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1.  INTRODUCTION 
 
An important concern in transportation planning is to ensure or at least improve the 
resiliency of traffic networks. Disruptions to transportation networks can be very costly 
and they can productivity and quality of life of a region, emergency response, evacuation 
planning and rerouting of freight.  Disruptions include those that are purely incidental 
events such as an accident involving a semi-truck on the freeway to those that result from 
targeted attacks on the infrastructure – e.g., a truck bomb on a major bridge. 
  
Current methods to analyzing the resiliency of transportation networks generally fall into 
one of three categories:  the four-step transportation planning model and microsimulation.  
This paper discusses the merits and shortcomings of these approaches and the capacity 
for each to facilitate network resiliency analysis.  The paper also introduces a couple of 
alternative graph-theoretic techniques (one that is raster-based and the other based on 
segments) for doing transportation network analysis. Both are imbedded in a Geographic 
Information System allowing for easy manipulation of the data and visualization of 
results.  The grid-based technique and a failure simulation is first demonstrated using a 
small hypothetical network.  Then both methods are applied to a portion of the 
Washington, D.C. highway and arterial network.  Directions for future research in this 
area are also provided.  
 

2.  CURRENT APPROACHES TO MODELING TRANSPORTATION 
NETWORKS  
 

The most traditional approach to modeling transportation networks is the four-step 
planning model that was developed some five decades ago. This model is based on the 
traditional four-step modeling process, which captures each of the following: trip 
generation or number of trips produced in and attracted to each zone in the transportation 
study area; trip distribution or number of trips going between each origin and destination, 
or each pair of zones in the study area; mode choice or travelers choice of mode (e.g., 
drive alone, car pool, transit), and traffic assignment or travelers choice of routes between 
each origin and destination.  This technique, while valuable in certain respects, is not 
well-suited for resiliency analysis where the effects of link failures are assessed.  The 
process of preparing and running a scenario is time-consuming and it is not something 
that can be done in real-time.  
 
With advancements in computing power, our understanding of micro-level travel 
behavior and improvements in data collection, microsimulation is becoming more 
popular as a technique for modeling the properties of transportation networks.  While 
there are many varieties of these models, they each share some common characteristics 
and capabilities.  First, the models capture micro-level behavior, which in turn gives rise 
to macro-level phenomenon like traffic flows and congestion levels.  Second, micro-level 
behavior is characterized by rules that are assumed to guide individuals’ decisions and 
individuals are classified in terms of the rules they utilize.  For example, one type of 
person may base their decisions of what route to take on information they gather through 



traveler information services while another individual may be apathetic to knowledge of 
traffic conditions before they travel. Third, most micro-simulation models also include a 
visualization component that allows the user to see how traffic is evolving under different 
assumptions built into the model.  
 
While modeling the effect of a disruption, like an accident, is fairly easy to do within a 
micro-simulation framework, the very act of constructing a model of this type is both 
time-consuming and challenging.  The process entails detailed coding, calibration of 
innumerous parameters and validation of spatio-temporal conditions of the baseline 
network.  Further, rules for individual-level behavior, and classes of travelers, need to be 
defined in such a way that they correspond to the actual population of the region being 
modeled.  Oftentimes, this requires surveys of individuals to get at this with some 
precision.   
 
 
The first step to any comprehensive plan for securing critical infrastructure is the 
establishment of a methodology by which standards and metrics can be set.  There needs 
to be a common language by which stakeholders can quantify continuity by measuring 
resiliency.  What follows is an initial step towards establishing such a methodology to 
move forward. 
 
Infrastructure Assessment 
 
One of the significant obstacles in dealing with critical infrastructure is assessing and 
setting baselines for such large complex sprawling networks.  Further, infrastructures are 
often interdependent and dynamic.  Fortunately there has been considerable work done 
on methods for quantifying critical infrastructure.  Infrastructures can be assessed based 
on several factors a few of which include: 
 

• Density – how much infrastructure is there in any discrete location – i.e. 15 fiber 
optic conduits, 3 electric transmission lines, 2 gas pipelines. 

