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Misspeci�cations in modelling journeys to work

Jens Petter Gitlesen�, Inge Thorseny, and Jan Ubøez

June 11, 2004

Abstract

In this paper we perform a simulation procedure of testing models for journeys to work.

The testing regime is carried out on a number of such models, mainly within the class of

gravity models. We test the models on synthetic populations constructed from an aggregated

set of a large number of worker subcategories, re�ecting for instance di�erent quali�cations.

Each subcategory is constructed from a gravity model where the population size and pa-

rameters are drawn from random distributions. The advantage of this approach is that a

large number of tests can be carried out repeatedly to test the response of di�erent kinds

of models. We test how speci�c attributes of the spatial structure and worker heterogene-

ity are captured by di�erent modelling alternatives. In addition we �nd that some model

formulations falsely tend to report signi�cant contributions to characteristics that were not

taken into account in the data generating simulation process. This illustrates the imminent

risk of drawing wrong conclusions in empirical work.

1 Introduction

A basic problem in empirical research on spatial interaction models is that very few observations

are available for a particular geography. In many cases estimation and predictions are based

on only one observation of a trip distribution pattern. In this paper we will suggest how to

construct a special class of computer generated observation sets. Based on a large number

of such observations we can for example discuss whether or not particular model extensions

represent signi�cant improvements.
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yStord/Haugesund University College, Bjørnsonsgt. 45, 5528 Haugesund, Norway
zNorwegian School of Economic and Business Administration, Helleveien 30, 5045 Bergen, Norway.
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Within the �eld of regional science much emphasis has been put on behavioural principles in

explanations of for instance observed patterns of spatial interaction. The behavioural foundation

naturally represents one important dimension when speci�c model extensions are considered.

Model performance can also be improved by purely mathematical constructions, but the general

belief is that such models are of little use with respect to predictions. Reliable predictions require

that parameters are invariant to exogenous changes in relevant system characteristics. This can

only be expected if the model construction is based on sound behavioural principles.

In this paper we argue that empirically based estimates for the contribution of speci�c model

extensions in general should be interpreted with care, even if the extensions are based on be-

havioural principles. To be more precise, the basic problem can be explained as follows: Assume

that a model extension can be derived from a behavioural principle, and that the extension o�ers

a signi�cant improvement when it is applied to a set of empirical observations. Can we then be

sure that it is the behavioural principle that produces the improvement? It is our purpose to

demonstrate that this is not always so. It can very well happen that a model extension is superior

because it corrects a purely mathematical side e�ect that has nothing to do with the behavioural

principle. This corresponds to well-known examples where spurious statistical relationships are

interpreted in causal terms. If it is so, more re�ned tests must be used to decide whether or not

the model is superior from a behavioural point of view.

In econometrics the interpretation of estimated contributions from independent variables in

general represent conditional statements, assuming that the model is correctly speci�ed. Stan-

dard interpretations are challenged, however, if the model is a poor representation of the real

world phenomenon it intends to explain. Even minor speci�cation errors might have large impact

on estimation results, especially in non-linear systems.

In this paper we discuss some consequences of misspeci�ed spatial interaction models. To

be more precise we consider speci�cation errors resulting from spatial aggregation problems

when relevant job and worker heterogeneity is not accounted for. In general, most models are

derived from a behavioural principle that is common to all individuals in the population. To

capture variations in individual preferences most attention has been focused on principles with

a stochastic component, and many models have been derived from a random utility approach.

In addition, a satisfying representation of individual behaviour should account for variations in
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choice sets. In most problems individuals cannot make unrestricted choices within the whole

set of alternatives. In this paper we consider scenarios where the population is divided into

non-interacting segments of the labour market. An individual can only choose within the set of

alternatives de�ned by his own segment. The �nal trip distribution then results as the aggregate

response of many non-interacting categories of workers. In modelling terms a random utility

maximization speci�cation refers to a particular category, and each labour market segment has

to be treated separately in the estimation of an interaction pattern.

