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DESIGN OF HOMOGENOUS TERRITORIAL UNITS: A 

METHODOLOGICAL PROPOSAL 

 

Juan Carlos Duque, Raúl Ramos 

 

 

Summary: 

 

One of the main questions to solve when analysing geographically added 

information consists of the design of territorial units adjusted to the objectives of the 

study. In fact, in those cases where territorial information is aggregated, ad-hoc criteria 

are usually applied as there are not regionalization methods flexible enough. Moreover, 

and without taking into account the aggregation method applied, there is an implicit risk 

that is known in the literature as Modifiable Areal Unit Problem (MAUP) (Openshaw, 

1984). This problem is related with the high sensitivity of statistical and econometric 

results to different aggregations of geographical data, which can negatively affect the 

robustness of the analysis.  

In this paper, an optimization model is proposed with the aim of identifying 

homogenous territorial units related with the analyzed phenomena. This model seeks to 

reduce some disadvantages found in previous works about automated regionalisation 

tools. In particular, the model not only considers the characteristics of each element to 

group but also, the relationships among them, trying to avoid the MAUP. An algoritm, 

known as RASS (Regionalization Algorithm with Selective Search) it also proposed in 

order to obtain faster results from the model. The obtained results permit to affirm that 

the proposed methodology is able to identify a great variety of territorial configurations, 

taking into account the contiguity constraint among the different elements to be 

grouped. 
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1. INTRODUCTION AND OBJECTIVES 

 

The interest for geographical information technologies has considerably 

increased during the last three decades. Nowadays, geographical information is no more 

exclusive of government and public administrations (in the areas of planning, 

demography and topography) thanks to the development of computer tools, in software 

and hardware, that have made possible to use this information in firms and in academic 

areas. 

This kind of statistical information is usually published at different territorial 

levels with the aim of providing information of interest for all the potential users. When 

using this information, researchers have two different alternatives to define the basic 

territorial units that will be used in the study: first, to use geographical units designed 

following normative criteria (the officially established territorial units such that towns, 

provinces, etc.) or, second, to apply an analytical criteria to design geographical units 

directly related with the analysed phenomena.  

“Normative regions are the expression of a political will; their limits are fixed 

according to the tasks allocated to the territorial communities, to the sizes of population 

necessary to carry out these tasks efficiently and economically, or according to 

historical, cultural and other factors. Whereas analytical (or functional) regions are 

defined according to analytical requirements: functional regions are formed by zones 

grouped together using geographical criteria (e.g., altitude or type of soil) or/and using 

socio-economic criteria (e.g., homogeneity, complementarity or polarity of regional 

economies)” (Eurostat, 2004). 

The majority of empirical studies tend to use geographical units based on 

normative criteria for several reasons: this type of units are officially established, they 

have been traditionally used in other studies, its use makes comparison of results easier 

and can be less criticized. But at the same time, in those studies using this type of units 

an “Achilles’ heel” can exist if they are very restrictive or inappropriate for the 

considered problem. For example, if we are analysing phenomena as regional effects of 

monetary and fiscal policy, how will the results be affected if the aggregated areas1 in 

                                                 
1  In this paper, we will use the term “area” to denote the smallest territorial unit. The aggregation of 

areas will form a “region” and the aggregation of regions will cover the whole considered territory. 
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each region are heterogeneous? can those results change if the areas are redefined in a 

way that each region contains similar areas?. 

The above mentioned situation could be improved through the use of regionalisation 

processes to design geographical units, based on analytical criteria, by aggregating 

geographical units of small size2, but without arriving at the upper level, or combining 

information from different levels3. In this context, the design of analytical geographical 

units should consider the following three fundamental aspects: 

 

a. Geographical contiguity: The aggregation of areas into regions such that the areas 

assigned to a region must be internally connected or contiguous. 

b. Equality: In some cases, it is important that designed regions are “equal” in terms 

of some variable (for example population, size, presence of infrastructures, etc). 

c. Interaction between areas: Some variables do not exactly define geographical 

characteristics that can be used to aggregate the different areas, but perhaps they 

describe some kind of interactions among them (for example, distance, time, 

number or trips between areas, etc). These variables can also be used as interaction 

variables using some dissimilarity measure between areas in terms of socio-

economic characteristics. The objective in this kind of regionalisation process is 

that areas belonging to the same region are as homogeneous as possible with 

regard to the specified attribute(s). 

 

Unfortunately, in most cases, the aggregation of territorial information is usually 

done using “ad-hoc” criteria due to the lack of regionalisation methods with enough 

flexibility. In fact, most of these methods have been developed to deal with very 

particular regionalisation problems, so when applied in other contexts the results could 

                                                 
2  Apart from aspects such as the statistical secret or other legislation about the treatment of statistical 

data, according to Wise et al. (1997), this kind of territorial units are designed in such a way as to be 
above minimum population or household thresholds, to reduce the effect of outliers when aggregating 
data or to reduce possible inexactities in the data, and to simplify information requirements for 
calculations or to facilitate its visualisation and interpretations in maps. 

3  See, for example, Albert et al. (2003), who analyse the spatial distribution of economic activity using 
information with different levels of regional aggregation, NUTS III for Spain and France and NUTS II 
for the rest of countries, with the objective “using similar territorial units”. López-Bazo et al. (1999) 
analyse inequalities and regional convergence at the European level in terms of GDP per capita using a 
database for 143 regions using NUTS II data for Belgium, Denmark, Germany, Greece, Spain, France, 
Italy, Netherlands and Portugal, and NUTS-I for the United Kingdom, Ireland and Luxemburg with the 
objective of ensuring the comparability of geographical units. 
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be very restrictive or inappropriate for the considered problem. However, and with 

independence of the applied territorial aggregation method, there is an implicit risk, 

known in the literature as “Modifiable Areal Unit Problem” (Openshaw, 1984), and 

related with the sensitivity of the results to the aggregation of geographical data and its 

consequences on the analysis. 

The main objective in this paper is to implement a new automated regionalisation 

tool to design homogeneous geographical units directly related with the analysed 

phenomena that overcomes some of the disadvantages of available methodologies. 

 

Thus, the specific objectives are: 

 

a. To formulate the regionalisation problem as a linear optimisation model where it 

can be taken into account not only the areal characteristics but also their non 

metric relationships and their contiguity relationships. 

b. To propose a heuristic model that allow to solve bigger regionalisation problems, 

incorporating in its search procedure the own characteristics of a regionalisation 

process. 

c. To compare, in terms of homogeneity degree, the analytical regions designed by 

applying the regionalisation model proposed in this paper with another 

regionalisation method based on normative criterion. To due this comparison 

provincial time series of unemployment rate in Spain will be used. 

 

The paper is organised in the following sections: in section 2 the literature about 

the different regionalisation methods are briefly summarised; in section 3 the proposed 

lineal optimisation model for automated regionalisation is described; section 4 

introduces an algorithm to deal with more complex regionalisation problems, and, last, 

the most relevant conclusions of the paper are presented in section 5. 

 

2. REVISION OF THE LITERATURE 

 

In this section the most relevant methodologies for territorial aggregation will be 

briefly summarised. This summary will be focused on those methodologies with a 
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higher impact in the specialised literature and on those ones that have been tested 

satisfactorily in real problems. 

Most of these methodologies use techniques based on cluster analysis4. In this 

context, the problem of aggregation of spatial data is considered as a particular case of 

clustering where geographical contiguity among the elements to be grouped should be 

considered. This particular case of clustering methods is usually known as contiguity-

constrained clustering or simply regionalisation problem. A detailed summary of these 

aggregation methodologies can be found in Gordon (1999) and for the case of 

constrained clustering in Fisher (1980), Murtagh (1985) and Gordon (1996). 

Thus, regionalisation algorithms can be categorized under three methodological 

strategies: two-stages aggregation; the inclusion of geographical information in the set 

of classification variables; and, the use of additional instruments to control for the 

geographical contiguity constraint. 

