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1 Introduction

In many contexts, groups of economic agents supply efforts repeatedly, thereby

giving rise to sequences of performance signals that principals can use to re-

ward efforts. First, most organizations assess their employees’ performance

regularly. This performance information plays a crucial role for decisions

on bonus payments, promotion and tenure. Second, in many arms-length

relationships, buyers repeatedly procure goods and services from the same

pool of suppliers. They can use past experience with these suppliers as a

basis for the conditions of future interactions. Third, school and university

teachers repeatedly observe the performance of students in their classes and

can decide how to use this information for final grades.

Motivated by these real-world situations, we analyze the incentive effects

of different approaches to rewarding repeated performance. Specifically, we

ask the following questions:

1. How often should principals reward agents for good achievements?

Should there be frequent small rewards or rare large rewards?

2. Which weight should principals give to recent performance relative to

performance in the more distant past?

3. To which extent should the principal reveal the results of past perfor-

mance measurement to the agents?

We answer these questions for dynamic tournaments. Tournaments are

often used instead of contracts which condition explicitly and exclusively on

each agent’s own performance. In particular, organizations indeed provide

incentives with promotion tournaments.1

Specifically, we consider a two-period tournament with two risk-neutral

agents with identical and known abilities. To see the incentive effects of such

tournaments most clearly, we abstract from the important issue of selecting

the agent with the highest innate ability for a particular task. The principal

chooses an incentive system, consisting of (i) the distribution of the prize

money across the two periods, (ii) the weight of first-period performance in

the second tournament and (iii) the information revelation policy.

1A well-known argument for tournaments is that they are more credible because they

are less prone to manipulation by the principal than contracts that depend explicitly on

the details of performance: When performance is not verifiable, a principal may claim

that performance was low to save on performance pay. Tournaments reduce this incentive,

because the total payments to the agents are independent of performance.
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After observing the policy, the agents choose effort levels in each period.

The principal observes the performance of each agent, which is a noisy mea-

sure of effort. In period 1, she awards the prize (if any) to the agent with

the higher performance. Under a full revelation policy, she communicates

the performance of both agents in the first period. Under a no revelation

policy, she neither communicates performance, nor who the winner was. In

period 2, the agents choose efforts again. The principal then allocates the

second-period prize to the agent for whom the weighted sum of first- and

second-period performance is highest.2

In line with the existing literature, we consider the case that a principal

regards efforts in different periods and by different agents as perfect sub-

stitutes and thus maximizes total effort. Contrary to most of the existing

literature, we also analyze the optimal policy for a principal who regards ef-

forts in different periods as imperfect substitutes and wants to balance them

across periods.3 We believe this is important, because excessively low efforts

in some period may cause large harm, which cannot even be compensated

by an extremely large effort in other periods.

Apart from allowing for imperfect intertemporal effort substitution, our

approach differs from previous literature in three ways. First, we simultane-

ously consider information revelation, the prize distribution and performance

weights as design tools of the principal. Second, we include the possibility

that the distributions of the first- and second-period performance measures

differ - e.g. in their precision - reflecting heterogeneity of tasks across periods.

Third, we allow different cost functions across periods.

Our contribution is threefold. First, we generalize existing results on

information revelation. Previous analysis has shown for special cases that

expected total efforts are lower with revelation than without when marginal

effort costs are convex, and conversely for concave marginal effort costs (see

Section 2). We show that this result holds for perfect and imperfect substi-

tutes, and for arbitrary first-period prizes and performance weights.

Second, we clarify the relation between first-period prizes and first-period

performance weights as incentives for first-period efforts. For both revelation

policies and for perfect as well as imperfect substitutes, the optimal first-

2In the no revelation case, the game is static. The model thus becomes a special case of

a multi-battle contest where agents compete simultaneously in a multiplicity of dimensions

(see, e.g., Clark and Konrad (2007) and Kovenock and Roberson (2010)). However, the

dynamic cross-period effects which occur under our full revelation regime are totally absent

in these papers.
3Specifically, she maximizes the product of first- and second-period efforts, or equiva-

lently, the sum of the logarithms. Aoyagi (2010) also allows for more general objectives

than maximizing total efforts.
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period prize is positive only if the distribution of the first-period observation

error difference is very precise, that is, highly concentrated near zero. We

then show that for quadratic cost functions and normally distributed obser-

vation errors, this condition is never satisfied. Even with more general distri-

butional assumptions, the scope for using first-period prizes is limited: For

imperfect substitutes and quadratic cost functions, the optimal first-period

prize is never higher than the second-period prize.

Whereas the optimal first-period prize is typically zero, the optimal weight

of first-period performance in the second-period tournament is strictly pos-

itive for both revelation policies, general cost functions and error distribu-

tions. The optimal weight is higher the lower the adverse effect of increasing

the first-period weight on future competitive intensity is. For quadratic cost

functions, normally distributed observation errors and perfect (imperfect)

substitutes, the optimal weight is the ratio of the variances (standard devia-

tions) of second-period and first-period observation error differences.

Third, we show that the potential gains from good design are quantita-

tively important. In the normal-quadratic example, the expected effort is at

least 40% higher when a principal chooses prizes and weights optimally than

when she distributes the prize money evenly across both periods without

giving weight to first-period performance in the second period tournament.

The organization of the paper is as follows. Section 2 discusses related

literature. In Section 3, we introduce the model. In Section 4, we analyze

the behavior of agents for given policies. Section 5 characterizes the optimal

policy. Section 6 interprets and sharpens our results in a normal-quadratic

example. Section 7 concludes.

2 Relation to the Literature

In this paper, we focus on the optimal design of multi-period rank-order tour-

naments, in particular, on feedback policy, prize structure and weight of past

performance.4 5 The only paper we are aware of that simultaneously analyzes

these three design dimensions is Gershkov and Perry (2009). However, their

set-up differs substantially from ours. Most importantly, after period one,

the principal merely knows whether there is a tie (arising with positive prob-

4Nitzan (1994) and Konrad (2009) provide surveys of the literature on tournaments.
5Another broadly related literature analyzes dynamic principal-agent relationships with

moral hazard in a non-competitive setting. Lewis and Sappington (1997) examine how

current incentives should optimally depend on past performance. Hansen (2013) and Chen

and Chiu (2013) deal with the optimal revelation policy. For reasons of space, however,

we will focus on studies that deal with repeated contests.
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ability) or whether one of the agents has performed better (and, if so, which

agent); there is no information on the size of the lead. In many contexts,

such a coarseness of the information structure appears to be appropriate.

However, in other contexts, the principal can collect and communicate in-

formation that provides the agents with a clear picture of how much their

performance differs from the performance of others. This information will

typically not be verifiable in a court, but for our purposes it is sufficient that

the principal and the agents share a common understanding of the relation

between promotion chances and the information communicated about the

agents’ relative positions.6

Also, Gershkov and Perry (2009) assume that the relation between win-

ning probabilities and efforts is the same in both periods, while we allow for

differences in the error structure. Finally, they only focus on maximization

of total effort.

We mention in passing the substantial literature analyzing agent behavior

in repeated tournaments without addressing optimal design. Several of these

papers allow for effects of first-period play on the second period that are

determined by technology rather than, as in our case, by the principal.7

Moreover, some papers study two-period contests (rank-order, all-pay and

Tullock, respectively) where the total effort in the two periods determines

the winner of a final prize.8 9

2.1 Performance revelation

Several papers analyze the effect of interim performance revelation on efforts

in dynamic tournaments. In a setting similar to ours, Aoyagi (2010) shows

that expected effort is higher with information revelation than without if and

only if marginal effort costs are concave.10 Unlike in our paper, there is only

6With verifiable information, the principal could contract directly on efforts, and there

would be no need to use tournaments.
7See Schmitt et al. (2004), Grossmann and Dietl (2009), Grossmann (2011) and Baik

and Lee (2000).
8See Hirata (2014) for all-pay auctions and Yildirim (2005) for Tullock contests. Casas-

Arce and Martínez-Jerez (2009) consider a related rank-order tournament where all agents

whose total performance is higher than a certain threshold win a prize.
9More broadly related, several papers analyze the agents’ behavior in a sequence of

contests where there is a prize for winning each contest, and an overall prize to the agent

who is the first to win a certain number of contests. Examples are Konrad and Kovenock

(2009) and Krumer (2013). Sela’s (2011) model is similar, the difference being that there

is no prize for winning a single contest.
10Aoyagi (2010) is quite general with respect to the objective of the principal, and he

allows for partial revelation. Denter and Sisak (2013) show that effort may increase with
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one prize, and first-and second-period weights are the same. We endogenize

these assumptions by providing conditions under which the principal opti-

mally chooses the prizes and weights in this way. Moreover, we show that

the optimal revelation policy has the same features when these assumptions

do not hold.