• Capacity – how much volume, flow, or traffic are the infrastructures in any 
discrete location able to handle – i.e. the fiber lines have a 10 Gbps1 capacity, the 
electric transmission lines are 720 Kv, and the gas pipeline are 42 inches in 
diameter. 

• Bottleneck identification – algorithmic approaches to identify areas with high 
amounts of capacity but little diversity to route it.   

• Structural analysis – another algorithmic approach that calculates all possible 
paths across an infrastructure and finds those discrete locations that are most 
frequently used in routing.   

• Weighted structural analysis – expands the all possible path analysis to include to 
identify those locations are frequently used in routing and have low levels of 
capacity, or alternative routing paths in the event of failures that could be under 
capacitated. 
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• Interdependency –  
o Colocation – two or more infrastructures are located in the same discrete 

location. 
o Structural – the most frequently utilized routing paths of two or more 

infrastructures are located in the same discrete location. 
o Functional – the loss of one infrastructure will cause failures in a 

dependent infrastructure – i.e. the loss of electric power causes traffic light 
failures resulting in cascading traffic congestion, hampering emergency 
response. 

• Cost – creating a baseline figure of cost for the infrastructure in its current 
configuration – i.e. the cost of leasing fiber per month from a network provider. 

 
These are but a few of the possible approaches to assessing infrastructure, but they 
provide a first cut and the basic aspects of infrastructure that are important to understand.  
Each approach provides a list of discrete locations and assets that could be critical to the 
operation of one or multiple infrastructures.  To know if the assessment created the 
correct output the analysis needs to be verified. 
 
Verification 
 
There a multitude of ways to assess infrastructure and identify potential vulnerabilities, 
and there needs to be a means to identify which approach works best in each environment 
through a verification process.  One means of verification is through failure simulation.  
Once infrastructure has been assessed and the most critical infrastructure components 
identified and ranked a failure of each component can be simulated.  After the failure the 
impact can be charted and subsequently compared to other components to verify their 
criticality.  Would the failure of a location with the highest density of infrastructure cause 
more impact than an area with the highest capacity, or would a failure at a bottleneck 
cause the greatest repercussions to continuity.  Failure simulation provides a means to 
verify the criticality of any of these scenarios to the continuity of the infrastructure.  Once 
baseline verification has been performed a combination of assessment methods can be 
investigated.  For instance the greatest impact to continuity could come from the most 
frequently used routing path that contains a high density of three different infrastructures.   
 
A second aspect that needs to be considered in a verification process is after an initial 
failure the structure of the network changes.  What was once the second most critical 
asset in the network may have changed.  To determine if it has or not a combinatorial 
optimization needs to be run where after the first failure has been incurred all possible 
second most critical assets need to be tested to determine which has the greatest impact 
on the infrastructure’s continuity.  In the best case scenario real time analysis can be 
performed to react to failures and determine how to best allocate resources in the 
network, but proactive analysis before events is still critical to ensure continuity. 
 
Consequence 
 



An integral part of both assessment and verification is determining what the 
consequences of a failure are.  Consequences can be calculated through a variety of 
methods and ultimately are specific to an individual scenario, the infrastructure involved 
and the users dependent on it.  That said there are some broad areas into which 
consequence can be categorized: 
 

• Population affected – how many people will be affected by a failure or lack on 
continuity in an infrastructure – i.e. after a transmission line failure and 
subsequent blackout how many people will be without power. 

• Businesses affected – how many business locations will be affected in a failure 
scenario for aggregation purposes these consequences can be grouped by SIC or 
NAICs codes. 

• Interdependent infrastructures affected – what infrastructures with dependencies 
to a failed infrastructure will be impacted by an event – i.e. a transmission line 
failure causes traffic signals to loose power causing cascading gridlock in 
transportation infrastructure. 

