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Abstract 
 
The aim of this paper is to study the long-run effects of a longevity increase on individual 
decisions about education and retirement, taking macroeconomic repercussions through 
endogenous factor prices and the pension system into account. We build a model of a closed 
economy inhabited by overlapping generations of finitely-lived individuals whose labour 
productivity depends on their age through the build-up of labour market experience and the 
depreciation of human capital. We make two contributions to the literature on the 
macroeconomics of population ageing. First we show that it is important to recognize that a 
longer life need not imply a more productive life and that this matters for the affordability of an 
unfunded pension system. Second, we find that factor prices could move in a direction opposite 
to the one accepted as conventional wisdom following an increase in longevity, depending on 
the corresponding change in the age-productivity profile. 
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1 Introduction

The last decades have witnessed a remarkable increase in the average length of human life.

For males, life expectancy at birth in the United States went up from 65.63 years in 1950 to

75.40 years in 2010. This is the result of an increased probability of survival at every age, see

Figure 1 which shows the fraction of individuals that are still alive at a given age for both

years. This demographic trend is expected to continue in the near future as evidenced by

the forecasted survival function for 2100. Life expectancy for males will go up with almost 8

more years to about 83.

Figure 1: Survival function for the United States, males
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Source: Bell and Miller (2005).

The aim of this paper is to study the long-run economic effects of such a predicted

longevity increase. In particular we are interested in how it affects individual decisions

about education and retirement, taking macroeconomic repercussions through endogenous

factor prices and the pension system into account. To that end we construct a model of a

closed economy inhabited by overlapping generations of finitely-lived individuals. Over the

life cycle their stock of human capital increases with education and the build-up of labour

market experience and decreases because of depreciation. As people get older their stock

of knowledge and skills deteriorates at an increasing rate so that productivity eventually

declines with age. This induces individuals to spend the last years of their life in retirement.

In this context we present analytical results and a simple quantitative exercise regarding

the steady-state effects of two stylized shocks. The first is a biological longevity boost, which

consists of an outward shift of the survival function in the manner described above. We find

that individuals work a little longer but spend most of the additional years in retirement.
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They substantially increase their savings, which raises the capital intensity of production

and lowers the interest rate. The labour tax rate required to finance a Defined Benefit Pay-

As-You-Go pension system increases by almost 3 percentage points. In the second scenario

we consider, the increase in the expected length of life is accompanied by a reduction in the

rate of human capital depreciation at any given age. Under this comprehensive longevity boost

it is possible that human capital becomes relatively abundant in production, resulting in a

lower unit cost of effective labour and an increase in the interest rate. As individuals are

more productive and work longer the pension tax rate need hardly change.

We make two contributions to the literature on the macroeconomics of ageing. First, we

show that it is important to distinguish between the length of ‘biological life’ (how long a

person is expected to live) and the length of ‘economic life’ (how long a person can partici-

pate in the labour force) as this matters greatly for the affordability of an unfunded pension

system in an ageing society. It has been argued by d’Albis et al. (2012) that in the absence

of distorting tax incentives the optimal retirement age may increase or decrease following

a rise in life expectancy, depending on the age profile of mortality decline. We show that

the optimal length of the retirement period also depends crucially on the extent to which

an individual can be productive during the additional years of life. If the improvement in

health that brings about an increase in the expected length of life also reduces the rate of hu-

man capital depreciation then the pressure on the pension system is significantly alleviated

compared to the case that the age-productivity profile remains unchanged.

Second, we show that factor prices could move in a direction opposite to the one ac-

cepted as conventional wisdom following an increase in longevity. The usual story is that an

increase in the expected length of life raises the stock of physical capital relative to human

capital as individuals save more for retirement, see for example Kalemli-Ozcan et al. (2000)

and Ludwig et al. (2012). As a consequence the interest rate decreases and wages go up.

These relative factor price movements matter, as they affect the intergenerational distribu-

tion of welfare and wealth during the transition from one demographic steady state to the

next. Recently retired individuals will not benefit from increases in the wage rate but will

receive a lower return on their pension savings if the interest rate goes down. We show that

if an increase in longevity is accompanied by an improvement in productivity, then human

capital might become relatively abundant which would instead raise the return to capital.

The remainder of this paper is organized as follows. In Section 2 we outline the model,

followed by the derivation of comparative static effects regarding the optimal retirement age

in Section 3. We parameterize the model in Section 4 in order to perform a simple quantita-

tive exercise, the results of which are described in Section 5. The final section concludes. The

paper contains three appendices with technical derivations.
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2 Model

In this section we develop a dynamic micro-founded macro model of a closed economy.

First we describe the behaviour of firms (Section 2.1) and individuals (Section 2.2). After

discussing accidental bequests (Section 2.3) and the details of the pension system (Section

2.4) we characterize the macroeconomic equilibrium (Section 2.5).

2.1 Firms

There exists a representative firm that produces aggregate output Y(t) which can be used

for consumption and investment. The production technology takes the following form:

Y(t) = ΦK(t)φ[Z(t)N(t)]1−φ, Φ > 0, 0 < φ < 1, (1)

where K(t) is the stock of physical capital and N(t) is a labour composite:

N(t) =
[

βNu(t)1−1/ψ + (1 − β)Ns(t)1−1/ψ
]

1
1−1/ψ

, ψ > 0. (2)

Following Katz and Murphy (1992) and Heckman et al. (1998), unskilled labour Nu(t) and

skilled labour Ns(t) are taken to be imperfect substitutes with a constant substitution elas-

ticity equal to ψ. The index of labour-augmenting technological change Z(t) is assumed

to grow at an exogenous rate nZ.1 The stock of capital evolves over time according to

K̇(t) = I(t) − δKK(t) with K̇(t) ≡ dK(t)/dt the rate of change, I(t) the level of invest-

ment and δK the depreciation rate. The profit flow of the firm at time t is then given by

Π(t) = Y(t)− (r(t) + δ)K(t)− w(t)N(t) where r(t) is the return to capital or interest rate

and w(t) is the (minimum) unit cost of effective labour. Profit maximization gives rise to the

usual marginal productivity conditions:

r(t) + δK = φΦ

(

K(t)

Z(t)N(t)

)φ−1

, (3)

w(t)

Z(t)
= (1 − φ)Φ

(

K(t)

Z(t)N(t)

)φ

. (4)

It follows that a higher capital intensity K(t)/[Z(t)N(t)] is associated with a lower return

to capital and a higher return to effective labour. The corresponding rental rate of unskilled

1Alternatively we could have chosen an endogenous growth specification, for example as in Boucekkine et
al. (2002). However, this requires a knife-edge condition on the intergenerational spillover of human capital.
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labour wu(t) and skilled labour ws(t) have to satisfy:

wu(t)

Z(t)
=

w(t)

Z(t)
β

(

Nu(t)

N(t)

)−1/ψ

, (5)

ws(t)

Z(t)
=

w(t)

Z(t)
(1 − β)

(

Ns(t)

N(t)

)−1/ψ

. (6)

The more scarce a specific skill type is in production, the greater is its return. Profits are

equal to zero as a result of the linear homogeneity of the production function.

2.2 Individuals

The economy is inhabited by overlapping generations of finitely-lived individuals with per-

fect foresight. During the initial years of life no relevant decisions are made.2 After reaching

the age of majority M the adult individual learns his or her utility cost of schooling θ. He

or she then decides whether to obtain a college degree and thereby become a skilled worker.

