-likelihood function:

L =
n∑
i=1

`i(θ). For ease of notation, we drop the argument ui from the G-function and its
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derivatives. The first order derivatives of `i(θ) are:

∇β`i =
1

σ

G′′

(G′)2
xi (B.19)

∇σ`i = − 1

σ
+

1

σ2

G′′

(G′)2
(yi − xiβ) (B.20)

∇α`i =
G′′Gα

(G′)2
− G′α
G′

(B.21)

∇δ`i =
G′′Gδ

(G′)2
− G′δ
G′

(B.22)

The second order derivatives are:

∇ββ`i = − 1

σ2

G′G′′′ − 2(G′′)2

(G′)4
xix
′
i (B.23)

∇βσ`i = − 1

σ
∇β`i −

1

σ3

G′G′′′ − 2(G′′)2

(G′)4
(yi − xiβ)xi (B.24)

∇βα`i = − 1

σ

G′G′′′ − 2(G′′)2

(G′)4
Gαxi +

G′G′′α − 2G′′G′α
(G′)3

xi (B.25)

∇βδ`i = − 1

σ

G′G′′′ − 2(G′′)2

(G′)4
Gδxi +

G′G′′δ − 2G′′G′δ
(G′)3

xi (B.26)

∇σσ`i = − 2

σ
∇σ`i −

1

σ2
− 1

σ2

G′G′′′ − 2(G′′)2

(G′)4
(yi − xiβ)2 (B.27)

∇σα`i = − 1

σ2

G′G′′′ − 2(G′′)2

(G′)4
Gα(yi − xiβ) +

1

σ2

G′G′′α − 2G′′G′α
(G′)3

(yi − xiβ) (B.28)

∇σδ`i = − 1

σ2

G′G′′′ − 2(G′′)2

(G′)4
Gα(yi − xiβ) +

1

σ2

G′G′′δ − 2G′′G′δ
(G′)3

(yi − xiβ) (B.29)

∇αα`i = −G
′G′′′ − 2(G′′)2

(G′)4
G2
α + 2

G′G′′α − 2G′′G′α
(G′)3

Gα +
G′′Gαα −G′G′αα + (G′α)2

(G′)2
(B.30)

∇αδ`i = −G
′G′′′ − 2(G′′)2

(G′)4
GαGδ +

G′G′′α − 2G′′G′α
(G′)3

Gδ

+
G′G′′δ − 2G′′G′δ

(G′)3
Gα +

G′′Gαδ −G′G′αδ +G′αG
′
δ

(G′)2
(B.31)

∇δδ`i = −G
′G′′′ − 2(G′′)2

(G′)4
G2
δ + 2

G′G′′δ − 2G′′G′δ
(G′)3

Gδ +
G′′Gδδ −G′G′δδ + (G′δ)

2

(G′)2
(B.32)

As for Lemma 1, the properties of G and all its derivatives imply continuity of all second
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order derivatives in θ except at λ1, λ2 = 1, 2, 3.

As for Lemma 3, we replace (yi−x′iβ)/σ by G(ui) in the first and second order derivatives.

This yields expressions in ui, multiplied in some cases with xi or xix
′
i. Thus, relative to x,

Lemma 3 requires that E[x] and E[xx′] are finite. Taking expectations with respect to yi

turns into an integration over ui, which has a uniform density, which simplifies the analysis

considerably. Thus, we examine whether ∇θθ is integrable for u ∈ [0, 1]. Since G and its

derivatives are well-behaved for any u ∈ [uη, 1 − uη] for a small uη, we must examine the

behavior of ∇θθ over the range [0, uη]; the argument for the range [1− uη, 1] is similar.

In ∇θθ, G
′ appears in the denominator frequently. Since G′ →∞ for u ↓ 0 when λ1 < 1,

we consider the cases of λ1 < 1, λ1 = 1 and λ1 > 1 separately. Furthermore, note that as

u ↓ 0, terms with 1 − u in equations (B.19) to (B.32) contribute at most a constant to the

limit of the expression for any finite λ2.

The case of λ1 < 1.

We start with ∇ββ`i, dividing the ratio in equation (B.23) into two parts:

G′′′

(G′)3
→ (λ1 − 1)(λ− 2)uλ1−3 + (λ2 − 1)(λ2 − 2)

(uλ1−1 + 1)3

= =
uλ1−3

(
(λ1 − 1)(λ− 2) + (λ2 − 1)(λ2 − 2)u3−λ1

)
u3λ1−3(1 + u1−λ1)3

→ uλ1−3(λ1 − 1)(λ− 2)

u3λ1−3
= u−2λ1(λ1 − 1)(λ− 2) (B.33)

−2(G′′)2

(G′)4
→ −2

((λ1 − 1)uλ1−2 − (λ2 − 1))2

(uλ1−1 + 1)4

= −2
u2λ1−4((λ1 − 1)− (λ2 − 1)u2−λ1)2

u4λ1−4(1 + u1−λ1)4

→ −2
(λ1 − 1)2u2λ1−4

u4λ1−4
= −2(λ1 − 1)2u−2λ1 (B.34)

since um−λ1 → 0 for m = 1, 2, 3. Combining these two terms yields
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G′G′′′ − 2(G′′)2

(G′)4
→ −λ1(λ1 − 1)u−2λ1 (B.35)

which has a finite integral on [0, uη] if −2λ1 ≥ −1 or λ1 ≤ 1/2.20

For the other terms, we follow the same strategy. For ∇βσ`i, we have:

G′′

G′
→ (λ1 − 1)uλ1−2 − (λ2 − 1)

(uλ1−1 + 1)2
→ (λ1)u−λ1 (B.36)

G′G′′′ − 2(G′′)2

(G′)4
G → −λ1(λ1 − 1)u−2λ1

uλ1 − 1

λ1

= −(λ1 − 1)(u−λ1 − u−2λ1) (B.37)

which, altogether, has a finite integral if λ1 ≤ 1/2.

For ∇βα`i, we have:

G′G′′′ − 2(G′′)2

(G′)4
Gα → −λ1(λ1 − 1)u−2λ1

( 1

λ1

uλ1 lnu− 1

λ2
1

(uλ1 − 1)
)

= (λ1 − 1)u−λ1 lnu− λ1 − 1

λ1

(u−λ1 − u−2λ1) (B.38)

G′G′′α − 2G′′G′α
(G′)3

→ u−λ1 − u−2λ1+2 − (λ1 − 1)u−λ1 lnu (B.39)

The first term in (B.38) cancels against the last term of (B.38). u−λ1 , u−2λ1 , and u2−2λ1 all

have a finite integral if λ1 < 1/2. The result for ∇βδ`i is parallel to this case.

For ∇σσ`i, we have:

G′′

(G′)2
G →

((λ1 − 1)u−λ1−2 − (λ2 − 1)

(uλ1−1 + 1)2

)(uλ1 − 1

λ1

)
→ 1

λ1

(
(λ1 − 1)(1− u−λ1)− (λ2 − 1)(u2−λ1 − u2−2λ1)

)
(B.40)

20Lemma 3 requires ∇ββ`i(θ) to be bounded in absolute value by a function b(y, x). As equations (B.33)
and (B.34), the expression in equation (B.35) omits multiplicative functions that converge to 1 as u ↓ 0.
Thus, b(y, x) is found by multiplying (B.35) with the largest value that such functions take over the interval
[0, uη], which is finite.
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G′G′′′ − 2(G′′)2

(G′)4
G2 → −λ1(λ1 − 1)u−2λ1

(uλ1 − 1

λ1

)2

= −(λ1 − 1)

λ1

(1− 2u−λ1 + u−2λ1) (B.41)

In (B.40) and (B.41), u−λ1 , u2−λ1 , u2−2λ1 and u−2λ1 all have a finite integral if λ1 < 1/2.

For ∇σα`i, we have with the aid of (B.35) and (B.39):

∇σα`i →
1

λ2
1

(
1− λ1(u2−λ1 − u2−2λ1) + (λ1 − 2)u−λ1 − (λ1 − 1)u−2λ1

)
(B.42)

Once again, finite integrability depends on u−2λ1 , such that λ1 must be less than 1/2. The

result for ∇σδ`i is parallel to this case.

