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ABSTRACT:
   This paper presents the bayesian approach to analyze regional

elasticity distributions with a regular translog cost function. It is known
that a proper statistical analysis of elasticities can be performed only with
the bayesian approach. We can take advantage of this methodology to
form reasonable priors using national data. This way we can produce
sounder inferences without much elicition by the analyst. To compare
results this approach is applied to a cost function for the main regions in
Italy with a diffuse prior too. Price and substitution elasticities are
derived conditional on factor shares or covariates. The low posterior
probability than inequality constraints hold with an noninformative prior
shows how bayesian methods can be fruitfully employed to compare
regional elasticities with a proper prior obtained from national data.
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1. Introduction

Bayes analysis is straightforward, but it is still not often used in applied

econometrics in regional science. I present a brief introduction to this approach1. Let θ  a

vector of parameters in which we are interested and y a vector of observations from a

density ( )f y / θ  that is identical to the likelihood function ( )l θ / y  that contains all the

sample information about the parameters. A priori analyst’s knowledge about

parameters is summarized by a subjective probability distribution ( )f θ . Therefore the

joint distribution over parameters and observations is:

( ) ( ) ( ) ( ) ( )h y f y f y f y fθ θ θ θ, / /= =

that yields the Bayes theorem:

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )f y

f y f

f y

y f

f y
y fθ

θ θ θ θ
θ θ/

/ /
/= = ∝

l
l

which states that the posterior density function for the parameters after the sample is

proportional to the likelihood times the prior information. This way we can update our

prior information that is modified by the sample information and attainment of the

posterior density can be viewed as the end point of any scientific investigation.

Anyone who is familiar with the Bayesian approach is familiar with the

everlasting arguments concerning the proper philosophical and probability foundations,

pros and cons of this approach with respect to classical econometrics and difficulty to

elicit prior distributions in most empirical analyses. These discussions are intellectually

stimulating, but of little interest to practitioners. Therefore I prefer a more pragmatic

approach and present an example where bayesian methods are the only meaningful

solution to derive inferences about quantity of interest such as regional elasticity of

substitutions. We know from previous research that interval of confidence can be

obtained only with a bayesian approach (Gallant and Monham 1985) while all the

neoclassical properties can be imposed only with bayesian a priori restrictions (Barnett,

Geweke and Wolf 1991a, 1991b, Chalfant and Wallace 1991, Chalfant, Gray and White

1991). Then a bayesian transformation from prior to posterior knowledge must be

adopted in our regional analysis and the very point is to adopt a reasonable prior. In
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general we have two choices. First we can claim to know to have no information, but

neoclassical properties. In this case our prior is a Jeffrey’s non informative or diffuse

prior that satisfies neoclassical constraints. As we see below, in our standard linear

regression model, this is to assume:

( ) ( )
f

I y
β σ

β
σ

,
, ~

∝

where ( )I yβ ,~  is an indicator function equal to one when neoclassical constraints are

satisfied and zero otherwise.

The second possibility is to form a proper prior that expresses our a priori

knowledge about the phenomenon under investigation. I claim that any empirical

analysis in regional science can be cast with a proper prior since we always have data at

the national lavel. Therefore we can elicit a convenient prior derived from national data

for the same parameters in which we are interested. Formally in the general linear model

we can consider:

( ) ( ) ( )f I y f fN IGβ σ β β σ σ, ( , ~) /∝  

where prior distributions are simply formed using the same model with previous or

contemporaneous national data. However this procedure is not completely automatic,

since we can always monitor these distributions in a appropriate way. If for instance the

regional data belong to an “important” region, whose share is relevant, we can give a lot

of weight to this prior. On the other hand for marginal regions we can choose to make

this prior distribution more diffuse simply controlling some a priori distribution

parameters. Therefore this approach is flexible enough to suit regional science

practitioners without resorting to complex and demanding aggregation theories.

Finally I would like to stress that bayesian econometrics appear to be the only

feasible solution if we consider the huge variety of phenomena in regional science, as it

doesn’t pretend to discover the “true” model or the “true” data generating process.