We introduce a dummy variable d
j
s that equals 1 if j = s (‘skilled’) and zero if j = u (‘un-

skilled’). Expected life-time utility for an individual of skill type j born at time v whose cost

of education is θ is given by:

Λ
j(v|θ) =

∫ v+D̄

v+M

[

ln cj(v, t) + χ
ℓj(v, t)1−σ − 1

1 − σ

]

e−ρ[t−v−M]S(M, t − v) dt − θd
j
s, (7)

where cj(v, t) is consumption at time t and ℓj(v, t) is leisure. The parameter ρ is the pure rate

of time preference and σ determines the curvature of the felicity from leisure. The function

S(u1, u2) captures the probability of surviving from age u1 to u2 > u1. We assume that

everyone dies for certain at or before the maximum age D̄.

A college education takes Ē years, so that the age at labour market entry for an individual

of skill type j is Ej = M + Ēd
j
s. Assuming that the time endowment equals one, leisure is

defined as:

ℓj(v, t) =



















1 − ē for M ≤ t − v < Ej

1 − l̄ for Ej ≤ t − v < Rj(v)

1 for Rj(v) ≤ t − v ≤ D̄

(8)

During the education period the time required for study is 0 < ē < 1 and it is not possible

to work. We assume that labour supply is indivisible in the sense that an individual works

a fixed amount of l̄ hours (full time) from labour market entry until retirement at a chosen

2In most macroeconomic models the childhood years are ignored altogether and an individual enters the
economy at an ‘economic age’ of 0. However, as this paper focuses on demographic issues we should not ignore
this part of the population.
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age Rj(v). As in Heijdra and Romp (2009), Kalemli-Ozcan and Weil (2010) and d’Albis et

al. (2012) the retirement decision is taken to be irreversible.

The initial stock of human capital is given by:

hj(v, v+Ej) = 1 + ζd
j
s, ζ > 0, (9)

where ζ captures the return to a college education. Over the life cycle human capital evolves

as follows:

ḣj(v, t)

hj(v, t)
= γj(t − v)l j(v, t)− δ

j
h(t − v), (10)

where ḣj(v, t) ≡ ∂hj(v, t)/∂t and l j(v, t) = l̄ when the individual is working and 0 otherwise.

A person of age u ≡ t − v and skill type j who is active in the labour market accumulates

human capital in the form of learning-by-doing or experience at rate γj(u). However, at the

same time his or her existing stock of knowledge depreciates at rate δ
j
h(u). This means that

both the stock of human capital and its rate of growth depend on the individual’s age.

There is no clear consensus regarding the empirical relationship between age and labour

productivity. This is partly a result of the fact that we cannot directly measure productiv-

ity and that the best proxy available, the hourly wage rate, is not observed for individuals

who are already retired. The census data that we use to parameterize the model show a

hump-shaped wage profile at working ages (see below), which implies that either the rate of

experience accumulation should decline with age or the depreciation rate should go up. Re-

cent empirical evidence from Jeong et al. (2014) suggests that there are no decreasing returns

to accumulating experience. We interpret this to mean that γj(u) = γ
j
0 does not depend on

age while the deprecation rate does and parameterize our model accordingly (see below).

However, this assumption is not crucial to our findings: what matters is that the overall

productivity growth rate γj(u)l̄ − δh(u) depends negatively on u.3

Solving (10) given the initial condition (9) yields for t ≥ v + Ej:

hj(v, t) =
[

1 + ζd
j
s

]

e
∫ t

v+Ej

[

γ
j
0l j(v,τ)−δ

j
h(τ−v)

]

dτ
. (11)

Individuals enter adulthood without any assets such that aj(v, v+M) = 0. The accumulation

of savings over time proceeds according to:

ȧj(v, t) = r(t)aj(v, t) + I j(v, t) + q(v, t) + p(v, t)− cj(v, t), (12)

where ȧj(v, t) ≡ ∂aj(v, t)/∂t and I j(v, t) ≡ (1 − τ(t))wj(t)hj(v, t)l j(v, t) is after-tax wage

3With divisible labour the distinction between experience accumulation and human capital depreciation be-
comes more crucial. See Heijdra and Reijnders (2012) for this case.
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income earned at time t. There is a proportional labour tax τ(t) which is used to finance

pension payments p(v, t) to eligible individuals. We assume that there are no annuities or

life-insured loans available so that the return on financial assets is the real rate of interest.4

The assets left behind by individuals who pass away are redistributed to those who are still

alive in the form of accidental bequests q(v, t). If there is uncertainty about whether a person

might die and there is no life insurance available then individuals cannot borrow money for

fear that they will default on their loan. In order to allow people to borrow funds to finance

their education we assume that survival is certain up to age F > M.5 For the remainder of

life there is a borrowing constraint such that aj(v, t) ≥ 0.

An individual of a given skill type has to determine the level of consumption at each

moment in time cj(v, t) and the age at retirement Rj(v) so as to maximize expected life-time

utility (7) given the process of human capital accumulation (10) and the budget identity

(12). Assuming that the borrowing constraint does not bind, the first-order condition for

consumption can be written as:

1

cj(v, t)
e−ρ[t−v−M]S(M, t − v) = λj(v)e−

∫ t
v+M r(τ)dτ. (13)

At any given moment in time, the marginal utility of consumption (left-hand side) should

equal the corresponding marginal cost in terms of reduced life-time wealth (right-hand side)

with λj(v) its shadow price.

The first-order condition for the retirement age is given by:

−χ
(1 − l̄)1−σ − 1

1 − σ
e−ρ[Rj(v)−M]S(M, Rj(v)) = λj(v)I j(v, v+Rj(v))e−

∫ v+Rj(v)
v+M r(τ) dτ. (14)

The left-hand side is the increased felicity from leisure while the right-hand side captures

the utility cost of foregone earnings. We discuss the retirement decision in more detail in

Section 3 below.

Finally, each individual has to decide whether or not to become skilled. In doing so

he or she weighs the costs against the benefits. The costs of an education are threefold.

First, leisure during schooling years is reduced by the time required for studying. Second,

the individual has to postpone entry into the labour market and therefore loses potential

wage income. Third, there is a ‘psychic’ or effort cost of studying equal to θ. The benefit

of an education is that it increases human capital and thereby the return to labour. As the

cost is increasing in θ while the benefit is independent of it, the optimal education choice

is governed by a threshold rule. See the upper panel of Figure 2. For a cohort born at

time v there is a value θ̄(v) such that all individuals for whom θ ≤ θ̄(v) will decide to

4In reality these kind of financial products do exist, but are not used to a great extent. See for example Cannon
and Tonks (2008).

5Since the survival profile is very flat initially this is not a strong assumption.
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obtain a college degree while all individuals with θ > θ̄(v) remain uneducated. It follows

that the fraction of skilled individuals in this cohort equals π(v) = Fθ(θ̄(v)) where Fθ is

the cumulative distribution function of the utility cost of education, see the lower panel of

Figure 2.