 

2.1. Two stages aggregation. 

 

This strategy consists of splitting the aggregation process in two stages. The first 

stage consists of applying a conventional clustering model without take into account the 

contiguity constraint, and, in a second stage, the clusters are revised in terms of 

geographical contiguity. With this methodology, if the areas included in the same 

cluster are geographically disconnected, those areas are defined as different regions 

(Ohsumi, 1984). 

Two conventional clustering algorithms can be used in this context: hierarchical 

or partitioning. 

 

2.1.1. Hierarchical algorithms. 

 

They are usually applied when the researcher is interested in obtain a hierarchical 

and nested classification (for every scale levels), that is usually summarised using 

dendograms5. The main disadvantage of using hierarchical clustering algorithms, 

                                                 
4  Multivariate statistical tool widely used to classify elements in terms of their similarities or 

dissimilarities (Jobson, 1991). 
5  Graphical representation of the solutions of hierarchical cluster (Gordon, 1996). 
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without considering the high computational requirements (Wise et al., 1997), is the high 

probability of obtaining local optimum due to the fact that once two elements have been 

grouped in an aggregation level, they would not return to be evaluated independently in 

higher aggregation levels (Semple and Green, 1984). On the other hand, the main 

advantage that should be highlighted is that there is no need to specify initial partitions 

to apply the algorithm (Macmillan and Pierce, 1994). 

 

2.1.2. Partitioning algorithms. 

 

More used in regionalisation processes is the K-means clustering procedure, 

which belongs to partitioning clustering category, this iterative technique consists of 

selecting from elements to be grouped, a predetermined number of k elements that will 

act as centroids (the same number as groups to be formed). Then, each of the other 

elements is assigned to the closest centroid. 

The aggregation process is based on minimizing some measure of dissimilarity 

among elements to aggregate in each cluster. This dissimilarity measure is usually 

calculated as the squared Euclidean distance from the centroid of the cluster6, see 

equation 2.1. 

 

 ( )∑ ∑∈
=

−
cm

N

i
icim XX

1

2  (2·1) 

 

Where imX denotes the value of variable i (i=1..N) for observation m (m=1..M), 

and icX  is the centroid of the cluster c to which observation m is assigned or the 

average iX for all the observations in cluster c. 

K-means algorithm is based on an iterative process where initial centroids are 

explicitly or randomly assigned and the other elements are assigned to the nearest 

centroid. After this initial assignation, initial centroids are reassigned in order to 

minimize the squared Euclidean distance. The iterative process is terminated if there is 

not any change that would improve the actual solution. 

                                                 
6 A detailed summary of these aggregation methodologies can be found in Gordon (1999) and for the 

case of constrained clustering in Fisher (1980), Murtagh (1985) and Gordon (1996). 
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It is important to note that the final solutions obtained by applying K-means 

algorithm depend on the starting point (the initial centroids designation). This fact 

makes quite difficult to obtain a global optimum solution. 

Finally, when K-means algorithm is applied in a two stages regionalisation 

process, it will be possible that the required number of regions to design will be not 

necessarily equal to the value given to parameter k as areas belonging to the same 

cluster have to be counted as different regions if they are not contiguous. So, different 

proofs have to be done with different values of k (lower than the number of desired 

regions), until contiguous regions are obtained. In some cases could be impossible to 

obtain the desired number of contiguous regions. 

Among the advantages of two stages aggregation methodology, Openshaw and 

Wymer (1995) highlight that the homogeneity of the defined regions is guaranteed by 

the first stage. Moreover, this methodology can also be useful as a way to obtain 

evidence of spatial dependence among the elements. However, taking into account the 

objectives of the regionalisation process, the fact that the number of groups depends on 

the degree of spatial dependence7 and not on the researcher can be an important 

problem. 

 

2.2. Inclusion of geographical information as classification variables. 

 

The second strategy consists of including as classification variables the 

geographical coordinates of centroids representing the areas to be grouped (Perruchet, 

1983, Webster and Burrough, 1972). In this strategy, as a way to force the geographical 

contiguity, the geographical coordinates are included in the calculation of dissimilarities 

between areas and, next, conventional classification algorithms are applied. 

This kind of approach has been implemented in the SAGE system (Spatial 

Analysis in a GIS Environment) (Haining et al., 1996). In its regionalisation algorithm, 

this system uses an objective function formed by three components, the first controls the 

intra-group variance taking into account the non spatial attributes, the second, as 

geographical component, includes the sum of the distances from areal centroids to the 

cluster centroids in order to force geographical contiguity, and the third component is a 

                                                 
7  When the spatial dependence is higher (lower) there will be a trend towards the creation of less (more) 

regions. 
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deviation measure between the regional value of an attribute and its average value. A 

different weight is assigned to each of these components in the objective function in 

order to obtain a unique value to minimise. The regionalisation procedure is based on a 

partitioning algorithm K-means (Andemberg, 1973). 

Calciu (1996) uses the same territorial aggregation strategy, referring to it as 

“contrainte spatiale implicite” (implicit spatial constraint), which incorporates as 

geographical variables the Cartesian coordinates, conveniently transformed, of the 

points representing each area. This author is in favour of applying a hierarchical 

classification algorithm, where the inclusion of the coordinates permits to obtain an 

improved geographical continuity, although it implies some lost in terms of intragroups 

homogeneity in relation to the case where the hierarchical algorithm is applied without 

considering these geographical variables. 

The main inconvenient associated to this methodology are the difficulty of 

treating simultaneously variables expressed in different measure units and the definition 

of objective weights for each of the variables, specially the geographical ones as the 

weights should be strong enough to guarantee that geographical contiguous regions are 

formed (Wise et al., 1997). 

Another disadvantage is that the final solution can change depending on the 

applied method to localise the centroid that represents each of the areas to be grouped, 

especially in those cases where the areas are considerably big (Horn, 1995, Martin et al., 

2001). 

 

2.3. Additional instruments to control for the continuity restriction. 

 

The last, but perhaps the most used strategy to solve territorial aggregation 

problems, consists of controlling the geographical contiguity constraint using additional 

instruments as the contact matrix or its corresponding contiguity graph. Contact matrix 

is a binary matrix with elements cij, where cij takes value 1 if areas i and j share a 

border; and 0 otherwise. In the contiguity graph the areas to be grouped are represented 

as nodes and arcs represent the adjacency relationship between them8. 

                                                 
8  For a more detailed description of the methods for the elaboration of this kind of graphs, see Gordon 

(1996, 1999). 
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The elements above are used to adapting conventional clustering algorithms, 

hierarchical or partitioning, with the objective of respecting the continuity constraint. 

The main problem with adapted hierarchical algorithms in the context of 

regionalisation processes is that there can be breaks in monotonicity among elements. 

This problem is known as reversals: the distance between two objects can be higher 

than the distance between the union of this object with a third one (Calciu, 1996, 

Gordon 1996, Ferligoj and Batagelj, 1982). It makes difficult the interpretation of 

classification. 

In adapted partitioning algorithms, contact matrices or contiguity graphs have 

mainly been applied into two different methodologies: mathematical programming and 

iterative algorithms. 

Regarding to mathematical programming, Macmillan and Pierce (1994) define the 

regionalisation problem as an optimisation problem where, given a predetermined 

number of groups to form, the solution will define the optimum territorial aggregation. 

The proposed solution by these authors to ensure the geographical continuity consists of 

exponenciating the contact matrix, taking into account that for the formation of a region 

with n continuous areas is necessary that the (n-1)th power of the contact matrix does not 

contain null elements. This solution implies that the feasible space defined by the 

constraints is non-convex and, as a result, the objective function is likely to get trapped 

in a local optimal solution. 

Cutting algorithms for graph partitionig are another way to see the regionalisation 

problem from a mathematical programming point of view. In these models, the 

contiguity graph has associated in their arcs a value of dissimilarity between areas, i.e. 

G=(V,E), with a weight function w : E→N. 