 
These are just three broad categories under which consequence could be grouped.  For 
specific critical sectors consequence can be more narrowly defined and quantified.  If the 
Federal Reserve Banks Fedwire settlement system suffered a continuity failure what 
would the impact be on the financial sector and specifically the banking community, 
domestically in the United States and internationally?  There are plenty of specific 
examples of consequence within each sector, and each needs to have the ability to fit in a 
larger framework with metrics to quantify how mitigation will augment continuity to 
decrease consequence.  Once consequence has been measured it is possible to attach a 
dollar figure to that consequence and a probability of that consequence that can in turn 
establish a justified level of investment in continuity. 
 
Fiscal Evaluation 
 
3.  GRAPH-THEORETIC APPROACHES TO NETWORK ANALYSIS 
 
A much simpler but perhaps less detailed approach to modeling transportation networks is 
based on graph theory.  Graph theory has a long history starting with the work of Euler in 
1736, but implementations to spatial network resiliency is far more recent.  Investigations of 
the spatial and resiliency aspects of networks have their own trajectories.  Spatial applications 
of graph theory have a long lineage in both geography and regional science.  Garrison (1968) 
did in-depth network analysis on the interstate highway system, analyzing the importance 
of nodes and links on location and development.  This same vein of research was greatly 
expanded through Garrison’s student Kansky (1963) and later with the work of Chorley 
and Haggett (1968).  In addition, Nyusten and Dacey (1968) and later Taffee and 
Gauthier (1973) expanded this research, applying network analysis to telephone networks 
and general infrastructure.  This tradition of network analysis was picked up again by 
geographers to begin to analyze the Internet‘s network of networks.  Wheeler and 
O’Kelly (1999) examined the basic graph measures of several domestic US providers and 
analysis of city connectivity of the aggregated providers.  Gorman and Malecki (2000) 



investigated the network topologies of several firms and how graph theoretic measures 
could be used to investigate competitive advantage and the nature of interconnection 
between networks.  Later studies have looked at the structure of networks and city 
connectivity as a time series finding large changes in bandwidth capacity (Malecki, 2002; 
Townsend, 2001), but little change in graph measures of connectivity (O’Kelly and 
Grubesic, 2002).  While connectivity indices have changed little over time the overall 
structure of the network has.  Gorman and Kulkarni (2004) found that the aggregated US 
backbone network has increasing self-organized from 1997 to 2000 creating a more 
efficient but more sparsely connected network.  This research confirmed at a spatial level 
of analysis what was being found at a topological level in the study of complex networks. 
   
In studies of large complex network of thousands and millions of nodes physicists and 
computer scientists have begun to incorporate spatial dimensions to their work.  Work by 
Yook, Jeong, and Barabasi (2001) has examined the role of linear distance in complex 
networks.  They found that the spatial layout of the global Internet router network formed 
a fractal set, determined by population density patterns around the globe (Yook et al 
2001).  A similar study at Boston University found the same effect when population was 
controlled for with the per capita GDP of regions (Lakhina et al 2002).  Barthelemy 
(2003) found that in spatial networks with scale free properties long distance links 
connect predominantly to hubs.  Further, if the total length in a network is fixed, the 
optimal network which minimizes both the total length and the diameter lies in between 
the scale-free and spatial networks (Barthelemy 2003). 
 
The analysis of the resiliency of networks also has a long history of analysis with 
applications to fields as diverse as landscape ecology (Urban and Keitt 2001) and 
telecommunications engineering (Colbourn 1999).  In additon to several discipline 
specific approaches there has been considerable recent work on the resiliency of general 
complex networks.  A widely discussed work by Albert et. al. (2000) found that complex 
networks2 were robust to random failures but vulnerable to targeted attack.  The research 
illustrated that when nodes with a significant percentage of the networks connections are 
targeted for attack the network degrades rapidly leading to catastrophic failures and network 
balkanization. 
 