2.2.1 Demography and aggregation

At a given time t, the size of the cohort of vintage v is denoted by P(v, t). Over time cohort

members pass away so that:

P(v, t) =







P(v, v)S(0, t − v) for 0 ≤ t − v ≤ D̄

0 for t − v > D̄
(15)

The size of the total population P(t) =
∫ t

t−D̄ P(v, t) dv is found by summing over all living

cohorts. We assume that the economy is in a demographic steady state in which the crude

birth rate b = P(t, t)/P(t) and the population growth rate nP = Ṗ(t)/P(t) are constant. This

gives rise to the following equilibrium condition:6

b =
1

∆(0, D̄, nP)
, (16)

where ∆ is the ‘demographic function’:

∆(u1, u2, ξ) =
∫ u2

u1

e−ξ[u−u1]S(u1, u2) du. (17)

In Appendix B we show that the demographic function is strictly positive, decreasing in ξ

and u1 and increasing in u2.

Given the demographic structure of the population we can calculate aggregate values of

effective labour, consumption and financial assets by skill type:

Cj(t) =
∫ t−M

t−D̄
cj(v, t)Pj(v, t) dv,

Lj(t) =
∫ t−M

t−D̄
hj(v, t)l j(v, t)Pj(v, t) dv,

Aj(t) =
∫ t−M

t−D̄
aj(v, t)Pj(v, t) dv,

where Ps(v, t) = π(v)P(v, t) is the fraction of skilled individuals in a given cohort and

6By definition of the total population, the birth rate and the population growth rate:

P(t) =
∫ t

t−D̄
P(v, t) dv =

∫ t

t−D̄
bP(v)S(0, t − v) dv = bP(t)

∫ D̄

0
e−nPuS(0, u) du = bP(t)∆(0, D̄, nP)

8



Figure 2: Optimal choice of education

θ

benefit

cost
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Fθ(θ)

π(v)
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Pu(v, t) = [1 − π(v)]P(v, t) is the fraction of unskilled. It follows that total consumption

and financial assets are given by C(t) = Cu(t) + Cs(t) and A(t) = Au(t) + As(t), respec-

tively.

2.3 Accidental bequests

In the absence of life insurance individuals will pass away with a positive stock of financial

wealth. The way in which these accidental bequests are distributed among survivors has

nontrivial general equilibrium repercussions, see Heijdra et al. (2014). We take a conservative

stance and assume that every adult receives the same amount so that q(v, t) = q(t). The

balanced budget condition then becomes:

∫ t−M

t−D̄
µ(t − v)

[

au(v, t)Pu(v, t) + as(v, t)Ps(v, t)
]

dv = q(t)
∫ t−M

t−D̄
P(v, t) dv, (18)

where µ(u) is the mortality rate at age u:

µ(u) ≡ −
∂S(u1, u)/∂u

S(u1, u)
. (19)

Total assets left behind (left-hand side) should equal total bequests (right-hand side).

2.4 Pensions

We introduce a stylized Pay-As-You-Go (PAYG) pension system that provides a benefit to

every person over the age of R̄ (the statutory retirement age) so that p(v, t) = p(t) for t− v ≥

R̄ and zero otherwise. The system is unfunded in the sense that there are no assets but

instead benefits are paid out of current contributions by workers:

τ(t)
[

wu(t)Lu(t) + ws(t)Ls(t)
]

= p(t)
∫ t−R̄

t−D̄
P(v, t) dv. (20)

Note that we assume that every elderly individual receives the pension benefit regardless of

whether he or she is still working. In this way we prevent large distortions of the retirement

decision. In contrast, real-life pension system might provide strong incentives for retirement

at or close to the statutory age (see for example Heijdra and Romp (2009)).

2.5 Macroeconomic equilibrium

We restrict attention to the long-run equilibrium of the model. A macroeconomic steady

state or balanced growth path is a sequence of prices and allocations such that:

(i) Individuals maximize expected life-time utility taking prices as given.

10



(ii) Firms maximize profits taking prices as given.

(iii) All markets clear.

– Capital market:

K(t) = A(t)

– Goods market:

Y(t) = C(t) + I(t)

– Labour market:

Nu(t) = Lu(t), Ns(t) = Ls(t)

(iv) All variables grow at a constant rate, possibly zero.

Our choice of the utility function ensures that the balanced growth path exists, see King et

al. (2002). In the steady state the share of skilled workers is the same across cohorts and so is

the optimal retirement age for each skill type. Total output, consumption and savings grow

at rate nZ + nP, effective labour grows at rate nP, wages, pensions and bequests grow at rate

nZ and the interest rate is constant over time.

3 The optimal retirement age

When studying the general equilibrium effects of a longevity shock below, changes in the

retirement age play an important role. Therefore we discuss in some more detail how the

optimal (steady-state) retirement age is determined in the model.

By using (13) in (14) we find that the optimal retirement age R∗ has to satisfy:7

−
χ
(1 − l̄)1−σ − 1

1 − σ
1/cj(v, v+R∗)

= I j(v, v+R∗). (21)

Recall that there is only a labour supply decision at the extensive margin: an individual

works either 0 or l̄ hours. Under this assumption, the left-hand side of (21) can be seen as

7Alternatively we can write:

1

cj(v, v+R∗)
I j(v, v + R∗) = −χ

(1 − l̄)1−σ − 1

1 − σ
,

such that the marginal utility of earning a wage should equal the cost of supplying labour. This is similar to
equation (11) in d’Albis et al. (2012) or equation (2) in Prettner and Canning (2014).
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the ‘marginal rate of substitution’ (MRS) between leisure and consumption at age R∗. It

is not really ‘at the margin’ because of the indivisibility of labour, but it captures a similar

notion. The numerator is the discrete change in felicity when labour supply changes from l̄

to 0 while the denominator equals the marginal utility of consumption.8 The right-hand side

of (21) represents the ‘opportunity cost of time’ (OCT) in terms of foregone labour earnings.

At the optimal retirement age R∗ the individual is exactly indifferent between working and

not working.

In order to derive analytical results we focus on the steady state with a constant interest

rate r and growth rate of wages nZ. We assume that there are no pensions and no accidental

bequests and that the borrowing constraint never binds. The life-time budget constraint can

then be written as:

∫ v+D̄

v+M
cj(v, t)e−r[t−v−M] dt =

∫ v+D̄

v+M
I j(v, t)e−r[t−v−M] dt. (22)

The discounted value of all consumption expenditures during life (left-hand side) has to

be covered by total wage income (right-hand side). For any possible retirement age R we

define:

MRSj(R) = −χ
(1 − l̄)1−σ − 1

1 − σ

e(r−ρ)[R−M]S(M, R)

∆(M, D̄, ρ)

∫ R

Ej
Î j(u)e−r[u−M]du, (23)

OCTj(R) = Î j(R), (24)

where Î j(u) is wage income earned at age u relative to wage income at labour market entry:

Î j(u) ≡
I j(v, v+u)

I j(v, v+Ej)
=







e
∫ u

Ej

[

nZ+γ
j
0 l̄−δ

j
h(s)

]

ds
if Ej ≤ u ≤ R

0 otherwise
(25)

The optimal retirement age satisfies MRS(R∗) = OCT(R∗). This follows from (21) after

dividing both sides by I j(v, v+Ej) and substituting for the optimal level of consumption at

retirement given the budget constraint (22). The resulting expressions do not depend on the

year of birth v, so that in the steady state the optimal retirement age will be the same for all

cohorts (as was asserted above).