Ederer (2010) introduces incomplete information about ability. The re-

sults are equivalent to those of Aoyagi (2010) if ability is non-complementary

to effort.11 If efforts and ability are complementary, it is possible that in-

formation revelation leads to higher expected efforts than no revelation even

with quadratic effort costs.12

2.2 The weight of past performance

Several authors ask whether there should be a bias towards the first-period

winner in the second period of a multi-period contest (Meyer 1992, Harbaugh

and Ridlon 2011 and Ridlon and Shin 2013). Meyer (1992) considers a set-

ting similar to our case with information revelation and a single prize, but

with risk-averse agents. She shows that the cost-minimizing choice of an

effort vector requires a bias towards the first-period winner.13 Our analysis

shows that the argument for giving a headstart also holds when the first-

period prize is much higher than the second-period prize, when there is no

information revelation, when intertemporal effort substitution is imperfect

and when there is no information revelation. Finally, we provide results on

the determinants of the size of the bias.14

revelation if marginal efforts are concave. They use their set-up to analyze the effect of polls

on political campaign spending, allowing for an initial asymmetry before the beginning of

the first period.
11Ederer and Fehr (2013) use a special case of this model with equal abilities.
12Other papers address the revelation policy in dynamic tournaments under very differ-

ent assumptions. For example, Arbatskaya and Mialon (2012) analyze a lottery contest

where first- and second-period efforts are complements in affecting the probability of win-

ning. They find that revelation of first-period efforts decreases total efforts. Goltsman

and Mukherjee (2011) consider a contest in which the agents either succeed or fail, and

the prize is given to the agent who succeeded more often. The optimal policy reveals

performance only if both agents fail. Zhang and Wang (2009) consider revelation policies

in dynamic all-pay auctions with elimination.
13Ridlon and Shin (2013) show for a Tullock contest that an analogous result still holds

for small asymmetries in the abilities of agents. However, if the asymmetry is high, favoring

the first-period loser is optimal. In the dynamic all-pay auction of Harbaugh and Ridlon

(2011), favoring the first-period loser is always optimal.
14Contrary to us, Meyer (1992) assumes that the size of the bias is fixed ex ante rather

than a function of the performance difference in period 1.
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2.3 Distribution of prize money

A small number of papers derives the optimal distribution of prize money

across periods when there is an exogenously given technological link between

the first and the second period, creating an asymmetry between the agents

in the second period. The effects of such links are similar to those of a

positive weight of past performance in the assignment of the second-period

prize. Contrary to us, the authors focus on Tullock contests. For example,

in Möller (2012), the prize money received in the first period does not yield

direct utility to the agents, but reduces their effort costs in the second period.

Under some circumstances, the optimal policy requires a positive prize both

for the winner and for the loser in the first period.15 In Clark et al. (2013),

the winner in the first period may have lower effort costs in the second period.

The effort-maximizing prize structure is to give only a second-period prize.

In Clark and Nilssen (2013), second-period effort costs fall with the first

period effort. The authors provide conditions under which it is optimal to

pay more than half of the total prize money in the second period.16 Apart

from the obvious difference in the structure of the contest, these papers do

not analyze revelation policies, nor do they allow for imperfect substitutes.

Some papers derive the optimal distribution of prize money across stages

in a two-period elimination tournament, where only the winners of the current

period compete again in the next period. A seminal paper is Moldovanu and

Sela (2006). Because elimination tournaments have a very different structure

than our model, the results are difficult to compare to ours.

3 The Model

We consider a class of two-stage rank-order tournaments. Given a fixed bud-

get   0, a principal chooses an incentive system I, which is a tuple
(1 ) ∈ R × [0 ] × {0 1} to be explained below. For given I, agents
 ∈ {1 2} choose effort levels  ≥ 0 ( ∈ {1 2}).17 The effort cost function
 () has the following properties:

Assumption 1:  is independent of  and differentiable three times.

It satisfies  0
  0,  00

  0,  (0) =  0
 (0) = 0.  000

 () ≥ 0 or

15Since agents are initially symmetric, unequal prizes in the first period yield an asym-

metry in the second period through their effect on second-period effort costs. This result

is therefore similar to a positive weight on past performance in our setting.
16We have a similar result in the case of imperfect substitutes, but for very different

reasons (see Proposition 7).
17In the following, the use of  and/or  as an index always implies   ∈ {1 2} and

 6= .
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 000
 () ≤ 0 must hold globally.
Thus, we can write  ≡ . Note that we allow first- and second-

period tasks to differ with respect to effort costs. This reflects the idea that

the efforts in the two periods may be of very different types. Employees

or suppliers may have to carry out different tasks in different periods; stu-

dents learn different kinds of material in different phases of their education.

Therefore, effort costs may differ across tasks.

The agents maximize expected utility and are risk-neutral. Their utility is

additively separable in period-specific income and costs. At the end of each

period , the principal observes performance, which is an imperfect measure

 = +  of effort. The error term  is independently distributed across

agents and periods. In each period, the error distribution is the same for

agent 1 as for agent 2. However, the error distribution in period 1 may differ

from the one in period 2. This captures the notion that tasks in different

periods may also differ in terms of how easy it is to monitor effort.18

Based on the first-period performance, the principal awards the first-

period prize 1 to agent  if 1  1. Agent  receives the second-period

prize 2 = −1 if 2+ 1  2+ 1.
19 The principal’s choice of the

first-period weight  ∈ R thus determines the influence of past performance
on the chance of winning in the second period.

Under a full-revelation policy ( = 1), the principal communicates the

measured performance of both players to the agents before they choose their

second-period efforts. In practice, the principal will typically not communi-

cate a concrete number. Instead, she may communicate whatever relevant

information she has to the agents, thereby creating a common understanding

about their relative performance.20 Under a no-revelation policy ( = 0), the

principal does not communicate the performance assessment. She does not

even communicate who won the first-period prize and distributes both prizes

at the end of period 2.

The following notation is helpful to describe the solution of the game.

18In a non-tournament setting, Ke et al. (2014) show that organizations optimally

hire workers into easy-to-monitor jobs with low effort costs and then promote them into

difficult-to-monitor jobs with high (marginal and absolute) effort costs. In our setting,

this would correspond to 1  2 and 1 ()  2 (), 
0
1 ()  0

2 ().
19In each period, in case of a tie, the principal assigns the prize to each agent with

probability one half.
20As we will see, second-period efforts depend negatively on the absolute value of the

performance difference in the first period. Hence, the principal has an incentive to always

report equal performances. This problem becomes negligible if the principal leaves the

communication to disinterested parties from within or outside the organization.
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Definition 1 The error difference of player  in period  ( = 1 2) is

∆ = −, his relative first-period performance is ∆1 = 1−1 =
∆1 +∆, where ∆ =  − .

Clearly, ∆ = −∆, ∆ = −∆, ∆1 = −∆1.

We make the following assumption on the error distributions:

Assumption 2 ∆ is distributed as  () on R with a symmetric,

single-peaked, strictly positive and continuously differentiable density  ().

This implies  () =  (−),  0 () = − 0 (−) and  (∆) = 0.
21

For some results, we assume that the cost functions are quadratic:

(C1) The cost function is  () =

2
()

2
with   0.

We assume that, given a fixed prize budget, the principal’s payoff is in-

creasing in efforts, where the efforts of different agents within periods are

perfect substitutes for the principal. We allow first- and second period ef-

forts to be either perfect or imperfect substitutes. For perfect substitutes,

the principal chooses the incentive system so as to maximize expected total

efforts. For imperfect substitutes, she maximizes the expected product of first

and second-period efforts. This corresponds to a complementarity between

first- and second-period efforts, making it desirable to have similar efforts in

both periods.

4 Behavior of the agents

We first analyze the equilibrium behavior of agents for given incentive system.

The following simple result is mentioned without proof.

Lemma 1 (i) The conditional probability that 1  1 given 1 and 1 is

1 (1 − 1).

(ii) The conditional probability that 2 + 1  2 + 1 given 2,2 and

∆1 is 2 (∆1 + 2 − 2).

4.1 Full revelation

In period 2, a player’s information set consists of all combinations of period

1 efforts and error differences that are consistent with the own first-period

21The assumptions on the distribution of the error differences are guaranteed to hold if

the assumptions hold for the distributions of the observation errors.
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effort 1 and the observed relative performance ∆1.
22 We use the Perfect

Bayesian Equilibrium (PBE) to deal with this imperfect information (Mas-

Colell et al. 1995, p. 285). The task is simplified because there are no

off-equilibrium events to consider, as 1 is strictly positive on R. Moreover,
period 1 enters player ’s payoffs only via ∆1 and 1, so that the unobserv-

able aspects of previous play (player ’s effort choices) are irrelevant for the

players’ choices.

A pure strategy  of player  consists of a first-period choice 1 and a

function 2 mapping information sets (1∆1) to actions 2. If player 

chose 1, observes ∆1 and assumes that player  plays the pure strategy

 = (1 2), he will assign probability one to the event that ∆1 =

∆1 − ∆1. We will always assume that beliefs are formed in this way,

without specifying them explicitly.

4.1.1 Second-period efforts

Using Lemma 1(ii), the expected second-period payoff of agent , conditional

on the relative first-period performance and second-period efforts, is

2 (2 2∆1) = 2 (∆1 +∆2)2 −2 (2) . (1)

Thus, the first period influences the second-period payoff via the first-period

relative performance ∆1. The corresponding first-order condition is

2(∆1 +∆2)2 =  0
2 (2) . (2)

Though the game does not have any proper subgames because information

sets in period 2 are not singletons, payoffs in period 2 are constant on infor-

mation sets. We use this in the following definition.

Definition 2 The second-period effort game induced by ∆1 is the game

with players  = 1 2, strategy spaces  = R+ and payoffs given by (1) for
(2 2) ∈  ×.

We obtain the following result:

Lemma 2 Suppose  = 1 (full revelation) and 2  0.

(i) In any equilibrium of the second-period effort game, efforts are symmetric

and satisfy

∗2 (∆1) ≡ ∗2 (∆1; 2 1) = (
0
2)
−1
[2 (∆1)2] (3)

(ii) If effort costs are sufficiently convex, (3) defines the unique Nash equi-

librium of the second-period effort game.

22This statement holds no matter whether the principal publicly announces the absolute

performance of each agent, or just the difference.
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Proof. See Appendix.

Lemma 2 has some simple comparative statics implications.

Corollary 1 Suppose  = 1,  6= 0 and 2  0. Then ∗2 is decreasing in
|∆1| and ||, and increasing in 2.

Proof. See Appendix.

The result on |∆1| implies that, if a laggard (an agent with ∆1  0)

increases own effort, or a leader (an agent with ∆1  0) decreases efforts

marginally in period 1, both players increase effort in period 2.23 The other

two results identify policy effects. In particular, increasing the absolute value

of the first-period weight  reduces second-period efforts.

In the PBE, the symmetric equilibrium of the second-period effort game

is played after each realization of ∆1. Thus, the expected second-period

payoff, conditional on first-period performance, is


2 (∆1) ≡ 2

¡
∗2 (∆1) 

∗
2 (−∆1) ∆1

¢
 (4)

The expected second-period payoff, given first-period efforts, is

 
2 (1 1) ≡ ∆1


2 (∆1 +∆1)  (5)

4.1.2 First-period efforts

Using Lemma 1(i), agent ’s optimization problem in period 1 is

max
1≥0

1 (1 − 1)1 + 
2 (1 1)−1 (1) .