With respect to ∇αα`i, we have three components:

− G′G′′′ − 2(G′′)2

(G′)4
G2
α →

λ1 − 1

λ1

(lnu)2 − 2(λ1 − 1)

λ2
1

lnu+
2(λ1 − 1)

λ2
1

u−λ1 lnu

+
λ1 − 1

λ3
1

(1− 2u−λ1 + u−2λ1) (B.43)

2
G′G′′α − 2G′′G′α

(G′)3
Gα → −2

λ1 − 1

λ1

(lnu)2 +
2(λ1 − 1)

λ2
1

lnu− 2(λ1 − 1)

λ2
1

u−λ1 lnu

+
2

λ2
1

(
λ1 lnu− λ1u

2−λ1 lnu
)

+
2

λ2
1

(
u−λ1 − 1 + u2−λ1 − u2−2λ1

)
(B.44)

G′′Gαα −G′G′αα + (G′α)2

(G′)2
→ λ1 − 1

λ1

(lnu)2 − 2
λ1 − 1

λ2
1

lnu+ 2
λ1 − 1

λ3
1

(1− u−λ1) (B.45)

The first line of (B.43) and (B.44) and the first term of (B.45) cancel against each other. On

the second line of (B.44), u2−λ1 lnu vanishes more rapidly as u ↓ 0 than lnu, which itself has

a finite integral. The remainder has a finite integral if λ1 ≤ 1/2. The results for ∇αδ`i and

∇δδ`i are parallel to this case.

The case of λ1 ≥ 1.
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From Lemma 1, it is clear that ∇θθ`i has discontinuities at λ1 = 1, 2, 3. With methods

similar to above, we have in regard to ∇ββ`i, as u ↓ 0:

1 < λ1 < 2 :
G′G′′′ − 2(G′′)2

(G′)4
→ (λ1 − 1)(λ1 − 2)uλ1−3 − 2(λ1 − 1)2u2λ1−4 (B.46)

2 < λ1 < 3 :
G′G′′′ − 2(G′′)2

(G′)4
→ (λ1 − 1)(λ1 − 2)uλ1−3 − 2(λ2 − 1)2 (B.47)

3 < λ1 <∞ :
G′G′′′ − 2(G′′)2

(G′)4
→ −λ2(λ2 − 1) (B.48)

In (B.47), the expression has a finite integral if λ1 − 3 > −1 or λ1 > 2, which is compatible

with the range of λ1 considered in the derivation of (B.47). In (B.46) however, for the

expression to have a finite integral over [0, uη], λ1 must exceed 2, which is beyond the range

considered. With similar derivations, it can be shown that every component of ∇θθ`i has a

finite integral only if λ1 > 2 and λ2 > 2 with a discontinuity at λ1 = λ2 = 3.

C Proof of Lemma 2

For λ1 > 0, the lower bound of ε is ε = −1
λ1

, and for λ2 > 0, the upper bound of ε is ε̄ = 1
λ2

.

Thus the bounds on y are y = x′β + σε and ȳ = x′β + σε̄, respectively. To prove Lemma 2,

we abbreviate notation slightly and examine

∇θ

( ȳ∫
y

gy(y|θ)dy
)

=

ȳ∫
y

∇θgy(y|θ)− gy(y|θ)yθ + gy(ȳ|θ)ȳθ. (C.1)

Thus, interchanging differentiation and integration is permissible as long as gy(y|θ) = gy(ȳ|θ) =

0. We have gy(y|θ) = [G′(u)]−1/σ with u = G−1(ε) with ε = 1
σ
(y−x′β). Therefore, as y → y,

we have ε → ε and u → 0, and thus for λ1 < 1, G′(u) → ∞ and gy(y|θ) → 0. Similarly, for

λ2 < 1, gy(ȳ|θ)→ 0.

Since
∫
s(θ)gy(y|θ)dy =

∫
∇θgy(y|θ)dy, part (ii) of Lemma 2 concerns the derivative of
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the first term in equation (C.1):

∇θ

( ȳ∫
y

∇θgy(y|θ)dy
)

=

ȳ∫
y

∇θθgy(y|θ)−∇θgy(y|θ)yθ +∇θgy(ȳ|θ)ȳθ. (C.2)

∇θgy(y|θ) approaches the following functions as u ↓ 1:

∇βgy =
G′′(u)x

σ2(G′(u))3
→
(
(λ1 − 1)u1−2λ1 − (λ2 − 1)u3−3λ1

)
(C.3)

∇σgy = − 1

σ2G′(u)
− G′′(u)(y − x′β)

σ3(G′(u))3

→ −σ−2
(
u1−λ1 − λ−1

1 ((λ1 − 1)u1−2λ1 − (λ2 − 1)u3−3λ1)
)

(C.4)

∇αgy =
G′′(u)Gα

σ(G′(u))3

→ λ1 − 1

λ1

u1−λ1 lnu− λ2 − 1

λ1

u3−2λ1 lnu

−λ1 − 1

λ2
1

(u1−λ1 − u1−2λ1) +
λ2 − 1

λ2
1

(u3−2λ1 − u3−3λ1) (C.5)

∇δgy =
G′′(u)Gδ

σ(G′(u))3

→ −λ1 − 1

λ1

u1−λ1 lnu+
λ2 − 1

λ1

u3−2λ1 lnu

+
λ1 − 1

λ2
1

(u1−λ1 − u1−2λ1)− λ2 − 1

λ2
1

(u3−2λ1 − u3−3λ1) (C.6)

As u ↓ 1, each of these functions goes to 0 if and only if λ < 1/2. By a similar argument,

λ2 < 1/2 is necessary for ∇θgy(y|θ) to go to 0 as u→ 1.21

D Proof of Lemma 4

E[H(θ)] may be written as integrals of expressions found in equations (B.23)-(B.32) (multi-

plied by gx(x)) over u and x. As functions of u, integration of equations (B.23)-(B.32) has

21The derivative of the second and third terms of (C.1) equals 0 as well when λ1 < 1/2 and λ2 < 1/2.
That is, for both the first and second order derivatives of

∫
gy(y|θ)dy, differentiation and integration is

interchangeable.
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no analytical solution. Thus, to provide evidence that A0 = −E[H(θ)] is positive definite,

we resort to numerical integration by simulation. This evidence is tied to a model that must

therefore be specified in a generic fashion.

We specify x as a vector of three elements: x1 = 1 to allow for an intercept, x2 is

standard normal, and x3 is a standardized χ2(5) variable that introduces some skewness

into the explanatory variables. β is set to (1, 1, 1)′. Note that x′β generates a location shift

only. λ1 and λ2 vary from −3 to 0.49, the former out of concern for numerical over- and

underflow in the computations and the latter in deference to the upper bound of the feasible

parameter space. σ cannot really be held constant because variations in α and δ generate εs

of a different scale such that models with a high λ1 and λ2 have a much higher signal-to-noise

ratio. Since x′β has a variance of 2 by design, we choose σ = (2IQRN(0,1)/IQRGTL(α,δ))
0.5.

Thus, if the GTL density is close to the standard normal density, the variance of ε is close to

2 and the signal-to-noise ratio is about 1. σ declines as λ1 and λ2 fall and the interquartile

range of ε rises.22 For other values of λ1 and λ2, the signal-to-noise ratio probably differs

from 1 but should be in the neighborhood of it.

For the given range of λ1 and λ2, Table D.1 reports the smallest eigenvalues of the

simulated matrix Â0, which itself is computed on the basis of 10,000 replications. The

smallest eigenvalue is always solidly positive: at least for the model that is examined here,

A0 appears to be positive definite.

Table D.1: Simulated values of the smallest eigenvalue of Â0

λ2 for N = 100 λ2 for N = 1000
λ1 -3 -2 -1 0 0.49 -3 -2 -1 0 0.49
-3 6.56 8.01 9.46 11.14 11.93 65.29 79.81 94.12 110.77 117.87
-2 8.04 10.69 13.10 16.27 17.91 79.82 106.30 130.31 161.48 175.66
-1 9.48 13.13 15.17 17.16 18.07 94.15 130.36 152.74 170.78 178.06
0 11.16 16.30 17.17 24.22 23.79 110.84 161.62 170.99 242.28 234.88
0.49 11.94 17.92 18.09 23.69 37.17 118.08 176.12 178.49 235.53 352.26

22Recall that Var ε does not exist if min(λ1, λ2) is less than −1/2.
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E Monte Carlo Results: Diagnostics of small-sample distributions

Tables E.1 - E.6 present diagnostic results of the small-sample distributions of the OLS and

MLE estimators of the various experiments that are discussed in Section 4 of the paper.