In Figure 3 we visualize the two profiles. Note that with a constant felicity of leisure

during the working career, MRSj essentially follows the dynamics of consumption at retire-

ment. According to (23) consumption is increasing in life-time income and the probability

of survival. It equals zero when R = Ej (as there is no income) and when R = D̄ (as death is

8Note that the felicity of leisure equals 0 when leisure is equal to 1.
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Figure 3: Optimal retirement age

retirement age
Ej D̄

MRS
j

OCT
j

R∗

certain). The first derivative satisfies:

∂MRSj(R)

∂R
=

[

r − ρ − µ(R) +
Î j(R)e−r[R−M]

∫ R
Ej Î j(u)e−r[u−M] du

]

MRSj(R). (26)

At young ages the increase in labour earnings following an extension of the work career

dominates the decrease in the probability of survival so that consumption at retirement goes

up. At older ages this reverses and the expression in (26) becomes negative.

The OCTj profile mimics the hump-shaped pattern of wages over the life cycle. It satis-

fies:

∂OCTj(R)

∂R
=

[

nZ + γ
j
0 l̄ − δ

j
h(R)

]

OCTj(R), (27)

where δ
j
h(R) is increasing in R. The opportunity cost of time is normalized to unity when

R = Ej and is non-negative for R = D̄.

As long as the opportunity cost of time exceeds the marginal rate of substitution between

leisure and consumption the individual keeps working. The point of intersection between

the two profiles determines the optimal retirement age. The following proposition describes

how the retirement age is affected by a change in longevity, human capital depreciation or

factor prices.
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Proposition 1 (Comparative static effects on the retirement age). Suppose that there are no

pensions and bequests and that the borrowing constraint never binds. Assume that there is an interior

solution for the optimal retirement age in the steady state. Keeping everything else constant we have

that for both skill types:

(i) An increase in the survival probabilities has an ambiguous effect on the retirement age.

(ii) A decrease in the depreciation rate has an ambiguous effect on the retirement age.

(iii) An increase in the interest rate leads to a decrease in the retirement age.

(iv) An increase in the wage rate does not affect the retirement age.

Proof. See Appendix A.

In general we cannot say whether an improvement in the probability of survival prompts

individuals to retire earlier or later. Note that in this case only the MRSj profile is affected

and not the OCTj curve. For any possible retirement age there is a positive effect on the

level of consumption at that age due to the increased chances of being alive, but there is

also a negative effect as financial resources have to be spread over a longer (expected) life

time. In the special case that mortality is unchanged at working ages but drops for elderly

individuals, only the latter effect is present so that consumption decreases and retirement is

postponed.9 For example, suppose that S(0, u) = 1 for u ≤ D̄ and S(0, u) = 0 for u > D̄ so

that there is no mortality risk but a certain length of life. An increase in D̄ would then result

in an increase in the retirement age.

In contrast to a longevity boost, a decrease in human capital depreciation at all ages af-

fects both profiles. During the working career human capital is higher at any age so that

there is an increase in the level of wealth (and thereby consumption) as well as the oppor-

tunity cost of time. As a result the effect on the retirement age is again ambiguous. Note,

however, that a change in the depreciation rate at a certain age affects the level of human

capital in the future but not the past. Hence, if improvements in productivity only occur in

old age then the retirement age remains unchanged.

A change in the interest rate influences the price of consumption and leisure at different

points in time and thereby has both an income and substitution effect on the optimal length

of the retirement period (which can be seen as the purchase of leisure). In addition it deter-

mines the extent to which future income is discounted in life-time wealth. The overall effect

is such that a higher interest rate leads to earlier retirement.

The fact that changes in the wage rate do not influence the retirement decision is a con-

sequence of the fact that the utility function satisfies the King-Plosser-Rebelo conditions (see

9A similar result is proved for a more general utility function by d’Albis et al. (2012) for the case that there
is an annuity market (either perfect or imperfect). Cervelatti and Sunde (2011) show that the age profile of
mortality decline also matters for the optimal schooling decision.
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King et al. (2002)). These ensure that the income and substitution effect of a proportional

wage change on labour supply exactly cancel out. This is necessary for a steady state with

positive wage growth and a constant retirement age to exist.

4 Parameterization

In the next section we will study the long-run effect of a longevity shock on individual

choices and macroeconomic outcomes. As it is not possible to solve for the equilibrium

of the model in closed form we will complement the analytical insights from the previous

section with a simple quantitative exercise. To that end we choose plausible values for the

demographic and economic parameters in line with the United States in the year 2010.

4.1 Demographic parameters

We set the age of majority equal to M = 18. For the survival function we use the functional

form suggested by Boucekkine et al. (2002) but extend it to the case that there is certain

survival up to age F:

S(u1, u2) =























1 for u2 < F

η0 − eη1 max{u2−F,0}

η0 − eη1 max{u1−F,0}
for F ≤ u2 < D̄

0 for u2 ≥ D̄

η0 > 1, η1 > 0, (28)

where u1 < u2 and D̄ ≡ ln η0/η1. The corresponding life expectancy at birth is given by:

E[D] =
∫ D̄

0
S(0, u) du = F +

1

η1

[

η0 ln η0

η0 − 1
− 1

]

. (29)

The data on survival probabilities comes from the Office of the Chief Actuary of the Social

Security Administration (SSA) and is described in Bell and Miller (2005). We use the period

life table for males for 2010. Given that the survival function is very flat and close to 1 up

to middle age (see Figure 1 in the introduction) we set F = 45. We divide the number of

individuals who are alive at a given age by the corresponding number at age 45 in order to

obtain the data profile in Figure 4. The parameters η0 and η1 are estimated using nonlinear

least squares, see Table 1. The corresponding maximum age is D̄ = 91.906 while the expected

length of life is 77.489 years.

According to the World Bank the crude birth rate for the United States in 2010 is 14

births per 1000 population. The demographic equilibrium condition (16) then implies that

the population growth rate is 0.209%.
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Figure 4: Fitted survival function for 2010, conditional on survival up to age 45
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Table 1: Demographic parameters

Parameter Value Source or target

Age at majority M 18.000
Age to become mortal F 45.000
Level parameter survival function η0 12.829 SSA for 2010
Growth parameter survival function η1 0.054 SSA for 2010
Crude birth rate b 0.014 WB for 2010
Population growth rate nP 0.002 Demographic equilibrium

Sources: SSA is the Social Security Administration of the United States. WB is the World Bank.
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4.2 Economic parameters

Even though we do not attempt a full-blown calibration exercise we nevertheless wish to

choose the economic parameters of the model in such a way that they are in line with em-

pirical evidence.

In order to obtain life-cycle profiles for hours worked and the hourly wage earned we

follow an approach similar to Wallenius (2011). We use data from the Current Population

Survey (CPS) for the United States in the years 1976 up to and including 2012. The sample is

restricted to males that work a positive number of hours, have at least a high school diploma

and are between the age of 25 and 55. The reason for restricting attention to this age range

is to avoid sample selection issues as a consequence of schooling and early retirement. For

each individual we have data on the birth year, weeks worked last year, usual hours worked

per week, wage and salary income and educational attainment. We construct pseudo panel

data or synthetic cohorts by following the different representative samples of individuals

with the same year of birth over time. A distinction is made between two skill types: those

with at least 4 years of college (the ‘skilled’) and those with less (the ‘unskilled’).

We normalize hours worked to a unit time endowment under the assumption that in-

dividuals have 14 hours available for work per day or 98 per week. For a given cohort we

find the average number of hours worked at each age by averaging over the corresponding

observations using the sampling weights. We then take the average over cohorts by age and

skill type, see Figure 5(a). The hours profile is nearly flat between ages 25 and 55 for both

skill types, which fits well with our assumption of a labour supply decision at the exten-

sive margin only. We set the time requirement of a full time job equal to the average value

l̄ = 0.440.