The corresponding first-order conditions is

1 (∆1)1 +


2

1
=  0

1 (1) . (6)

The following definition is crucial for the intuition.

Definition 3 The intensity of second-period competition is given by

() = 2

Z ∞

0

2 () 1 () .

23This result reflects the "well-known evaluation effect or lack-of-competition effect"

(Ederer 2010, p. 742).
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The logic of the definition is as follows. For each agent, 1 () captures

the density of the event that the relative first-period performance of this

player is  when efforts are symmetric (as in equilibrium). Since both players

choose identical equilibrium efforts in the second period, 2 () = 2 (−)
captures the density of the event that a strike of luck of one agent in period

2 exactly compensates a strike of luck of the other agent of size  in period 1.

Therefore, () measures the joint probability of the event that the second-

period contest is a close run where a marginal effort increase of one agent

will affect the outcome of the second-period contest and tip the balance in

his favor: When () is high, an agent who has been lucky in the first period

cannot be too sure about his winning prospects in the second period, and

will therefore continue to put in some effort.

() is a function of the weight  with several simple properties. First,

 0() = 2
Z ∞

0

 02 () 1 ()   0 for   0: (7)

An increase in the absolute value of the weight thus reduces the intensity of

second-period competition. Moreover:

 ()  0 (8)

 (0) = 2 (0) (9)

 0(0) = 0 (10)

() = (−) (11)

We sometimes invoke a regularity condition that simplifies the interpretation

of our results:

(C2) For   0, () is increasing in .

This conditions holds, for instance, in Example E1 below. The following

condition rules out corner solutions in period 1:

1 (0)1 + 2()  0 (12)

(12) can only be binding for negative .24

The following result uses (6) to derive equilibrium efforts:

Proposition 1 Suppose  = 1 (full revelation).

(i) In any symmetric interior PBE, first-period efforts must satisfy

∗1 (12 1) = (
0
1)
−1
[1 (0)1 + 2()] . (13)

24We will show below that the principal will never choose negative values for .
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(ii) Suppose the cost functions are sufficiently convex. If (12) holds, (3) and

(13) describe the unique symmetric PBE strategies. If (12) is violated, ∗1 = 0
and (3) describe the unique symmetric PBE strategies.

Proof. See Appendix.

We defer the discussion of the second-order conditions to the appendix;

there we will show that they require sufficiently convex cost functions.25

By Proposition 1, if (C2) holds, then a higher positive weight of past effort

always induces higher first-period effort. The term in brackets on the right-

hand side of (13) is the marginal benefit from increasing 1. The effect on the

expected first-period payoff is 1 (0)1; the effect on the expected second-

period payoff is 2(), which is positive if   0. This term reflects the

direct effect of higher first-period effort on second-period winning chances.

The term does not capture strategic effects on the future efforts of the other

player. Such effects are relevant in the game, but they cancel out in the

symmetric equilibrium.26

We now characterize second-period efforts. Symmetry of the equilibrium

in Proposition 1 implies ∆1 = ∆1. Using (3) and taking the expectation

over ∆1, we obtain:

Corollary 2 The expected efforts in period 2 in the full-revelation PBE de-

scribed in Proposition 1 are

 (∗2 (2 1)) = 2

Z ∞

0

( 0
2)
−1
[2 ()2] 1 ()  (14)

Proof. See Appendix.

Together with Assumption 2, Corollary 2 implies that second-period ef-

forts decrease in ||. Thus, first-period efforts must increase at least locally
in || near the optimal . Therefore, by (13), (C2) must hold locally near the
optimal . Otherwise, by Proposition 1 the principal could increase efforts in

both periods by reducing , contradicting optimality of .

25The relevant condition is (32).
26To see this, suppose   0; for   0, the argument is reversed. If, for any given

first-period effort choice, a player knew he was ahead of the other player, he would have

a strategic incentive to increase efforts to discourage player  from exerting effort in the

future, whereas the converse would hold for a player who knows he is behind the opponent.

Since the game is stochastic, players have to consider the expected strategic effects, which

can be positive or negative, but cancel out when first-period efforts are identical.
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4.2 No revelation

Under the no-revelation policy, agents simultaneously chose first- and second-

period efforts according to

max
1≥02≥0

1 (1 − 1)1+ (15)

2

Z ∞

−∞
2 ( (1 − 1 + ) + 2 − 2) 1 () −1 (1)−2 (2) .

The integral in (15) is the probability of winning the second-period prize,

conditional on effort choices.27 This leads to a simple characterization of the

Nash equilibrium.

Proposition 2 (i) Suppose  = 0 (no revelation). In any symmetric interior

Nash equilibrium, efforts must satisfy:

∗1 (12 0) = ( 0
1)
−1
[1 (0)1 + 2()]  0 (16)

∗2 (2 0) = ( 0
2)
−1
[2()]  0. (17)

(ii) If the cost functions are sufficiently convex and (12) holds, (16) and (17)

describe the unique symmetric Nash equilibrium of the game.28

Proof. See Appendix.

Both effort levels reflect standard cost-benefit considerations. The mar-

ginal benefit of first-period efforts depends on the increased winning proba-

bility in period 2 (()) as well as period 1 (1 (0)).

By Propositions 1 and 2, first-period efforts in any symmetric equilibrium

are non-stochastic and equal under both revelation policies; we thus write

∗1 (12) for first-period equilibrium efforts.29

27This follows from Lemma 1(ii).
28In Appendix 8.1.6 we identify the meaning of “sufficient convexity”. We also show

that the second-order conditions hold locally for arbitrary convex cost function.
29The result reflects the fact that the marginal effect of first-period effort on expected

second period payoffs is identical under both policies. Intuitively, a marginal increase of 1
has positive effects on the second-period payoffs of player  if it suffices to tip the balance in

the contest in period 2 in his favor. The probability that this happens, which is captured

by () for both players, is independent of whether information on ∆1 is revealed to

players before they choose second-period efforts. In this argument, it is important to start

from the respective equilibrium, with equal efforts in both periods.
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5 Optimal policy

We now characterize the optimal policy of the principal.30 To this end, we fix

the total budget as  , so that 2 = −1. Since we focus on symmetric

equilibria and efforts within periods are perfect substitutes, we can write the

principal’s objective in terms of the efforts of only one agent. As first-period

efforts are non-stochastic, the principal’s objective functions for perfect and

imperfect substitutes, respectively, are:

  (1 ) ≡ ∗1 (1 −1) + (∗2 ( −1 )) ; (18)

  (1 ) ≡ ∗1 (1 −1) ·  (∗2 ( −1 )) . (19)

5.1 Optimal revelation policy

According to (18) and (19), the principal chooses the revelation policy that

induces higher expected second-period efforts, no matter whether efforts are

perfect or imperfect substitutes. Using Jensen’s inequality, we can compare

the expected second-period efforts in the equilibria characterized by Propo-

sitions 1 and 2:31

Proposition 3 ∀ ∈ R1   :

(i) If  000
2 ≥ 0, then ∗2 ( −1 0) ≥  (∗2 ( −1 1)).

(ii) If  000
2 ≤ 0, then ∗2 ( −1 0) ≤  (∗2 ( −1 1)).

Proof. See Appendix.

For quadratic costs, (i) and (ii) together imply that expected second-

period efforts are equal under both revelation policies.32 Proposition 3 ap-

plies to all values of  and 1 and, in particular, to those that maximize

∗2 ( −1 0) or  (
∗
2 ( −1 1)). Thus, even if the principal has

chosen the optimal parameters for a given revelation policy, switching to the

other revelation policy is beneficial if the corresponding condition on  000
2

holds. Hence, we have proven:

30In the following discussion, we assume that, for given error distributions and effort

cost functions, second-order conditions hold for all allowable choices of the policy variables.

This is for instance true for the normal-quadratic example of Section 6.
31Intuitively, with revelation, the agents base their second-period decisions on the re-

vealed asymmetry between players, whereas, without revelation, the expected asymmetry

is decisive. Compare second-period decisions with and without revelation for given effort

choices in the first period: For error realizations where the asymmetry is low (high) relative

to expectations, efforts will be higher (lower) with revelation than without.
32Intuitively, the role of 000

2 is an immediate consequence of the fact that second-period

efforts are the inverse of marginal costs for  = 0 and the expectation of the inverse of

marginal costs for  = 1. Thus, concavity (convexity) of the inverse marginal costs is

decisive for which regime yields higher efforts on expectation.
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Corollary 3 The optimal revelation policy is the same for perfect and im-

perfect substitutes, with  = 0 if  000
2  0 and  = 1 if  000

2  0. For  000
2 = 0,

expected payoffs are independent of the revelation policy.

The result extends Aoyagi (2010) who shows that, for one prize (1 = 0)

and equal weights ( = 1), the effort cost function completely determines the

optimal revelation policy.33 Our result shows that this statement holds for

arbitrary 1 and .

5.2 Optimal weight of past performance

The principal can give incentives for first-period efforts with 1 or . The

next result shows that, no matter how high the first-period prize is, the

principal should always assign a positive weight to past performance in the

second-period contest. For perfect substitutes, we denote the optimal choice

of  conditional on 1 and  as  (1 ) and the optimal choice of 1

conditional on  as 
1 ( ). For imperfect substitutes, we write 

(1 )

and  
1 ( ).

Proposition 4  (1 )  0 and 
(1 )  0 ∀ 1   and  = 0 1.

Proof. See Appendix.

This result holds because, for  = 0, the marginal effect of  on first-period

effort is positive and bounded away from zero (a first-order effect), whereas

it is zero for second-period effort (a second-order effect). To understand the

latter point, note that the adverse effect of increasing   0 on second-period

efforts arises because the second-period contest becomes more asymmetric,

that is, less competitive ( 0 ()  0). As  0 (0) = 0, this adverse effect

vanishes as  approaches 0.