In Section 2 we overview some basic principles in modelling journeys-to-work, while Section

3 explains the construction of synthetic populations for our modelling experiments. Section

4 provides a brief discussion of replication and prediction issues. The numerical example is

introduced in Section 5, while estimation results based on three alternative spatial interaction

models are presented in Section 6. Results of our prediction experiments are presented in Section

7. Finally, some concluding remarks are o�ered in Section 8.

2 Modelling journeys-to-work

The models commonly used in applied analysis of trip distribution problems are those belonging

to the tradition of gravity modelling. Consider a region consisting ofN di�erent zones, where zone

i has a number of workers Li and a number of employment opportunities Ei. For simplicity of

notation we consider the population vector L = fL1; :::; LNg and the employment opportunities

vector E = fE1; :::; ENg. The zones are interconnected by roads, and d = fdijg
N
i;j=1 denotes the

matrix of traveling distances dij between zone i and zone j. A doubly constrained gravity model

TG = fTGij g
N
i;j=1 can be formulated as follows:

TGij = AiBje
��dij i; j = 1; :::; N (1)

NX
k=1

TGik = Li

NX
k=1

TGkj = Ej i; j = 1; :::; N (2)

We will always impose the condition that all workers have a job, i.e., that
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NX
i=1

Li =
NX
j=1

Ej (3)

For the rest of this paper TG = TG[�;L;E;d] will be referred to as the standard gravity

model, and the function dij 7! e��dij will be referred to as the standard deterrence function in

the gravity model. Ai and Bj are the balancing factors that ensure the ful�llment of the marginal

constraints (2).

The classical journey-to-work problem corresponds to the case that Wilson (1967) referred

to in his derivation of the gravity model from entropy maximization. It is also well known that

traditional gravity models can be derived from random utility theory (see for instance Anas

(1983)), and that such models are equivalent to a multinomial logit model formulation. For

a discussion of the theoretical foundation of gravity models, see, for instance, Sen and Smith

(1995).

The distance deterrence parameter � is traditionally interpreted to re�ect how individuals

in general respond to distance in the relevant geography. Based on the assumption that this

parameter is autonomus of exogenous changes the model can then be used to predict new states

of the system. Traditionally the distance deterrence parameter was interpreted as a behavioural

measure. It has long been well known, however, that gravity-based estimates of such parameters

vary sytematically across space and for di�erent spatial con�gurations of origins and destination

zones.

In the literature there are two main approaches to explain and deal with misspeci�cations

in standard spatial interaction models. One approach focuses on the e�ect of omitted variables.

The idea is that the standard gravity model ignore some basic and relevant features of the spatial

structure, like accessibility and intervening opportunities. If, for instance, interaction depends

solely on intervening opportunities, a model focusing on the impact of distance will be biased

(see Sheppard 1979). The other approach is based on the observation that substantially di�erent

conclusions can be reached from the same data set and the same model, but at another spatial

aggregation level (see Batty and Sikdar 1982a). As pointed out by Batty and Sikdar (1982b) good

theories may be discarded and poor ones adopted if observations are taken at an inappropriate

level.

One way to improve model performance is to capture the e�ects of spatial structure by
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incorporating relevant measures explicitly in the model formulation. According to Sheppard

(1978) the probability of choosing a destination depends on how this destination is located

relative to alternative opportunities; the probability would be di�erent if the destination is the

only possible at a speci�c distance than in a case where it is just one of a cluster of opportunities.

