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1 Introduction 

There is broad consensus among economists that international competiveness of modern 

economies heavily relies on their ability to generate knowledge (Romer 1990, Grossman and 

Helpman 1991, Barro and Sala-i-Martin 1997, Los and Verspagen 2006). In order to be more 

specific, many studies further define separate forms of knowledge: implicit versus explicit, 

tacit versus codified or local versus global knowledge (e.g. Jensen et al. 2007). Notwithstand-

ing the importance of all forms of knowledge, the presented study focuses on the generation 

of codified knowledge as a main driver of technological knowledge and subsequently regional 

growth.  

Following the relevant literature, a region’s ability to generate technological knowledge re-

lies, among other factors, on the educational achievements of its workforce, the degree of 

intramural R&D expenditures and the existence of regional knowledge spillovers. However, 

the pure existence might be of little help, if these factors are not used efficiently (Wang and 

Huang 2007). The paper at hand particularly deals with this issue and foresees to analyse the 

regions’ efficiency in generating technological knowledge in further detail. Therefore, the 

first step foresees to identify total (output-) efficiency of EU regions at NUTS 2 level in sec-

tion 2. For this purpose, we apply an outlier robust enhancement of the data envelopment 

analysis (DEA), the so-called order-α-frontier analysis with patent applications as output and 

human capital as well as R&D expenditures as input variables (Daouia and Simar 2005).  

The analysis points to the existence of a spatial factor. This conflicts with a basic assumption 

of DEA, which indeed presumes a strong degree of independency of the operating units. 

Therefore, section 3 introduces a geoadditive regression analysis based on markov fields, 

which allows for decomposing the total efficiency into a smoothed spatial and a non-spatial 

part. The smoothed part shows spatial dependence and identifies regions with a comparative 

(dis)advantage due to their location in space. The non-spatial effect gives an idea on a re-

gion’s efficiency compared to the neighboring and nearby regions and can be interpreted as 

structural efficiency. 

Section 4 concludes and discusses some policy implications. 



2 Regional efficiency 

2.1 Theoretical framework and related literature 

Regional efficiency analysis traces back to several studies on the economic performance of 

Asian regions. Macmillan (1986) and Hashimoto and Ishikawa (1993) applied DEA to rate 

the efficiency of Chinese and Japanese cities respectively. Charnes et al. (1989) used the same 

methodology to identify urban industrial performance and assess regional planning tools in 

China, and Seifert and Zhu (1998) applied DEA to monitor the productivity growth of 

China’s industries over several decades.  

More recently, DEA is also used to analyze efficiency in the context of R&D activities. Wang 

and Huang (2007), for example, apply the technique for a cross-country study on relative 

R&D efficiency. Guan and Chen (2010) as well as Zhang et al. (2003) follow a similar ap-

proach for Chinese regions.  

Clearly DEA is not the only way to measure efficiency. Among others stochastic frontier 

analysis (SFA) could be mentioned as a more complex approach, which requires, compared to 

DEA, more indepth knowledge on the functional relationship of inputs and outputs. As a con-

sequence the approach reduces the uncertainty of the results (Aigner et al. 1977, Li 2009).  

DEA, in contrast, is not bound to a given theory but the results are only determined by the 

data. This is considered an advantage for the presented study, as the main aim is to receive 

directly observable evidence with respect to regions’ efficiency in generating technical 

knowledge.1 

At the same time the strong orientation on the data comes along with a major drawback. Since 

the estimated frontiers generally envelop all data, the sensitivity to outliers is problematic for 

most DEA models. The presented paper deals with this problem by using an outlier robust 

enhancement of DEA, the so-called order-α-frontier approach (Daouia and Simar 2005).2 As a 

consequence, the frontier does not reflect the maximum achievable output anymore, but some 

outliers are allowed to lie above the frontier. 

 

2.2 Methodological remarks 

The estimation of the regions’ efficiency in generating technological knowledge follows the 

basic principles of DEA.3 These comprise the selection of decisionmaking units (DMUs), the 

definition of inputs and outputs and the formulation of the mathematical model. 