Proposition 4 states that performance evaluation should always have

some memory: Firms should consider not only the recent performance of

employees and suppliers, but also the performance in the distant past. Sim-

ilarly, students should not only be judged with respect to their recent per-

formance. The open question is: How large should the “shadow of the past”

be? To answer this question for perfect substitutes, the next result char-

acterizes the weight of past performance for quadratic costs (C1). In this

case, revelation and no revelation imply the same behavior. Thus, we write

 (1) ≡  (1 0) =  (1 1), and similarly for

1 (). Furthermore, we

write
¡
 

1

¢
= argmax1

  (1).

33Ederer (2010) also treats this case in his discussion of non-complementary abilities.
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Proposition 5 Suppose (C1) holds. Then, ∀ 1   ,  (1) satisfies¯̄̄̄
 0()
()

¯̄̄̄
=

1
1
2
+ 

(20)

Proof. See Appendix.

(20) captures the trade-off between strengthening first-period incentives

and weakening second-period competition. Changes in the error distributions

that increase the sensitivity
¯̄̄
0()
()

¯̄̄
of second-period competition to the first-

period weight  for all  reduce the optimal .34 Furthermore, the higher

first-period marginal effort costs are compared to second-period marginal

effort costs, the lower is the optimal . Note that (20) and thus the optimal

 is independent of the first-period prize 1.
35

5.3 Optimal first-period prize

We now supply several results on the optimal prize structure. We also use

these results to obtain further insights on the optimal weights.

5.3.1 Perfect substitutes

For perfect substitutes, we confine ourselves to quadratic costs (C1) in the

main text. The results are special cases of more general, but less transparent

results that we state and prove in Appendix 8.4 (Propositions 9 and 10).

For quadratic costs, it is optimal to give only one positive prize. Depend-

ing on the observation error distributions, the prize should be based only on

first-period performance (
1 = ) or on second-period performance as well

(
1 = 0).

Corollary 4 Suppose (C1) holds.

(i) If 1 (0) 
³
1
2
+ 
´
(), then the optimal first-period prize conditional

on  is 
1 () = 0. If ∃  ∈ R s.t. 1 (0) 

³
1
2
+ 
´
(), then the uncon-

ditonally optimal first-period prize is 
1 = 0.

(ii) If 1 (0) 
³
1
2
+ 
´
(), then the optimal first-period prize conditional

on  is 
1 () =  . If 1 (0) 

³
1
2
+ 
´
() ∀  ∈ R, then the uncondi-

tonally optimal first-period prize is 
1 = .

34We illustrate this in Figure 2 below.
35This is due to the fact that 1 enters

  (1)


linearly. The relevant expression is

(43). Since
2  (1)

1
 0, the increase in payoff by setting  optimally depends positively

on  −1, the prize paid in the second period.
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Proof. See Appendix.

The intuition is straightforward. By (i), when second-period competi-

tion (as captured by ()) is intense enough relative to the precision of the

first-period measurement (as captured by 1 (0)), then second-period efforts

should be positive, which requires a second-period prize.36 Otherwise (case

(ii)), there should be no second-period prize. However, we will show in Sec-

tion 6 that 
1 = 0 always holds in a normal-quadratic example. Note that

the condition under which there is no first-period prize is easier to satisfy

when first-period marginal effort costs are high compared to second-period

marginal effort costs.

Beyond quadratic effort costs In Appendix 8.4, we provide results on

the optimal first-period prizes and weights for general cost functions. These

results imply Proposition 4 for  000
 = 0 as a special case. When 

000
 6= 0, the

effort choices with and without information revelation are no longer identical,

so that the optimal policies do not coincide. Proposition 9 in the Appen-

dix characterizes the optimal prize structure with information revelation for

 000
 ≤ 0, in which case information revelation is superior to no revelation by

Proposition 3. Conversely, Proposition 10 in the Appendix characterizes the

optimal prize structure without information revelation for  000
 ≥ 0, where

no information revelation is superior to revelation by Proposition 3. The

interpretation of the general propositions is similar as for quadratic costs: If

the first-period contest is too noisy, it is optimal not to give a first-period

prize.

5.3.2 Imperfect Substitutes

For imperfect substitutes, we also obtain a general condition under which the

optimal first-period prize for a given past weight is zero with performance

revelation. The result applies if  000
 ≤ 0, so that revelation is optimal by

Corollary 3.

Proposition 6 Suppose  000
 ≤ 0 for  = 1 2. For all   0,  

1 ( 1) = 0 if

1 (0)   ().

Proof. See Appendix.

Thus, as with perfect substitutes, this (sufficient) condition is easier to

satisfy if the first-period signal is not very precise (1 (0) is low) and second-

period competition  () is intense. To obtain stronger results, we now

36Note that 1 (0) is a purely local measure of precision, capturing the probability that

identical efforts translate into identical performance measures.
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specialize to quadratic effort costs. As behavior is the same with and without

revelation, we write (1) ≡ (1 0) = (1 1) and similarly for

1 ().

Furthermore, we write
¡
  

1

¢
= argmax1

  (1). We obtain:

Proposition 7 If (C1) holds, the optimal first-period prize conditional on

 is  
1 () ≤ 

2
∀ , so that the optimal unconditional first-period prize is

 
1 ≤ 

2
.

Proof. See Appendix.

There is no counterpart of this result for perfect substitutes, where it

can, in principle, be optimal to refrain from inducing second-period effort

altogether. For imperfect substitutes, principals aim at a balanced effort

distribution. Therefore, they need to make sure not to give excessive first-

period prizes, because they are already providing indirect incentives for first-

period effort through the weight .

The following result specifies the optimal solution further:

Proposition 8 Suppose (C1) holds.

(i)  
1 ()  0 if and only if 1 (0)  2 (). In this case

 
1 () =

1 (0)− 2 ()
21 (0)− 2 ()  0.

(ii) The optimal
¡
 
1  


¢
satisfies one of the following necessary properties:

(a)  
1 = 0 and

¯̄̄̄
 0()
()

¯̄̄̄
=

1

2
;

(b)  
1 = 

1 (0)− 2
¡

¢

21 (0)− 2 ()  0 and
¯̄̄̄
 0()
()

¯̄̄̄
=


¡

¢

1 (0)
.

Proof. See Appendix.

Result (i) describes the optimal prize structure conditional on . As with

perfect substitutes, the optimal first-period prize is positive if first-period

precision (captured by 1 (0)) is high and second-period competition  () is

low. Moreover, the result sharpens Proposition 6 by showing that, at least

for quadratic costs, 1 (0)   () is not necessary to guarantee that the

conditionally optimal prize structure satisfies  
1 () = 0. Finally, the result

shows that, when (C1) and (C2) hold, first-period prizes and weights are

substitutes: The optimal first-period prize is lower the higher the first-period

weight  is.

Result (ii) describes the unconditionally optimal solution
¡
 
1  


1

¢
for

quadratic costs. There are two possibilities, both depicted in Figure 1. Ac-

cording to (a), the first-period prize may be zero, in which case the optimal
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Figure 1: Necessary conditions for imperfect substitutes

first-period weight is described by a simple condition that depends exclu-

sively on  () (see point  on the horizontal axis in Figure 1). As with

perfect substitutes, the weight is lower if the adverse effect of  on future

competition is higher. By (b), the first-period prize may be positive, in

which case the optimal first-period weight is determined by a condition that

depends on error distributions not only via  (), but also via 1 (0) directly,

as captured by  
1 () (see point  on the diagonal line in Figure 1).37 The

error distributions determine which of the two cases in Proposition 8 applies.

For instance, with normal error distributions, the first-period prize is zero

(see Corollary 6 below).

Note that in contrast to the perfect substitutes case (Propositions 5 and

4), the optimal weights and prizes are independent of the relation between

first- and second-period effort costs and entirely determined by the properties

of the observation error distributions.

5.4 Restrictions on allowable policies

In some circumstances, principals may not be free to choose arbitrary incen-

tive systems. For instance, there may be a limit on the extent to which they

may consider past performance in current evaluations. Then first-period

prizes may act as substitutes for performance weights: For instance, with

perfect substitutes, Proposition 4 shows that it is weakly easier to satisfy

37Note that  
1 () is typically not linear.
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the condition for 
1 () =  and correspondingly weakly more difficult to

satisfy the condition for 
1 () = 0 when  is bounded above. Conversely,

the prize structure may be restricted. For instance, a principal may have

to spread the prize sum evenly. According to Proposition 7, 1 ≤ 
2
must

hold for the optimal first-period prize with imperfect substitutes. In cases

where an unconstrained principal would set 1 

2
, a principal who has to

set 1 =

2
is giving excessive first-period incentives relative to the uncon-

strained case. To make up for this, she has to adjust the weight of first-period

performance downwards.

6 A Normal-Quadratic Example

To obtain sharper results, we introduce a simple example.

Example E1: The cost function is  () =

2
2 for  = 1 2. The error

difference ∆ is normally distributed with variance 2 .
38

Example E1 satisfies Assumptions 1 and 2.39

Corollary 5 In E1, a PBE exists. The equilibrium efforts under revelation

and no revelation are

∗1 (12) =
1


√
2

Ã
1

1
+

2p
22 + 21

2

!
. (21)

∗2 (2 0) =  (∗2 (2 1)) =
2


√
2
p
22 + 21

2
. (22)

Proof. See Appendix.

Comparative statics for second-period efforts are straightforward. Lower

marginal effort costs, higher second-period prize, lower first-period weight

and higher first- and second-period precision induce higher second-period

efforts. Analogous results hold for period one. First-period efforts also in-

crease if the second-period precision increases, given   0: The parameter

change makes first-period effort more worthwhile, because the positive effect

on winning the second-period prize increases. Finally, a redistribution of the

prize sum from period 2 to period 1 increases first-period efforts, because the

positive effect of an increase in the first-period prize is always stronger than

the negative effect of an identical decrease in the second-period prize.