Some remarks are in order.

Theoretically, since the GTL regression estimator is a maximum likelihood estimator, the

variance (denoted as Vh) of the estimator may be calculated as the inverse of the negative

Hessian. However, when a penalty function23 is added to the log-likelihood function in order

to keep the estimator of (α, δ) in bounds, Vh is impacted by the curvature in this penalty

function and thus may well be biased. More properly, the log-likelihood-with-penalty func-

tion may be seen as a criterion function within the context of quasi-likelihood estimation

(White, 1982; Gourieroux et al., 1984), in which case the familiar sandwich estimator (de-

noted as Vsw) ought to be used to compute the variance. In our set of experiments, we added

a penalty function only for the experiments with α = 0.33 and δ = −0.10, 0.00, 0.10. For

other experiments, the sandwich estimator should not be needed. However, as a check, we

compute the sandwich estimator also when α = −0.33.

Table E.3 shows that for n = 5000 and α = 0.33, Vsw yields an estimated variance that

is much closer to the variance of the Monte Carlo draws than Vh. But its use is questionable

when α = −0.33: the variance ratio moves away from 1 for four of the six parameters,

increasing it for β̂1 and β̂2 and decreasing it for α̂ and δ̂. For small samples (n = 250), when

α = 0.33, Vh tends to be too large; Vsw tends to overcorrect and ends up to be often too small

23 The penalty function takes the following form. Let λ1 = α − δ and λ2 = α + δ. Let the lower and
upper limit on λj be denoted as λjL and λjU , respectively; in our Monte Carlo analysis, we set λjL = −3
and λjU = 0.5. Let λjR = (λjU − λjL)/2 measure half of the feasible range of λj . As always, n denotes the
number of observations. Then the penalty function is written as P (λ1, λ2, n) = 0.005 n

(
p(λ1) + p(λ2)

)
p(λj) = ln {(λj − λjL)/λjR}+ ln {(λjL − λj)/λjR}

This function p takes on a value of 0 at the midpoint −1.25 of the feasible range of λj , is sym-
metric around this midpoint, and for λj = 0.20, 0.40, 0.45, 0.49, 0.499 equals −0.00580, −0.01099,
−0.01438, −0.02237, −0.03387 respectively. It has an asymptote of −∞ at the endpoints of the range.
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but is usually closer to the Monte Carlo variance. For α = −0.33, the sandwich estimator

yields a better value of the variance for β̂2 but worsens the variance for β̂3, β̂1, α̂, and δ̂.

As for coverage ratios (the proportion of confidence intervals that include the true pop-

ulation parameter), Table E.2 considers a significance level of 0.05. Ideally, therefore, the

coverage ratios should equal 0.95. Use of the sandwich estimator when α = −0.33 makes

little difference when n = 5000 and worsens coverage when n = 250. When α = 0.33, the

coverage ratio improves for β̂2 and β̂3; the other parameters suffer from bias especially when

δ 6= 0 and thus exhibit poor coverage performance.24

Based on these comparisons, the use of a sandwich estimator is recommended when a

penalty function is added to the log-likelihood function but may do more harm than good

when the regression model is estimated without a penalty function.

Whereas the determinants in the baseline design are well-behaved variables (N(0, 1) and

χ2(5)), the second design specifies the determinants to be thick-tailed as well. Specifically,

Xj is distributed GTL(αxj, δxj) for j = 2, 3 with αxj = −0.67 and δxj = −0.25, 0.00, 0.25.

In this design, if X denotes the matrix of explanatory variables including a column of ones

for the intercept, plim X ′X/n is not defined. It is well-known that the OLS estimator is no

longer consistent; the GTL-regression estimator is likely similarly impacted. Tables E.4 to

E.6 illustrate the relative performance of the OLS and GTL-regression estimators.

Table E.4 illustrates that normality of the OLS slope estimators is destroyed by thick tails

in the disturbances or explanatory variables. The GTL-regression estimator of the slopes

displays normality for large n in the estimators of α, δ, σ, and β1. If X2 is well-behaved and

X3 is thick-tailed, β̂2 is normally distributed but β̂3 is not. Table E.6 shows that the inverted

negative hessian underestimates the Monte Carlo variance of the GTL-regression estimator

24The penalty function keeps (α̂, δ̂) within the feasible area but also has the effect of driving it away

from the boundary of the feasible area. This produces a small but significant bias in (α̂, δ̂) in experiments
with α = 0.33. Experimentation with different penalty function specifications indicated that functions that
become active only near the boundary (and thus are less likely to cause bias) typically cause non-convergence
during some replications.
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Table E.1: p-values of Jarque-Bera tests for normality of OLS and GTL estimators: baseline
design

DGP OLS GTL
α δ σ β2 β3 β1 β2 β3 β1 σ α δ

A: GTL as an approximation of the standard normal distribution, N = 250
0.1436 0.00 1.188 0.91 0.10 0.62 0.46 0.22 0.55 0.00 0.00 0.01

B: Various GTL distributions, small sample, N = 250
0.33 -0.10 1.477 0.80 0.07 0.48 0.36 0.07 0.30 0.29 0.00 0.03
0.33 0.00 1.508 0.90 0.11 0.51 0.47 0.51 0.16 0.08 0.00 0.43
0.33 0.10 1.477 0.93 0.17 0.51 0.17 0.46 0.14 0.31 0.00 0.10
-0.33 -0.10 0.454 0.00 0.00 0.00 0.23 0.21 0.86 0.00 0.10 0.73
-0.33 0.00 0.482 0.00 0.00 0.02 0.11 0.10 0.72 0.00 0.12 0.59
-0.33 0.10 0.454 0.00 0.00 0.00 0.07 0.07 0.54 0.00 0.18 0.29
-0.67 -0.25 0.136 0.00 0.00 0.00 0.07 0.70 0.80 0.00 0.06 0.55
-0.67 0.00 0.202 0.00 0.00 0.00 0.00 0.43 0.78 0.00 0.04 0.63
-0.67 0.25 0.136 0.00 0.00 0.00 0.04 0.51 0.41 0.00 0.08 0.21
-1.00 -0.50 0.024 0.00 0.00 0.00 0.53 0.93 0.64 0.00 0.09 0.33
-1.00 0.00 0.079 0.00 0.00 0.00 0.00 0.57 0.81 0.00 0.02 0.57
-1.00 0.50 0.024 0.00 0.00 0.00 0.40 0.53 0.23 0.00 0.04 0.10

C: Various GTL distributions, large sample, N = 5000
0.33 -0.10 1.477 0.09 0.99 0.07 0.68 0.23 0.78 0.71 0.78 0.09
0.33 0.00 1.508 0.10 0.96 0.16 0.65 0.55 0.70 0.48 0.69 0.10
0.33 0.10 1.477 0.14 0.89 0.33 0.87 0.67 0.61 0.59 0.56 0.26
-0.33 -0.10 0.454 0.00 0.00 0.00 0.51 0.50 0.99 0.30 0.44 0.06
-0.33 0.00 0.482 0.83 0.07 0.21 0.35 0.39 0.98 0.23 0.44 0.07
-0.33 0.10 0.454 0.00 0.00 0.00 0.19 0.41 0.97 0.15 0.42 0.08
-0.67 -0.25 0.136 0.00 0.00 0.00 1.00 0.39 0.98 0.71 0.42 0.11
-0.67 0.00 0.202 0.00 0.00 0.00 0.91 0.24 0.87 0.29 0.61 0.20
-0.67 0.25 0.136 0.00 0.00 0.00 0.40 0.40 0.73 0.13 0.50 0.30
-1.00 -0.50 0.024 0.00 0.00 0.00 0.75 0.49 0.93 0.98 0.42 0.07
-1.00 0.00 0.079 0.00 0.00 0.00 0.83 0.21 0.76 0.30 0.86 0.30
-1.00 0.50 0.024 0.00 0.00 0.00 0.18 0.45 0.47 0.04 0.74 0.53