                                                
1  See Guan and Chen for a comprehensive discussion on the advantages of DEA in the R&D context. 
2 See section 2.2 for details on the approach. 
3 In the following we assume a basic familiarity with DEA. Among others, Charnes et al. (1994) or Cooper et 

al. (2006) provide a good introduction into  DEA. 



Definition of DMUs 

DMUs are characterized by a uniform production function to transfer a set of inputs into one 

or multiple outputs. Technological efficiency, for example, is often analyzed at the level of 

firms that produce the same goods or services. If the focus is on regions’ efficiency in using 

available factors to generate certain outputs, DMUs are generally defined as spatial entities.  

Following the territorial system of the European Union – the so-called Nomenclature Territo-

rial Statistical Units (NUTS) – efficiency is analyzed at the NUTS 2 level, which can be con-

sidered the basic administrative unit chosen by the EU for a broad set of regional policies. In 

total, the analysis accounts for 192 NUTS 2 regions of continental Europe. 

 

Definition of inputs and outputs 

There is broad consense among regional scientists that regions’ ability to generate technical 

knowledge is driven, on the one hand, by region-specific and, in the medium term, immobile 

factors as well as, on the other hand, by their ability to attract (or provide) funds for R&D 

activities. 

Immobile factors include, but are not limited, to the level of human capital, the existence of 

major scientific institutions (e.g. universities) and the overall economic structure. Funds could 

either be private or public in nature and might be used for rather specific scientific projects or 

provided for basic research. While a certain environment with immobile factors might indeed 

affect the structure and dimension of funds, they are in principal mobile and could (at least in 

part) easily be removed to other regions within short time.  

The chosen inputs, which aim to reflect both categories, are defined according the regions’ 

level of human capital and total intramural R&D expenditures. For the sake of comparability, 

R&D expenditures are considered as a percentage of the regional GDP of the year 2002. Hu-

man capital, also defined in relative terms, is given as the percentage of a region’s labor force 

that belongs to the human resources in science and technology (HRST). Following the Can-

berra Manual, HRST comprise all members of the labor force, who either dispose of tertiary 

education in the field of science and technology, or are employed in a corresponding occupa-

tion where the above qualifications are normally required (OECD 1993). In this context, the 

requirements are in line with internationally harmonized standards: the International Standard 

Classification of Education (ISCED) and the International Standard Classification of Occupa-

tion (ISCO). 



On the output side, the regions’ patent applications to the EPO per person employed are cho-

sen as a proxy for the ability to generate knowledge.4 The indicator is frequently applied in 

the literature despite its potential shortcomings (Grupp and Schmoch 1999, Pavitt 1985):  

First, patents are just granted to products and not to services or immaterial goods. Thus, not 

all innovations are patentable. Second, not all manufacturing industries are technology-driven 

and rely on R&D. Third, not all innovations are filed as a patent even if they are patentable. 

Firms sometimes decide against a temporary monopoly of a patent, just to keep their inven-

tions secret (Rammer 2003). Hence, not all innovations are reflected in patents. The clear fo-

cus on generating technological knowledge lessens the relevance of the first and the second 

issue for the study at hand. In contrast, the third shortcoming also holds for the presented 

analysis. At the same time, patents are still rich of information and can be considered one of 

the most powerful indicators for measuring technological output (Griliches 1990, Audretsch 

1995). 

 

Mathematical formulation 

Traditional DEA describes one of the most popular tools to measure efficient production 

boundaries of firms or regions. However, the models are often found to be rather sensitive to 

outliers. The presented order-α-frontier analysis, which is described in full detail by Daouia 

and Simar (2005), aims to overcome this shortcoming by defining a frontier function that 

leaves out extreme observations. Presuming that regions improve their efficiency more likely 

by growing outputs rather than decreasing inputs, the output-oriented version of the model is 

applied for this study.  

We start with a brief specification of the traditional DEA model (Equations (3) to (5)), which 

defines the baseline for the extension according equations (6) and (7).  

Any region disposes of a set of inputs 

! 

x " R +

p  to generate a set of outputs 

! 

y " R +

q . Feasible 

combinations of 

! 

(x,y)  are defined as: 

(3) 

! 