38A normally distributed error difference follows, for example, from normally distributed

observation errors.
39In the appendix, we also derive the second-order conditons ((66) and (68)).
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Figure 2: Necessary conditions for  with perfect substitutes

Figure 2 illustrates Proposition 5 for Example E1. It shows how the

optimal weight  depends on the sensitivity
¯̄̄
0()
()

¯̄̄
of second-period com-

petition to , which is low if the second-period performance measurement is

relatively imprecise compared to the first-period measurement, implying a

higher optimal weight of first-period performance.

Corollary 6 characterizes the optimal policy. The results endogenize the

assumption that 1 = 0 and  = 1 in Aoyagi (2010) for identically normally

distributed error distributions (1 = 2).
40

Corollary 6 In E1,

(i)  (1) =
22
21
∀ 1   . Furthermore, 

1 = 0 and 
 =

22
21
.

(ii) Necessary conditions for the optimum are  = 2
1
and  

1 = 0.

Proof. See Appendix.

(i) shows that it is optimal to give only a second-period prize with per-

fect substitutes. Incentives for first-period efforts come exclusively from the

weight of past performance, which is the ratio of the error variances in the

two periods. (ii) yields a similar result for imperfect substitutes, with vari-

ances replaced by standard deviations. Note that    if and only if
2
1

 1: Greater precision of the second-period performance measure leads

to higher second-period efforts compared to the first-period efforts. With

40Similarly, we provide a justification for Ederer’s (2010) model with non-complementary

abilities in which 1 = 0 and  = 0.
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imperfect substitutes, where an even effort flow is desired, a greater weight

of the first period is used to mitigate the asymmetry.

The example demonstrates the importance of the right incentive system.

To see this, suppose that initially the principal chooses (1) =
¡
0 

2

¢
, so

that there are two independent and identical tournaments. Next suppose that

the principal introduces the optimal policy in two steps: First, she maintains

the equal division of the prize sum across periods, but chooses the optimal

weight 
¡

2

¢
, so that (1) = (

22
21
 
2
). Finally, she chooses prizes and

weights optimally, so that (1) = (
22
21
 0). Simple calculations (available on

request) show that if the principal sets only  optimally, the relative increase

of her payoff, compared to the initial situation, is


 ≡

 
³
22
21
 
2

´
−  

¡
0 

2

¢
 

¡
0 

2

¢ =

p
21 + 22 − 1

(1 + 2)

By optimally adjusting the prize structure as well, she achieves an additional

relative payoff increase of


1
≡
 

³
22
21
 0
´
−  

³
22
21
 
2

´
 

³
22
21
 
2

´ =

p
21 + 22 − 2p
21 + 22 + 2

.

The relative importance of these two effects depends on the precision of the

performance measures. If second-period performance measurement is very

precise (2 ≈ 0), whereas the first-period measure is not, then 
 ≈ 0;

If first-period performance measurement is very precise (1 ≈ 0), whereas

the second-period measure is not, then 
1
≈ 0. Thus, getting the perfor-

mance weight right (rather than choosing  = 0) is only important when

second-period performance measurement is imprecise; getting the second-

period prize right (rather than splitting the price equally) only matters when

first-period performance measurement is imprecise.

Compared to the initial situation, the total relative payoff increase from

setting both 1 and  optimally is


1
≡
 

³
22
21
 0
´
−  

¡
0 

2

¢
 

¡
0 

2

¢ =
2
p
21 + 22 − (1 + 2)

(1 + 2)

Figure 3 shows how the total relative payoff increase from choosing the op-

timal incentive system depends on the variances of the error distributions.
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Figure 3: Relative payoff increase when setting 1 and  optimally


1

attains its minimum for 1 = 2 at
√
2 − 1 ≈ 41%. Thus, the

percentage payoff increase from implementing the optimal policy is lowest

if both performance measurements are equally precise. Even in this case,

however, the benefits are substantial: The principal can achieve 41% higher

payoff with a budget-neutral policy adjustment. Figure 3 further shows that

if one of the performance measures is very precise ( ≈ 0), then 
1
≈ 1.

Hence, the more precise one of the performance measures, the more the

principal can benefit from implementing the optimal policy.

7 Concluding Remarks

This paper analyzes intertemporal effort provision in two-stage tournaments.

A principal with a fixed budget for prizes faces two risk-neutral agents. She

observes noisy signals of effort in both periods. She aims at maximizing

either total efforts (perfect substitutes) or the product of first- and second-

period efforts (imperfect substitutes). She decides (i) how to spread prize

money across the two periods, (ii) how to weigh performance in the two

periods when awarding the second period prize, and (iii) whether to reveal

performance after the first period.

We obtain several new insights. First, design matters. The potential
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losses from suboptimal incentive systems are substantial.41 Second, several

interesting results of existing research on revelation policy and performance

weights are much more general than previously known, extending in partic-

ular to the important case that efforts in different periods are not perfect

substitutes. Third, we provide new results on the determinants of optimal

incentives. We show that the weight of past performance should depend

negatively on the extent to which a higher weight of the past reduces compe-

tition. We also show how the spread of prizes across periods and the choice

of weights depends on the relative precision of performance measures in the

two periods. Finally, we show that, under quite general conditions, there

should be no first-period prize.

41Klein (2014) confirms this result in an experimental test of the predictions for the

optimal weight of past performance and the prize distribution.
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8 Appendix

8.1 Behavior of the Agents42

8.1.1 Proof of Lemma 2

(i) Equilibrium efforts must be positive because 2  0 by Assumption 2 and

 0
2 (0)= 0 by Assumption 1. Since 2 is symmetric by Assumption 2 and

− (∆11+∆12)= ∆21+∆22

the left-hand side of the first-order condition (2) is equal for both agents. Hence

∗2 (∆1)= ∗2(−∆1), so that the second-period efforts are the same for both

agents. Thus, (2) becomes 2 (∆1)2=  0
2 (2). As 

00
2 0 by Assumption 1,

 0
2 therefore is strictly increasing and thus invertible. Thus (3) must hold in any

equilibrium.

(ii) The following inequality guarantees that the second-period payoffs (1) of

player  are strictly concave in 2:

 02 (∆1+∆2)2   00
2 (2) ∀ ∆1∈ R, 2 2∈ R+. (23)

(23) requires 2 to be sufficiently convex.
43 If this condition holds globally, the

first-order conditions (2) characterize a Nash equilibrium. Moreover, the equilib-

rium is unique, as (3) must necessarily hold in any equilibrium by Part (i) of the

lemma.

8.1.2 Proof of Corollary 1

The inverse function theorem yieldsh
( 0

2)
−1
i0
(2 (∆1)2)=

1

 00
2

¡
( 0

2)
−1
(2 (∆1)2)

¢ .
Thus (3) implies

2

∆1
=

 02 (∆1)2

 00
2

¡
( 0

2)
−1
(2 (∆1)2)

¢ ; (24)

2


=

∆1
0
2 (∆1)2

 00
2

¡
( 0

2)
−1
(2 (∆1)2)

¢ ; (25)

2

 2

=
2 (∆1)

 00
2

¡
( 0

2)
−1
(2 (∆1)2)

¢ . (26)

42The proofs in this section generalize Aoyagi (2010) and Ederer (2010) (for non-

complementary abilities) who assume 1 = 0 and  = 1.
43By Assumption 2,  02 (∆1+∆2)  0 if ∆1+∆2  0, so that (23) always holds

in this case. For the case that ∆1+∆2  0, suppose 
0
2 is bounded above. Then (23)

holds globally if 00
2 has a sufficiently high lower bound.
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By Assumption 1,  00
2 0. By Assumption 2, if ∆1 ()0 ∧  6= 0 ∧ 2 0,

then  02 (∆1) ()0 and thus
2
∆1

 ()0 . This implies that 2 is de-

creasing in |∆1|. As ∆1= ∆1+∆1 we obtain the results for 1 and 1.

Similar arguments show that 2


 ()0 for   ()0 and thus 2 decreasing in

||. Since 2 0 by Assumption 2, we have 2
 2

 0.

8.1.3 Proof of Proposition 1

(i) We first derive expressions for


2

1
for symmetric first-period efforts. This

allows us to state the FOC.

Lemma 3
 

2

1

¯̄̄̄
1=1

=  2() (27)

Proof. Applying the envelope theorem to (4), we obtain


2 (∆1)

∆1
=
 2

2

∗2 (−∆1)

∆1
+

 2

∆1
 (28)

Using (24) and the symmetry of the density (Assumption 2),

∗2 (−∆1)

∆1
=
2 (∆1)

∆1
=

 02 (∆1)2

 00
2

¡
( 0

2)
−1
(2 (∆1)2)

¢ .
(1) implies

2

2
= −2 (∆1+∆2)2

2

∆1
= 2 (∆1+∆2)2

Using these equations in (28) and inserting ∆2= 0, we obtain

 
2

∆1
= − 2 (∆1) 

0
2 (∆1)

2
2

 00
2

¡
( 0

2)
−1
(2 (∆1)2)

¢+2 (∆1)2
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Using this in (5), we obtain


2

1
=Z ∞

−∞

"
−2 ( (∆1+)) 

0
2 ( (∆1+))

2
2

 00
2

¡
( 0

2)
−1
(2 ( (∆1+))2)

¢ +2 ( (∆1+))2

#
1 () 

=  2

Z ∞

−∞
2 ( (∆1+)) 1 () −

 2
2

Z ∞

−∞

2 ( (∆1+)) 
0
2 ( (∆1+))

 00
2

¡
( 0

2)
−1
(2 ( (∆1+))2)

¢1 () 
Let

 : =

Z ∞

−∞
2 ( (∆1+)) 1 () 

 : =

Z ∞

−∞

2 ( (∆1+)) 
0
2 ( (∆1+))

 00
2

¡
( 0

2)
−1
(2 ( (∆1+))2)

¢1 () .
With this notation,


2

1
=  2−  2

2. (29)

Substituting  = −∆1 and  =  in  and decomposing the integral gives

 =

Z 0

−∞
2 () 1 (−∆1) +

Z ∞

0

2 () 1 (−∆1) .