The cutting algorithms looks for a partition of the node set V into k disjoint sets 

F={C1, C2,..., Ck} where k is integer and k ∈ [2..|V]. Thus, in a regionalization process, 

the idea could be to maximice the isolation between groups, so the objective in a 

“maximum k-cut” is to maximice the sum of the weight of the edges between the 

disjoint sets, i.e.: 

 { }( )∑ ∑ ∑
−

= +=
∈
∈

1

1 1
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Where v1 and v2 are the endpoints of an arc9. 

Another method, cited by Neves et al. (2001), consists of the reduction of the 

contiguity graph (G=(V,E)) where each arc has associated a value of dissimilarity 

between areas (weight function w : E→N). The reduction makes a progressive 

elimination of arcs until a minimum spanning tree is obtained. The main point of this 

representation is that the elimination of one arc at a time implies the partition of the 

graph in intraconnected, but not interconnected, subgroups (Ahuja et al., 1993). 

One disadvantage of the regionalisation methodologies modelling the 

dissimilarity relationships using the arcs of the contiguity graph is related with the fact 

that an important number of dissimilarity relationships between areas that are not 

contiguous are not being considered. 

Taking into account that the resolution of this kind of problems using 

conventional optimisation methods is extremely complex10, other methodologies have 

been developed in the field of regionalisation that have been very effective in those 

cases where the number of elements to group is very high. Among these different 

solutions, the algorithms known as Iterative Relocation Algorithms have been widely 

analysed. These methods try to find the best regional configuration using as a starting 

point a non-optimal configuration11 and, next, different movements of areas between 

regions are done with the objective of improving the objective function. Ferligoj and 

Batagelj (1982) provide different iterative reallocation algorithms that allow moving an 

area to a different region only if contiguity constrains are satisfied. 

Algorithms such as the Automatic Zoning Procedure (AZP) (Openshaw, 1977), 

the Land Allocation Problem (Benabdallah and Wright, 1992), the Redistricting 

Problem (Macmillan and Pierce 1994) and the Regional Partitioning Problem (Horn, 

1995) have been used in the literature related with the particular case of splitting a 

country in administrative areas or electoral districts such that the final regionalisation 

minimises the effects of the Modifiable Areal Unit Problem (MAUP)12. 

                                                 
9  A compendium of models related to network design can be found in Crescenzi and Kann (2004). 
10  Openshaw (1984) calculated that to aggregate 1,000 areas in 20 regions there are 101,260 different 

solutions. For more information about combinatorial problems, see Aarts and Lenstra (1997). 
11  Different alternatives to determine the initial solution can be found in Wise et al. (1997). 
12  Openshaw defined the problem of the Modifiable Areal Unit Problem (MAUP) as a potential source of 

error that can affect the results of those studies based in geographical aggregated information as these 
results could vary in function of the configuration of this aggregation. The MAUP is related with two 
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Iterative Relocation Algorithms have been improved using heuristics that permit 

a better search among the different feasible solutions and to avoid the risk of getting 

trapped into a local optimum. The most used heuristics in this context are the Simulated 

Annealing (AZP-SA) and the Tabu Search Algorithm13,14 (AZP-TABU), proposed by 

Openshaw and Rao (1995), and the Anneal Redistricting Algorithm proposed by 

Macmillan and Pierce (1994). 

The methodologies of constrained clustering where additional instruments are 

included, have as a common characteristic that the relationships between the areas to 

group are symmetric. In this sense, Ferligoj and Batagelj (1983) have developed 

agglomerative algorithms where asymmetric relationships can be considered. 

All the methods presented above are “supervised” models, which means that the 

researcher knows a priori the data structure of the analysed phenomenon. But there are 

other unsupervised models that can be useful when the researcher wants to analyse a big 

amount of data and there is not enough information of the factors that can affect the 

system. In these cases, one possibility consists of applying a non-parametric analysis of 

data that will permit to find the patterns and relationships among the considered 

elements. One of the most known applications of these methods in the field of 

regionalisation is Self Organization Maps (SOM) proposed by Kohonen (1984). There 

is no consensus among researchers about the validity of this methodology, originally 

developed in the field of artificial intelligence, due to the lack of a theoretical basis that 

difficult the interpretation of the results (Openshaw, 1992). 

A summary of the different methodologies in this section can be found in table 

2.1. 

                                                                                                                                               

different problems regarding the analysis of spatial data: the problem of scale, related with the desired 
number of regions, and the problem of aggregation, related with the configuration of small areas inside 
bigger areas. For more information, see Openshaw (1977), Openshaw and Taylor (1981), and in an 
econometric context, see Fotheringham and Wong (1991) and Amrhein and Flowerdew (1992). 

13  The Simulated Annealing was proposed as an optimisation procedure by Kirkpatrick et al. (1983) and 
first time applied in the Redistricting Problem by Browdy (1990). 

14  For more information about the Tabu Search Algorithm, see Glover (1977, 1989, 1990). 
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Table 2.1. Summary of the different available methodologies for the reduction of 
geographical data. 
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3. A LINEAR OPTIMISATION MODEL FOR THE DESIGN OF 

HOMOGENEOUS TERRITORIAL UNITS 

 

In this section, the regionalisation problem is formulated as a linear optimisation 

model that allows the design of regions taking into account not only the characteristics 

of the areas but also their relationships. The possibility of treating the regionalisation 

problem as a linear model implies that, by its mathematical properties, the feasible 

region is convex and, as a result, it is possible to find the optimal solution. Another 

advantages of this kind of formulation are that it is easy to implement in a great variety 

of commercial software without paying a high price for it, and flexibility when some 

changes or additional constraints are needed. 

Before introducing the mathematical formalisation of the model, its main 

characteristics and assumptions will be mentioned. 

 

3.1. Model description. 

 

3.1.1. Representation of the geographical set. 

 

The starting point of any regionalisation process is the identification of the 

territory to regionalise. As an example, Figure 3.1 shows a territory that could be 

regionalised. It is composed by a finite number (n) of geographical areas of smaller size 

that form a geographical contiguous A = {a1, a2, a3, ... , an}. 

Once the territory of interest has been defined, the next step consists of 

simplifying the previously defined geographical set in a way that each of the considered 

elements (n areas) and their neighbourhood relationships could be easily represented. 

This simplification can be done using a graph formed by n nodes, each of them 

representing one of the considered areas, and arcs that represent the geographical 

contiguity among them. 

There are different methods in order to make this kind of simplification. We have 

selected the most general one, the Delaunay Triangulation (DT) (Aurenhammer, 1991). 

With this method, each arc relates those areas with a common border. One of the main 

advantages of this method is that the location of the point representing each of the areas 

does not affect the result of the graph. Other methods, such as the Gabriel Graph 

(Matula and Sokal, 1980), the Relative Neighbourhood Graph (Toussaint, 1980) or the 
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Minimum Spanning Tree (Graham and Hell, 1985) are particular cases of DT and results 

can be different depending on the location of the areal centroids. Figure 3.2 shows the 

DT graph of the territory considered in the example. 

 

Figure 3.1. Group of areas that form 

the territory to regionalise 

Figure 3.2. Delaunay Triangulation (DT) 
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   Source: Own elaboration.    Source: Own elaboration 

 

3.1.2. Relationships between the elements to be grouped. 

 

The next step consists of the consideration of the relationships between the 

different areas (or nodes of the graph). The consideration of these relationships is one of 

the more relevant elements in the regionalisation process proposed in this section, as its 

consideration allows to take into account the interactions between. For example, if the 

objective of the study is to build regions with a similar population in order to establish 

proper comparisons, it will be helpful to consider also information on dissimilarities 

regarding other socio-economic variables in order to obtain more homogenous regions. 

These relationships are incorporated in the model through a squared and 

symmetric matrix Dij (i = 1, 2, ..., n and j = 1, 2, ... , n) where dij contains a dissimilarity 

measure between every couple of areas i, j. 