Note: These test results pertain to simulations reported in Tables 1 and 2.

if determinants are thick-tailed. However, the measured deviation is not as large as it is for

the OLS estimator. (Note that this “deviation” cannot be called a “bias” since the mean

of the variance estimator is not defined.) Table E.5 shows that these poor estimates impact

the coverage ratio as well: for OLS, unlike in the baseline design, thick-tailed determinants

lead to a excessive coverage ratio (too large confidence intervals), and for the GTL-regression

estimator, the coverage ratios are too low (too small confidence intervals).
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Table E.2: Coverage rates of OLS and GTL estimators under a 95% confidence level: baseline
design

DGP OLS GTL
α δ σ β2 β3 β1 β2 β3 β1 σ α δ

A: GTL as an approximation of the standard normal distribution, N = 250
0.1436 0.00 1.188 0.947 0.948 0.954 0.944 0.937 0.943 0.941 0.918 0.924

B: Various GTL distributions, small sample, N = 250
0.33 -0.10 1.477 0.948 0.951 0.658 0.959 0.947 0.942 0.905 0.970 0.965

0.935 0.915 0.949 0.853 0.899 0.913
0.33 0.00 1.508 0.943 0.950 0.951 0.951 0.944 0.944 0.935 0.976 0.964

0.938 0.912 0.948 0.909 0.909 0.909
0.33 0.10 1.477 0.944 0.950 0.651 0.959 0.948 0.946 0.908 0.976 0.963

0.941 0.914 0.948 0.862 0.893 0.915
-0.33 -0.10 0.454 0.958 0.948 0.655 0.952 0.936 0.951 0.943 0.946 0.950
-0.33 0.00 0.482 0.952 0.946 0.951 0.956 0.944 0.946 0.944 0.945 0.947
-0.33 0.10 0.454 0.956 0.945 0.632 0.950 0.939 0.948 0.939 0.936 0.936
-0.67 -0.25 0.136 0.955 0.959 0.337 0.955 0.933 0.955 0.951 0.948 0.943
-0.67 0.00 0.202 0.954 0.947 0.962 0.955 0.936 0.955 0.944 0.955 0.937
-0.67 0.25 0.136 0.952 0.946 0.326 0.950 0.935 0.952 0.938 0.943 0.935
-1.00 -0.50 0.024 0.951 0.957 0.571 0.949 0.926 0.953 0.951 0.955 0.940
-1.00 0.00 0.079 0.951 0.946 0.972 0.954 0.929 0.956 0.940 0.949 0.934
-1.00 0.50 0.024 0.947 0.956 0.558 0.949 0.939 0.951 0.939 0.944 0.932

C: Various GTL distributions, large sample, N = 5000
0.33 -0.10 1.477 0.964 0.950 0.000 0.966 0.960 0.913 0.052 0.024 0.932

0.955 0.948 0.913 0.026 0.007 0.868
0.33 0.00 1.508 0.963 0.949 0.938 0.961 0.950 0.942 0.290 0.285 0.977

0.955 0.941 0.942 0.214 0.142 0.950
0.33 0.10 1.477 0.963 0.951 0.000 0.965 0.954 0.910 0.065 0.032 0.946

0.953 0.936 0.911 0.027 0.007 0.889
-0.33 -0.10 0.454 0.956 0.944 0.000 0.960 0.956 0.951 0.941 0.948 0.944
-0.33 0.00 0.482 0.959 0.944 0.944 0.954 0.951 0.948 0.942 0.942 0.943
-0.33 0.10 0.454 0.957 0.947 0.001 0.956 0.952 0.947 0.941 0.940 0.945
-0.67 -0.25 0.136 0.952 0.961 0.093 0.953 0.956 0.949 0.938 0.949 0.944
-0.67 0.00 0.202 0.959 0.952 0.967 0.956 0.952 0.946 0.942 0.948 0.941
-0.67 0.25 0.136 0.954 0.954 0.100 0.947 0.956 0.944 0.949 0.937 0.944
-1.00 -0.50 0.024 0.951 0.954 0.486 0.952 0.954 0.949 0.939 0.952 0.948
-1.00 0.00 0.079 0.950 0.964 0.978 0.953 0.958 0.948 0.947 0.949 0.943
-1.00 0.50 0.024 0.958 0.956 0.481 0.953 0.943 0.945 0.947 0.934 0.939

Notes: These test results pertain to simulations reported in Tables 1 and 2. For single-row sets of results,
the coverage ratio is based on a variance that is computed from the information matrix (inverse negative
Hessian). For double-row sets of results, the first row uses a variance that is computed from the information
matrix; the second row (in italics) uses a sandwich estimator to compute the variance.
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Table E.3: Ratio of average estimated variance to Monte Carlo variance: baseline design

DGP OLS GTL
α δ σ β2 β3 β1 β2 β3 β1 σ α δ

A: GTL as an approximation of the standard normal distribution, N = 250
0.1436 0.00 1.188 1.045 1.000 0.979 1.010 0.961 0.988 0.905 0.878 0.856

B: Various GTL distributions, small sample, N = 250
0.33 -0.10 1.477 1.033 0.995 0.972 1.131 1.028 0.959 1.280 1.606 1.226

0.932 0.827 0.994 0.974 0.865 0.812
0.33 0.00 1.508 1.037 0.994 0.984 1.064 1.006 0.979 1.255 1.460 1.157

0.932 0.858 1.001 1.017 0.869 0.765
0.33 0.10 1.477 1.042 0.995 0.996 1.080 1.055 0.960 1.392 1.691 1.167

0.888 0.851 0.994 1.064 0.916 0.773
-0.33 -0.10 0.454 1.073 0.926 0.915 1.018 0.956 1.031 0.970 0.992 0.929
-0.33 0.00 0.482 1.073 1.004 0.960 1.005 0.945 1.024 0.966 0.996 0.929
-0.33 0.10 0.454 1.037 1.071 1.018 0.989 0.933 1.016 0.960 0.994 0.928
-0.67 -0.25 0.136 0.875 1.010 0.866 1.005 0.945 1.051 1.007 1.019 0.933
-0.67 0.00 0.202 0.960 0.994 0.931 0.997 0.922 1.045 0.994 1.026 0.937
-0.67 0.25 0.136 0.794 1.368 1.042 0.987 0.912 1.032 0.977 1.020 0.946
-1.00 -0.50 0.024 0.700 1.235 0.844 0.991 0.940 1.052 1.039 1.019 0.933
-1.00 0.00 0.079 0.830 1.132 0.893 0.978 0.896 1.054 1.008 1.032 0.939
-1.00 0.50 0.024 0.777 1.707 0.996 0.991 0.903 1.033 0.993 1.030 0.961

C: Various GTL distributions, large sample, N = 5000
0.33 -0.10 1.477 1.053 1.006 0.952 1.177 1.137 0.958 1.342 1.609 1.338

1.031 0.992 0.967 0.992 0.931 0.974
0.33 0.00 1.508 1.051 1.008 0.942 1.111 1.058 0.965 1.201 1.420 1.346

1.038 0.986 0.963 0.954 0.913 0.989
0.33 0.10 1.477 1.049 1.010 0.931 1.177 1.110 0.957 1.262 1.583 1.415

1.031 0.970 0.965 0.932 0.914 1.029
-0.33 -0.10 0.454 1.050 1.046 0.901 1.027 1.036 0.992 0.912 0.908 0.951
-0.33 0.00 0.482 1.035 1.006 0.897 1.034 1.038 0.997 0.907 0.905 0.949
-0.33 0.10 0.454 1.076 0.999 0.921 1.042 1.035 1.003 0.907 0.906 0.948
-0.67 -0.25 0.136 1.839 1.897 0.998 1.006 1.058 0.996 0.918 0.932 0.940
-0.67 0.00 0.202 1.307 1.446 0.980 1.019 1.066 1.005 0.908 0.921 0.931
-0.67 0.25 0.136 1.529 2.627 1.020 1.035 1.034 1.011 0.920 0.918 0.925
-1.00 -0.50 0.024 1.676 0.981 1.011 0.995 1.046 1.002 0.948 0.967 0.945
-1.00 0.00 0.079 2.727 0.966 0.998 1.008 1.080 1.017 0.923 0.943 0.924
-1.00 0.50 0.024 20.456 0.382 1.005 1.024 0.998 1.014 0.944 0.922 0.909