" = (x,y)# R+
p+q

 x can produce y{ } . 

The frontiers of 

! 

"  reflect maximum outputs that can be produced with given inputs. Thus, 

the regions’ efficient frontier can be defined in the following way:  

(4) 

! 

Y
"
(x) = (x,y

"
(x)) y

"
(x)# Y (x) : $y" (x)% Y (x), &$ >1{ } 

where 

! 

Y (x)  describes the set of technologically feasible outputs, and 

! 

y
"
(x)  denotes the 

                                                
4 The data refer to an average between 2002 and 2004. 



maximum achievable output of a unit that produces at input level 

! 

x . This, in turn, allows the 

definition of a unit’s efficiency score as: 

(5) 

! 

"(x,y) = sup " (x,"y)# ${ } = sup " "y # Y (x){ }  

where 

! 

"(x,y) #1 is the proportionate increase of output 

! 

y  a region operating at input level 

! 

x  

has to attain to be efficient. 

The frontiers of Ψ, which are unknown in practice, can be determined by nonparametric esti-

mators, such as the free disposal hull (FDH) estimator (Deprins et al. 1984). However, these 

estimators often envelop all data points, which in turn makes traditional DEA rather sensitive 

for outliers. 

The problem can be solved by using more robust estimators which deal with extreme observa-

tions in a different way. Instead of defining the efficient boundary according the uppermost 

technically achievable output (for any given input), extreme observations can for example be 

allowed to lie above a partial frontier (Cazals et al. 2002). For this case, Aragon et al. (2005) 

introduced the concept of the order-α partial frontier (α∈[0,1]) which is applied for the pre-

sented study.  

With 

! 

SY |X (y | x)  defined as the probability 

! 

Prob(Y " y | X # x)  and 

! 

F
X
(x)  as the probability 

! 

Prob(X " x) , Daouia and Simar (2003) define the order-α-quantile output efficiency score for 

each unit 

! 

(x,y)" #  as:  

(6) 

! 

"# (x,y) = sup " SY |X ("y | x) >1$#{ } for 

! 

F
X
(x) > 0  for α∈[0,1] 5 

Note that, following this approach, each unit is only compared with units disposing of equal 

or worse input levels. A unit 

! 

(x,y)  is efficient at level α, if it lies on the calculated frontier, 

this means if 

! 

"# (x,y) =1. In this case, the unit is dominated by a unit with lower input with a 

probability 

! 

" 1-α.6 Units below the efficient boundary (

! 

"# (x,y) >1) are considered inefficient. 

This means a unit with similar or worse input delivers higher output with a probability > 1-α. 

On the contrary, units above the frontier (

! 

"# (x,y) <1) could reduce their outputs but would 

remain output efficient.  

The applied nonparametric estimator of 

! 

"# (x,y) is obtained by substituting 

! 

SY |X (y | x)  with its 

empirical correspondent 

! 

S Y |X ,n (y | x), based on the samples 

! 

(X1,Y1) , …, 

! 

(X
n
,Y

n
)  where X is the 

observed input and Y the output. This results in the empirical efficiency score 

! 

" #,n (x,y) . 

                                                
5 The efficiency score converges from below to the Debreu-Farell output efficiency measure λ(x,y). 
6  In case a unit’s input equals the minimum level, which means FX(x) = 0, the unit cannot be dominated by a 

unit with less input and is therefore considered to be efficient (λα(x,y) = 1). 



(7) 

! 

" #,n (x,y) = sup " S Y |X ,n ("y | x) >1$#{ } 

The order-α-frontier analysis is particularly charming for samples with extreme observations 

as they easily might occur for a sample of regions. Furthermore the approach accounts to 

some extent for the heterogeneity of the sample, as each region is only compared with regions 

whose input levels are equal or worse.  

 

2.3 Results 

The results, illustrated by figure 1, derive from the application of the order-α-frontier analysis 

for α = 0.05.7 A region is considered comparatively inefficient in using its intramural R&D 

investments and human capital, if one or more other regions equipped with a similar or worse 

level of these inputs generate(s) higher levels of output.  