The selected function to calculate dissimilarities between couples of areas should 

satisfy the following properties: 

 

 njidd jiij ,...,1, =∀∀=  (3·1) 

 ( ) njijidd ijij ,...,1,if0,0 =∀∀==≥  (3·2) 



 14

These properties imply that the function should not be metric (it does not have to 

satisfy the triangular inequality15): 

 

 nkjiddd kjikij ,...,1,, =∀∀∀+≤  (3·3) 

 

The possibility of using distance functions that should not be necessarily metric 

can be understood as a relaxation of the hypothesis used in the regionalisation models 

based on centroids where the rest of areas are assigned to each region depending on 

their proximity. When metric distance functions are used, the centroid-based approach 

ensures that the final solution will satisfy the geographical continuity constrain.  

 

3.1.3. Strategy for the configuration of regions. 

 

Once we have information about the territorial configuration and the relationships 

between the different areas, the next step consists of grouping the n areas {a1, a2, ... , an} 

into m non-empty sets or regions {1, 2, ... , m} in a way that the areas belonging to each 

region form a geographical contiguity. 

To define these regions it will be necessary to select n-m arcs from the global set 

of arcs that define the contiguity graph. These n-m arcs can be understood as a 

necessary but not sufficient condition to form m regions in a way that areas belonging to 

each region are totally interconnected but disconnected from the areas belonging to 

other regions. This selection should take into account the following conditions: each 

region must have a number of arcs equal to the number of areas belonging to the region 

less one, each region should be formed by a minimum of two areas and, last, in each 

region, every couple of areas should be connected by a one and only one combination of 

arcs16. This kind of regional configurations implies that the minimum number of areas 

in each region will be two (one arc connecting two areas), this is m = [n/2]. This 

condition is less restrictive as the number of areas forming the territory increases17. 

Figure 3.3 shows a possible solution to design 2 regions from 7 areas. 

                                                 
15  For more information, see Gower and Legendre (1986). 
16  For more information about the properties of this (and other) configurations, see Ahuja et al. (1993). 
17  If we have one area that is considered as an outlier it should be treated as a region, the solution will be 

to exclude from the analysis and forming m-1 groups with the other n-1 areas. 
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Figure 3.3. Feasible result for the design of two regions. 
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         Source: Own elaboration. 

 

The location of arcs in each region does not have influence on the final result. For 

example, the region formed by the areas connected by arcs 1-2, 2-3 and 2-4 can be also 

configured with arcs 1-3, 2-4 and 3-4. This equivalence is related with the fact that the 

arcs function is only to ensure geographical contiguity, because of they do not have any 

value assigned. This strategy can be very useful to identify regional configurations with 

a high variety of shapes (longed or compact regions), as it does not rely on centroids, 

which tend to produce compact areas. 

 

3.1.4. Considered criteria for the configuration of regions: the objective 

function. 

 

The objective of grouping n areas in m regions is that the areas belonging to each 

region form a homogeneous geographical contiguity. So, a partition criterion 

considering which one of the possible configurations of n areas in m regions is the most 

adequate should be defined. 

With this aim, it is necessary to define a measure of adequacy of a regional 

configuration. One possibility consists of calculating the degree of heterogeneity of the 

areas assigned to a region or, other alternative could be to calculate the degree of 

isolation of the areas of one region related to the rest. The heterogeneity measure 

selected in this paper consists of the sum of the elements of the upper triangular matrix 

of dissimilarity relationships between the areas in the considered region. Following 

Gordon (1999), the heterogeneity measure for region r, Cr can be calculated as follows: 
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 { }∑ <∈
≡

jiCji ijr
r

dCH
,

)(  (3·4) 

 

Taking this into account, the problem of obtaining r homogeneous classes 

(regions) can be formulated as the minimisation of the sum of the heterogeneity 

measures of each class (region) r: 

 

 ( ) ( )∑ =
≡Σ

c

r rCHHP
1

,  (3·5) 

 

or, following the MIN-MAX strategy, we can also try to minimise the value of the most 

heterogeneous region as this imply that the rest of the regions would be equal or less 

heterogeneous: 

 

 ( ) { } ( )rcr CHMaxHP ,...,1max, =≡  (3·6) 

 

One disadvantage associated to the second strategy is that once the value of the 

most heterogeneous region is minimised, the configuration of the rest of the regions will 

not be revised, avoiding the possibility of making changes that could improve their 

heterogeneity. For this reason, the selected strategy has been the minimisation of the 

sum of the heterogeneity measures of each region ( )( )Σ,HP . 

It is worth mentioning that both objectives, minimising internal heterogeneity 

H(Cr) and maximising the isolation among regions I(Cr), are not independent. In fact, 

we can formulate an equivalent objective in terms of isolation criteria: 

 

 ( ) ( ) ( )∑ =
≡Σ≡Σ

c

r rCIIPHP
1

,,  with ∑ ∑∈ ∉
≡

r rCi Cj ijr dCI )(  (3·7) 
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3.2. Mathematical model. 
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Cji
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∈  (3·14) 

{ } { } ,...,mk ,...,n ji,T;, ; Y,X ijikijk 1;1,00101 =∀=∀∀≥∈∈  (3·15) 

 

As it was previously mentioned, the objective function looks for the 

minimisation of the total heterogeneity, measured as the sum of the elements of the 

upper triangular matrix (Dij) of dissimilarity relationships between areas belonging to 

the same region (the elements defined by the binary matrix Tij). Restriction (3·8) 

controls the assignation of the values of matrix Tij where, by the nature of the objective 

function, the relationship between areas i and j will only be taken into account if they 

belong to the same region. Restriction (3·9) imposes that the minimum number of areas 

defining a region is two. As it was previously mentioned, the restriction is less strong as 

the number of areas increases. Restriction (3·10) imposes that each area must be 

assigned to one and only one region. Restrictions (3·11) and (3·12) imposes that only 

when the area i is assigned to region k, it will be possible to establish arcs to the 

neighbourhoods of the area (j∈Ni). To avoid an excessive reduction of feasible regional 

configurations, the number of arcs from an area can be greater than one. Restriction 

(3·13) imposes that the number of arcs to ensure geographical contiguity of the areas 

assigned to one region must be equal to the number of areas in the region less one. 

However, this restriction does not totally ensure that the final solution will be formed by 

contiguous regions. There are cases such as the one shown in Figure 3.4, where region 

A, formed by areas 1, 2, 3, 6 and 7, satisfies restriction (3·13) –there are four connecting 

arcs for five areas– but the combination of arcs 1-2, 1-3, 2-3 generates a cycle that 

breaks the geographical contiguity of the region. For this reason, it will be necessary to 

control, a part of the number of arcs, if there are cycles and this is the origin of 

restriction (3·14). 
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Figure 3.4. Non-feasible regional configuration. 
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 Source: Own elaboration. 

 

The problem of cycles has been treated in the literature as the analysis of subtour 

in transport models such as the Vehicle Routing Problem (VRP)18. The VRP consists of 

defining vehicles routes with a given origin and end in the same node (called depot) and 

trying to minimize costs. The design of a tour for a certain vehicle cannot contain 

subtours and to control this condition, the VRP incorporates the following constraint: 

 

 1−≤∑
∈

SX
Sj,i

ijk , ∀ non-empty subset of S⊆{2,...,n}; k=1,...,m. (3·16) 

 

The main disadvantage of this approach is that the number of restrictions 

increases exponentially with n and m. For this reason, and although the proposal is 

theoretically adequate, at the practical level it has been necessary to implement other 

restrictions to solve this problem in a more efficient way. These alternatives can be 

appropriated for the specific problem of the VRP (although they do not ensure the 

elimination of subtours in problems of a certain dimension), but not for the 

regionalisation problem. For example, it is required to establish a priori a depot node 

that will be the origin and end of all the tours, and it is also necessary to establish a 

sequential order among nodes. 