Notes: These test results pertain to simulations reported in Tables 1 and 2. For single-row sets of results,
the numerator of the ratio is based on a variance that is computed from the information matrix (inverse
negative Hessian). For double-row sets of results, the first row uses a variance that is computed from the
information matrix; the second row (in italics) uses a sandwich estimator to compute the variance in the
numerator.
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Table E.4: p-values of Jarque-Bera tests for normality of OLS and GTL estimators: design
with thick-tailed determinants

DGP for x1 DGP for x2 OLS MLE
αx2 δx2 αx3 δx3 β2 β3 β1 β2 β3 β1 σ α δ

A: GTL-Disturbances are generated with (α, δ) = (−0.67, 0.25) for n = 250
0.1436 0.00 0.1436 0.00 0.00 0.00 0.00 0.03 0.62 0.43 0.00 0.11 0.21
0.1436 0.00 -0.33 0.00 0.00 0.00 0.00 0.05 0.02 0.32 0.00 0.15 0.15
0.1436 0.00 -0.33 0.10 0.00 0.00 0.00 0.03 0.00 0.39 0.00 0.16 0.19
0.1436 0.00 -0.67 0.00 0.00 0.00 0.00 0.09 0.00 0.39 0.00 0.12 0.12
0.1436 0.00 -0.67 0.25 0.00 0.00 0.00 0.03 0.00 0.48 0.00 0.13 0.20
-0.67 0.00 -0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00 0.07 0.12
-0.67 0.25 -0.67 0.25 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.09 0.24
-0.67 0.25 -0.67 -0.25 0.00 0.00 0.00 0.00 0.00 0.36 0.00 0.10 0.06
-0.67 -0.25 -0.67 -0.25 0.00 0.00 0.00 0.00 0.00 0.35 0.00 0.07 0.04

B: GTL-Disturbances are generated with (α, δ) = (0.1436, 0) for n = 250
0.1436 0.00 0.1436 0.00 0.94 0.27 0.64 0.48 0.48 0.54 0.00 0.00 0.00
-0.67 0.00 -0.67 0.00 0.00 0.00 0.61 0.00 0.00 0.41 0.00 0.08 0.14
-0.67 0.25 -0.67 0.25 0.00 0.00 0.37 0.00 0.00 0.66 0.00 0.07 0.05
-0.67 0.25 -0.67 -0.25 0.00 0.00 0.55 0.00 0.00 0.75 0.00 0.06 0.04
-0.67 -0.25 -0.67 -0.25 0.00 0.00 0.47 0.00 0.00 0.31 0.00 0.07 0.17

C: GTL-Disturbances are generated with (α, δ) = (−0.67, 0.25) for n = 5000
0.1436 0.00 0.1436 0.00 0.00 0.00 0.00 0.38 0.24 0.72 0.14 0.50 0.29
0.1436 0.00 -0.33 0.00 0.00 0.00 0.00 0.39 0.37 0.72 0.14 0.50 0.30
0.1436 0.00 -0.33 0.10 0.00 0.00 0.00 0.39 0.06 0.92 0.14 0.51 0.29
0.1436 0.00 -0.67 0.00 0.00 0.00 0.00 0.41 0.00 0.76 0.13 0.51 0.31
0.1436 0.00 -0.67 0.25 0.00 0.00 0.00 0.39 0.00 0.88 0.14 0.52 0.30
-0.67 0.00 -0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.13 0.51 0.30
-0.67 0.25 -0.67 0.25 0.00 0.00 0.00 0.00 0.00 0.87 0.13 0.54 0.31
-0.67 0.25 -0.67 -0.25 0.00 0.00 0.00 0.00 0.00 0.61 0.12 0.51 0.32
-0.67 -0.25 -0.67 -0.25 0.00 0.00 0.00 0.00 0.00 0.50 0.12 0.51 0.31

Note: These test results pertain to simulations reported in Table 4.
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Table E.5: Coverage rates of OLS and GTL estimators under a 95% confidence level: design
with thick-tailed determinants

DGP for x1 DGP for x2 OLS MLE
αx2 δx2 αx3 δx3 β2 β3 β1 β2 β3 β1 σ α δ

A: GTL-Disturbances are generated with (α, δ) = (−0.67, 0.25) for n = 250
0.1436 0.00 0.1436 0.00 0.952 0.947 0.323 0.951 0.944 0.951 0.939 0.945 0.935
0.1436 0.00 -0.33 0.00 0.953 0.950 0.325 0.953 0.915 0.952 0.937 0.944 0.935
0.1436 0.00 -0.33 0.10 0.951 0.951 0.328 0.952 0.909 0.950 0.937 0.944 0.935
0.1436 0.00 -0.67 0.00 0.953 0.957 0.329 0.951 0.838 0.951 0.938 0.946 0.936
0.1436 0.00 -0.67 0.25 0.951 0.966 0.334 0.954 0.793 0.944 0.941 0.944 0.934
-0.67 0.00 -0.67 0.00 0.954 0.957 0.328 0.839 0.831 0.953 0.938 0.942 0.935
-0.67 0.25 -0.67 0.25 0.952 0.965 0.358 0.780 0.791 0.950 0.941 0.945 0.934
-0.67 0.25 -0.67 -0.25 0.951 0.964 0.358 0.790 0.788 0.950 0.940 0.946 0.932
-0.67 -0.25 -0.67 -0.25 0.964 0.963 0.342 0.779 0.790 0.949 0.936 0.943 0.930

B: GTL-Disturbances are generated with (α, δ) = (0.1436, 0) for n = 250
0.1436 0.00 0.1436 0.00 0.948 0.947 0.954 0.946 0.934 0.943 0.939 0.917 0.925
-0.67 0.00 -0.67 0.00 0.945 0.943 0.953 0.945 0.938 0.945 0.946 0.920 0.931
-0.67 0.25 -0.67 0.25 0.952 0.947 0.947 0.946 0.943 0.939 0.948 0.930 0.927
-0.67 0.25 -0.67 -0.25 0.951 0.961 0.951 0.945 0.955 0.948 0.946 0.924 0.929
-0.67 -0.25 -0.67 -0.25 0.948 0.961 0.951 0.946 0.954 0.948 0.947 0.922 0.929

C: GTL-Disturbances are generated with (α, δ) = (−0.67, 0.25) for n = 5000
0.1436 0.00 0.1436 0.00 0.954 0.947 0.098 0.945 0.954 0.945 0.950 0.935 0.945
0.1436 0.00 -0.33 0.00 0.955 0.948 0.099 0.946 0.950 0.945 0.949 0.936 0.943
0.1436 0.00 -0.33 0.10 0.954 0.952 0.102 0.946 0.931 0.947 0.949 0.935 0.943
0.1436 0.00 -0.67 0.00 0.954 0.972 0.098 0.948 0.854 0.948 0.947 0.936 0.943
0.1436 0.00 -0.67 0.25 0.955 0.982 0.099 0.947 0.816 0.948 0.949 0.937 0.942
-0.67 0.00 -0.67 0.00 0.980 0.972 0.098 0.863 0.857 0.947 0.947 0.936 0.945
-0.67 0.25 -0.67 0.25 0.988 0.982 0.098 0.782 0.816 0.950 0.948 0.937 0.945
-0.67 0.25 -0.67 -0.25 0.988 0.987 0.101 0.783 0.792 0.946 0.950 0.936 0.944
-0.67 -0.25 -0.67 -0.25 0.985 0.987 0.101 0.789 0.793 0.943 0.948 0.936 0.944

Note: These test results pertain to simulations reported in Table 4.
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Table E.6: Ratio of average estimated variance to Monte Carlo variance: design with thick-
tailed determinants