The initial work by Albert et. al. was quickly followed by several other approaches to 
vulnerability of large complex networks.  Callaway et al (2000) modeled network 
robustness and fragility as a percolation and Cohen et al (2001) using similar percolation 
models, both findings reinforcing the fragile-robust dichotomy discovered by Albert et. 
al. (2000).  The research has not been without criticism, and many computer scientists 
and engineers have argued the network topology models generated in these studies are 
not accurate (Chen et al. 2002, Alderson et al. 2003, Li et al. 2004).  In fact the same 
heavy tail connectivity distribution can result from a wide variety of network topologies, 
some more and less resilient than others (Li et al. 2004, Schintler et al. 2004). 
 
While combining the themes of spatial network analysis and resiliency has received 
considerable recent attention work in this area dates back over thirty years.  Some of the 
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earliest resiliency work involving spatial dimensions was Reed’s (1970) graph theoretical 
analysis of the urban city network formed by the Indian airline network.  In this analysis 
Reed successively removed nodes from the network and calculated the impact on the average 
distance3 in the network.  While similar work had been done previously by mathematicians 
Reed’s was one of the first applications of the work to a critical infrastructure.  The work was 
well ahead of its time calculating tiers of cities based on their criticality and finding that the 
loss of top tier cities could balkanize the network resulting in large scale failures (Reed 
1970).   

Analysis of the resiliency of spatial networks has again been picked up largely in relation 
to the analysis of critical infrastructure networks.  Utilizing a model of node connectivity 
and path availability Grubesic et al (2003) found that the disconnection of a major hub 
city could cause the disconnection of peripheral cities from the network.  Building upon 
the complex network literature Gorman et. al. (2004) found that incorporating spatial 
variables into algorithms, such as global connections between cities and Euclidean 
distance, to determine the criticality of nodes in the network was more effective than the 
binary connectivity measures used in the previous studies citied.   

 

4.  MODIFIED GRAPH THEORY TECHNIQUES:  GRID-BASED AND 
SEGMENT-BASED APPROACHES 

One of the most significant shortcomings in current spatial approaches to graph theory is 
the loss of spatial data when a network is decomposed into edges and vertices.  Previous 
approaches have succeeded in capturing the location of vertices and the distance of edges, 
but the path takes by an edge is lost.  In an effort to find a method for capturing spatial 
path data of physical networks ideas were borrowed from the field of image analysis.  In 
image analysis researchers often decompose large images into pixels and perform 
analysis based on pixel adjacency.  Since the number of pixels in a high-resolution image 
can be quite large image analysis implemented theories from circuit theory to implement 
large graph processing algorithms (Roth 1955, Branin 1966, Zahn 1977).  Utilizing the 
computational power of the algorithms researchers were able to overlay images with 
grids and produce connectivity graphs based on pixel adjacency (Wallace et al. 1994).  
This approach allowed the efficient spatial capture of an image with Cartesian 
coordinates for analysis.  The approach has been used in computer graphics (Taubin 
1995), 3-D surface flattening (Wandell et al. 2000), and data clustering analysis (Jain et 
al. 1999).   

The approach allows the creation of graph while capturing the Cartesian coordinates of 
an image.  This facet of the approach provides a possible angle for capturing the spatial 
properties of network including the exact path of edges.  Building upon the work in 
image analysis a grid-based approach is possible for network analysis.  To accomplish 
this task a grid is laid over the network of interest.  This is most easily accomplished in a 
geographic information system where each part of a network already has a precise spatial 
coordinate based on its vector attributes.  To understand conversion of the grid into a 
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connectivity graph a toy problem is useful for illustration.  Figure 1 shows a simple 
network with a grid overlay. 