Let  = −. Symmetry of 1 and 2 by Assumption 2 implies 2 ()= 2 ()

and 1 (−∆1)= 1 (+∆1). Hence,Z 0

−∞
2 () 1 (−∆1)  =

Z ∞

0

2 () 1 (+∆1) .

Thus,

 =

Z ∞

0

2 () 1 (+∆1) +

Z ∞

0

2 () 1 (−∆1) 

=

Z ∞

0

2 () [1 (+∆1)+1 (−∆1)] .

Substituting  = −∆1 and  =  in  and decomposing the integral, we

obtain

 =

Z 0

−∞

2 () 
0
2 () 1 (−∆1)

 00
2

¡
( 0

2)
−1
(2 ()2)

¢+Z ∞

0

2 () 
0
2 () 1 (−∆1)

 00
2

¡
( 0

2)
−1
(2 ()2)

¢.
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Again using  = − and appealing to symmetry, 2 ()=2 (),  02 ()=− 02 ()
and 1 (−∆1)= 1 (+∆1). ThusZ 0

−∞

2 () 
0
2 () 1 (−∆1)

 00
2

¡
( 0

2)
−1
(2 ()2)

¢ =Z ∞

0

2 () (− 02 ()) 1 (+∆1)

 00
2

¡
( 0

2)
−1
(2 ()2)

¢ .

Hence,

 =

Z ∞

0

−2 ()  02 () 1 (+∆1)

 00
2

¡
( 0

2)
−1
(2 ()2)

¢ +

Z ∞

0

2 () 
0
2 () 1 (−∆1)

 00
2

¡
( 0

2)
−1
(2 ()2)

¢
=

Z ∞

0

2 () 
0
2 () [−1 (+∆1)+1 (−∆1)]

 00
2

¡
( 0

2)
−1
(2 ()2)

¢ .

Substituting the expressions for  and  into (29) and using  = , we obtain

 
2

1
=  2

Z ∞

0

2 () [1 (+∆1)+1 (−∆1)]  (30)

+ 2
2

Z ∞

0

2 () 
0
2 () [1 (+∆1)−1 (−∆1)]

 00
2

¡
( 0

2)
−1
(2 ()2)

¢ .

With ∆1= 0, we obtain (27).

Together, (6) and Lemma 3 imply

1 (0)1+ 2() = 
0
1 (1) .

By Assumption 1,  0
1 is invertible. We thus obtain (13) as a necessary condition

for any symmetric interior PBE.

(ii) We know from Lemma 2(ii) that (2) implies sequential rationality in the

second period. Moreover, from the discussion at the beginning of Section 4.1,

beliefs are consistent.

As  0
1(0) = 0 by Assumption 1, efforts must be positive in any symmetric

equilibrium if (12) holds. Thus, by Part (i), (13) is a necessary condition for an

equilibrium. The second-order condition for player  is

 01 (∆1)1+
2

2

21
  00

1 (1) ∀1 1∈ R+. (31)

Inserting (30) in (31) gives

 01 (∆1)1+ 2

Z ∞

0

2 () [
0
1 (+∆1)− 01 (−∆1)] + (32)

 2
2

Z ∞

0

2 () 
0
2 () [

0
1 (+∆1)+

0
1 (−∆1)]

 00
2

¡
( 0

2)
−1
(2 ()2)

¢    00
1 (1) .
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The left-hand side of this inequality is decreasing in  00
2 , while the right-hand side

is increasing in  00
1 . For given policy parameters and distributions, (31) there-

fore holds as long as min
©
 00
1 (0)

00
2(0)

ª
, which is a lower bound for  00

1 (1)

and  00
2

¡
( 0

2)
−1
(2 ()2)

¢
, is sufficently large. In this case, the second-order

condition can be guaranteed to hold whenever the slopes of 1 and 2 are bounded.

If these conditions hold globally, (13) thus describes an equilibrium, which is

the unique symmetric equilibrium.

8.1.4 Proof of Corollary 2

Symmetry of the equilibrium implies ∆1= ∆1. Hence, (3) implies

∗2 (∆1  2 1)= (
0
2)
−1
(2 (∆1)2) .

Taking the expectation over ∆1, we obtain

∆1 (
∗
2 (∆1  2 1))=

Z ∞

−∞
( 0

2)
−1
(2 ()2) 1 () .

From the symmetry of the density by Assumption 2, we get (14).

8.1.5 Proof of Proposition 2

(i) From (15), the first-order conditions are

1 (∆1)1+ 2

Z ∞

−∞
2 ( (∆1+)+∆2) 1 ()  =  0

1 (1)

2

Z ∞

−∞
2 ( (∆1+)+∆2) 1 ()  =  0

2 (2)

For the symmetric case ∆1= ∆2= 0, this simplifies to

1 (0)1+ 2() =  0
1 (1) ;

2() =  0
2 (2) .

Inverting  0
1 and  0

2 yields (16) and (17).

(ii) If (12) holds, first-period equilibrium efforts are positive because  0
1(0) = 0

by Assumption 1. Equilibrium efforts in the second period are positive because

2()  0 by Assumption 2. By part (i), (16) and (17) are necessary equilibrium

conditions.
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Consider the following second-order conditions44

 01 (∆1)1+
22

Z ∞

−∞
 02 ( (∆1+)+∆2) 1 ()    00

1 (1) ; (33)

 00
1 (1)2

Z ∞

−∞
 02 ( (∆1+)+∆2) 1 () 

+ 00
2 (2) ·

∙
 01 (∆1)1+

22

Z ∞

−∞
 02 ( (∆1+)+∆2) 1 () 

¸
(34)

− 01 (∆1)12

Z ∞

−∞
 02 ( (∆1+)+∆2) 1 ()    00

1 (1)
00
2 (2) .

If these conditions hold globally, the expected payoff of player  is a strictly con-

cave function of (1 2), so that (16) and (17) describe best responses, and thus

characterize a Nash equilibrium. Furthermore, this is the unique symmetric equi-

librium.

8.1.6 Discussing Second-Order Conditions (No revelation)

Global Second-Order Conditions We first show that (33) and (34) hold

for given policy parameters and distributions as long as  is sufficiently convex

for  = 1 2. For (33), this is obvious, as the right-hand side is increasing in 1
00 ().

To see that the statement is also true for (34), let

 ≡ 2

Z ∞

−∞
 02 ( (∆1+)+∆2) 1 () 

 ≡  01 (∆1)1+
22

Z ∞

−∞
 02 ( (∆1+)+∆2) 1 () 

 ≡ − 01 (∆1)12

Z ∞

−∞
 02 ( (∆1+)+∆2) 1 () 

With this notation, (34) can be written as

 00
1 (1) ·+ 00

2 (2) · +  ≤  00
1 (1)

00
2 (2) (35)

To prove that (34) holds for sufficiently convex cost functions, suppose it does not

hold for some pair of cost function e1 and e2. Let c ()= e ()+

2
2. Then

(35) for b1 and b2 is e 00
1 (1) ·+ e 00

2 (2) · +  ≤ (36)e 00
1 (1)

e 00
2 (2)+

³ e 00
1 (1) +

e 00
2 (2)−−

´
+2

44(33) is the condition that expected payoffs are strictly concave in (1); (34) is the

condition that the Hessian of the expected payoff function has strictly positive determinant.
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For all  and , the right-hand side of this inequality can be made arbitrarily

high by increasing , so that the inequality is satisfied and thus (34) holds.

Local Second-Order Conditions In the symmetric equilibrium, ∆1=

∆2= 0 Using this equation in (33) and (34), 
0
1 (0)= 0 and the symmetry of 1

and 2 (Assumption 2) gives

22

Z ∞

−∞
 02 () 1 ()    00

1 (1) ; (37)µ
2

 00
2 (2)

+
22

 00
1 (1)

¶Z ∞

−∞
 02 () 1 ()  ≤ 1. (38)

By Assumption 2, 1 ()= 1 (−) and  02 ()= − 02 (−). This implies
that

R∞
−∞  02 () 1 ()  = 0. Thus, the left-hand sides of (37) and (38) are all

0 and the inequalities hold automatically.

8.2 Revelation Policy: Proof of Proposition 345

(14) and (17) imply

∗2 ( − 1 0)− (∗2 ( − 1 1))=

( 0
2)
−1
(( − 1) ())−2

Z ∞

0

( 0
2)
−1
(2 () ( − 1)) 1 () .

Using Definition 3 and the symmetry of 1 and 2, the right-hand side can be

written as

( 0
2)
−1
µ
( − 1)

Z ∞

−∞
2 () 1 () 

¶
−
Z ∞

∞
( 0

2)
−1
(2 () ( − 1)) 1 () .

Substituting  ()≡ ( − 1)2 (), this becomes

( 0
2)
−1
µZ ∞

−∞
 () 1 () 

¶
−
Z ∞

−∞
( 0

2)
−1
( ()) 1 () .

According to Jensen’s inequality, this expression is weakly negative (weakly posi-

tive) if ( 0
2)
−1
is convex (concave), which is the case if and only if  0

2 is concave

(convex), that is,  000
2 ≤ 0 ( 000

2 ≥ 0).
45The proof resembles Aoyagi (2010) and Ederer (2010) (case with non-complementary

abilities), but allows for 1  0 and  6= 1.
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8.3 Optimal Weights

8.3.1 Proof of Proposition 4

We start with several auxiliary results. Then, we show that   0 is never optimal.

Finally, we show that it is always optimal to increase  from zero to some positive

value.

Lemma 4 Suppose 1 0 and 2= −1. Then,
(i)

∗1 (1 − 1 1)  ∗1 (21 −1).

(ii)

 (∗2 (1 − 1 1))=  (∗2 (2 − 1 1)) .

(iii)

∗2 (1 − 1 0)= ∗2 (2 − 1 0) .