DGP for x1 DGP for x2 OLS MLE
αx2 δx2 αx3 δx3 β2 β3 β1 β2 β3 β1 σ α δ

A: GTL-Disturbances are generated with (α, δ) = (−0.67, 0.25) for n = 250
0.1436 0.00 0.1436 0.00 0.792 0.958 1.038 0.987 0.920 1.031 0.977 1.020 0.946
0.1436 0.00 -0.33 0.00 0.792 0.883 1.043 0.992 0.860 1.026 0.974 1.018 0.945
0.1436 0.00 -0.33 0.10 0.788 0.667 1.079 0.993 0.830 1.028 0.976 1.018 0.945
0.1436 0.00 -0.67 0.00 0.794 0.792 1.050 0.995 0.743 1.025 0.982 1.022 0.943
0.1436 0.00 -0.67 0.25 0.788 0.568 1.109 0.996 0.630 1.013 0.985 1.027 0.941
-0.67 0.00 -0.67 0.00 0.833 0.773 1.050 0.785 0.707 1.029 0.976 1.026 0.938
-0.67 0.25 -0.67 0.25 0.718 0.558 1.105 0.559 0.664 1.007 0.986 1.033 0.935
-0.67 0.25 -0.67 -0.25 0.724 2.408 1.018 0.564 0.588 1.019 0.975 1.025 0.931
-0.67 -0.25 -0.67 -0.25 2.115 2.285 1.028 0.548 0.608 1.014 0.970 1.023 0.939

B: GTL-Disturbances are generated with (α, δ) = (0.1436, 0) for n = 250
0.1436 0.00 0.1436 0.00 1.045 0.973 0.979 1.010 0.933 0.986 0.903 0.876 0.852
-0.67 0.00 -0.67 0.00 1.051 1.000 0.972 1.037 0.983 0.989 0.921 0.903 0.880
-0.67 0.25 -0.67 0.25 1.038 1.007 0.960 1.024 0.992 0.965 0.922 0.906 0.870
-0.67 0.25 -0.67 -0.25 1.037 1.002 0.961 1.018 0.980 0.975 0.909 0.895 0.878
-0.67 -0.25 -0.67 -0.25 1.006 1.011 0.963 0.993 0.991 0.980 0.919 0.904 0.884

C: GTL-Disturbances are generated with (α, δ) = (−0.67, 0.25) for n = 5000
0.1436 0.00 0.1436 0.00 2.707 0.589 0.989 1.034 1.039 1.010 0.918 0.917 0.924
0.1436 0.00 -0.33 0.00 2.714 1.299 0.986 1.033 1.029 1.011 0.918 0.918 0.924
0.1436 0.00 -0.33 0.10 2.710 1.914 0.935 1.037 1.019 1.005 0.918 0.917 0.924
0.1436 0.00 -0.67 0.00 2.710 7.029 0.979 1.036 0.842 1.013 0.919 0.918 0.925
0.1436 0.00 -0.67 0.25 1.516 85.169 1.013 1.039 0.753 1.008 0.918 0.918 0.926
-0.67 0.00 -0.67 0.00 1.836 6.924 0.980 0.836 0.840 1.015 0.917 0.918 0.925
-0.67 0.25 -0.67 0.25 28.386 77.614 0.978 0.685 0.758 1.007 0.917 0.919 0.926
-0.67 0.25 -0.67 -0.25 14.215 12.190 0.983 0.683 0.623 1.010 0.919 0.919 0.924
-0.67 -0.25 -0.67 -0.25 3.485 12.194 0.982 0.555 0.621 1.020 0.918 0.919 0.926

Note: These test results pertain to simulations reported in Table 4.
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F Applications: Variable Definitions and Descriptive Statistics

Table F.1: Hourly wages, males and females, MORG 1998: Descriptive statistics

Males Females
Variable Definition Mean Std. Mean Std.
lnWage Log of hourly wage (dependent variable) 2.635 0.558 2.412 0.518
YrEduc Years of schooling 13.693 2.297 13.798 2.137
Age16 (Age - 16)/10 2.259 1.122 2.278 1.126
Age16sq (Age - 16)2/100 6.360 5.447 6.457 5.434
MidAtla Dummy, =1 if residing in a Mid-Atlantic state 0.126 0.332 0.126 0.332
EastNoC Dummy, =1 if residing in a East North-Central 0.156 0.362 0.148 0.355
WestNoC Dummy, =1 if residing in a West North-Central 0.098 0.298 0.104 0.305
SouthAtl Dummy, =1 if residing in a South-Atlantic stat 0.157 0.364 0.168 0.374
eastsoC Dummy, =1 if residing in a East South-Central 0.048 0.213 0.050 0.218
WestSoC Dummy, =1 if residing in a West South-Central 0.090 0.286 0.091 0.287
Mountain Dummy, =1 if residing in a Mountain state 0.120 0.324 0.115 0.319
Pacific Dummy, =1 if residing in a Pacific state 0.130 0.336 0.122 0.327
Afr. Amer Dummy, =1 if African-American ethnicity 0.078 0.268 0.114 0.317
Hispanic Dummy, =1 if Hispanic ethnicity 0.103 0.304 0.083 0.276
Asian Dummy, =1 if Asian-American ethnicity 0.038 0.192 0.040 0.195
Indian Dummy, =1 if American Indian ethnicity 0.011 0.104 0.012 0.109
N of obs 54687 46045

Merged Outgoing Rotation Group data of the Current Population Survey are available online
at http://www.nber.org/morg/annual/.
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Table F.2: Residential Home Prices, Windsor, Canada, 1987: Descriptive statistics

Variable Description Mean St.Dev Minimum Maximum
lnp Log of sale price (dependent variable) 11.059 0.372 10.127 12.155
lnlot Lot size of the property in square feet 8.467 0.398 7.409 9.693
bdms3 Dummy, =1 if house has 3 bedrooms 0.551 0.498 0 1
bdms4 Dummy, =1 if house has 4 or more bedrooms 0.196 0.397 0 1
fb2 Dummy, =1 if house has 2 bathrooms 0.244 0.430 0 1
fb3 Dummy, =1 if house has 3 or more bathrooms 0.020 0.141 0 1
sty Number of floors, excluding basement 1.808 0.868 1 4
drv Dummy, =1 if house has a driveway 0.859 0.348 0 1
rec Dummy, =1 if house has a recreational room 0.178 0.383 0 1
ffin Dummy, =1 if house has a full finished basement 0.350 0.477 0 1
ghw Dummy, =1 if house uses gas for hot water heating 0.046 0.209 0 1
ca Dummy, =1 if house has central air conditioning 0.317 0.466 0 1
gar1 Dummy, =1 if house has a garage for 1 car 0.231 0.422 0 1
gar2 Dummy, =1 if house has a garage for 2 or more cars 0.220 0.414 0 1
reg Dummy, =1 if house in Riverside or South Windsor 0.234 0.424 0 1
N of obs 546

Source: Derived from the dataset used in Anglin and Gencay (1996). Data are available online at
http://qed.econ.queensu.ca/jae/1996-v11.6/anglin-gencay/.

Table F.3: Speeding tickets, Massachusetts, 1987: Descriptive statistics

Variable Definition Mean St.Dev Min Max
Amount Fine amount (in $) 122.03 56.25 3.00 725.00
ln(Amount) log of Amount 4.707 0.438 1.099 6.586
Mph over Miles per hour over the speed limit 17.08 5.79 1 75
ln(Mph over) log of mph over 2.783 0.333 0 4.317
Afr.American 1 if the driver is African American 0.051 0.219 0 1
Hispanic 1 if the driver is Hispanic 0.047 0.211 0 1
Female 1 if the driver is female 0.332 0.471 0 1
ln(Age) log of age (in years) 3.442 0.366 2.485 4.585
OutTown 1 if out of town driver 0.847 0.360 0 1
OutState 1 if out of state driver 0.221 0.415 0 1
ln(CourtDist) log of distance to court (in miles) 2.886 1.298 1.609 8.529
ln(Pvalue.pc) log property value per capita 11.165 0.499 9.828 13.580
OR 1 if a tax increase rejected via override refe 0.026 0.160 0 1
SP 1 if the officer is state police 0.445 0.497 0 1
N of obs 31674