Such ideas were made operational in Fotheringham (1983b), through the speci�cation of the so

called competing destinations model. In this approach an accessibility measure of potential

destinations is explicitly added to a traditional gravity model. The structural equation of this

model is formulated as follows:

Tij = AiBjS
�
ije

��dij (4)

The marginal constraints is de�ned similarly to the expressions (2). Sij is de�ned as the acces-

sibility of destination j relative to all other destinations, as perceived from i:

Sij =
wX

k=1
k 6=i;k 6=j

Eke
��dij (5)

Here, w is the number of potential destinations. The standard reference of this kind of acces-

sibility measure is Hansen (1959). When agglomeration forces are dominant the sign of the

parameter � in Equation (4) will be positive, while the parameter takes on a negative value

if competition forces are dominant. Notice also that the e�ect of distance in the de�nition of

destination accessibility is not distinguished from the e�ect of distance in the spatial interaction

equation. For estimation results on this point, see Thorsen and Gitlesen (2001).

Fotheringham (1983b) o�ers empirical evidence that the incorporation of destination acces-

sibility reduces the spatial variation in origin speci�c distance deterrence parameter estimates.

More recent applications of the competing destinations modeling framework include other aspects

of spatial structure than destination accessibility. For example, Fik and Mulligan (1990) and Fik

et al. (1992) have found that both special account to the hierarchical order of potential destina-

tions, and to the number of intervening opportunities, adds signi�cantly to model performance.

Similarly, Thorsen and Gitlesen (1998) found that the performance of a competing destinations

model improved signi�cantly when intrazonal labor market supply and demand were explicitly

taken into account. This was hypothesized to re�ect that such an approach captures the labor

market behavior of speci�c groups, like low educated married woman in two-worker households.
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Those examples also indicate that inconsistent and spatially varying parameter estimates might

be a result of omitted variables and speci�cation errors, that are reduced when additional in-

formation is included. Discussions of the theoretical foundation for the competing destinations

model and related approaches can be for example be found in Fotheringham (1988), Pellegrini

and Fotheringham (1999), and Gitlesen and Thorsen (2000).

As mentioned above the other approach to deal with misspeci�cation in spatial interaction

models starts out from the spatial dimension over which aggregation takes place; di�erent con-

clusions can be drawn to the same system at di�erent leves of aggregation. Hence, this problem

concerns the spatial dimension over which the aggregation takes place. As pointed out in Steel

and Holt (1996a) and in Horner and Murray (2002) this spatial aggregation problem involves

both a scale issue (to delimit an appropriate geography) and a zoning issue (to select an ap-

propriate arrangement of zones). Both kinds of speci�cation problems support the idea that an

estimate of the distance deterrence parameter has more to do with the map pattern than with

a real individual friction e�ect, see Sheppard (1979). Based on information theory Batty and

Sikdar (1982a,b,c,d, 1984) found that the estimate of the distance deterrence parameter strongly

depends on the number and size of the zones. To be more precise estimates are found to be

increasingly more arbitrary and statistically suspect as the number of zones decreased and their

size increased. At the same time, however, model performance in terms of �t is negatively related

to the number of zones. This also corresponds to results presented in Schwab and Smith (1985),

where the estimated value of the distance deterrence parameter is found to move towards 0 as

the level of spatial resolution decreases.

Spatial aggregation problems are not restricted only to issues related to travel demand and

spatial interaction. As pointed out in Steel and Holt (1996a,b) the so called ecological fallacy

occurs when the results of an analysis based on spatially aggregated data are incorrectly assumed

to apply to individual-level relationships. Individuals within an area tend to be more alike

than individuals in other areas, due to the e�ects of non-random selection mechanisms, similar

in�uences, or intragroup interaction. This explains the modi�able areal unit problem, MAUP,

referring to the fact that the results of an analysis may vary according to the scaling and zoning

of the geography. Steel and Holt (1996a) suggest appropriate weighting procedures to deal

with this kind of aggregation bias, while Steel and Holt (1996b) provide less biased unit level
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parameter estimates in situations where the unit level sample covariance matrix of the relevant

grouping variables is available. Holt et al. (1996) introduce a set of auxiliary variables related

to socio-economic variables, and �nd that those variables are extremely successful at removing

the aggregation bias and reduce the impact of the ecological fallacy.