Proof. (i) From (13) and (16) and using (11), we have

∗1 (11 − 1)−∗1 (21 −1) = (39)

( 0
1)
−1
(1 (0)1+1 ( − 1)(1))−

( 0
1)
−1
(1 (0)1−1 ( − 1)(1)) .

As  00
1  0, (

0
1)
−1
is strictly increasing. Thus, (39) is strictly positive.

(ii) (14) and 2 (2) = 2 (1) imply the result.

(iii) (17) and (11) imply the result.

Lemma 5 Suppose 1  . Then,

(i)

∗1 ( 1 − 1)



¯̄̄̄
=0

 0.

(ii)

 (∗2 ( − 1 1))



¯̄̄̄
=0

=
∗2 ( −1 0)



¯̄̄̄
=0

= 0.

Proof. (i) From (13) and (16),

∗1 (1 −1)


=

( − 1) ( ()+
0())

 00
1

£
( 0

1)
−1
(1 (0)1+ ( − 1) ())

¤ . (40)
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Hence,

∗1 ( 1 − 1)



¯̄̄̄
=0

=
( − 1) (0)

 00
1

£
( 0

1)
−1
(1 (0)1)

¤
=

( − 1) 2 (0)

 00
1

£
( 0

1)
−1

1 (0)1

¤ .
where the second equality follows from (9). As  00

1  0 and 2 (0) 0,
∗1(1−1)



¯̄̄
=0

 0 provided 1  .

(ii) From (14),

 (∗2 (1 − 1 1))


= 2

Z ∞

0

 02 () ( − 1) 1 ()

 00
2

£
( 0

2)
−1
(2 () ( − 1))

¤. (41)
Hence,

 (∗2 (1 − 1 1))



¯̄̄̄
=0

= 2

Z ∞

0

 02 (0) ( − 1) 1 ()

 00
2

£
( 0

2)
−1
(2 (0) ( − 1))

¤ =0,
where the second equality follows from  02 (0)= 0. Next, from (17),

∗2 ( − 1 0)


=

( − 1)
0()

 00
2

£
( 0

2)
−1
(( − 1)())

¤ .
Hence,

∗2 ( − 1 0)



¯̄̄̄
=0

=
( − 1)

0 (0)

 00
2

£
( 0

2)
−1
(( − 1) (0))

¤= 0,
where the second equality follows from (10).

To see that   0 is never optimal, note that Lemma (4) (i)-(iii) implies that

for every   0, −  0 yields strictly higher first-period efforts and equally high
second-period efforts. Thus, for any revelation policy and whether efforts are

perfect or imperfect substitutes, the optimal  is non-negative.

To see that for 1  the optimal  is positive, note that by Lemma (5) (i)

and (ii), increasing  marginally from zero increases first-period efforts, while there

is no effect on second-period efforts. Hence, for any revelation policy and whether

efforts are perfect or imperfect substitutes, the optimal  is positive provided

1  .
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8.3.2 Proof of Proposition 5

From (18),

  ( 1 1)


=
∗1 ( 1 − 1)


+
 (∗2 (1 − 1 1))


(42)

Using (C1) and (7) to simplify (40) and (41), (42) becomes

  ( 1)


=
( − 1)

¡
() + 

0
()
¢

1
+
( − 1)

0()
2

(43)

Solving
  (1)


= 0 and rearranging gives the result.

8.4 Optimal Prize Structure for Perfect Substitutes

First, we provide results on the optimal prize structure for the case of general 1

and 2 that are not necessarily quadratic. As the revelation policy matters in

this case, we first address the optimal prize structure for the full revelation case

in Proposition 9. The result will rely on the Assumption that  000
 ≤ 0. This is

not a serious restriction: Corollary 3 states that  000
2 ≤ 0 is the case in which full

revelation is optimal. Second, we consider the no revelation case in Proposition

10 for  000
 ≥ 0. Again, this is not a serious restriction because for  000

2 ≥ 0 no
revelation is optimal by Corollary 3. Third, we derive Corollary 4 for  000

 = 0.

8.4.1 Full Revelation

Proposition 9 Suppose  000
 ≤ 0 for  = 1 2. For all  0, 

1 ( 1)=0

(
1 ( 1)= ) if and only if

1 (0) ()
0
1

∙
( 0

1)
−1
(())+2

Z ∞

0

( 0
2)
−1
(2 () ) 1 () 

¸
.

(44)

Proof. Using (13) and (14) in (18) gives

  ( 1 1) = ( 0
1)
−1
(1 (0)1+ ( − 1)()) (45)

+2

Z ∞

0

( 0
2)
−1
(2 () ( − 1)) 1 () .
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This yields

  ( 1 1)

 1

=

1 (0)−()
 00
1

£
( 0

1)
−1
(1 (0)1+ ( − 1)(())

¤
−2
Z ∞

0

2 () 1 ()

 00
2

£
( 0

2)
−1
(2 () ( − 1))

¤,
and hence

2  ( 1 1)

 2
1

=

−
000
1

£
( 0

1)
−1
(1 (0)1+ ( − 1) ())

¤
(1 (0)−())2¡

 00
1

£
( 0

1)
−1
(1 (0)1+ ( − 1)())

¤¢3
−2
Z ∞

0

(2 ())
2
 000
2

£
( 0

2)
−1
(2 () ( − 1))

¤
1 () ¡

 00
2

£
( 0

2)
−1
(2 () ( − 1))

¤¢3 

Since  000
  0,  000

 ≤ 0 implies 2  ( 11)

(1)
2 ≥ 0. Thus, there is no interior

optimum. For  1=0 and  1= , the principal’s expected payoffs are

  ( 0 1)= ( 0
1)
−1
(())+2

Z ∞

0

( 0
2)
−1
(2 () ) 1 () ;

  ( 1) = ( 0
1)
−1
(1 (0) ) .

Therefore,

  ( 0 1)−  ( 1)=

( 0
1)
−1
( ())+2

Z ∞

0

( 0
2)
−1
(2 () ) 1 () − ( 0

1)
−1
(1 (0) ) .

Hence,   ( 0 1)−  ( 1) ()0 if and only if (44) holds.

8.4.2 No Revelation

For the no revelation case, we again restrict the third derivative of the cost func-

tions in such a way that the revelation policy is optimal by Corollary 3.

Proposition 10 Suppose  000
 ≥ 0 for  = 1 2. For all   0

(i) 
1 ( 0)=0 if

1 (0)− ()
 00
1

£
( 0

1)
−1
( ())

¤−  ()

 00
2

£
( 0

2)
−1
( ())

¤ 0 (46)
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(ii) 
1 ( 0)= if

1 (0)− ()
 00
1

£
( 0

1)
−1
(1 (0) )

¤−  ()

 00
2 (0)

 0 (47)

(iii) If neither (46) nor (47) holds, 
1 ∈ [0 ].

Proof. Using (16) and (17) in (18) gives

  ( 1 0)= (48)

( 0
1)
−1
(1 (0)1+ ( − 1)())+ (

0
2)
−1
(( − 1) ()) .

This yields

  ( 1 0)

 1

=

1 (0)− ()
 00
1

£
( 0

1)
−1
(1 (0)1+ ( − 1) ())

¤−  ()

 00
2

£
( 0

2)
−1
(( − 1) ())

¤
and

2  ( 1 0)

 2
1

=

−(1 (0)− ())
2 · 000

1

£
( 0

1)
−1
(1 (0)1+ ( − 1) ())

¤¡
 00
1

£
( 0

1)
−1
(1 (0)1+ ( − 1) ())

¤¢3
−( ())

2 · 000
2

£
( 0

2)
−1
(( − 1) ())

¤¡
 00
2

£
( 0

2)
−1
(( − 1) ())

¤¢3
Since  00

  0,  000
 ≥ 0 implies 2  (10)

( 1)
2 ≤ 0.

(i) Thus, the principal will set  1=0 provided

  ( 1 0)

 1

¯̄̄̄
1=0

=
1 (0)− ()

 00
1

£
( 0

1)
−1
( ())

¤−  ()

 00
2

£
( 0

2)
−1
( ())

¤ 0
(ii) She will set  1= provided

  ( 1 0)

 1

¯̄̄̄
1=

=
1 (0)− ()

 00
1

£
( 0

1)
−1
(1 (0) )

¤−  ()

 00
2 (0)

 0.
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8.4.3 Proof of Corollary 4

(i) With  000
 = 0, Proposition 9 implies that


1 () always is a boundary solution,

with
1 ()= 0 if

1
1
(1 (0) ) 

³


1
+ 1

2

´
 (). This gives the first result.

Note that the left-hand side of the last equation is total effort for 1= , while

the right-hand side is total effort for some  and 1= 0. Hence, if the inequality

is satisfied for some , then total effort for this  and 1= 0 is higher than for

1= , which shows that 1= cannot be optimal. In this case, since there

is no interior optimum by Proposition 9, 1= 0 is optimal.
46

(ii) analogous.

8.5 Optimal Prize Structure for Imperfect Substitutes

8.5.1 Proof of Proposition 6

Using (13) and (14) in (19) yields

  (1 1 1) = ( 0
1)
−1
(1 (0)1+ ( − 1)()) · (49)

2

Z ∞

0

( 0
2)
−1
(2 () ( − 1)) 1 () .

Using (49), we have

  ( 1 1)

 1

= (50)

2 (1 (0)− ())
R∞
0
( 0

2)
−1
(2 () ( − 1)) 1 () 

 00
1

£
( 0

1)
−1
(1 (0)1+ ( − 1) ())

¤
−2 ( 0

1)
−1
(1 (0)1+ ( − 1) ()) ·Z ∞

0

2 ()

 00
2

£
( 0

2)
−1
(2 () ( − 1))

¤1 () .
46This can also be derived from Proposition 10.
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Thus,

2  ( 1 1)

( 1)
2

=

−2 (1 (0)− ())
2 · 000

1

£
( 0

1)
−1
(1 (0)1+ ( − 1) ())

¤¡
 00
1

£
( 0

1)
−1
(1 (0)1+ ( − 1) ())

¤¢3 ·Z ∞

0

( 0
2)
−1
(2 () ( − 1)) 1 () 

− 4 (1 (0)− ())
 00
1

£
( 0

1)
−1
(1 (0)1+ ( − 1) ())

¤ Z ∞

0

2 () 1 () 

 00
2

£
( 0

2)
−1
(2 () ( − 1))

¤
− ( 0

1)
−1
(1 (0)1+ ( − 1) ()) · 2

Z ∞

0

(2 ())
2¡

 00
2

£
( 0

2)
−1
(2 () ( − 1))

¤¢3 ·
 000
2

h
( 0

2)
−1
(2 () ( − 1))

i
1 () .