However, the theoretical restriction of the VRP can be adapted in an efficient 

way in this geographical context as we know the number of elements of the set S. For 

                                                 
18  This problem was first proposed by Dantzing and Ramser (1959). A survey about the models derived 

from this approach can be found in Laport and Osman (1995). 
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example, in the territorial configuration of Figure 3.5 we can clearly identify the 

different combination of arcs cij that can generate cycles. The combination of arcs 1-2, 

1-3, 2-3 (or 2-3, 2-4, 3-4) will produce a cycle where 3 areas would be involved, 1, 2 

and 3 (or 2, 3, 4), while the combination of arcs 1-2, 1-3, 3-4, 2-4 will generate a cycle 

among the four areas.  

Moreover, in a territorial configuration as the one shown in Figure 3.6, there is 

no combination of arcs cij that could generate a cycle. For this reason, at the territorial 

level, not every subset S can have cycles as the number of potential arcs cij is limited to 

those combinations i,j where the value of the contact matrix wij =1. This is the set of 

potential arcs cij that are included in Ni. 

 

Figure 3.5. Configuration of areas with 

potential cycles 

Figure 3.6. Configuration of areas 

without potential cycles 

  1 2 
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              Source: Own elaboration.            Source: Own elaboration. 

 

But, is there any special pattern that could help to detect potential cycles in a 

specific territorial configuration? Yes, we only have to identify those combinations of 

arcs where the number or arcs is equal to the number of areas connected through them. 

For example, in the case shown in Figure 3.5, the three arcs 1-2, 1-3, 2-3 (or 2-3, 2-4, 3-

4) connect three areas, 1,2,3 (or 2,3,4), and as a result, 3 arcs and 3 areas imply the 

existence of a cycle. The same happens with the combination of arcs 1-2, 1-3, 3-4, 2-4 

that connect four areas (1,2,3,4). Again, 4 arcs and 4 areas imply the existence of a 

cycle of 4 elements. 

But, for a territorial configuration of n areas that will be grouped in m regions, 

which is the maximum number of areas that can be involved in a cycle? As the model, 

in restriction (3·9), requires that the minimum number of areas in a region is 2, in the 

case where (m-1) regions are formed by two areas, there will be no possibility of cycles, 

as each region will only have one possible arc (restriction 3·13). For this reason, when 
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creating m-1 regions with 2 areas, we will have a region formed by n-2(m-1) areas with  

(n-2(m-1))-1 arc, which is the maximum number of arcs that can create a cycle. 

Simplifying this expression, we have that: 

 

 n-2m+1 (3·17) 

 

So, the minimum number of areas where the possibility of finding a cycle should 

be evaluated is three, as it is impossible that for a lower number of areas we find this 

problem. 

As a result, restriction (3·14) is related with the modification of the set S as 

proposed in the VRP. Using this modification, we achieve an important reduction in the 

number of restrictions to satisfy, avoiding that the number of restrictions increases 

exponentially with n and m. This fact allows to use commercial software in the context 

of regionalisation problems with a high number of areas and regions. 

Last, restriction (3·15) only implies that ijkX  and ikY  should be binary variables. 

Although the variable ijT  has been defined as positive, and not as binary, it will always 

take values 0 or 1 because of the combination of restriction (3·8) with the objective of 

minimisation of the model19. 

 

3.3. Application of the model. 

 

In this subsection, different examples are shown with the aim of illustrating the 

model capacity to design regional configurations with different characteristics. Thus, it 

has been implemented a first set of four examples each one with a different dissimilarity 

matrixes (Di,j), where values di,j have been established in such a way that it is possible to 

know a priori the optimum regional configurations. The procedure to obtain the 

dissimilarity matrix in each example has been the following: 

 

                                                 
19  The possibility of defining a variable taking values 0 or 1 as positive and not as a binary variable has 

an advantage when using the branch and bound algorithm, as the number of sub-problems is drastically 
reduced. For more information about this algorithm, see Hiriart et al. (1983). 
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1. n areas have been grouped in m contiguous regions, assigning each area 

i = {1,...,n} to a region k = {1,...,m}. This aggregation permits to built the set Rk 

{i|i∈k}. 

2. A value has been assigned to each of the areas i = {1,...,n} depending on the 

region they have been assigned. This value is given by the sum of a constant with 

a random term, generated from a uniform distribution among 0 and 1. The value of 

the constant is different for each region, as there should be a big enough difference 

(D) in order to obtain significant different average values for each region. The 

applied expression has been the following: 

 

 ( ) [ ]1,0~;,...,1;,...,1* UmknikDCA
kRi εε =∀=∀++=∈  (3·18) 

 

3. Next, the relationships between areas has been calculated using a distance 

function. The weighted Euclidean distance has been applied in order to calculate 

distances among the elements of the Ai vector after centering it. 
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where S is the standard deviation of the Ai, vector and c
iA is a centered vector 

calculated as follows from Ai:  

 

 ninAAA
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 (3·20) 

 

The matrixes obtained with this procedure are shown in Table 3.1 and the 

obtained regional configurations after applying the optimisation model with the 

different relationship matrices are shown in the maps in Table 3.2. The solutions 

coincide with the optimal regional configurations predefined above and, so, it seems 

that the model can design regions with a high variety of shapes. 
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Table 3.1. Relationships matrixes for examples 1 to 4. 
Example 1  Example 2 
area 2 3 4 5 6 7 8 9 10 11  area 2 3 4 5 6 7 8 9 10 11 

1 1.04 1.21 1.18 1.11 0.17 0.14 2.26 2.31 0.09 2.31  1 0.06 0.02 0.03 2.42 2.49 1.23 0.03 1.19 0.04 0.02 
2   0.17 0.14 0.07 1.22 1.18 1.22 1.27 1.14 1.27  2   0.07 0.03 2.37 2.44 1.18 0.09 1.13 0.01 0.04 
3     0.03 0.10 1.38 1.35 1.05 1.10 1.31 1.10  3     0.04 2.44 2.51 1.25 0.01 1.20 0.06 0.03 
4       0.07 1.35 1.32 1.08 1.13 1.27 1.13  4       2.40 2.47 1.21 0.06 1.16 0.02 0.01 
5         1.29 1.25 1.15 1.20 1.21 1.20  5         0.07 1.19 2.45 1.23 2.38 2.40 
6           0.03 2.43 2.48 0.08 2.49  6           1.26 2.52 1.31 2.45 2.48 
7             2.40 2.45 0.05 2.45  7             1.27 0.05 1.19 1.22 
8               0.05 2.36 0.05  8               1.22 0.07 0.05 
9                 2.41 0.00  9                 1.14 1.17 

10                   2.41  10                   0.02 
   
Example 3  Example 4 
area 2 3 4 5 6 7 8 9 10 11  area 2 3 4 5 6 7 8 9 10 11 

1 0.64 0.80 1.36 1.27 2.03 1.98 0.08 1.98 2.78 2.79  1 0.23 0.27 0.16 2.45 2.56 0.22 0.04 0.06 0.17 0.04 
2   0.15 0.72 0.62 1.39 1.34 0.73 1.34 2.13 2.14  2   0.05 0.06 2.23 2.34 0.00 0.27 0.28 0.40 0.27 
3     0.57 0.47 1.23 1.19 0.88 1.18 1.98 1.99  3     0.11 2.18 2.29 0.05 0.31 0.33 0.45 0.31 
4       0.10 0.67 0.62 1.45 0.62 1.41 1.42  4       2.29 2.40 0.06 0.21 0.22 0.34 0.21 
5         0.76 0.72 1.35 0.71 1.51 1.52  5         0.11 2.23 2.49 2.51 2.63 2.50 
6           0.05 2.11 0.05 0.75 0.76  6           2.34 2.61 2.62 2.74 2.61 
7             2.07 0.00 0.79 0.80  7             0.26 0.28 0.40 0.26 
8               2.06 2.86 2.87  8               0.02 0.13 0.00 
9                 0.79 0.80  9                 0.11 0.02 

10                   0.01  10                   0.13 
Source: Own elaboration. 