Perhaps in regional science we are more interested to study interregional differences and

explain for instance why certain regions grow and others don’t. When we compare

regions we are better off if we specify a general common model within which we can

                                                                                                                                              
1 Classical refrence are Zellner (1971), Press (1972), Box and Tsiao (1973) while updated text are
O’Hagan (1995), Bernardo and Smith (1994).
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differentiate patterns. This task cannot be accomplish with the standard approach since

"the fundamental difficulty for classical inference is that it deduces what should be

observed as the sample increases if the model is correctly specified. By contrast, the

objective of the investigator is to modify his view of the world conditional on a given

data set, and prior information which includes the specification of the model" (Geweke

1988 p. 161).

The paper is organized as follows. In section 2, I briefly review the well known

translog cost function. In section 3 I outline the standard bayesian approach for the

general linear model with exchangeable observations. Regular regional elasticity

distributions are analyzed with a Monte Carlo Composition method that can be used to

determine the posterior probability of inequality constraints (monotonicity and

concavity). Empirical results for the Italian macro regions are presented in section 4.

Finally conclusions and directions for future research are discussed in the last section.

2. A generalized translog cost function

Consider a standard generalized transcendental logarithmic (translog):

    

( )ln , , ln (ln ) ln ln

ln ln ln ln

C p q t q q p p

q p t t t q t p

i j
j

N

i

N

Yi i
i

N

T TT TY Ti i
i

N

= + + + + +

+ + + + +

==

= =

∑∑

∑ ∑

α α γ γ

γ δ δ δ δ

0 Y YY ij

       

1

2

1

2

1

2

2
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1

2

1

 (2.1)

where q  is total output, p a vector of non-negative prices and t is a time index. Cost

shares are provided by Shepard Lemma:

y p Y ti i ij j
i

N

Yi Ti= + + +
=
∑α γ γ δln ln

1

      i = 1,...,N     (2.2)

It is known that a well behaved cost function and its share systems must satisfy several

properties. Linear homogeneity in p can be globally  imposed assuming:

α γ γ γ δi
i

ij ij
j

Yi
i

Ti
ii

= = = = =∑ ∑ ∑ ∑∑1 0;    .  (2.3)

 while symmetry of the cross price demand responses is satisfied if γ γij ji=   for all i,j.

If the translog is conceived as a Taylor approximation to a generic cost function in  t=0,

pi=q=1 for all i, by Young theorem, symmetry is a maintained hypothesis. Otherwise

(2.2) is an exact cost function whose properties can be tested or assumed (Jorgenson
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1986). Unfortunately there is no simple linear combination of parameter that guarantees

concavity. This has usually been "tested" checking whether the substitution elasticities

matrix is semidefinite negative for each actual share. However concavity can be

imposed via Cholesky decomposition, as suggested by Lau (1978)2. Since the matrix of

the share elasticities Ω = γ ij  is symmetric, than it is possible to represent it in terms of

its Cholesky factorization Ω = T DT’ , where T is a unit lower triangular matrix and D is

a diagonal matrix. Symmetry and product exhaustion provide conditions under which

there exists a one to one transformation between the elements of ### Ω  and the

elements of T and D. Then the matrix of share elasticities is semidefinite negative if and

only if the first N-1 diagonal elements of D are nonpositive. This procedure has been

first applied by Jorgenson and Fraumeni (1981), but it has been shown by Diewert and

Wales (1987) that it destroys the second order flexibility properties, since it implicitly

assumes "restrictions on own and cross elasticities that may be a priori completely

unacceptable ... the use of the Jorgenson-Fraumeni procedure for imposing concavity

will lead to estimated input substitution matrices which are in some sense "too negative

semidefinite"; i.e. the degree of input substitutability will tend to be biased in an upward

direction" (Diewert and Wales 1987, p. 48). Below we follow the bayesian approach to

impose locally concavity and monotonicity that doesn’t suffer this drawback.

Parameters and their transformations provide information about the technology.

In this paper we focus on price and substitution elasticity. Price elasticities  can be easily

obtained by Allen's definition of elasticities of substitution:

σ
∂ ∂ ∂

∂ ∂ ∂ ∂
ε γ

ij

i j

i j

ij

j

ij

i j

C C p p

C p C p y y y
= = = +

    

       
 ,

( / )

/ /

2

1              for i ≠ j           (2.4)

   σ
ε γ

ii

ij

i i

ij

iy y y
= = − +

 
,1

1
2

(2.5)

while price elasticities are:

ε σij j ijy= (2.6)

Since we want to keep the analysis as simple as possible I choose a value added

translog cost function that generates the following labor share equation:

                                                
2 A complete discussion about concavity can be found in Morey (1986).
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( )y p p Y t t Tt L LL Lt Kt YL t TL t t= + + + + =α γ γ δ εln / ln , ,        1L (2.7)

where yt  is the t-th observation of labor share and ( )ε σt N∼ 0 2,  is an homoschedastich

error.