Since   ( 1)=0,  1= is never optimal. Since  00
  0, 

000
 ≤ 0 implies

2 ( 11)

2
1

 0 if 1 (0)−()  0. For this case, there is no interior optimum
and thus  1=0.

8.5.2 Proof of Proposition 7

With (C1), (49) yields

  ( 1)=
( − 1) ()

12
(1 (0)1+ ( − 1) ()) . (51)

Thus

  ( 1)

 1

=
 ()

12
[1 (0) ( − 2 1)−2 () ( − 1)] . (52)

Because   0,  ()  0 and  0,  1
1
2
 implies

 ( 1)

 1
 0. Hence,

 1

2
∀ .

8.5.3 Proof of Proposition 8

(i) Clearly 1 0 at the optimum if
 ( 1)

 1

¯̄̄
1=0

 0, that is, using (52), if

1 (0) 2 (). To see that 1= 0 at the optimum if
 ( 1)

 1

¯̄̄
1=0

 0 or,

equivalently, 1 (0) 2 (), first note that (52) implies

2  ( 1)

 2
1

=
 ()

12
[−21 (0)+2 ()] .
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Thus
 ( 1)

 1
is monotone in 1. Moreover, according to the proof of Proposi-

tion 7,
 ( 1)

 1
 0 ∀ 1 


2
. The last two statements imply that, whenever

 (1)

 1

¯̄̄
1=0

 0, then
 ( 1)

 1
 0 for all1 ≤ 

2
and thus 

1 ()= 0. To

see that 1= 0 at the optimum if
 (1)

 1

¯̄̄
1=0

= 0 or, equivalently, 1 (0)=

2 (), note that 1 (0)= 2 () implies
2 ( 1)

 2
1

 0, so that
 ( 1)

1
 0

∀ 1 0 and thus 

1 ()= 0.

For
 ( 1)

1

¯̄̄
1=0

 0, the first-order condition
 ( 1)

1
= 0 yields 

1 () =


1(0)−2()
21(0)−2() 0 for 1 (0) 2(). Summing up, we obtain

 
1 ()=

(


1(0)−2()
21(0)−2()  0 1 (0) 2 ()

0 1 (0)≤ 2 ()
(53)

(ii) (53) shows that  
1 must correspond to one of the two cases mentioned

in the proposition. To complete the proof, we derive the first-order condition for

 (1) for these two cases. From (51), we obtain

  ( 1)


=
( − 1)

2
 ()

12

¡
 () + 

0
()
¢
+ (54)

( − 1)
0 ()

12
(1 (0)1+ ( − 1) ()) .

The first-order condition
 ( 1)


=0 yields

1=
( ())

2
+2 ()

0
()

 ()
2
+2 ()

0
()− 1 (0)

0 ()
. (55)

According to (53), 1= 0 is a necessary condition for an optimum with 1 (0)≤
2(). Inserting 1= 0 in (55) gives the first-order condition  = − ()

20() ,

which corresponds to Proposition 8(ii)(a). Analogously, 1=
1(0)−2()
21(0)−2() is a

necessary condition for an optimum with 1 (0) 2(). Inserting

1=
1(0)−2()
21(0)−2() in (55) and solving for 1 (0) gives the first-order condition

1 (0)= − (())
2

0() , which corresponds to Proposition 8(ii)(b).

8.6 The Normal-Quadratic Example E1

8.6.1 Proof of Corollary 5

Part 1: Auxilliary Results
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We will first provide several auxiliary results. Note that 2√


R 
0
exp (−2)  is

the error function, for which

2√


Z ∞

0

exp
¡−2¢  = 1. (56)

Next, for E1,

 () =
1


√
2
exp

µ
− 2

22

¶
. (57)

Hence,

 0 () = − 1√
2



3
exp

µ
− 2

22

¶
; (58)

 00 () =
1√
2

2 − 2
5

exp

µ
− 2

22

¶
;

 000 () =
1√
2

32− 3

7
exp

µ
− 2

22

¶
.

As  = − (the solution to  00 () = 0 and  000 ()  0) maximizes  0 (), we

obtain ∀ ∈ R  0 () ≤ − 1√
2

−
3
exp

³
− 2
22

´
and thus

 0 () ≤
1

2
p
2 exp(1)

(59)

Furthermore, (57) impliesZ ∞

0

2 ()  =
1

2
√
2

Z ∞

0

exp

Ã
−
µ

√
22

¶2!


Substituting  =
√
22
||  and  =

√
22
||  impliesZ ∞

0

2 ()  =
1

||√
Z ∞

0

exp
¡−2¢ .

With (56), we get Z ∞

0

2 ()  =
1

2 || . (60)

Next, (57) and (58) implyZ ∞

0

2 () 
0
2 () = −



242

Z ∞

0

 · exp
µ
−

22

22

¶
.
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Substituting  =
√
2
|| and  = 2

2
√
|| and noting that

R∞
0
exp (−)  = 1, we

obtain Z ∞

0

2 () 
0
2 () =−

1

422
. (61)

Furthermore, (57) implies

 ()=
1

12

Z ∞

0

exp

⎛⎝−Ãp21
2+22√

212

!2⎞⎠ 

Substituting  =
√
212√
21

2+22

 and  =
√
212√
21

2+22

 yields

 ()=

√
2


p
21

2+22

Z ∞

0

exp
¡−2¢ 

With (56), we get

 ()=
1√

2
p
21

2 + 22
, (62)

so that

 0() = − 21√
2 (21

2 + 22)
3
2

. (63)

Part 2: Second-Order Conditions

Next, we derive sufficient conditions for the second-order conditions to hold.47

Using  00
 ()=, (23) simplifies to

 02 ()2  ∀ ∈ R (64)

From  2≤ and (59),

 02 ()2≤ 

22
p
2 exp (1)

(65)

(64) and (65) imply that a sufficient condition for (23) to hold is

 


22
p
2 exp (1)

(66)

Similarly, (32) can be written as

 01 ()1+ 2

Z ∞

0

2 () [
0
1 (+ )− 01 (− )]  (67)

+
 2

2



Z ∞

0

2 () 
0
2 () [

0
1 (+ )+ 01 (− )]   

47We only consider the second-order conditions for the full revelation case.
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Using (59), we obtain ∀ ∈ R

 01 ()1≤ 1

21
p
2 exp (1)

;

 2

Z ∞

0

2 () [
0
1 (+ )− 01 (− )] ≤2 2

¯̄

R∞
0

2 () 
¯̄

21
p
2 exp (1)

;

 2
2



Z ∞

0

2 () 
0
2 () [

0
1 (+ )+ 01 (− )] ≤2

2
2

¯̄

R∞
0

2 () 
0
2 () 

¯̄
21

p
2 exp (1)

.

This yields an upper bound for the left-hand side of (67):

1

21
p
2 exp (1)

∙
1+2 2

¯̄̄̄


Z ∞

0

2 () 

¯̄̄̄
+
2 2

2



¯̄̄̄


Z ∞

0

2 () 
0
2 () 

¯̄̄̄¸
.

With (60) and (61), this upper bound can be written as

1 +2

21
p
2 exp (1)

+
 2
2

21
2
2 (2)

3
2

p
exp (1)

≤



21
p
2 exp (1)

+
 2

21
2
2 (2)

3
2

p
exp (1)

.

A sufficient condition for (32) to hold is thus




21
p
2 exp (1)

+
 2

21
2
2 (2)

3
2

p
exp (1)

. (68)

Part 3: Characterizing the equilibrium

Proposition 1 thus characterizes the PBE. As  000
2 = 0, Proposition 3 implies

that efforts under both revelation policies are equal in expected value. Inserting

( 0
)
−1
()=


, (57) and (62) in (13) and (14) yields (21) and (22).

8.6.2 Proof of Corollary 6

(i) We first derive  (1). With (62) and (63), we obtain

 0()
 ()

= − 21
22+

2
1
2
.

Proposition 5 (i) thus implies
·21

22+
2
1
2=

1
1+

as a necessary condition, which

is uniquely (and positively) solved by  =
22
21
 0. Since the optimal  must be
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strictly positive by Proposition 4 and since the solution to the necessary con-

dition is unique and positive, the necessary condition is sufficient and we have

 (1)=
22
21
∀  1  . Next, we show that 

1 = 0. By Corollary 4, 

1 = 0

if ∃ such that 1 (0) (1 + ) (). From (57) and (62), this condition is

equivalent with 1

1
√
2
 1+√

2
√

21
2+22
⇐⇒  

22

2
1

−1
2
. In particular, this holds for

 (1)=
22
21
. Hence, 

1 = 0 and  = 
¡

1

¢
=

22
21
.

(ii) (62) and (63) yield

 ()
2
+ 0 () 1 (0)=

p
221+

2
2−1

2 (221+
2
2)

3
2

 0 ∀ .

This is inconsistent with

¯̄̄
0()
()

¯̄̄
=

()

1(0)
as for   0,

¯̄̄
0()
()

¯̄̄
=

()

1(0)
is equivalent

to  ()
2
+ 0 () 1 (0)= 0. Therefore, according to Proposition 8(ii)(b), 

1 0

cannot apply. Hence, Proposition (8)(ii) gives¯̄̄̄
 0()
 ()

¯̄̄̄
=
1

2

as the necessary condition for  . Using (62) and (63), this can be written as

21
22+

2
1
2
=
1

2
,

which is solved by =2
1
.
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