Source: Derived from the dataset used in Makowsky and Stratmann (2009); variable names
have been slightly changed. The data are available online at http://www.aeaweb.org/

issue.php?journal=AER&volume=99&issue=1.
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Table F.4: Trade creation and trade diversion, 1960-2000: Descriptive statistics

Variable Definition Mean St.Dev Min Max
lnimportij log of bilateral imports from j to i (current US dollars) 11.14 3.27 -3.54 21.01

Trade creation dummy variables
tc.nafta 1 = both countries are NAFTA members 0.000 0.019 0 1
tc.eu 1 = both countries are EU members 0.016 0.124 0 1
tc.efta 1 = both countries are EFTA members 0.006 0.077 0 1
mx.eea 1 = both countries are EEA members 0.012 0.108 0 1
tc.caricom 1 = both countries are CARICOM members 0.001 0.030 0 1
tc.ap 1 = both countries are Andean Pact members 0.004 0.061 0 1
tc.mercosur 1 = both countries are MERCOSUR members 0.001 0.025 0 1
tc.asean 1 = both countries are ASEAN FTA members 0.001 0.027 0 1
tc.certain 1 = both countries are ANZCERTA members 0.000 0.015 0 1
tc.apec 1 = both countries are APEC members 0.013 0.114 0 1
tc.laia 1 = both countries are LAIA members 0.021 0.143 0 1
tc.cacm 1 = both countries are CACM members 0.004 0.064 0 1
tc.bilateralPTA 1 = both countries are in a joint BPTA 0.005 0.070 0 1

Trade diversion dummy variables
td.nafta 1 = only one country is a NAFTA member 0.033 0.178 0 1
td.eu 1 = only one country is an EU member 0.262 0.440 0 1
td.efta 1 = only one country is an EFTA member 0.160 0.367 0 1
td.eea 1 = only one country is an EEA member 0.107 0.310 0 1
td.caricom 1 = only one country is a CARICOM member 0.047 0.211 0 1
td.ap 1 = only one country is an Andean Pact member 0.091 0.287 0 1
td.mercosur 1 = only one country is a MERCOSUR member 0.026 0.159 0 1
td.asean 1 = only one country is an ASEAN FTA member 0.033 0.178 0 1
td.anzcerta 1 = only one country is an ANZCERTA member 0.032 0.176 0 1
td.apec 1 = only one country is an APEC member 0.134 0.340 0 1
td.laia 1 = only one country is a LAIA member 0.200 0.400 0 1
td.cacm 1 = only one country is a CACM member 0.083 0.276 0 1
td.bilateralPTA 1 = only one country is a member of a BPTA 0.170 0.376 0 1

Non-PTA control variables
lpgdpij Sum over (i,j) of log nominal GDP 6.58 3.06 -4.29 17.65
lpgdppcij Sum over (i,j) of log real GDP per capita 17.38 1.41 12.24 20.85
ldist Log of bilateral distance 8.23 0.81 4.40 9.42
sachsij Sum over (i,j) of the Sachs-Warner trade policy index 1.22 0.70 0 2
vola3 St.dev. of the volatility in the bilateral exchange rate 4.83 7.32 0 97.61
floatij Sum over (i,j) of dummy: 1 if floating exchange 0.71 0.73 0 2
cu 1 = a common currency union 0.009 0.097 0 1
adifsecschool25 Abs. log difference in years of secondary schooling 1.13 0.91 0.00 5.86
adifdensity Abs. log difference in population density 1.70 1.32 0.00 8.24
adifgdppc Abs. log difference of real GDP per capita 1.25 0.91 0.00 4.07
border 1 = common land border 0.033 0.180 0 1
islandij Sum over (i,j) of dummy: 1 if island 0.272 0.487 0 2
landlockij Sum over (i,j) of dummy: 1 if landlocked 0.228 0.448 0 2
lpareaij Sum over(i,j) of log surface area 24.69 2.89 11.82 32.08

(continued)
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Table F.4 continued

Variable Definition Mean St.Dev Min Max
lremoteij Remoteness 17.94 0.35 16.97 19.03
colony 1 = one country was a former colony of the other 0.028 0.165 0 1
comcol 1 = common colonizer 0.064 0.244 0 1
comlang 1 = common language 0.235 0.424 0 1
N of obs 37983

Source: Derived from the dataset used in Eicher et al. (2012); variable names have been slightly changed. “Re-
moteness” is defined as the sum of the log of the average distance, weighed by relative GDP, of each country
from all trading partners. The data are available online at http://qed.econ.queensu.ca/jae/2012-v27.2
/eicher-henn-papageorgiou/.
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Table F.5: Capital Assets Price Model, 1960:1 - 2012:12: Descriptive statistics

Variable Definition Mean St.Dev Min Max
R11 −Rf Excess return in portfolio with ME:1 and B/M:1 0.207 8.058 -34.81 39.36
R12 −Rf Excess return in portfolio with ME:1 and B/M:2 0.715 6.904 -31.53 38.19
R13 −Rf Excess return in portfolio with ME:1 and B/M:3 0.771 6.004 -29.29 27.55
R14 −Rf Excess return in portfolio with ME:1 and B/M:4 0.949 5.663 -29.49 27.20
R15 −Rf Excess return in portfolio with ME:1 and B/M:5 1.083 6.108 -29.35 32.85
R21 −Rf Excess return in portfolio with ME:2 and B/M:1 0.384 7.224 -33.31 26.91
R22 −Rf Excess return in portfolio with ME:2 and B/M:2 0.664 6.010 -32.14 25.54
R23 −Rf Excess return in portfolio with ME:2 and B/M:3 0.850 5.461 -28.36 25.76
R24 −Rf Excess return in portfolio with ME:2 and B/M:4 0.896 5.319 -26.64 26.76
R25 −Rf Excess return in portfolio with ME:2 and B/M:5 0.963 6.024 -29.44 29.46
R31 −Rf Excess return in portfolio with ME:3 and B/M:1 0.438 6.673 -30.23 24.01
R32 −Rf Excess return in portfolio with ME:3 and B/M:2 0.717 5.474 -29.69 24.45
R33 −Rf Excess return in portfolio with ME:3 and B/M:3 0.713 5.045 -25.07 21.36
R34 −Rf Excess return in portfolio with ME:3 and B/M:4 0.828 4.957 -23.42 22.82
R35 −Rf Excess return in portfolio with ME:3 and B/M:5 0.973 5.521 -26.77 28.62
R41 −Rf Excess return in portfolio with ME:4 and B/M:1 0.537 5.934 -26.54 25.24
R42 −Rf Excess return in portfolio with ME:4 and B/M:2 0.531 5.185 -29.43 19.87
R43 −Rf Excess return in portfolio with ME:4 and B/M:3 0.675 5.070 -26.24 23.43
R44 −Rf Excess return in portfolio with ME:4 and B/M:4 0.797 4.845 -21.11 23.74
R45 −Rf Excess return in portfolio with ME:4 and B/M:5 0.778 5.527 -24.44 27.32
R51 −Rf Excess return in portfolio with ME:5 and B/M:1 0.403 4.748 -22.24 21.84
R52 −Rf Excess return in portfolio with ME:5 and B/M:2 0.476 4.472 -22.96 16.11
R53 −Rf Excess return in portfolio with ME:5 and B/M:3 0.479 4.386 -22.42 18.12
R54 −Rf Excess return in portfolio with ME:5 and B/M:4 0.507 4.381 -19.40 19.18
R55 −Rf Excess return in portfolio with ME:5 and B/M:5 0.583 5.038 -19.59 17.56
Rm −Rf Excess return in the overall market 0.458 4.490 -23.24 16.10
FSMB Difference in returns of portfolios of stocks with 0.219 3.067 -16.39 22.00

small and big market equity (ME)
FHML Difference in returns of portfolios of stocks with 0.390 2.844 -12.60 13.84

high and low B/M ratios (B/M)
N of obs 635

Source: Derived from dataset 25 Portfolios 5x5.txt available at http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/data library.html; variable names have been slightly adjusted.
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G Applications: Further Results