One example from the spatial interaction literature where MAUP is thoroughly discussed is

found in Horner and Murray (2002). They focus on excess, or wasteful, commuting, which refers

to the di�erence between actual and theoretical average minimum commuting. The theoretical

average minimum commuting is de�ned by the standard transportation problem, where trans-

port costs are minimized subject to zonal constraints on the demand for labour and the supply

of workers. The scaling and zoning of the geography obviously might a�ect estimates of excess

commuting. In a speci�cation of the geography with few and large zones the diagonal elements

can be expected to dominate in the commuting �ow matrix. Based on this kind of considerations

Horner and Murray (2002) suggest that zonal commuting �ow data spatially should be as disag-

gregate as possible. This advice does not, however, necessarily correspond to a rational zoning

principle when account is taken to the kind of aggregation problem that primarily is considered

in this paper. It can be argued that the apparent spatial mismatch between supply and demand

for a speci�c category of workers is positively related to how disaggregate the region is subdivided

into zones. Hence, di�erent kinds of aggregation problems might call for con�icting adjustments

in the speci�cation of the geography. This illustrates the complexity of empirical analyses of

journeys-to-work.

3 Generating synthetic populations

We will now demonstrate how the standard gravity model will be used as a building block to

construct a synthetic population. We start out by de�ning a total population that is divided into

M distinct groups. We assume that the di�erent groups cannot interact, i.e. that a particular

job alternative can only be chosen by individuals within this particular group. Within each

group the individuals can make unrestricted choices, and we will assume that group-speci�c trip

distribution patterns are adequately represented by the standard gravity model. By a slight

abuse of notation we de�ne

Lik = the number of workers in zone i and group k i = 1; :::; N; k = 1; :::;M
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Li =
PM

k=1 Lik = the total number of workers in zone i k = 1; :::;M

Ej =
PM

k=1Ejk = the total number of employment opportunities in zone j k = 1; :::M

According to balancing constraints in the standard gravity model we also assume that the

number of workers equals the number of jobs for each group;

NX
i=1

Lik =
NX
j=1

Ejk k = 1; :::;M (6)

In general di�erent groups of workers cannot be expected to respond equally to variations

in distance when considering alternative combinations of residential and job location. One kind

of argument is based on the fact that di�erent categories of jobs are not equally dispersed over

a geography. Some job categories are typically concentrated to regional centers, while others

are more evenly spread over the region. At the same time some individuals prefer peripheral

residential location alternatives in combination with short commuting distances. Such individuals

tend to be attracted to educations and job categories that allows for a spatially rich diversity

of options. Other individuals are less concerned about commuting distances and the spatial

diversity of job options, and typically choose job categories from other criteria. Another aspect

is that distance deterrence might vary systematically with respect to for instance age and gender.

Since the composition with respect to such characteristics typically vary across job categories,

variation can also be expected for group-speci�c values of the distance deterrence parameter. We

hence de�ne

�k = value of the distance deterrence parameter in group k

The trip distribution within each group will now be de�ned by the standard gravity model:

TG
k = TG

k [�k;Lk;Ek;d]

The resulting trip distribution TA is then the aggregate result from all the groups, i.e.,

TA =
MX
k=1

TG
k
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It is important to notice that we have no intention to use this as a model. If M is large,

there are too many parameters involved, and in most cases it would be more or less impossible

to collect data on all the Lik; Ejk. In all but exceptional cases, it will not be possible to calibrate

a model of this kind against empirical data, and the intention is quite the opposite. To be more

speci�c the basic idea in this paper is to use TA as a testing device for other models within this

�eld. The construction goes like this:

� First we de�ne a random variable �L taking values on the interval [Lmin; Lmax].

� We choose random elements Lik = �L
ik; i = 1; :::; N; k = 1; :::;M:

� We de�ne a new random variable �E.