 
Figure 1. Efficiency in generating knowledge, selected EU regions, efficiency scores 2002 

 
Source: Own calculation, regions with missing observation marked by stripes 

 

                                                
7 Efficiency scores have been calculated for a=0,01, a=0,05 and a=0,1. See annex for detailed results. 



Dark-grey shaded regions show rather low efficiency levels8 and can be considered compara-

tively disadvantaged with regard to their productivity in generating knowledge. On the con-

trary, the white- and light grey-shaded regions show the highest level of efficiency, as they 

deliver comparatively high patent applications per employee with the given inputs.  

Northern Italian and southern German regions turn out to generate knowledge in a rather effi-

cient way. In contrast northern Spanish and Czech regions’ productivity is among the lowest.  

More general, the results point to the existence of regional spillovers, as neighboring regions’ 

efficiency scores seem to be rather similar. At the same time, we also observe a (national) 

border effect. Thus, knowledge generation seems, at least to some extent, be determined by 

the national factors such as language or institutional settings (Keller 2002, Bottazzi and Peri 

2003). The next step foresees to analyse the results in more detail.  

 

3 Decomposition of regional efficiency 

3.1 Knowledge spillovers 

The efficiency scores of the order-α-frontier approach point to a region’s ability to transform 

the existing human capital and the intramural R&D expenditures into (codified) technological 

knowledge. Following the logic of maximizing outputs, highly innovative firms will have a 

high preference for locating their R&D division in regions on (or at least close to) the frontier 

in the long run. Alternatively firms could opt for a place of location in a neighboring region. 

This would be reasonable, if the firms expect knowledge spillovers between the two regions.  

While there is broad consensus on the existence of such spillovers, the geographical scope of 

these spillovers is not clear. Bottazi and Peri (2002, 2003) find that spillovers within Euro-

pean regions are significant up to 300 km of distance (and never significant beyond) but de-

crease as distance increase. The result still holds, if results are controlled for centrality. “This 

means that regions in the periphery with R&D intensive neighbors benefit from it just as cen-

tral regions do” (Bottazi and Peri 2003, p. 699).  

Following these results, the incorporation of regional spillovers into the model gains in impor-

tance with decreasing size of the spatial units. Thus, knowledge generation at county (NUTS 

3) or even commune (NUTS 4) level heavily relies on the knowledge generated in regions 

nearby. In contrast, the results for larger units such as member states (NUTS 0) or federal 

states (NUTS 1) are mainly driven by localized spillovers within the region rather than cross-

border spillovers.  

With regard to the medium-sized regions at NUTS 2 level, chosen for the presented study, we 
                                                
8 Note that, due to the mathematical formulation of the model, high efficiency scores point to low efficiency 

levels and vice versa. 



expect a balanced mix of intra-regional and external spillovers. Therefore, the main aim of 

this chapter is to decompose the overall efficiency into a spatial and a non-spatial part. For 

this purpose we apply a geoadditive model, which can be considered an extended kriging ap-

proach. 

 

3.2 From kriging approaches to geoadditive models 

The interest in spatial dependence and the availability of spatial prediction has first been of 

particular interest in the broader field of geology. In fact, various techniques for spatial analy-

ses with a limited number of observations originated in this field. One of the most popular 

methodologies to identify a spatial pattern prevalent in a given set of data is the so-called 

kriging.9 This approach describes an interpolation technique for spatially dependent variables 

which is still used in the field of mining and soil research but nowadays goes beyond this 

field. Interest in and applications for the kriging approach include, for example, data intensive 

fields such as environmental monitoring or agriculture and forestry management (Tavares et 

al. 2008, Diodato and Ceccarelli 2004, Jost et al. 2005).  

The need to process ever more complex data sets points to one of kriging’s major drawbacks: 

Computational cost increase rapidly with a rising complexity of the application. As a counter 

measure Hartman and Hössjer (2008) propose to develop a kriging predictor based on Markov 

random fields, which substantially decrease computation time. 