Table G.1: Log-wage equations, female wage and salaried workers, MORG 1998

OLS GTL

Estimate Stan.Err. Estimate Stan.Err. β̂OLS−β̂GTL

β̂GTL

SEGTL

SEOLS

Years of Schooling 0.110 0.001 0.113 0.001 -0.022 0.960
Age−16 0.347 0.007 0.344 0.007 0.007 0.944
(Age−16)2 -0.055 0.001 -0.055 0.001 0.013 0.952
MidAtla 0.052 0.009 0.057 0.009 -0.095 0.960
EastNoC -0.009 0.009 -0.011 0.008 -0.116 0.950
WestNoC -0.129 0.009 -0.132 0.009 -0.022 0.948
SouthAtl -0.048 0.009 -0.053 0.008 -0.087 0.952
EastSoC -0.147 0.011 -0.154 0.011 -0.045 0.943
WestSoC -0.116 0.010 -0.122 0.009 -0.050 0.951
Mountain -0.096 0.009 -0.097 0.009 -0.008 0.953
Pacific 0.074 0.009 0.075 0.009 -0.009 0.960
Afr. American -0.056 0.006 -0.059 0.006 -0.058 0.952
Hispanic -0.110 0.008 -0.107 0.007 0.021 0.953
Asian -0.068 0.011 -0.061 0.010 0.111 0.976
Indian -0.048 0.018 -0.051 0.017 -0.069 0.954
Intercept 0.515 0.016 0.488 0.015
σ 0.236 0.002
α 0.003 0.004
δ 0.013 0.003
logL -26051.5 -25242.4
(Absolute) Average 0.049 0.953

Dependent variable: Log of hourly wage. Number of observations = 46045. Skewness and kurtosis of OLS
residuals equal −0.19 and 4.89; the Jarque-Bera test of normality of the OLS residuals has a p-value of
less than 0.001. The Wald test of the GTL estimates of (α, delta) equals 1339.9, rejecting normality with
a p-value of less than 0.001. The LM test equals 670.4 with a p-value of less than 0.001 and with 52 range
violations. The Vuong test that compares OLS and GTL equals −11.80 in favor of the GTL model with a
p-value of less than 0.001.
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Table G.2: Trade creation and diversion, 1960-2000: Slopes of control variables

OLS GTL

Estimate Stan.Err. Estimate Stan.Err. β̂OLS−β̂GTL

β̂GTL

SEGTL

SEOLS

lprdctgdpij 0.942 0.012 0.904 0.012 0.043 0.954
lprdctgdpp j 0.277 0.027 0.268 0.026 0.034 0.948
ldist -1.078 0.034 -1.014 0.031 0.063 0.915
sachsij 0.214 0.029 0.148 0.027 0.449 0.936
vola3 0.000 0.002 0.000 0.001 -1.280 0.882
floatij 0.097 0.020 0.050 0.017 0.923 0.849
cu 1.212 0.197 1.198 0.199 0.012 1.011
diffsecsc 25 0.038 0.025 0.026 0.023 0.447 0.930
diffdensity 0.126 0.014 0.104 0.013 0.205 0.905
diffgdppc 0.060 0.028 0.054 0.026 0.119 0.960
border 0.404 0.152 0.386 0.130 0.047 0.855
islandij -0.222 0.050 -0.214 0.047 0.039 0.931
landlockij -0.271 0.046 -0.263 0.044 0.032 0.951
lprdctareaij -0.083 0.010 -0.072 0.009 0.147 0.955
lprdctremo j 1.327 0.086 1.366 0.080 -0.029 0.936
colony 1.123 0.124 1.089 0.104 0.031 0.841
comcol 0.556 0.095 0.561 0.090 -0.007 0.939
comlang 0.277 0.051 0.258 0.046 0.074 0.904

Notes: See Table 8.

Table G.3: Trade creation and diversion, 1960-2000: Adding continent import-export pair
dummies

OLS GTL

Estimate Stan.Err. Estimate Stan.Err. β̂OLS−β̂GTL

β̂GTL

SEGTL

SEOLS

Trade creation dummy variables
tc.nafta -0.353 0.350 -0.011 0.328 32.493 0.937
tc.eu 0.985 0.125 0.783 0.108 0.257 0.861
tc.efta 1.332 0.140 1.161 0.125 0.147 0.893
tc.eea 0.292 0.088 0.350 0.075 -0.168 0.848
tc.caricom 1.950 0.484 1.791 0.424 0.089 0.876
tc.ap 0.867 0.190 0.831 0.173 0.043 0.912
tc.mercosur 1.009 0.305 1.010 0.324 -0.001 1.063
tc.asean 0.435 0.216 0.503 0.183 -0.135 0.843
tc.anzcerta -0.694 0.313 -0.435 0.259 0.598 0.828
tc.apec 1.417 0.100 1.136 0.090 0.247 0.899
tc.laia -0.389 0.179 -0.664 0.171 -0.414 0.956
tc.cacm 1.636 0.193 1.541 0.175 0.062 0.905
tc.bilateralPTA 0.158 0.097 0.126 0.092 0.249 0.950

(continued)
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Table G.3 continued

OLS GTL

Estimate Stan.Err. Estimate Stan.Err. β̂OLS−β̂GTL

β̂GTL

SEGTL

SEOLS

Trade diversion dummy variables
td.nafta 0.154 0.076 0.121 0.065 0.279 0.845
td.eu 0.790 0.057 0.625 0.052 0.265 0.903
td.efta 0.510 0.063 0.402 0.057 0.268 0.900
td.eea -0.249 0.047 -0.149 0.042 0.674 0.897
td.caricom -0.752 0.107 -0.692 0.102 0.088 0.951
td.ap 0.061 0.072 0.057 0.064 0.062 0.886
td.mercosur -0.013 0.072 -0.042 0.065 -0.687 0.896
td.asean 0.435 0.070 0.395 0.061 0.100 0.878
td.anzcerta -0.394 0.094 -0.299 0.084 0.315 0.893
td.apec 0.383 0.050 0.271 0.044 0.414 0.888
td.laia -0.870 0.085 -0.852 0.082 0.022 0.967
td.cacm -0.323 0.090 -0.233 0.086 0.386 0.958
td.bilateralPTA -0.237 0.051 -0.219 0.043 0.080 0.847

Non-PTA control variables
lprdctgdpij 0.944 0.014 0.911 0.013 0.036 0.938
lprdctgdpp j 0.321 0.033 0.318 0.031 0.010 0.939
ldist -0.990 0.051 -0.909 0.044 0.090 0.869
sachsij 0.242 0.029 0.193 0.027 0.256 0.915
vola3 0.000 0.002 0.000 0.001 -2.109 0.877
floatij 0.092 0.020 0.035 0.017 1.635 0.841
cu 1.052 0.217 0.951 0.245 0.105 1.129
diffsecsc 25 0.027 0.026 0.003 0.024 7.690 0.910
diffdensity 0.087 0.014 0.066 0.013 0.316 0.915
diffgdppc 0.091 0.029 0.084 0.028 0.080 0.954
border 0.454 0.145 0.380 0.123 0.194 0.850
islandij -0.161 0.051 -0.145 0.047 0.109 0.927
landlockij -0.274 0.045 -0.275 0.041 -0.004 0.929
lprdctareaij -0.078 0.012 -0.076 0.011 0.025 0.941
lprdctremo j 1.309 0.118 1.193 0.111 0.097 0.936
colony 1.097 0.118 1.093 0.102 0.004 0.862
comcol 0.511 0.099 0.442 0.093 0.156 0.933
comlang 0.262 0.052 0.230 0.048 0.138 0.915
σ 0.777 0.014
α -0.093 0.009
δ 0.136 0.005
log Likelihood -74136.2 -71867.5
(Absolute) Average 1.006 0.915

Dependent variable: Log of bilateral imports. The model also includes control variables (reported in Table
G.2 in the Appendix) and time dummy variables (not reported). Number of observations = 37983. Skewness
and kurtosis of OLS residuals equal −0.71 and 4.90; the Jarque-Bera test of normality of the OLS residuals
has a p-value of less than 0.001. The Wald test of the GTL estimates of (α, δ) equals 1482.7, rejecting
normality with a p-value of less than 0.001. The Vuong test that compares OLS and GTL equals −25.03
in favor of the GTL model with a p-value of less than 0.001. The GTL estimates imply κ3 = −2.56 and
κ4 = 61.72.
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