We adjust the hourly wages by the consumer price index so that they are measured in

1999 US dollars and comparable across years. For each cohort we find the average hourly

wage at each age by skill type. We then normalize the resulting cohort profiles by the wage at

age 25 of the unskilled. After averaging over cohorts we obtain the life-cycle profile depicted

in Figure 5(b). There is a clear hump-shaped pattern for both skill types.

The parameterization then proceeds as follows. We fix the interest rate at 3.5% per year

and assume that unskilled and skilled individuals earn the same return per unit of effective

labour which is normalized to unity. The long-run economic growth rate is 2%. We set the

rate of time preference equal to ρ = 0.010 and choose a value for the curvature parameter

for the felicity of leisure σ = 2 such that the Frisch labour supply elasticity is about 0.6. The

statutory retirement age is 65 and the tax rate on wage income used to finance the pension

system is equal to 10.6%, which corresponds to the combined contributions of employers

and employees for the US Old Age and Survivors Insurance from 2000 onwards.

We parameterize the experience accumulation and human capital depreciation functions
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Figure 5: Data profiles and model fit

(a) Hours worked (b) Hourly wage
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Source: Current Population Survey for the United States, 1976-2012.

in the following way:

γj(u) = γ
j
0, γ

j
0 > 0,

δ
j
h(u) = δ0eδ1 max{u−X,0}, δ0 > 0, δ1 ≥ 0, X ≥ M.

This is similar to Wallenius (2011) but with an age effect in depreciation rather than in ex-

perience for reasons alluded to above. By assuming that the depreciation parameters are

independent of skill type we have chosen parsimony over degrees of freedom in our data

fitting (as described below). Note that if X > M then the depreciation rate is constant at δ0

for young individuals.

For a given set of human capital technology parameters {γu
0 , γs

0, δ0, δ1, X, ζ} we iterate

over the life-cycle profiles of both skill types until the pension payment and accidental be-

quests satisfy their respective balanced budget conditions. In every round we update the

preference parameter χ in such a way that the optimal retirement age for an unskilled indi-

vidual is equal to 65. We then calculate the squared relative deviation of the simulated wage

profiles from the empirical values at ages 25, 35, 45 and 55. We choose the set of parameter

values that minimizes this distance.

The resulting profiles are depicted in Figure 5(b) and match the data quite closely. The

parameter estimates in Table 2 show that the return to labour market experience is somewhat

higher for skilled individuals and that having a college education increases start-up human

capital by about 32%. On average a skilled person between ages 25 and 60 earns 52.77%

more per hour than an unskilled individual. The skill premium is somewhat lower than that
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usually reported. Heathcote et al. (2010), for example, calculate a premium of 90% for males

in 2005. This discrepancy arises because (i) we have excluded individuals with less than a

high school diploma from our sample and (ii) the wage profiles are averages over 37 years

during which time the premium has risen.

Next we calculate the steady-state education threshold and set the location parameter of

the log-normal utility cost distribution in such a way that the fraction of educated individu-

als is 38% (in line with the CPS data) under the assumption that the scale parameter equals

1.10

Finally we set the technology parameters for the firms. The income share of capital φ

is one third and the elasticity of substitution between skilled and unskilled labour is 1.41

as estimated by Katz and Murphy (1992). The remaining parameters are chosen so that the

factor prices are indeed equal to their postulated values.

4.3 Visualization of the benchmark

Some key indicators of the parameterized benchmark equilibrium (BM hereafter) are re-

ported in first column of Table 4 below. The ratio of consumption to output is 0.702, while

the capital-output ratio is 2.435. Both are plausible values.

The steady-state life-cycle profiles for consumption and savings are given in Figure 6.

These are scaled by the level of technology at the age of majority Z(v+ M) to ensure that they

are the same for all cohorts. As long as the borrowing constraint does not bind, consumption

grows at an exponential rate r − ρ − µ(u). This rate is initially positive (when mortality is

low) but becomes negative later in life (when the risk of dying increases). As a consequence

the consumption profile is hump-shaped and reaches a peak around age 70 for both skill

types. As skilled individuals cannot work during their education period they have to borrow

money at the start of life. These loans are fully repaid by the age of 35, well before survival

becomes uncertain.

Ideally individuals would like to let their consumption decrease to zero as they get close

to the maximum age and their chances of survival dwindle. As they still receive income

in the form of pension benefits and accidental bequests this would imply that it is optimal

to borrow money towards the end of life and repay it in the last few years (conditional on

survival). Given that this is not possible, the borrowing constraint will bind and individ-

uals consume exactly their transfer income in each year (which grows at a rate nZ).11 This

explains the upward sloping part of the consumption profile at the end of life for both skill

types. The age at which the constraint starts to bind is such that there is no jump in con-

sumption.

10We have two parameters available (µθ and σθ) to match only one target (the fraction of skilled individuals).
We have tried different values of σθ but this does not qualitatively change our results.

11This result is in line with Leung (1994) who shows that if individuals have no bequest motive and annuity
markets do not exist, then savings must be depleted some time before the maximum lifetime.
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Table 2: Economic parameters

Parameter Value Source or target

Preferences
Pure rate of time preference ρ 0.010
Curvature parameter for leisure σ 2.000
Preference parameter for leisure χ 0.446 Retirement age unskilled

Production
Income share of capital φ 0.330
Constant in production function Φ 1.549 Rental rates
Depreciation of physical capital δK 0.101 Interest rate
Economic growth rate nZ 0.020
Substitution elasticity between skill types ψ 1.410 Katz and Murphy (1992)
Time requirement of a full-time job l̄ 0.440 Average hours CPS
Weight of unskilled labour in composite β 0.529 Equal marginal products

Government
Pension tax rate τ 0.106 SSA for 2010
Statutory retirement age R̄ 65.000

Human capital
Experience parameter for unskilled γu

0 0.094 Wage profiles CPS
Experience parameter for skilled γs

0 0.117 Wage profiles CPS
Level parameter depreciation profile δ0 0.022 Wage profiles CPS
Growth parameter depreciation profile δ1 0.040 Wage profiles CPS
Age after which depreciation increases X 18.000 Wage profiles CPS

Education
Return to education ζ 0.321 Wage profiles CPS
Location parameter talent distribution µθ 2.641 Fraction educated CPS
Scale parameter talent distribution σθ 1.000
Time requirement of a college education ē 0.400

Sources: SSA is the Social Security Administration of the United States. CPS is the Current Population Survey of

the United States.
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In Table 4 we see that skilled individuals retire from the labour force just before reaching

age 70, which is almost 5 years later than the unskilled. The second bump in their asset

profile (see the dashed line in Figure 6(b)) is a consequence of the fact that they start to

receive their pension payments while they are still working.

Figure 6: Steady-state life-cycle profiles in the benchmark

(a) Consumption (b) Financial assets
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5 The long-run effects of increased longevity

In this section we show the long-run effects predicted by the model of two stylized longevity

shocks. The first is a biological longevity boost (BLB), which consists of an outward shift of the

survival function. Secondly we consider what happens if this increase in the expected length

of life is accompanied by an improvement in labour productivity at all ages, this is referred

to as the comprehensive longevity boost (CLB).