� We choose random elements E
temp
jk = �E

jk; j = 1; :::; N; k = 1; :::;M .

The E
temp
jk will not in general satisfy (6). Hence, we need to rede�ne the elements taking

this condition into account. We put

Ejk =

PN
i=1 LikPN

l=1E
temp
jl

� E
temp
jk (7)

� We de�ne a new random variable �� taking values on the interval [�min; �max].

� We choose random elements �k = �
�
k ; k = 1; :::;M .

When the computer has chosen all the random elements above, we have all the information

that we need to construct the aggregate trip distribution TA. This will be our �rst observation

of the system. In this fashion we can quickly construct a whole series of synthetic observations

TA
1
;TA

2
; ::: .

In the construction described above, we have assumed that choices (with the exception of

(7)) are independent. It is of course possible to introduce dependence to create additional e�ects.

Moreover, it is also possible to replace the standard gravity model by any other model one would

like to use as a core for the experiment. The advantage of using independence together with the

standard gravity model, is that one creates a synthetic observation set that is completely neutral

with respect to spatial structure. In particular any type of clustering is completely accidental.
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4 Replication and prediction

In the preceding section we explained the basic principles in generating a data set of a synthetic

population. As in traditional empirical research the next step is to introduce a model, based on

some simplifying assumptions on individual behaviour and characteristics of the system. In the

case we consider only the aggregate trip distribution matrix is assumed to be known. Hence,

we introduce alternative spatial interaction models that do not distinguish between di�erent

categories of jobs and workers. Based on the partial information the models are then calibrated,

and we examine how the alternative model formulations perform on the set of trip distribution

observations. The advantage with this approach is that it resembles a laboratory experiment,

the actual behavior of the population is known, and hence it is easy to measure the e�ect of a

model extension.

Replication is not, however, the �nal ambition of a model. The primary objective of the

model is to predict changes in the system. A typical application is a scenario where one or more

road connections are altered, giving rise to a new distance matrix dnew. Based on the procedure

explained in Section 2 we can then generate a corresponding synthetic (observed) population

TA[dnew]. Model performance should be evaluated from the ability to replicate TA[dnew].

This represents a test of predictability, TA[dnew] is not known in a real world scenario.

As will be clear in forthcoming sections all the modelling alternatives will be equipped with a

set of parameters representing e�ects of spatial structure characteristics on the trip distribution.

In a standard gravity model the only structural parameter is �, which measures the e�ect of

spatial separation between potential origins and destinations. Let p denote a set of spatial

structure parameters. Based on any modelling alternative the journey-to-work matrix is then

constructed as a mapping

(d;p) 7! T[d;p]

Parameter values are determined such that T [d; p̂] is the best possible replication of the observed

TA, for instance in the sense of loglikelihood. The prediction is then given by:

Tpredicted = TA +T[dnew; p̂]�T[doriginal; p̂] (8)
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5 The numerical example

Our numerical example is based on a real transportation network. As illustrated in Figure 1

this connected road network corresponds to a speci�c geography in southern parts of Western

Norway. This geography was studied in Thorsen and Gitlesen (1998). To be more precise

the map in Figure 1 corresponds to the situation prior to 1990. In the last 10-15 years road

investments have established some new links that we ignore in this numerical example. Our

nnumerical example is not based on any other information of this geography than road network

characteristics. We generate synthetic populations according to principles explained in Section

3. To keep the discussion as simple as possible without missing substantial e�ects we assume

that there are only two categories of jobs/workers in the population. The two categories are

distinguished only by their spatial interaction behaviour, represented by the distance deterrence

parameters. To be more precise �A = 0:01, while �B = 0:005, where A and B denote the two

categories of workers.

Etne

Stord

Vikedal

Ølen

Sveio

roads

To Oslo

To Sauda

ferry connections

25 km

Haugesund

Kopervik

To Bergen

To Stavanger

Figure 1: The main transportation network in the geography.