The above grid is laid over the network vector file and the cells are marked as either 
containing a network point or not (in the case above indicated by red numbers4), 
attributes can also be assigned based on a variety of factors.  Once the cells have been 
assigned a number and a designation of whether they contain a network link or not, a 
connectivity edge list can be created.  The cell adjacency list for the network above 
would be: 
1,7 
7,13 
13,19 
19,25 
21,17 
17,13 
13,9 
9,5 
A few considerations go into defining the dimensions of the grid. A grid with a finer 
resolution is desired to ensure that each cell contains only part of one link and not 
multiple links. The size of the grid also depends on the nature of the “what if” scenarios 
that are intended to be modeled.  Larger cells may be desired if one is interested in 
exploring the impact of a large-scale disruption to some part of the network although this 
can also be simulated with a grid dimension of finer resolution by simultaneously 
removing a block of smaller cells.     
   
The grid-based network is used to conduct failure simulations.   First, each cell in the 
network is ranked according to some indicator that is believed to measure the criticality 
of that cell or its importance to the connectivity of the entire network.  These indices need 
not be limited to graph-theoretic variety and can be formulated to capture the weighted 
network properties (e.g., capacities or length of links). Second, cells are removed in 
sequence based on their criticality and after the removal of each cell network connectivity 
is examined.  
 
One of the limitations of the grid-based approach is the curse of dimensionality problem.  
As the density of a network increases, the grid resolution need to adequately capture the 
network topology expands and the computational power to run simulations grows 
exponentially.  Further, the method cannot easily be applied to weighted networks and 
there are also computational issues associated with this as well. 
 
The segment-based approach attempts to address these shortcomings.  It entails defining 
a network in terms of links and nodes at a level of resolution that can be reasonably 
handled from a computational perspective.  Weights are added to links based on attributes 
of interest – e.g., capacity, where in the case of capacity for example a segment with 
greater carrying capacity is viewed as a more attractive link in a route between two 
points.  Shortest paths between origins and destinations in the network as defined by the 
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user are calculated and the resulting criticality of any given segment is based on the 
number of shortest paths that utilize that link.  The resiliency of the network is assessed 
by conducting failure simulations of critical links and rerunning the shortest path 
analysis.  
 

5.  PROTOTYPE DEMONSTRATION OF GRID-BASED APPROACH 

The grid-based approach is first applied here to a generic network. A 150 by 150 grid is 
used in the simulations and cell-adjacency is based on rook rules.  A program called 
UCINET is used to conduct network analysis on the graph defined and to rank the 
criticality of links based on a variety of graph-theoretic indices.   
 
The indices used in this simulation include:  
 

Betweeness: measures the degree to which a node is an intermediate location 
through indirect relationships connecting other nodes. 

 
Closeness:  measures how close a node is to all other nodes based on the shortest 
paths between that node and all other nodes.   

 
In-Degree:  measures the number of links that have direct connections to a node. 

  
Clustering Coefficient:  measures the degree of small-world network local 
clustering of a node.  

 
Reachability:  measures the extent to which a node can reach all other nodes in a 
fragmented.   

 

The connectivity of the network at each point in the simulation is measured by two 
indices:  diameter and the degree of balkanization.  Diameter is the longest geodescic 
path in the network. Balkanization measures the fragmentation of the network and 
specifically, the number of disconnected components.   
 

Drops in the diameter of the network do not reflect improvements in connectivity but 
rather further balkanization of the network.  This is because the algorithm that is used to 
do the simulations computes the diameter of the largest disconnected component.  
 

The experiments provide some insight about which indices appear to be better than others 
as measures of how critical a node is to the connectivity of a network. Of all of the 
indices used to conduct the failure simulations, only betweeness causes an immediate 
degradation of the network. After the cell ranked highest according to this measure is 
removed, the network fragments into six disconnected components and the diameter 
drops from 267 to 156.  The network continues to balkanize as additional cells are 
removed. 



 
Using just the number of components as a measure of fragmentation can be deceiving.  It 
doesn’t say anything about the size of the fragments that break off with the removal of 
certain cells.  Topology diagrams can also help to provide this information (see Figures 2 
and 3).  Each node is given a different color to represent which component to which it 
belongs. The original network (i.e., before any cells are removed) consists of five 
components.  After removing the cell ranked highest according to betweeness the largest 
component of the original network breaks in half.  The network continues to balkanize 
with the removal of additional cells although the pieces that break off in each case are 
rather small.   
 