5.1 Biological longevity boost

If the survival function shifts outward in the way forecasted by the SSA for 2100 (see Figure

1 in the introduction), then the demographic equilibrium changes. We estimate a new set of

parameters to fit the data profile for 2100 conditional on survival up to age 45. The maximum

age increases to D̄ = 96.968 and life expectancy at birth goes up by more than 6 years to

83.638, see Table 3. As the population growth rate is unaffected (under the assumption that

nothing has happened to fertility) the crude birth rate will have to fall. In panel (a) of Figure

7 we see that the inverse of the demographic function shifts down which for a given nP leads

to a lower b.
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Table 3: Demographic steady states

2010 2100

Maximum age D̄ 91.906 96.968
Life expectancy E[D] 77.489 83.638
Crude birth rate b 0.014 0.013
Population growth rate n 0.002 0.002

The resulting changes in the age composition of the population can be visualized by

means of relative cohort sizes. These are defined as:

P(v, t)

P(t)
=







be−nP[t−v]S(0, t − v) for 0 ≤ t − v ≤ D̄

0 for t − v > D̄
(30)

The size of a cohort relative to the population decreases with its age because cohort members

die (reflected in a decreasing probability of survival) while the total number of individuals

alive increases (given a positive growth rate). Panel (b) of Figure 7 is similar to one half

of the population pyramid (since we make no distinction between sexes here) tilted on its

side. The total area underneath the line equals 1 by definition. An outward shift of the

survival function and a corresponding decrease in the crude birth rate imply that ‘mass’ is

redistributed from the young to the elderly, resulting in an ageing of the population.

Figure 7: Demographic changes

(a) Demographic equilibrium (b) Relative cohort sizes
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The quantitative long-run consequences of a biological longevity boost are summarized

in Table 4. Initially we assume that the statutory retirement age and the pension benefit re-

main fixed and that the tax rate adjusts to balance the budget of the pension system as given

in (20). This is known as a Defined Benefit (DB) pension. Keeping factor prices constant at

their values in the benchmark, the first column under the BLB heading reports the partial

equilibrium effects of the longevity shock. The retirement age decreases a little for both skill

types, which means that individuals expect to spend a significantly longer part of their life

in retirement. As a consequence the pension tax rate has to increase from 10.6% to 14.5%.

The fraction of educated individuals goes up by almost 2 percentage points as the increased

probability of survival during working ages raises the expected payoff of a college degree.

We wish to make two remarks regarding these partial equilibrium results. First, it would

be misleading to interpret the findings as pertaining to a small open economy. For such

an economy the factor prices are determined in the rest of the world, but as most countries

experience very similar demographic changes these prices cannot be expected to remain

constant. Second, the extent to which the fraction of skilled individuals changes depends

crucially on the dispersion of educational talent in the population. For a given shift in the

education threshold, a lower (higher) value of the scale parameter σθ of the utility cost dis-

tribution would have increased (decreased) the proportion of educated individuals relative

to that reported in Table 4.12 However, qualitatively the results remains the same: it is more

attractive to get a college degree.

The next column gives the general equilibrium outcomes under the DB system. Indi-

viduals have to save more in order to finance their extended retirement period, which leads

to an increase in the capital intensity of production. This results in a drop in the return to

capital and a rise in the unit cost of effective labour. The latter has no effect on the retirement

decision but the lower interest rate induces an increase in the retirement age, see Proposition

1. The change in the skill distribution lowers the rental rate on skilled relative to unskilled

effective labour. This reduces the incentive to obtain an education and therefore the general

equilibrium effect on the fraction of skilled individuals is smaller than the partial equilib-

rium effect (although still positive).

In the final two columns under the BLB heading we explore alternative assumptions re-

garding the closure rule for the pension system. The first is a Defined Contribution (DC)

system whereby the tax rate on wage income remains constant while the pension benefit ad-

justs to balance the budget. Compared to the DB case individuals work about a year longer

and save more for old age which results in a further increase in the capital intensity and

reduction of the interest rate. The second possibility is to keep both the tax rate and benefit

constant and instead change the Statutory Age (SA) for retirement. In terms of macroeco-

nomic outcomes this scenario is in between the previous two. The age at which individuals

12The variance of the log-normal distribution is given by (eσ2
θ − 1)e2µθ+σ2

θ which is increasing in σθ .
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Table 4: Quantitative results

BM BLB CLB
PE DB DC SA PE DB DC SA

Individuals
Fraction skilled (in %p) 38.000 39.685 38.619 39.170 39.138 46.907 38.707 38.834 38.882
Retirement age unskilled 65.000 64.593 65.573 66.700 66.588 70.578 70.349 70.632 70.571
Retirement age skilled 69.468 68.893 69.696 70.674 70.534 75.226 74.942 75.192 75.130

Firms
Capital intensity 7.251 7.559 7.845 7.781 7.183 7.238 7.218
Skilled to unskilled labour 0.849 0.874 0.893 0.892 0.918 0.922 0.922

Factor prices
Interest rate (in %p) 3.500 3.127 2.803 2.874 3.586 3.517 3.542
Unit cost effective labour 1.995 2.023 2.048 2.042 1.989 1.994 1.992
Rental rate unskilled 1.000 1.024 1.043 1.040 1.023 1.027 1.026
Rental rate skilled 1.000 1.003 1.007 1.004 0.968 0.968 0.967

Pension system
Statutory retirement age 65.000 65.000 65.000 65.000 70.301 65.000 65.000 65.000 66.535
Pension tax rate (in %p) 10.600 14.536 14.312 10.600 10.600 11.067 11.474 10.600 10.600
Pension payment 0.180 0.180 0.180 0.136 0.180 0.180 0.180 0.167 0.180

Welfare
Equivalent variation (in %) 5.324 6.744 3.224 2.264
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become eligible for pension benefits goes up by 5.30 years, about 1 year less than the increase

in the expected life span. Unskilled individuals choose to retire from the labour force almost

4 years before the pension payments start.

We can compare the three different pension systems in terms of their effect on steady state

welfare. In particular, we calculate the percentage by which consumption should change at

each moment in time under the DB system in order to make an individual as well off as

under one of the alternative pension schemes (an equivalent variation exercise). For each

level of the utility cost of education θ we find ω(v|θ) as the solution to:

max
{

Λ
u
DB(v|θ), Λ

s
DB(v|θ)

}

+ ∆(M, D̄, ρ) ln(1+ ω(v|θ)) = max
{

Λ
u
i (v|θ), Λ

s
i (v|θ)

}

, (31)

where the subscript i ∈ {DB, DC, SA} indicates the type of pension scheme. Note that each

individual chooses to be skilled or unskilled depending on whichever option gives the high-

est expected utility. We can then calculate the average over all different educational ability

types to obtain:

ω̄(v) =
∫

∞

0
ω(v|θ) dFθ(θ). (32)

In the steady state this number does not depend on the date of birth v. The last row of Table 4

reports the average value multiplied by 100%. For example, if there is a biological longevity

boost then on average individuals would require 5.32% more consumption under the DB

regime to be as well off as under a Defined Contribution pension scheme and 6.74% to be

indifferent with respect to a system that changes the statutory retirement age. It follows that

the latter is to be preferred in welfare terms under the BLB.