We further assume that there are 100000 workers and jobs of each category. The spatial
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pattern of origin (Li) and destination (Ej) marginal totals is drawn independently from a u-

niform distribution de�ned within the range (0,100000). The results from those drawings are

scaled according to the constraint that they sum up to 100000. The commuting �ow pattern is

determined from a standard gravity model, represented by equations (1), (2), and (3).

This procedure might of course generate strange geographies, with relatively strong spatial

variations in proportions between categories of jobs and workers. For zone i such proportions

are represented by LiA
LiB

; LiA
EiB

; LiB
LiB

and EiA
EiB

, where A and B denote the two categories of jobs and

workers. It is of course possible to introduce category-speci�c interdependencies in the drawings

of jobs and workers. Reasonable interdependencies depend for instance on the nature of the

categorization of jobs and workers. In addition it can be argued that care should be taken to

systematic spatial dependencies in the supply of speci�c categories of jobs and workers. There

are of course numerous ways of introducing such e�ects in a numerical approach. In this paper,

however, we have chosen to resist from such experiments, that probably would lead to a more

confusing and complex discussion without o�ering substantial new insight on modeling journeys-

to-work. As stated in Section 3 it is in addition the intention in this paper to start out from a

population completely neutral with respect to spatial structure.

As an alternative approach to deal with the possibility that our results are speci�c to a

peculiar geography we have generated 100 datasets, corresponding to 100 di�erent spatial con-

�gurations of 200000 jobs and workers. This enable us to �nd how autonomous our results are

to variations in the spatial distribution of jobs and workers. As mentioned above some strange

geographies might result from our procedure. By inspections, however, we hardly found patterns

worth mentioning as unreasonable relative to observations in a real geography. There is a low

simultaneous probability of very strange combinations of the alternative categories.

6 Estimation results and the goodness-of-�t of three alternative

model speci�cations

In this section we examine how three alternative formulations of spatial interaction models per-

form on the set of trip distribution observations. The three modelling alternatives are

� the standard gravity model; TG = TG[�;L;E;d]
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� a competing destinations formulation de�ned by Equations (4), (5), and the corresponding

balancing constraints; TCD1 = TCD1 [�; �;L;E;d]

� a competing destinations formulation de�ned by Equation (4), Sij =
wP

k=1
k 6=i;k 6=j

Ek

e��dij ,

and the set of balancing constraints; TCD2 = TCD2 [�; 
; �;L;E;d]

Table 1 o�ers some statistics on parameter estimates and model performance. Consider �rst the

goodness-of-�t. �SD() represents the average value of the standard deviations estimated in the

100 data sets, while SD() refer to the variation of the relevant 100 parameter estimates from

their mean value. The average value of the likelihood ratio test statistic is approximately 2608

when TCD1 is compared to TG:

2 �
1

100

100X
i=1

(LT
CD1

i � LT
G

i ) = 2607:68

The value by far exceeds the critical value of a chi-squared distribution with 1 degree of freedom at

any commonly used level of signi�cance. In fact, the destinations accessibility measure increases

the explanatory power substantially in all the 100 sets of observations. Even in the data set with

the lowest increase in loglikelihood ratio the value of the relevant test statistic is as high as

2 � (LT
CD1

i � LT
G

i )min = 787:02

Table 1: Average parameter estimates and loglikelihood values resulting from the 100 sets of

observations. �SD() is the average value of estimated standard deviations, while SD() is estimated

standard deviation of the 100 parameter estimates.
TG TCD1 TCD2

�̂
� 0.064845 0.063795 0.063932
�SD(�̂) 0.000120 0.000142 0.0001445

SD(
�̂
�) 0.002084 0.001421 0.001424

�̂� - -0.720792 -0.793573
�SD(�̂) - 0.003090 0.036508

SD(�̂�) - 0.001421 0.432637
�̂
 - - -0.851008
�SD(
̂) - - 4.191013

SD(�̂
) - - 0.206549
�L -1349073.5 -1347769.7 -1347470.5
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We know that both TG and TCD1 are misspeci�ed representations of the relevant spatial