There are only modest, and in some cases no effect, on the diameter or balkanization of 
the network when the other measures of criticality are used to rank cells for removal. It is 
not surprising to find this for the clustering coefficient and degree as they are only 
measures of the local connectivity of a node. There are no readily apparent explanations 
why reachability and closeness do not perform well.  
 

6.  EMPIRICAL APPLICATION OF TECHNIQUES  

The raster-based and segment-based approaches are next applied to the Washington, D.C. 
highway and arterial network.  Computationally, it was not feasible to apply either 
method to the entire Metropolitan Statistical Area and this stems largely from the fact that 
the network spans a large geographic region and it is very dense in most regions.  As a 
result, only the middle portion of the network is extracted for the purpose of 
demonstration.   
 
Figure 4 shows the results of the raster-based technique for the unweighted network.  The 
grid size that is used to conduct the analysis is 250 rows by 300 columns with 13,253 
cells that contain segments of the road network.  Betweenness scores are calculated for 
each link and different colors are used to represent the magnitude of these scores.  This 
application demonstrates one of the dangers of utilizing a non-weighted graph and that is 
that the attractiveness any given link in the network is determined only by it’s spatial 
position in relation to other links.  It does not account for other factors such as capacity 
and travel time.  This simulation shows perhaps erroneously that minor arterials in the 
District of Columbia are more critical than the Interstate beltway that circles the region.  
 
The next simulation utilizes the segment-based approach and a network weighted by 
capacity.  Capacity classification codes are used to create normalized index of capacity 
which is then inverted to make links with greater capacity appear shorter and hence more 
attractive.  The network is comprised of 2,793 links.  Figure 5 shows the results of the 
segment-based simulation and the criticality of links is again represented by different 
colors.  What emerges this time is a characterization of traffic that appears to be more 
realistic where for example, the importance of the beltway is highlighted.  One of the 
most critical links is then removed from the network and the simulation is rerun.  The 
results are displayed in Figure 6 and the red circle shows which segment was deleted 
from the network.  This simulation illustrates how a shock to the network affects the 



rerouting of traffic and where in the network additional stress is imposed due to the 
disruption.       
 

7.  CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH  

This paper presents some alternative methodologies for examining the resiliency of 
networks.  One of the advantages of the technique is that it overcomes some of the 
challenges that are associated with the analysis of planar networks.  The connectivity of a 
network at any point in a cell removal process can be measured by statistics like diameter 
but also visually represented with network topology diagrams.  Betweeness appears to be 
a good measure of criticality although others should be explored and validated.  
 

The prototype demonstration of the grid-based method revealed some shortcomings of 
the process.  Most notably, in some of the cell rankings there were sequences of cells that 
comprise part of a single link connecting two nodes in the original network. If it is a link 
that is critical to the connectivity of a network, removal of only the first cell in sequence 
had any measurable impact.  An approach for minimizing this problem may be to conduct 
recursive simulations, where the criticality of cells is recomputed each time a cell is 
removed from the network.  Application of the technique to the Washington, D.C. area 
highlighted some of the computational problems of using the method on a large, dense 
network.     
 

The grid-based network simulation method could be used to explore interdependencies 
across multiple networks, and to define critical nodes based on these interdependencies.  
This requires the development of indices that measure criticality based on 
interdependency. 
 

The segment-based approach could be extended to examine dynamics within a network.  
This might be accomplished using a recursive procedure, where after each step the 
properties of the network are visualized using the Geographic Information Systems.  
Extension of the approach to look at infrastructure interdependencies also holds some 
merit. 
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Figure 1. A method for cell adjacency graph creation 
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Figure 2:  Washington, D.C. Network Using Grid-Based Approach 

 



Figure 3:  Washington, D.C. Network Using Segment-Based Approach Before Link 

Failure 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 4:  Washington, D.C. Network Using Segment-Based Approach After Link 

Failure 
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