3. Statistical analysis

Following Geweke (1986) we assume standard linear regression3 with a proper

prior that presupposes a well behaved cost function:

   ( )f I y f fN IGβ σ β β σ σ, ( , ~) ( / ) ( )∝  (3.1)

since ( )I yβ ,~  is an indicator function equal to one when inequality constraints are

satisfied (i.e. when posterior distributions don’t violate concavity and monotonicity).

We stress the difference with Barnett, Geweke and Wolf (1991a), (1991b) or Chalfant,

Gray and White (1991) who consider the indicator function depending on parameters

only, while it’s well known that concavity requires that substitution matrix is negative

semidefinite4. This in turn constraint parameter and predictive to lie into a neoclassical

regular space. Therefore the posterior is no longer a normal gamma inverse distribution

since:

  ( ) ( ) ( ){ ( ) } ( )f y I y b X X b
sk( , )
 

β σ β σ β β σ σ
ν

σ
ν/ , ~ exp ’ ’ / exp∝ − − − −












− +2

2

2 1
2

2

(3.2)

where

b X X X y= −( ’ ) ’ ,1  ν  s y y b X X b2 = −’ ’( ’ ) , ν = −T k .  (3.3)

Actually the predictive density function f y y X( %/ , %) , with    :(q k)
~
X × , and the

β/y are not multi-t Student distribution with  ν degrees of freedom as without inequality

constraints (Zellner 1971). Within this framework sampling theory methods cannot be

adopted due to the absence of any distribution theory and bayesian methods must be

                                                
3 More precisely assume { }z y xi i i= , ’ ’  exchangable3. Then, conditional on θ ∈Θ , zi/θ are i.i.d.  Let the

parameter vector be decomposed into two separate subvectors [ ]θ ϕ ψ’ ’, ’ ’= , where ( )ϕ β σ= ’, ’  and

assume the hypothesis of bayesian cut (see Florens and Mouchart (1985)).
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used. Actually maximum likelihood estimator of β is equal to b if  either the

constraints are not binding or β lies on the boundary of ( )I yβ ,~ . Moreover it can be

shown that the distribution of the maximum likelihood estimator depends on the true

value of β, and is not admissable as an estimator (Judge et al. 1985). Then the

"computational coincidence of sampling and posterior distributions does not extend to

inequality constrained linear regression" (Geweke 1986: p.128). For these reasons a

bayesian approach must be preferred, even if we have to apply not standard

computational procedures as Monte Carlo integration, since ( )I yβ ,~  is an indicator

function and analytic integration is not feasible. Our task is to calculate the following

integral with inequality constraints:

( )[ ] ( ) ( ) ( )
( ) ( )E g y

g y l y p d

l y p d
β

β ϕ ϕ ϕ

ϕ ϕ ϕ
, ~

, ~ /

/
= < +∞

∫
∫

  

 
(3.4)

where  ( )ϕ β σ= ’ , ’ . Analitical solutions are not feasible, but a Monte Carlo composition

procedure is straightforward since:

f y y x I y x f y y x f y f yR N N IG(~, , / , ~) ( , ~ / ~) (~ / , , , ~) ( / , ) ( / )β σ β β σ β σ σ=  (3.5)

where I y x( , ~ / ~)β is the indicator function evaluated at point. Then Monte Carlo method

approximates any function over parameters and predictive with:

( )[ ]
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
$ ,~ / ,~

,~ ~ / , , ,~ / , / ,~ / ~

~ / , , ,~ / , / ,~ / ~
E g y y x

g y f y y x f y f y I y x

f y y x f y f y I y x

i i N i i i N i i IG i i i
i

N

N i i i N i i IG i i i
i

N
β

β β σ β σ σ β

β σ β σ σ β
= =

=

∑

∑

 

  

  (3.6)1

1

where ( , , ~ )β σ1 1 1y ,...., ( , , ~ )β σN N Ny  are i.i.d. draws from the posterior distribution. By

the Law of Large Numbers:

( )[ ] ( )[ ]$ ,~ / ,~ ,~ ,~. .E g y y x E g y y xa sβ β →  (3.7)

while the estimated Monte Carlo standard error of $( )E g ϕ  is:

                                                                                                                                              
4 This implies that elasticities must satisfy the following conditions:

σ σ σ σ σLL KK LL KK KL≤ ≤ ≥ ≥0 0 2 0, ,      (where the last inequality obtained by ε σij
j

n

j ij
j

n

S= =
= =

∑ ∑
1 1

0 ).
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(3.8)

Using this Monte Carlo composition method we get an empirical i.i.d. sample of

the joint density over parameters and predicted with all the neoclassical restrictions.

Furthermore this large sample  can be used to approximate the posterior probability that

the properties hold.5 I can apply Monte Carlo integration as shown above to derive:

( ) ( )[ ]
( )

( )

( )

P y y f y y x d dy

I y f y y x d dy

N
I y

R

i
i

N

R

β β β

β β β

β

,~ / ( ~, / ,~ ) ~

,~ ( ~, / ,~ ) ~

,~

∈ × =

=

≅

×

×

=

∫

∫

∑

Φ Ω
Φ Ω

Φ Ω

  

  

1

1

(3.9)

as suggested also by Chalfant and Wallace (1992) for Monte Carlo integration with

importance sampling. This is also equal to (approximate) Posterior odds since obviously

( ) ( )[ ]P y yβ ,~ / .∈ × =Φ Ω 1  Using (2.35) we can state the condition that must be

satisfied to accept concavity and monotonicity in a decision theoretic framework with

piecewise continuous loss function. Call  lR is the loss incurred accepting incorrectly the

restrictions and lU is the loss if we reject  incorrectly the restrictions.6 Then an optimal

decision minimizes the expected loss, hence we reject the restrictions if:

( ) ( )[ ]P y y
l

l lR
R

R U

β ,~ /∈ × <
+

Φ Ω (3.10)

As 0 ≤ ( ) ( )[ ]P y y
R

β ,~ /∈ ×Φ Ω  ≤ 1, loss function dictates the critical value for which

restrictions hold. If we assume a symmetric loss function, i.e. lR = lU ,  we accept the

restrictions if the posterior probability is larger than 0.5.

4. Data and empirical findings

                                                
5 Note that restrictions are imposed at a point. However the approach cen be straightfowardly extended to
impose them on a lattice.
6 For sake of semplicity I have assumed that losses are independent on parameter and predicted.
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The model is applied to the metal product sector concerning the Italian main

macroregions (i.e. North, Center and South) over the years 1980-89. The complete data

set concerns 20 Italian regions and is representative of a standard situation in (Italian)

regional economics, since regional time series are usually extremely short. Labor

comprehends both employed and self-employed workers, whose wage is assumed to be

equal within each region. Capital stock data are not available for the eighties at the

regional level, therefore it as been computed as a residual from constant price valued

added minus constant wage payroll. Even if the residual approach to build the data set is

very questionable, stocks and relative price are consistent with national patterns and

other regional information such as regional investment.7 Moreover I utilize an enlarged

definition of capital as it can include factors that are not compatible with the

neoclassical theory outlined above, such as market power. These caveats should be kept

in mind when reviewing regional elasticitities.

The first step of our analysis is to adopt a prior. I embrace both a diffuse

(noninformative) prior and a proper one. A Jeffrey’s prior can be used if we claim not to

have any a priori knowledge about parameters and has been frequently addressed as a

reductive attempt to be more "objective". A proper prior can be easily derived from

national data for the previous decade. Moreover we can also assume that the error

variances are different in the two sets (Zellner 1971, Drèze 1977) and obtain a poly t 2-0

model or we can accommodate degrees of freedom to obtain very flat prior

distributions8. Posterior moments are provided in Table 1 with moments for the proper

prior. As obvious there is a greater precision with the informative prior.