interaction problem, since they do not distinguish between the di�erent distance responsiveness

of the two categories of workers. We also know that distance is the only spatial structure charac-

teristic in�uencing the observed spatial interaction pattern. Still, a simple accessibility measure

adds considerably to the explanatory power. The explanation is that this measure to some degree

captures the e�ect of omitted information on systematic variation in individual behaviour. In

pure empirical research our results would typically be interpreted in a causal framework, falsely

concluding that journeys-to-work are systematically in�uenced by the clustering system of po-

tential destinations. To be more precise the parameter � is found to be signi�cantly negative in

all the 100 data sets, with values of the t-statistic ranging from -34.4 to -504.9. This corresponds

to an interpretation where competition like forces are found to be dominant; the perceived at-

tractiveness of a group of spatial destinations increases less than proportionally with the number

of destinations in the group.

The introduction of the parameter 
 also represents a signi�cant contribution to model per-

formance in most of the 100 sets of observations. We now �nd that:

2 �
1

100

100X
i=1

(LT
CD2

i � LT
CD1

i ) = 598:25

There is, however, a large variation in the value of this test statistic between the 100 data sets.

In 10 of the data sets the reported value of the test statistic is lower than the critical value of a

chi squared distribution with 1 degree of freedom at a 5 percent level of signi�cance (3.84). For

the parameter 
 the values of the t-statistic range from -30.37 to 4.19. In 10 of the data sets we

cannot reject the null hypothesis that 
 = 0 at the 5 percent level of signi�cance.

We see from Table 1 that the average estimate of 
 is negative. It also follows from the table,

however, that the estimated standard deviation of parameter estimates is large. The parameter

estimate is positive in many data sets.

Though the estimation of 
 in general results in considerably improved model performance,

the results cast serious doubts concerning the interpretation of TCD2 . Signi�cantly negative

values on � is contradictory to what should be expected from the standard interpretation of the

accessibility measure Sij. It means a tendency that inaccessible destinations have high values of

Sij. A destination which is located close to some big employment centers in the region will for
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instance have a low value of Sij.

As mentioned in Section 2 the distance deterrence parameter � is traditionally interpreted as a

behavioral measure. This interpretation has long been challenged by several authors. Fothering-

ham (1983a) for instance �nds that origin-speci�c estimates of the parameter vary considerably

in empirical studies within production-constrained modeling frameworks. This variation was

theoretically explained as a result of clustering characteristics in the spatial con�guration of

central places in the geography. As Fotheringham (1984) points out, also system-wide gravity

model parameter estimates contain a potential misspeci�cation bias. These biases can, however,

be expected to be less serious, since the biases for origins with central and less central positions

within the geography are likely to have di�erent signs, and tend to cancel each other out. Ac-

cording to the results in Table 1 there is only insigni�cant variation in system-wide estimates of

� in our 100 data sets. This is as expected, taken into account that any clustering tendencies

are completely accidental in our data sets. One basic idea in the literature on the competing

destinations approach is that variation in estimates of the distance deterrence parameter will

diminish if relevant measures of spatial structure are explicitly taken into account. In our study

the accessibility is de�nitely not a relevant measure of spatial structure. Still, the two competing

destinations formulations have less variation in system-wide estimates of � than the pure gravity

model.

7 Predicting e�ects of a general reduction in travelling times

In this section we will test the predictability of the alternative model formulations. To be more

speci�c we consider a 20% reduction in travelling times on all the main roads in the transportation

network. This can for instance be due to an increase in speed limits on main roads, or to a general

upgrading of the physical road standard.