 
Table 3.2. Solutions for the relationships matrixes from Table 3.1. 

 
Example 1 

 

Example 2 

 
n=11 and m=3 n=11 and m=3 

Example 3 

 

Example 4 

 
n=11 and m=5 n=11 and m=2 

 n: number of areas, m: number of regions. 
 Source: Own elaboration. 
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3.4. Computational results. 

 

One of the most interesting features of optimisation models when applied in real 

problems is the required computational time to achieve the optimal solution.  

With the aim of testing the computational capacity of the model, it was applied to 

different random territorial configurations. The procedure to obtain these random 

configurations was the following: 

 

a. For a given number n of areas, a triangular matrix was randomly generated 

following a [0,1] uniform distribution. 

b. A threshold point, between 0 and 1, was fixed in a way that random numbers 

above this point were replaced by 1, and 0 otherwise. The obtained binary matrix 

can be interpreted as a contact matrix, which should be evaluated in terms of 

contiguity. The threshold value was assigned taking into account that the resulting 

territorial configuration (or connecting arcs) was realistic in term of the 

neighbourhoods of each area. The selected matrices have an average density of 

28.3% and a median of neighbourhoods of 3 per area, ranging from 1 to 8. 

c. Every randomly generated matrix was evaluated in terms of geographical 

contiguity and the feasible ones have been selected20. 

d. Last, the relationships between the n considered areas were randomly generated 

from a [0,1] uniform distribution. Using this method, it is assuming a scenario 

where relationships between areas are not geographically dependent. 

 

Table 3.3 shows the average running times21 for different combinations of areas 

and regions (5 examples for each combination). 

 

                                                 
20  Although the decision of evaluating a posteriori the contiguity of the matrix would imply a higher 

computation time for the generation of the different examples, this methodology assures that the 
territorial configurations in each example are totally random. 

21  The calculations in this paper have been performed using Extended LINGO/PC 6.0 in a PC computer 
with a Pentium 4 processor at 2.40C GHz and 256 Mb of RAM memory. 
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Table 3.3. Average running time, in seconds, for different combinations (areas-
regions). 

 
  Regions 

 2 4 6 
5 <1* - - 
8 <1* 3.00 - 

11 <1* 19.00 - 
14 5.80 117.40 2,571.00 

   
   

  A
re

as
 

17 2.20 2,458.20 42,283.80 
  Note: Five examples for each combination of areas and regions. 
  * Execution times lower than a second. 
  Source: Own elaboration. 
 

Although the number of restrictions was clearly reduced with the modification of 

restriction (3·14), that controls the elimination of cycles, the running time stills very 

high. In fact, for those cases with more than 17 areas the running time increases 

substantially. For this reason, other alternative that would permit to increase the 

computational capacity of the model will be considered in the next section. 

 

4. A SOLUTION FOR THE "COMPUTATIONAL PROBLEM": THE RASS 

ALGORITHM 

 

In this section, a new algorithm called RASS (Regionalisation Algorithm with 

Selective Search), is proposed. The most relevant characteristic of this algorithm is 

related with the fact that the way it operates is inspired in the own characteristics of 

regionalisation processes, where available information about the relationships between 

areas can play a crucial role in directing the searching process in a more selective and 

efficient way (less random). 

The RASS incorporates inside its algorithm the optimisation model presented in 

section 3 in order to achieve local improvements in the objective function. These 

improvements can generate significant changes in regional configurations, changes that 

would be very difficult to obtain using other iterative methods. 

 

4.1. Steps for the application of RASS. 

 

Step 1: Take as a starting point, a feasible solution of m regions that group n areas. 
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Step 2: Select from these m regions the more heterogeneous geographical contiguity 

formed by r regions with ( )12 −≤≤ mr . 
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where Mi is the set formed by the different alternatives of selection of r contiguous 

regions of the available m regions. 

 

Step 3: Application of the direct optimisation model to the areas of the r selected 

regions to create r* regions. 

 

Step 4: Select a region to include (e): From the (m-r) regions that were not considered, 

identify those areas bordering on territory formed by the r* regions and select the one 

with higher similarities with any of the regions in r. 

 

 ( ) ( ))I(CMindprom)I(C d,fCi ijCj ijd,f
f d

→≡ ∑ ∑∈ >∈
 (4·2) 

 

where d is the set of the r* regions which are inside, and f is a subset of regions 

bordering on d. Each of the (m-r) regions that were not selected in the step 2 will only 

be selected once in every cycle (steps 2 to 8). 

 

Step 5: Select the region that will be removed (s): The region with higher differences 

with the region to be included (e) in step 4 will be removed from d. The region to be 

removed cannot destroy the internal contiguity of d. 

 

 ( ) ( ))I(CMaxdprom)I(C d,eCi ijCj ijd,e
e d

→≡ ∑ ∑∈ >∈
 (4·3) 

 

Step 6: Include in the set of r regions the region (e) and remove (s): d=(d+e-s). The 

direct optimisation model will be applied to the new configuration of r regions to create 

r* regions. 
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Step 7: Repeat steps 4 to 6 until the (m-r) regions that where not selected in step 2 have 

been included at any time in d, or until there are no more candidates to be selected in the 

bordering on d. 

 

Step 8: Calculate the value of the objective function. 

 

Step 9: If the value of the objective function improves, step 2 would be repeated. If the 

value of the objective function does not improve, step 2 would be repeated but selecting 

the next more heterogeneous group. Steps 2 to 8 would be repeated until no significant 

improvement in the objective function is found in a given number of cycles (C) or until 

the list of alternative r contiguous regions is exhausted. 

 

Some characteristics to highlight from the RASS algorithm are the following: 

 

a. The application of direct optimisation to a group of regions, in steps 3 to 5, 

permits to achieve improvements in the objective function that can be 

accompanied by important changes in regional configurations because of the 

reassignation of an important number of areas. 

b. The criteria used in step 2 for the selection of r regions and the criteria for 

including/removing regions in steps 4 and 5 try to keep in the optimisation model, 

step 3, those regions with a higher potential to improve the objective function after 

reconfiguration. The objective is to ensure that the included region is the one that 

presents the higher probability of containing areas belonging to other regions. This 

potential reassignation is identified assuming that two regions with exchanged 

areas, decreases the dissimilarities among these regions. Last, when the region to 

be included (e) is selected, the next step establishes that the region to be removed 

(s) (in order to keep an appropriated number of areas for the optimisation model) 

is the more different one from the region to include. This region has lower 

possibilities of exchanging areas with the region to be included (e). 

c. The conditions in steps 7 and 9 try to avoid repetitive searching patterns. 

Moreover, the criteria for including/removing regions and the use of the 
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optimisation model clearly improve the capacity of RASS of escaping from local 

optimum. 

d. The fact of applying the optimisation model only to a part of the considered 

territory does not imply that each local improvement could worsen the global 

solution. In fact, after each cycle, the value of the objective function will be 

always lower or equal to the value of the objective function at the beginning of the 

cycle. 

 

4.2. Computational results and comparison with the direct optimisation. 

 

This section tries to evaluate the performance of the RASS algorithm respect the 

direct optimisation model proposed in section 3. The solved examples are the ones that 

were randomly generated in section 3.622. In order to apply the algorithm to these 

examples, it was necessary to define an initial feasible partition that could be used as a 

starting point for RASS. The initial partition was randomly generated following these 

steps: 

 

a. Generate a vector with n values (as many as areas) using a uniform distribution 

between 0 and 1. 

b. The interval [0,1] is divided in equal sized intervals, as many as the number of 

regions to design. For example: for 2 regions we used the intervals [0, 0.5) and 

[0.5, 1] and for 4 regions, the intervals were [0, 0.25), [0.25, 0.5), [0.5, 0.75) and 

[0.75, 1). Each of these intervals represents a region, in such a way that the 

elements of the random vectors can be transformed in a vector that assignates 

areas to regions (potential initial partition). 

c. If the initial partition is feasible in terms of geographical contiguity, this partition 

is used as starting point for RASS. 