Another drawback of pure kriging is the missing control of covariates. This problem can be 

addressed if an extended version is applied. The so-called universal kriging allows for the 

control of covariates by incorporating them directly into the model (Cressie 1993). However, 

universal kriging is limited in a sense that covariate effects are presumed linear in nature. If 

instead non-linear relationships of the covariate with the response variable can be expected, 

Kammann and Wand (2003) propose a fusion of kriging and additive models to geoadditive 

models. Thus, geoadditive models provide a particularly suitable tool, if the response variable 

can be explained by a spatial and one or more covariates whose effects on the response vari-

able are non-linear in nature.10 Recent applications of geoadditive models include the geo-

graphical variability of infants’ health conditions in Massachusetts (Kammann and Wand 

2003), gender-specific health status in Germany and forest health outcomes in Bavaria (Brez-

ger and Lang 2006). 

In the presented study, the geoadditive approach is used to decompose the regions’ efficiency 

                                                
9  See Trangmar et al. (1985) and Goovaerts (1999) for surveys on studies dealing with kriging. 
10  In case the only interest is in the spatial distribution of a certain variable, both kriging approaches and geoad-

ditive models can be applied. 



(identified by using the order-α-frontier analysis) into a spatially driven and a non-spatial 

factor. The smoothed spatial factor shows the effect that is primarily determined by the gen-

eral performance of a regions’ greater surrounding area. The non-spatial structural factor 

gives an idea on a region’s efficiency compared to the regions nearby. In so doing, an average 

performing region in the knowledge-intensive part of the considered economy surrounded by 

very efficient regions, is marked less efficient than an equally performing region surrounded 

by rather inefficient regions. 

 

3.3 Methodological remarks 

The basic principle of the approach foresees to smooth the observed data, which yields de-

creasing deviations of the variables assigned to neighboring units. The difference between 

observed and smoothed data than identifies the non-spatial factor driven by the units’ struc-

ture rather than their location in space. 11 

The model set up starts with the definition of neighborhood. While distance between points 

might serve as a good indicator for neighborhood in the continuous case, the indicator is more 

problematic for analyzing regions, where localization is discrete (Brezger 2004). Instead, two 

regions r and s are defined as neighbors 

! 

r ~ s , if they share a border. The smoothing algo-

rithm, which is weighted by the length of the common border 

! 

("
rs
) , presupposes a growing 

regional interdependence with increasing length of 

! 

"
rs

.  

The mathematical formulation of the model follows the principles of structured additive re-

gression analysis and therefore aims at substituting a usual parametric by a flexible non-

parametric parameter, containing in this case spatial information (Fahrmeir et al. 2001, Hastie 

and Tibshirani 1990). Since the presented study concentrates on the spatial distribution of the 

efficiency as the response variable, no parametric covariables are considered. Therefore, the 

nonparametric regression model can be defined as (Fahrmeir and Lang 2001):  

(8) 

! 

" #,n (xi ,yi) = fgeo(i) + frand (i)  

where 

! 

" #,n (xi ,yi)  is the empirical efficiency score of region i (defined by equation (7)) 

and

! 

fgeo(i)the spatially smoothed factor of region ni ,...,1= . The remaining term 

! 

frand (i), gener-

ally considered the normally distributed error 

! 

e
i
, is interpreted as structural factor that cannot 

be explained by the spatial correlation.12  

In order to smooth the regions’ spatial factor a penalizing term, based on the least square 
                                                
11  A more detailed introduction into the field of geoadditive regression analysis is given by Fahrmeir et al. 

(2007). 
12  Presuming that the observed data are correct, we consider the remaining error as irrelevant. 



method (PLS), is introduced in equation (9). In this preliminary step, the weights 

! 

"
rs

 remain 

unconsidered. 

(9) 

! 

PLS(µ) = (yi " fgeo(si ))
2 + µ  ( fgeo(r) " fgeo(s))

2

r#N (s),r<s

$
s= 2

d

$
i=1

n

$  

where N(s) is the set of neighbors surrounding region s and µ is a parameter to control the 

smoothing intensity. The first term sums up the squared differences of observed data and 

modeled spatial factor. The smoothing process, defined in the second term, multiplies µ with 

the cumulated squared differences of spatial factors for all neighborhood relations.  