As a �rst step we use the standard gravity model with known parameter values to determine

the commuting �ow pattern for each category of workers in each of the 100 synthetic populations

in the situation with reduced traveling times. This procedure provides us with 100 �observations�

of how the changes in the main road transportation network a�ect the distribution of trips in the

geography. The next step is to consider the marginal totals for the aggregate population, and

use this information to predict the e�ects of changes in the road transportation network on the
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commuting �ow pattern. Such predictions are based on Equation (??) for all the three modeling

alternatives.

The Standardized Root Mean Square Error (SRMSE =

rP
ij
(Tij�T̂ij)

2

N2P
ij
Tij

N2

) is often used as a

measure of model performance in spatial interaction analysis. In Figure 2 we present information

on the SRMSE between predicted (Tpredicted) and �observed� (TA[dnew]) commuting �ows for

each of the three modeling alternatives. To be more speci�c the �gure illustrates the cumulative

distribution of this measure for our 100 synthetic populations. It is obvious from the �gure that

both versions of the competing destinations model o�er better predictions than the standard

gravity model. Even in the case where the standard gravity model o�ers the best prediction, the

competing destinations approaches perform substantially better.
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Figure 2: Cumulative distributions of the SRMSE between Tpredicted and TA[dnew] for the

three modeling alternatives.

In Table 2 we present some summary statistics from our experiments. According to both

Figure 2and Table 2 no unambiguous conclusion applies for a comparison of predictability be-

tween the two versions of the competing destinations model, while the inferiority of the standard

gravity model can be claimed by face validity.
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Table 2: Summary statistics of the relationship between Tpredicted and TA[dnew] for the three

modeling alternatives.
TG TCD1 TCD2

Average SRMSE 0.3448 0.1094 0.1111

STD (SRMSE) 0.0185 0.0147 0.0167

SRMSEmin 0.4021 0.1639 0.1661

SRMSEmax 0.2911 0.0793 0.0792

The percentage number of

cases (populations) where the

model o�ers the best prediction 0 62 38

All three models o�er reasonable predictions of how changes in the transportation network

in�uence the distribution of trips in the geography. A general distance deterrence e�ect in

combination with the balancing constraints is a good representation of the dominating forces

in the process towards a new state of the system. Still, the accessibility measure signi�cantly

contributes with improved predictability, even in situations with only accidental spatial clustering

tendencies.

8 Concluding remarks

In this paper we have generated 100 data sets, or synthetic populations. In those populations

there are two categories of jobs and workers. The two categories of workers respond di�erently to

variations in distance. In real empirical studies modelers usually have not su�cient information

on individual characteristics of jobs and workers. Consequently, model formulations are aggre-

gated in this respect, and this represents one source of misspeci�cation. In the spatial interaction

literature another source of misspeci�cation is often claimed to be a failure to capture relevant

aspects of spatial structure. According to the competing destinations modeling tradition this

kind of misspeci�cation can be met through the introduction of an accessibility measure.

From the way we generated our synthetic populations we know that no systematic spatial

structure misspeci�cation is present in our 100 data sets. Still, we introduced an accessibility

measure in two modeling alternatives, and found that this improved the goodness-of-�t consid-

erably compared to a traditional gravity model. One lesson to learn from this exercise is that

empirical results should be interpreted with care. Even statistically very signi�cant conclusions

might be due to spurious correlation, and result in false conclusions on causal relationships.
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Our results mean that the introduction of accessibility measures to some degree captures

e�ects of misspeci�cations caused by aggregating across di�erent categories of jobs and workers.

In addition to improving the goodness-of-�t we have also seen that such a model extension

improves the predictability in all the 100 data sets. Hence, the fact that a competing destinations

model might lead to false interpretations concerning the e�ect of spatial structure on the trip

distributions does not mean that we reject such a model as an adequate device to predict e�ects

of exogenous changes in for instance the transportation network. Based on an instrumentalistic

view the �nal evaluation of a model can be claimed to depend on its predictability.
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