Some descriptive of the results for the 30 considered problems (5 for each 

combination of regions and areas) are shown in Table 4.1. RASS achieved the optimal 

                                                 
22  In this analysis we have excluded the examples where 2 regions should be formed, as in this case the 

application of the RASS would be equivalent to the direct application of the optimisation model: there 
is no difference between the values of parameters m and r of RASS and, as a result, the application of 
step 3 will take directly to the optimal solution. 
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solution in the 100% of the considered examples in a considerably lower time than the 

direct solution method. 

 

Table 4.1. Comparison of RASS with the direct solution method. 
 

Regions Areas Optimum/5 Seconds 
(RASS) 

Seconds 
(Direct) 

(FOI - FO1c) 
(FOI - SO*) 

8 5/5 3.40 3.00 76.45% 
11 5/5 5.80 19.00 86.70% 
14 5/5 29.00 117.40 74.31% 

4 

17 5/5 247.20 2,458.20 69.46% 
14 5/5 25.20 25,710.00 85.93% 6 
17 5/5 250.00 42,283.80 66.71% 

FOI= Initial objective function, FO1c= Objective function after the first cycle, SO*= 
Optimal solution. 
Source: Own elaboration. 

 

In the last column, it can be seen that after the first cycle of the RASS, the value 

of the objective function is reduced in an 80% of the total reduction required to achieve 

the global optimum. 

Using the available information about running times of both regionalisation 

methods, the direct method and the RASS, it is possible to calculate the time savings by 

applying the algorithm. Figure 4.1 shows the relationship between the savings and an 

indicator of complexity that has been defined as the product between the number of 

considered areas and the number of considered regions. The results in this figure show 

that in less complex models the direct method is a better option, while in complex 

models the RASS provides better results. According to these results, this change happens 

for models with a complexity over 57.83 (58 if we keep the discrete nature of the 

variable23). 

In order to obtain a better measure of the time savings achieved with RASS, we 

have estimated a quadratic model between time savings and the measure of 

complexity24,25. The results of estimating this model are shown in Table 4.2. There is a 

                                                 
23  It should be highlighted that this value can be obtained with different combinations of areas and 

regions. 
24  We have considered together the effects of the number of areas and regions because when introduced 

separately in the regression, there is a problem of collinearity due to the high correlation among them. 
25  We have excluded the intercept from this regression in order to impose that the execution time is equal 

to zero when the complexity is equal to zero. 
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significant relationship between the two variables at 1% significance level. In front of a 

marginal increase in the complexity of the problem, the use of RASS implies a time 

saving of 426.08-14.73 (areas*regions), a result that confirms the previously mentioned 

intuition. 

 

Figure 4.1. Relationship between the complexity of the problem and the time 
savings obtained after applying RASS. 
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            Source: Own elaboration. 

 

Table 4.2. Quadratic regression among the time savings obtained with RASS and 
the complexity indicator. 

 
n=30 Coefficient 
(areas×regions) 426.078* 
(areas×regions)2 -7.367* 
R2 0.566 
F 18.269* 
* Significant at 1% 
Source: Own elaboration. 

 

4.3. Capacity of the RASS to achieve global optimums in more complex problems. 

 

As in more complex problems, it is impossible to compare the results obtained by 

the RASS and direct optimisation because the execution method for the second would be 

very high, in this section the obtained solution for a regionalisation process where 38 

areas are grouped in 10 regions (complexity of 38*10 = 380) is presented. For this 

comparison, it was applied the same procedure than in the examples of section 3.4: A 
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relationship matrix Dij is defined in a way that it is possible to know a priori the optimal 

solution of the regionalisation process. This optimal solution can be compared with the 

solution obtained by the RASS. 

 

4.3.1. Data  

 

4.3.1.1. Characteristics of the territory to regionalise. 

 

The selected areas for this example are the 38 areas (Zones Estadístiques Grans) 

that form the city of Barcelona. The first step consists of considering the contiguity 

relationships among these 38 areas or, in other words, in obtaining the contact matrix. 

 

4.3.1.2. Relationships among areas. 

 

The relationships among areas (see Table 4.3) were created in a way that the 

optimal solution grouped the 38 areas in 10 regions, each of them with different shapes 

and sizes (among 2 and 6 areas by region). This optimal solution is shown in Figure 4.2, 

and this is the solution that the RASS algorithm should be able to identify. 

 
Figure 4.2. Preestablished optimal regional configuration. 

 

 
              Source: Own elaboration. 
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Table 4.3. Relationships matrix between the 38 areas. 
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4.3.2. Evaluation of results. 

 

The initial partition is shown in Table 4.4. This is the partition that is considered 

by the RASS in the step 1. It is worth mentioning that this configuration is very different 

to the optimal one. After 5 cycles, the RASS algorithm properly reaches the optimal 

solution. 

The different regional configurations considered by the RASS in the different steps 

and iterations are shown in the Annex. 

 

Table 4.4. Initial partition and solution obtained by the RASS 

  
Source: Own elaboration. 

 

In order to evaluate the evolution of the results from the initial partition up to the 

final results, Table 4.5 presents the value of the objective function at the end of each 

cycle in the application of the algorithm. The value of the objective function for the 

initial partition is 34.36 and in the first cycle a reduction of 24.15 is achieved. This 

value is reduced in the following cycles until achieving its minimum value in 1.08. 

As it can be appreciated in Figure 4.3, the behaviour of the objective function is 

similar to the expected one: in the first cycles is where higher improvements are 

achieved. Also, it is confirmed that in every cycle the value of the objective function is 

improved, or at worst equal, in relation to the previous cycle. 
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Table 4.5. Values of the objective function in the initial partition and at the end of 
each cycle. 

 
Regions Initial cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 

1 10.35 5.21 2.21 1.04 1.04 0.23 
2 8.07 2.21 1.04 0.93 0.30 0.18 
3 5.61 1.70 0.93 0.23 0.23 0.16 
4 3.52 0.60 0.23 0.16 0.18 0.13 
5 2.89 0.13 0.13 0.13 0.16 0.10 
6 1.34 0.10 0.11 0.09 0.13 0.09 
7 1.28 0.09 0.09 0.07 0.09 0.07 
8 0.59 0.07 0.07 0.04 0.07 0.06 
9 0.36 0.06 0.06 0.02 0.04 0.04 
10 0.35 0.04 0.04 0.02 0.03 0.02 

Objective function 34.36 10.21 4.91 2.73 2.27 1.08 
 Source: Own elaboration. 

 

Figure 4.3. Evolution of the objective function during the application of RASS. 
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  Source: Own elaboration. 

 

The number of regions in the optimisation model was set to 4 (r = 4). With this 

value, the average number of areas where each optimisation model was running was 15. 

This number was enough to permit that the running times where appropriated with an 

average running time of 2.43 minutes by model. These running times are shown in 

Figure 4.4. 

As it can be seen, the running times of the different optimisation models were 

higher at the beginning of each cycle and, in particular, for the first time it is executed 

(although it is also when a higher reduction in the objective function is achieved). This 

is related with the fact that in the first model of each cycle is executed considering the 4 

(r) most heterogeneous regions, which can imply that the reassignation of the areas in 

these r regions can be very high. For this example, the first model has reassignated the 



 

 35

37% of these areas (or a 18.4% if we take into account the 38 areas) and has achieved a 

reduction in the objective function of 13.18 points, a 54.6% of the reduction obtained in 

the first cycle (or a 39.6% of the total reduction). 

 

Figure 4.4. Running times of optimisation models. 
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  Source: Own elaboration. 

 

4.3.3. Sensitivity of the results to the initial partition. 

 

How can the initial partition affect to the final result? In this sub-section, a 

different initial partition is used to solve the same problem as above. Thus, the initial 

partition in the step 1 of RASS will be closer to the optimum regional configuration. 

With this partition, a lower number of cycles and similar results as in the previous sub-

section should bee expected. 