                                                
7 The value-added approach to estimate cost of capital (Cost of capital = value added - payroll) was
criticized since it includes more than cost of reproducible capital, as working capital, land and so on. It
was suggested (see also Christensen and Jorgenson (1969), Berndt and Wood (1975)) that a service price
approach is better suited since it allows to directly figure out the cost of reproducible capital alone. This
can explain the large difference in U.S. manufactoring elasticities in earlier studies, that “could in part be
traceable to the fact that two quite different types of capital inputs are involved and these two form of
capital, physical capital and working capital, behave in quite different ways"  (Field and Grebenstein
(1979: p. 207). However lack of data on regional physical capital and the extreme unreliability of the
procedure adopted to construct rental price series for the Italian regions had forced to follow the value
added approach
8 In this analysis degrees of freedom are equal to 6, allowing for quite smooth distributions, but these can
be decreased further, since only second order moments are required to have well defined prior
distributions. For sake of simplicity I have implemented the most straightforward statistical model, but the
bayesian approach is flexible enough to allow any modification about prior beliefs with a larger
computational cost.
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 INFORMATIVE   PRIOR DIFFUSE  PRIOR

NORTH CENTER SOUTH PRIOR NORTH CENTER SOUTH

αL 0.67734 0.65924 0.64535 0.71751 0.68055 0.65611 0.63901

st. err. 0.00278 0.00234 0.00293 0.01158 0.00271 0.00346 0.00380

γLL 0.19238 0.20726 0.21909 0.18793 0.25187 0.27113 0.30052

st. err. 0.02470 0.01908 0.02447 0.01283 0.07895 0.06619 0.05407

γ###YL
-0.07710 -0.06902 -0.05222 -0.18234 -0.09755 -0.06843 -0.06003

st. err. 0.01820 0.01531 0.01742 0.02417 0.05927 0.06806 0.05447

δ###TL
-0.00582 -0.00826 -0.01077 0.00364 -0.00968 -0.01222 -0.01350

st. err. 0.00131 0.00123 0.00135 0.00241 0.00439 0.00463 0.00322

σ### 0.00834 0.00660 0.00772 0.00351 0.00586 0.00620 0.00557

st. err. 0.00159 0.00126 0.00147 0.00127 0.00213 0.00225 0.00202

with concavity imposed

δ###TL
-0.00558 -0.00779 -0.01055 0.00522 -0.00599 -0.00791

st. err. 0.00125 0.00110 0.00119 0.00308 0.00400 0.00307

TABLE 1 - Parameter Characteristics

As I said above parameter distributions are nor very interesting per sè, perhaps

with the exception of the one relative to technical change. In Fig. B technical change

marginal densities in South are plotted using a diffuse or a proper prior with (solid line)

and without (dotted) concavity and monotonicity.
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 Fig. B   Technical change  South

As we can see from Table 1 posterior expected values and standard errors with

inequality constraints are very different with a diffuse prior. However in both cases it’s

evident that technical change has been labor saving (and capital using) in the eighties,

since only a negligible part of the distribution with a diffuse prior covers positive

values, even if our prior is mostly positive. The standard approach that estimate with

maximum likelihood methods neglecting to impose concavity can be very misleading

since a 95% Highest Posterior Density cover a large region that is not consistent with

neoclassical theory.

Now let’s consider more useful quantities as substitution and price elasticities.

As a point of reference I choose the last year of the data set (1989). Results are reported

in Table 2-4 and densities for price elasticities are plotted in Fig. C - E9, while

substitution elasticities are presented in Fig. F - H. We know that conditional on actual

shares elasticities are distributed as univariate t Student. Therefore we can provide exact

first moments that are shown in the following table:

                                                
9 Recall that ε εKK KL=  and ε εLL LK= .
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  INFORMATIVE  PRIOR           DIFFUSE  PRIOR

NORTH CENTER SOUTH NORTH CENTER SOUTH

σ###KL
0.14255 0.05044 0.03586 -0.12257 -0.24246 -0.32245

st. err. 0.11011 0.08743 0.10769 0.35188 0.30326 0.23794

σ###KK
-0.27686 -0.10627 -0.06685 0.23805 0.51019 0.60109

st. err. 0.21385 0.18419 0.20075 0.44355 0.63890 0.44355

σ###LL
-0.07340 -0.02394 -0.01924 0.06311 0.11494 0.17298

st. err. 0.05670 0.04150 0.05777 0.18118 0.14394 0.12764

ε###KL
0.09410 0.03420 0.02334 0.08091 0.16422 0.20987

st. err. 0.07268 0.05929 0.07009 0.23228 0.20565 0.15487

ε###LK
0.04845 0.01624 0.01252 0.04166 0.07795 0.11258

st. err. 0.03743 0.02814 0.03760 0.11960 0.09761 0.08308

ε###KK
-0.09410 -0.03420 -0.02334 0.08091 0.16422 0.20987

st. err. 0.07273 0.05929 0.07009 0.23228 0.20565 0.15487

ε###LL
-0.04845 -0.01624 -0.01252 0.04166 0.07795 0.11258

st. err. 0.03743 0.02814 0.03760 0.11960 0.09761 0.08308

         TABLE 2 - Elasticities conditional on 1989 labor share

It’s striking to note that all the expected values for price and substitution

elasticities with a diffuse prior have the "wrong" sign. Expected own elasticities are