5.2 Comprehensive longevity boost

In case of a comprehensive longevity boost individuals not only expect to live longer but

are also more productive during their working career. Unfortunately we do not have any

data on forecasted productivity changes. Instead we use a parametric approach and model

a productivity improvement as a rightward shift of the human capital depreciation profile

through an increase in the parameter X. Figure 8 shows the original and new depreciation

rates under the assumption that the change in X equals that in life expectancy (about 6 years).

This implies that a person of age 50 now loses skills at the rate that someone of age 44 did

previously, etcetera.

As before, the first column in Table 4 under the CLB heading gives the partial equilib-

rium effect in case of a Defined Benefit pension system. The retirement age increases with

more than 5 years for both skill types and the fraction of skilled individuals rises by about

7 percentage points. Since people are on average more productive and work longer, the

pension tax rate need hardly increase. The general equilibrium repercussions through factor
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Figure 8: Comprehensive longevity boost
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price changes again dampen the incentive to obtain an education, as evidenced by the next

column. The capital intensity decreases so that the interest rate increases while the unit cost

of effective labour goes down.

Note that the change in the interest rate under a CLB is in opposite direction to that under

a BLB. Whether it goes up or down depends crucially on the relative scarcity of effective

labour (or human capital) versus physical capital. This in turn is affected by the increase

in labour productivity relative to the improvement in survival probabilities. In Figure 9

we show the general equilibrium outcomes relative to the benchmark for a whole range

of possible changes in X. The BLB corresponds to ∆X = 0 while for the CLB we have

∆X = 6.15. In Panel (a) we observe that the capital intensity increases compared to the

benchmark for small changes in X (so that the interest rate goes down) but decreases for

larger shifts of the depreciation profile (so that the interest rate goes up). The switching

point is around ∆X = 5. The required change in the pension tax rate plotted in Panel (b)

is also decreasing in ∆X. In the extreme case that individual’s productivity improves much

faster than their expected life span the tax rate might even go down.

The result that the interest rate might move in a different direction under a CLB com-

pared to a BLB is robust to different closure rules for the pension system. In the last two

columns of Table 4 we report the long-run equilibrium with a Defined Contribution system

or a change in the Statutory Age of retirement. In both cases the interest rate increases rel-

ative to the benchmark. The required adjustments in the pension system are much smaller

when individuals not only live longer but are also more productive. Interestingly, the wel-

fare ranking of the different policy options also changes. It is no longer optimal to adjust the

statutory retirement age, instead it is better to keep the contributions fixed.
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Figure 9: General equilibrium outcomes for different values of X

(a) Change in capital intensity (in %) (b) Change in pension tax (in %p)
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6 Conclusion

In this paper we study the long-run effects of a longevity increase on individual decisions

about education and retirement, taking macroeconomic repercussions through endogenous

factor prices and the pension system into account. We build a model of a closed economy in-

habited by overlapping generations of finitely-lived individuals whose labour productivity

depends on their age through the build-up of labour market experience and the deprecia-

tion of human capital. In this context we present analytical results and a simple quantitative

exercise regarding the steady-state effects of two stylized shocks. The first is a biological

longevity boost, which consists of an outward shift of the survival function. We find that

individuals work a little longer but spend most of the additional years in retirement. This

prompts an increase in savings, which raises the capital intensity of production and lowers

the interest rate. The labour tax rate required to finance a Defined Benefit Pay-As-You-Go

pension system increases by almost 3 percentage points. In contrast, if the increase in life

expectancy is accompanied by an improvement in labour productivity through a decrease in

human capital depreciation then the retirement age increases significantly. Under this com-

prehensive longevity boost it is possible that human capital becomes relatively abundant in

production, resulting in a lower unit cost of effective labour and an increase in the interest

rate. As individuals work longer the pension tax rate need hardly change.
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A Economic proofs

Proposition 1 (Comparative static effects on the retirement age). Suppose that there are no

pensions and bequests and that the borrowing constraint never binds. Assume that there is an interior

solution for the optimal retirement age in the steady state. Keeping everything else constant we have

that for both skill types:

(i) An increase in the survival probabilities has an ambiguous effect on the retirement age.

(ii) A decrease in the depreciation rate has an ambiguous effect on the retirement age.

(iii) An increase in the interest rate leads to a decrease in the retirement age.

(iv) An increase in the wage rate does not affect the retirement age.

Proof. The optimal retirement age is at the intersection of the following two curves:

MRSj(R) = MUz
e−(r−ρ)[R−M]S(M, R)

∆(M, D̄, ρ)

∫ R

Ej
Î j(u)e−r[u−M] du,

OCTj(R) = e
∫ R

Ej

[

nZ+γj(s)l̄−δ
j
h(s)

]

ds
,

where MUz is a positive constant:

MUz ≡ −χ
(1 − l̄)1−σ − 1

1 − σ
> 0.

We note the following properties of the two curves:

(1) The initial value of OCTj is strictly greater than that of MRSj:

OCT(Ej) = 1 > MRS(Ej) = 0.

(2) The final value of OCTj is at least as large as that of MRSj:

OCT(D̄) ≥ 0 = MRS(D̄).

(3) MRSj is initially increasing in R and then decreasing:

∂MRSj(R)

∂R
=

[

r − ρ − µ(R) +
Î j(R)e−r[R−M]

∫ R
Ej Î j(u)e−r[u−M] du

]

MRSj(R),

since r > ρ and µ(R) = 0 for R < F but µ(R) → ∞ as R → D̄.
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(4) OCTj is initially increasing in R and then decreasing:

∂OCTj(R)

∂R
=

[

nZ + γj(R)l̄ − δ
j
h(R)

]

OCTj(R),

since γj(R) is constant while δ
j
h(R) is increasing in R.

Let R∗
0 denote the optimal retirement age in the initial steady state equilibrium. We assume

that this is an interior solution so that OCTj(R∗
0) = MRSj(R∗

0). The new optimal retirement

age is higher than the initial one if OCTj(R∗
0) increases relative to MRSj(R∗

0) and lower oth-

erwise.

(i) Suppose that S(M, u) weakly increases for any given u.

– There is no change in OCTj(R∗
0).

– The change in MRSj(R∗
0) is ambiguous as ∆(M, D̄, ρ) increases as well.

It follows that the effect on the retirement age is ambiguous.

(ii) Suppose that δ
j
h(u) weakly decreases for any given u.

– There is an increase in OCTj(R∗
0).

– There is an increase in MRSj(R∗
0).

It follows that the effect on the retirement age is ambiguous.

(iii) Suppose that r increases.

– There is no change in OCTj(R∗
0).

– There is an increase in MRSj(R∗
0):

∂MRSj(R∗
0)

∂r
= MUz

e−ρ[R∗
0−M]S(M, R∗

0)

∆(M, D̄, ρ)

∫ R∗
0

Ej
[R∗

0 − u] Î j(u)er[R∗
0−u] du > 0.

It follows that the retirement age decreases.

(iv) Suppose that wj(t) increases.

– There is no change in OCTj(R∗
0).

– There is no change in MRSj(R∗
0).

It follows that the retirement age remains unchanged.
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B Demographic proofs

Definition 1 (Demographic function). For |ξ| ≪ ∞ and 0 ≤ u1 < u2 ≤ D̄ the demographic

function is defined as:

∆(u1, u2, ξ) =
∫ u2

u1

e−ξ[u−u1]S(u1, u) du.

Note that by integrating (19) the survival function can be written as:

S(u1, u) = e
−
∫ u

u1
µ(s) ds

,

where µ(s) is the mortality rate at age s. We assume that µ(s) = 0 for 0 ≤ s < F and µ(s) > 0

with µ′(s) > 0 and µ′′(s) > 0 for F ≤ s ≤ D̄.