In this case, the optimal configuration was found after 2 cycles (see Table 4.6), 3 

cycles less than in the previous example. The results shown in the Table 4.7 and in the 

Figure 4.5, permit to conclude that, as before, the higher reductions in the objective 

function are achieved in the initial cycles of the RASS. 

Regarding the impact of the first optimisation model on the objective function, 

now there is a reduction of 19.33 points (from 26.94 to 7.61), a 79,25% of the total 

obtained reduction in the first cycle. The 50% of the areas in the 4 (r) considered 

regions are now reassigned (a 21.1% in the 38 areas are considered). 
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Table 4.6. Initial partition (close to optimum) and obtained solution 

  
Source: Own elaboration. 

 

Table 4.7. Values of the objective function in the initial partition (closes to the 
optimal solution) and at the end of each cycle. 

 
Regions Initial cycle 1 cycle 2 

1 10.31 1.71 0.23 
2 6.83 0.18 0.18 
3 2.33 0.15 0.16 
4 1.95 0.13 0.13 
5 1.93 0.10 0.10 
6 1.04 0.09 0.09 
7 0.93 0.07 0.07 
8 0.88 0.06 0.06 
9 0.65 0.04 0.04 
10 0.09 0.02 0.02 

Objective function 26.94 2.55 1.08 
   Source: Own elaboration. 

 

Figure 4.5. Evolution of the objective function during the application of RASS with 
the initial partition closes to the optimal solution. 
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4.4. Final remarks. 

 

The obtained results permit to conclude that the RASS, due to the incorporation of 

a direct optimisation routine as part of the algorithm, has a big capacity to achieve 

global optimums in the context of regionalisation problems. However, it is worth 

mentioning that the relationship between the number of regions (m) and the number of 

areas (n) should be defined as a way that the number of regions considered by the direct 

optimisation model (r) must be 2 or higher and these regions should contain a number 

of areas in line with the computational capacity of the model. It has been calculated that 

the most appropriate relationship m/n must be above the 14%. For example, if it is 

considered a territory formed by 8,000 areas, the number of regions that can be obtained 

will be higher or equal than 1,120 regions (an average size of 7 areas per region). This 

relationship ensures that r can take values higher or equal than 2 without increasing 

substantially the running time. 

If the relationship between regions and the number of areas is very low, one 

possible strategy could consist in designing nested regionalisation problems, which 

would imply the sequential application of the RASS. For example, the city of Barcelona 

is divided in 1,919 statistical sections (Seccions Estadístiques, SE), which are grouped 

in 248 small research areas (Zones of Recerca Petites, ZRP). These areas are also 

grouped in 110 basic statistical units (Unitats Estadístiques Bàsiques, UEB) that form 

the 38 big statistical areas (Zones Estadístiques Grans, ZEG). Last, the big statistical 

areas are grouped to obtained the 10 districts of the city26. Each territorial level is 

formed grouping the previous one, and this also guarantees that the different grouping 

levels are self-contained. 

 

5. CONCLUSIONS  

 

In this paper new methodologies to design regions from lower level territorial 

units (areas) were proposed considering not only their characteristics but also the 

relationships among them. 

                                                 
26  For more information, see: http://www.bcn.es/estadisitica/catala/terri/index.htm. 
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These methodologies permit to avoid the use of ad-hoc regionalisation to obtain 

territorial units that are representative of the considered phenomenon. This aspect is 

especially relevant if it is taken into account that statistical and econometrical results are 

sensitive to different levels of aggregation and scale. 

After it was made a survey of more relevant regionalisation methods, in section 

2 a linear optimisation model has been proposed to find the optimal aggregation of 

different areas in a given number of regions from the consideration of a geographical 

contact matrix and a relationships matrix. The minimisation of the “internal” 

heterogeneity of each region permits to find homogeneous regions according to the 

considered criteria. 

The possibility of treating the regionalisation problem as a linear model permits 

to ensure that, by its mathematical properties, the feasible region is convex and, as a 

result, it is possible to find the optimal solution. Another advantages of this kind of 

formulation are that it is easy to implement in a great variety of commercial software 

without paying a high price for it, and the flexibility when some changes or additional 

constraints are needed. 

The obtained empirical evidence permits to affirm that the proposed 

methodology has a great capacity to identify different complex territorial 

configurations. The model takes into account the contiguity constraint but without 

conditioning the shapes that those regions can adopt. 

It is also important to highlight that the model permits to easily introduce 

additional restrictions in the regionalisation process. As an example, it has been shown 

the possibility of introducing two additional restrictions: the minimum population 

requirement and the mandatory isolation.  

In a second stage, and according to the second specific objective formulated in 

this paper, an algorithm called RASS (Regionalisation Algorithm with Selective Search) 

has been formulated in section 3 as a way of improving the computational capacity of 

the direct optimisation model. This algorithm tries to take profit of the advantages of 

applying direct optimisation to a given territorial portion that varies in each iteration, 

thanks to a selective search strategy. These characteristics permit to the RASS to escape 

from local optimum. 

The obtained results with the RASS have shown its utility, as in a 100% of the 

considered simulations the global optimum was found and in a running time 

considerably lower than the one obtained applying the direct optimisation model. 
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Table 6.1 shows the main characteristics of regionalisation models proposed in 

this paper and the previous models. As it can bee seen, both linear optimisation model 

and RASS algorithm overcome some inconvenient in existing methodologies.  

A common characteristic in all presented regionalisation methods is that the 

number of regions to be formed is a exogenous variable. These regions are obtained 

automatically by applying the proposed models. This is an advantage with regard to 

regionalisation models based on clustering techniques, where it is necessary to make 

several proves before obtaining the decides number of regions. 

To take into account the relationships between areas to be grouped, the 

proposed models allow to incorporate them through a squared matrix that contain a 

relationship measure between each pair o areas. Cutting models only take into account 

relationships between contiguous areas (w : E → N), and iterative realocation algoritms 

as AZP do not uses these relationships in their searching processes. 

Non metric relationships between areas can be used in proposed models. In 

contrast, models based on centroids selection have to use metric relationships in order to 

assure  that the obtained regions are contiguous after assignation process. 

The contiguity relationships between areas to be grouped are an important input 

in proposed models, such information is not taken into account in clustering models 

when two stages regionalisation strategy is applied. Centroid based regionalisation 

models do not use the contiguity relationships because in the assignation process 

contiguity is obtained by using metric relationships between areas. 

Shapes flexibility is an important characteristic in some regionalisation processes 

where it is necessary that regional shapes only depend on data characteristics and are 

not imposed by the considered methodology. Centroid based regionalisation process 

tend to produce compact areas. 

To find the global optimum solution of a regionalisation problem can only be 

guarantied by applying linear optimisation models as cutting models, centroid models 

and the linear regionalisation model propose in this paper. In iterative models the 

optimal solution could not be founded, but these kind of models are suitable to solve 

large regionalisation problems.  

Finally, only in iterative regionalisation models it is necessary an initial feasible 

solution in order to start the searching process. 
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Table 3.1. Comparison between revised regionalisation models and the linear 
optimisation model propose in this paper. 
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The number of groups is given ü ü ü ü ü ü ü ü 
Automatic regionalisation Î Î ü ü ü ü ü ü 
Relationships along areas (n×n) ü ü ü Î* ü ü ü** ü 
Non metric relationships ü ü ü ü Î ü ü** ü 
Contiguity relationships Î ü ü ü Î ü ü ü 
Shapes flexibility ü ü ü ü Î ü ü ü 
Optimal solution Î Î Î ü ü ü Î Î 
Acceptable for large problems Î Î Î Î Î Î ü ü 
Initial feasible solution Î Î Î Î Î Î ü ü 
Shared column: models proposed in this paper. 
* It is only taken into account the relationships between each area an its 

neighbouring areas (i.e. first order relationships). 
**  They can be incorporated into de objective function but they are not taken into 

account in any step of the algorithm. 
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