positive and cross elasticities are negative, against neoclassical theory. However, using

the usual sampling theory language, we should immediately add that we cannot reject

the hypothesis that they are not significantly different from zero. It’s not clear how

useful is such a statement, but, in our framework, we can easily figure out the

probability that elasticities are greater (or lower) than zero. In the same fashion we can

calculate posterior odds (or Bayes Factor, if we assign equal prior probabilities to both

hypotheses) in favor of the (marginal) regularity condition, as discussed above. At any

rate Bayes Factor with a symmetric distribution are always against regularity (less than

one) since expected values have the "wrong" sign. Therefore they are not presented here,

and visual inspection of such distributions (the dotted ones) depicted in Fig. B - H is



13

even more helpful to understand the point. The opposite holds with a proper prior. In

this case all the expected values have the "correct" sign, but some variances are still

quite large (even if three times lower than with a diffuse prior). In South there are still

large regions of theoretical irregularity, as we can see from Fig. G.

Nonetheless this analysis is conceptually anomalous, since it is conditional on

actual factor share. This is not very meaningful, as in our translog model, we should

condition on the triplet (Y,t,w/r). Moreover marginal distributions don’t fully account for

regularity conditions, that must be imposed at the same time on all the elasticities. These

tasks are accomplished in two steps as discussed above. First we perform a Monte Carlo

composition method to get a sample of 10.000 observations from the joint distributions

of parameters and predicted. Then we use this sample to derive elasticities conditional

on (Y,t,w/r) in 1989. Subsequently we impose concavity and plot the resulting

distributions. All these are plotted together to check different behaviors. Distributions

conditional on labor shares are plotted with a dotted line, while I have plotted with a

solid line those conditional on (Y,t,w/r) with and without imposing concavity.
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INFORMATIVE  PRIOR       DIFFUSE  PRIOR

NORTH CENTER SOUTH NORTH CENTER SOUTH

σ###KL
0.13841 0.05088 0.03848 -0.11992 -0.24101 -0.31822

st. err. 0.11212 0.08993 0.10634 0.35575 0.31708 0.23709

σ###KK
-0.27205 -0.10575 -0.07020 0.23032 0.50949 0.58942

st. err. 0.22055 0.18890 0.19623 0.67920 0.67211 0.44091

σ###LL
-0.07054 -0.02450 -0.02112 0.06250 0.11416 0.17195

st. err. 0.05737 0.04297 0.05783 0.18763 0.15064 0.12808

ε###KL
0.09196 0.03438 0.02472 -0.07884 -0.16357 -0.20661

st. err. 0.07438 0.06050 0.06929 0.23317 0.21520 0.15408

ε###LK
0.04689 0.01655 0.01356 -0.04108 -0.07744 -0.11161

st. err. 0.03798 0.02889 0.03764 0.12271 0.10201 0.08310

ε###KK
-0.09196 -0.03438 -0.02472 0.07884 0.16356 0.20661

st. err. 0.07438 0.06050 0.06929 0.23317 0.21520 0.15408

ε###LL
-0.04689 -0.01655 -0.01356 0.04107 0.07744 0.11161

st. err. 0.03798 0.02889 0.03764 0.12271 0.10201 0.08310

TABLE 3 - Elasticities conditional on 1989 (Y,t,w/r) without inequality constraints

A few comments are worthwhile. As shown in Table 2 and 3, expected values

conditional on labor share and on (Y,t,w/r)  without imposing concavity are very similar.