Lemma 1 (Upper bound). The demographic function has the following upper bound:

∆(u1, u2, ξ) ≤
1

ξ + µ(u1)
.

Proof. Since µ(s) = 0 for 0 ≤ s < F we can write the demographic function as:

∆(u1, u2, ξ) =
∫ û

u1

e−ξ[u−u1] du +
∫ u2

û
e−

∫ u1
û [ξ+µ(s)] ds du.

where û = max{u1, min{F, u2}}. We consider three different possibilities.

(1) u1 < u2 ≤ F so that û = u2 and µ(u1) = 0

The demographic function satisfies:

∆(u1, u2, ξ) =
∫ u2

u1

e−ξ[u−u1] du =











1 − e−ξ[u2−u1]

ξ
if ξ 6= 0

u2 − u1 if ξ = 0

In either case the result is less than 1/ξ.

(2) F < u1 < u2 so that û = u1 and µ(u1) > 0

The function MU(u1, u) =
∫ u

u1
µ(s) ds for u ≥ u1 is a non-negative, increasing and

convex function of u:

MU(u1, u1) = 0,
∂MU(u1, u)

∂u
= µ(u) ≥ 0,

∂MU2(u1, u)

∂u2
= µ′(u) ≥ 0.
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It follows that:

MU(u1, u) ≥ MU(u1, u1) +
∂MU(u1, u1)

∂u
[u − u1] = µ(u1)[u − u1].

Hence the demographic function satisfies:

∆(u1, u2, ξ) ≤
∫ u2

u1

e−[ξ+µ(u1)][u−u1] du

=











1 − e−[ξ+µ(u1)][u2−u1]

ξ + µ(u1)
if ξ + µ(u1) 6= 0

u2 − u1 if ξ + µ(u1) = 0

In either case the result is less than 1/[ξ + µ(u1)].

(3) u1 ≤ F ≤ u2 so that û = F and µ(u1) = 0

The demographic function satisfies:

∆(u1, u2, ξ) = ∆(u1, F, ξ) + e−ξ(F−u1)∆(F, u2, ξ)

≤
1 − e−ξ(F−u1)

ξ
+

e−ξ(F−u1)

ξ + µ(F)
=

1

ξ
,

which follows from the results above and the fact that µ(F) ≥ 0.

Proposition 2 (Properties of the demographic function). The demographic function has the fol-

lowing properties:

(i) Positive, ∆(u1, u2, ξ) > 0

(ii) Decreasing in u1, ∂∆(u1, u2, ξ)/∂u1 < 0

(iii) Increasing in u2, ∂∆(u1, u2, ξ)/∂u2 > 0

(iv) Decreasing in ξ, ∂∆(u1, u2, ξ)/∂ξ < 0

Proof. Part (i) is obvious. The first derivatives of the demographic function are:

∂∆(u1, u2, ξ)

∂u1
= [ξ + µ(u1)]∆(u1, u2, ξ)− 1,

∂∆(u1, u2, ξ)

∂u2
= e−ξ[u2−u1]S(u1, u2),

∂∆(u1, u2, ξ)

∂ξ
= −

∫ u2

u1

[u − u1]S(u1, u) du.

Part (iii) and (iv) are straightforward. Part (ii) follows from Lemma 1.
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C Computational details

C.1 Individual choices

In the steady state the optimal choices only depend on an individual’s age u ≡ t − v, pro-

vided that we scale consumption and financial assets by the level of productivity at age M.

We define:

ĉj(u) =
cj(v, v + u)

Z(v + M)
, âj(u)=

aj(v, v + u)

Z(v + M)
,

l̂ j(u) = l j(v, v + u), ĥj(u) = hj(v, v + u).

We take as given the (constant) level of accidental bequests q̃ ≡ q̄(t)/Z(t), tax rate on wage

income τ, pension provisions p̃ ≡ p̄(t)/Z(t), interest rate r and rental rates on effective

labour w̃j ≡ wj(t)/Z(t) and assume that the borrowing constraint only binds in the final

years of life (we can check this ex post).

(1) For any combination of the retirement age Rj and the age at which the borrowing

constraint starts to bind Rj ≤ Bj ≤ D̄ we can calculate the life-cycle profiles.

– Labour supply:

l̂ j(u) =



















0 for M ≤ u < Ej

l̄ for Ej ≤ u < Rj

0 for Rj ≤ u ≤ D̄

– Human capital:

ĥj(u) =
[

1 + ζd
j
s

]

e
∫ u

Ej

[

γ
j
0 l̄−δ

j
h(s)

]

ds

– Consumption:

ĉj(u) =











e(r−ρ)[u−M]S(M, u)

∆(M, Bj, ρ)
W j(Bj) for M ≤ u < Bj

[

q̃ + p̃
]

enZ [u−M] for Bj ≤ u ≤ D̄

where W j(Bj) is the discounted value of wage income earned and transfers re-

ceived between ages M and Bj:

W j(Bj) =
∫ Bj

M
enZ [u−M]

[

(1 − τ)w̃jĥj(u)l̂ j(u) + q̃ + p̃1u≥R̄

]

e−r[u−M] du

with 1u≥R̄ the indicator function that equals 1 if u ≥ R̄ and zero otherwise.
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– Financial assets:

âj(u) =
∫ u

M
enZ [s−M]

[

(1 − τ)w̃jĥj(s)l̂ j(s) + q̃ + p̃1s≥R̄ − ĉj(s)
]

e−r[s−u] ds

(2) For any retirement age Rj we can find the optimal Bj by ensuring that at this age there

is no jump in consumption:

e(r−ρ)[Bj−M]S(M, Bj)

∆(M, Bj, ρ)
W j(Bj) =

[

q̃ + p̃
]

enZ [B
j−M]

(3) The optimal retirement age Rj is the one that maximizes expected lifetime utility and

is calculated using a minimization routine.

(4) We can find the threshold value for education as the difference between the expected

lifetime utility of a skilled individual (ignoring the utility cost of education) and an

unskilled individual.

C.2 Macroeconomic equilibrium

To calculate the macroeconomic equilibrium we start with a guess for the scaled capital stock

K̃ ≡ K(t)/[Z(t)P(t)] and the two types of effective labour Ñ j ≡ N j(t)/P(t) for j ∈ {u, s}.

Jointly they determine the factor prices w̃j and r. We find the optimal life-cycle profiles

of skilled and unskilled individuals and the corresponding education threshold. It is then

possible to aggregate across individuals to obtain total consumption C̃ ≡ C(t)/[Z(t)P(t)],

financial assets Ã ≡ A(t)/[Z(t)P(t)] and effective labour supply L̃ ≡ L(t)/P(t).

We check whether the goods market is in equilibrium so that Ỹ = C̃ + Ĩ where Ỹ ≡

Y(t)/[Z(t)P(t)] = ΦK̃φÑ1−φ and Ĩ ≡ I(t)/[Z(t)P(t)] = (δK + nP + nZ)K̃. If so, then we

have found the steady state. If not, then we change the level of accidental bequests and one

of the parameters of the pension system using the respective balanced budget conditions. In

addition we partially update the guess for the factor supplies in the direction of satisfying the

capital market equilibrium condition K̃ = Ã and the labour market equilibrium condition

Ñ = L̃.
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