Therefore we can conclude that the standard translog model predict quite well in terms

of elasticities. Very different is the situation when we impose concavity. Results for

expected values and standard deviations are tabulated in Table 4.
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INFORMATIVE  PRIOR       DIFFUSE  PRIOR

NORTH CENTER SOUTH NORTH CENTER SOUTH

σ###KL
0.17028 0.09648 0.10434 0.257961 0.221143 0.15507

st. err. 0.09366 0.06717 0.07662 0.23078 0.23160 0.15097

σ###KK
-0.33486 -0.20167 -0.19176 -0.48632 -0.46109 -0.28678

st. err. 0.18358 0.59734 0.14077 0.43966 0.48857 0.28159

σ###LL
-0.08674 -0.04622 -0.05686 -0.13714 -0.10641 -0.08406

st. err. 0.05737 0.03249 0.04198 0.12373 0.11238 0.08179

ε###KL
0.11312 0.06592 0.06819 0.16846 0.14935 0.100591

st. err. 0.06191 0.04525 0.04892 0.15077 0.15653 0.09812

ε###LK
0.05764 0.03155 0.03713 0.08949 0.07178 0.05448

st. err. 0.03172 0.02181 0.02679 0.08030 0.07539 0.05296

ε###KK
-0.11312 -0.06592 -0.06819 -0.16846 -0.14935 -0.10059

st. err. 0.06191 0.04525 0.04892 0.15077 0.15653 0.09812

ε###LL
-0.05764 -0.03155 -0.03713 -0.08949 -0.07179 -0.05448

st. err. 0.03172 0.02181 0.02679 0.08030 0.07539 0.05296

TABLE 4 - Elasticities conditional on 1989 (Y,t,w/r) with inequality constraints

Moments are quite dissimilar with a diffuse prior. For instance the expected

capital labor substitution elasticity for the Center is double than with a proper prior, but

no general pattern can be easily detected. However, it is very interesting to notice how

the posterior odds in favor of concavity (given by the ratio of accepted samples) varies

with regions. With a proper prior, in North the probability is in line with earlier findings

by Chalfant and Wallace (1992) and is approximately about 0.538, while it declines in

Center (0.397) and further in South (0.357). This is even more striking when we adopt a

diffuse prior. Odds are very against concavity in South (0.043) and Center (0.102),

while in North it is equal to 0.213. We can notice how neoclassical theory deteriorates

in Southern regions. This is coherent with our previous findings since elasticities

densities mostly don’t cover neoclassical space in South. From an economic point of

view, we notice how elasticities are higher in North but still quite low and that

technology in South is very close to a Leontief production function. I would like to

remark that, contrary to Guilkey and Lovell (1981), even with substitution elasticities
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lower than 1/3, the translog model still produces a reasonable approximation to the

unknown cost function in North. However it will be interesting to compare the behavior

of this functional flexible form with different ones (such as Generalized Leontief, Box-

Cox or Minflex Laurent)  in further studies. 

5. Conclusions

In this paper I have reviewed the well known approach to analyze production

technologies with dual flexible cost function. In this study I have chosen the standard

generalized translog cost function that had widespread applications in the empirical

literature. This has been applied to the metal product sector of the main macro region in

Italy (North, Center and South).

Since elasticity distributions are not known and approximate variances are often

completely unreliable I have adopted a bayesian approach that can provide a sound

analysis, even with a very small sample (10 observations), providing a proper prior. As I

deal with Italian regional cost function, the informative prior has been naturally formed

with national data from the previous decade. As a point of reference I have adopted a

diffuse prior to compare both results.  The bayesian approach has been performed in two

steps.  First I derive posterior distribution with homogeneity and symmetry that cab be

derive in a straightforward way in our natural conjugate framework. Then I have

adopted a Monte Carlo Composition method to approximate them through an i.i.d.

empirical sample from the joint distribution over parameter and predictive. Only the

replications that satisfy all the neoclassical properties are accepted and also used to

derive the posterior odds ratios concerning concavity and monotonicity. Empirical

results are roughly in line with previous findings and as expected. This is true if we

adopt a proper prior, as, with a diffuse one, even if translog parameters are significant,

elasticities display unplausible values. Moreover concavity is not acceptable in all the

regions. Even with a proper prior, neoclassical theory deteriorates in South  and can be

hardly accepted.10 In any case price and substitution elasticities between capital and

labor are very low but not far away from previous findings.

                                                
10 Fiorito (1990) estimates a labor market model in the same macroregions and find unsound results in
South, while Prosperetti and Varetto (1991) found larger inefficiencies in South suggesting that
neoclassical models could be at stakes in this region.
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