In line with Fahrmeir et al. (2007) the penalizing approach, which includes the minimization 

of PLS(µ), can be interpreted in Bayesian way. This, in turn, yields markov random fields. As 

a consequence, the application of the model follows a Bayesian approach (with fully Bayesian 

inference) and is simulated by markov-chain-monte-carlo (MCMC) technique.13  

In a last step, the expected value 

! 

"  of the nonparametric spatial factor 

! 

fgeo(i)  is defined as the 

average of the expected values of neighboring regions. Given the distribution of γr for all 

neighbors and introducing the weights 

! 

"
rs

 the conditional distribution of the expected spatial 

factor of region s (γs) is defined normally distributed as:  

(8) 

! 

"
s
"
r
∼

! 

N
"
sr

"
s+

#
r
,
$ 2

"
s+r%&

s

'
( 

) 
* 
* 

+ 

, 
- 
-  

where 

! 

"
s
 is the set of neighbors of region s and 

! 

"
sr

 the weight of neighbor r. 

! 

"
s+ denotes the 

cumulated weights of all regions neighboring s. The variance parameter 

! 

"
2 controls the level 

of variation between the model result and the expected value.14 

The remaining non-spatial factor is considered normally distributed as well and can be de-

fined as

! 

frand(si )∼

! 

N(0,"
2
).  

Based on the conditional expectation γs|γr defined by equation (8), the MCMC-simulation 

results in a common distribution for the vector 

! 

" = ("1,"2,...,"n ) . Thus, the estimated spatial 

factor can be identified for all regions in the last step. 

 

3.4 Results 

Figure 2 and 3 illustrate the regions’ spatial and non-spatial efficiency if the decomposition 

                                                
13  For this purpose the software BayesX has been applied. The algorithm and its computation is decribed in 

detail by Brezger et al. (2009). 
14  Note that the model behind equation (8) is equivalent to the penalizing model defined by equation (7) (see 

Fahrmeir et al. 2007, p. 390) 



follows the model outlined in chapter 3.3. Again white and light-grey shaded regions point to 

high efficiency, whereas dark grey shaded regions identify relatively low productivity in gen-

erating knowledge. 

 

Figure 2. Efficiency of selected regions, smoothed spatial factor, 2002 

 
Source: Own calculation. 

 

As for figure 1 a small score, which could indeed be negative, points to high efficiency and 

vice versa. Based on the performance of the surrounding regions, the algorithm estimates the 

spatial efficiency for all regions of the sample. However, despite the smoothing process, some 

regions’ efficiency still differs significantly from the neighbors’ performance. Such an effect 

occurs, if the regions’ overall efficiency, identified in the first step, yields extreme results. In 

addition the smoothing relies not only on the direct neighbors but accounts for trends in the 

greater area as well. Lisboa, for example, shows a rather low overall efficiency15 and further-

more the smoothing process is partly influenced by the weak performance of regions in north-

ern Spain. 

                                                
15  In absolute terms, the region of Lisboa is characterized by very high input but only average output levels 

which, in turn, explains the modest performance in terms of efficiency. 



On the one hand, the findings of the geoadditive regression show that regions in the centre of 

the considered sample (Eastern France, Benelux, Western Germany, Northern Italy) seem to 

benefit from their location in space while Eastern and South Western regions have a compara-

tive disadvantage. On the other hand, results are not clear in any case. In particular results for 

generally disadvantaged areas are quite heterogeneous. This can partly be explained by the 

definition of efficiency which identifies regions with very low input levels as comparatively 

efficient even if they generate little knowledge in absolute terms (as it is the case for some 

Polish, Hungarian and southern Spanish regions). 

Besides the spatial factor, the regions’ efficiency is also driven by a non-spatial intraregional 

effect. This effect, shown by figure 3, can be interpreted as structural effect.  

 

Figure 3. Efficiency of selected regions, non-spatial factor, 2002  

 
Source: Own calculation, regions with missing observation marked by stripes 

 

According figure 3, a dark grey-shaded region k is considered comparatively inefficient in 

generating knowledge, if regions in the greater neighboring area of region k equipped with a 

similar or worse level of human and infrastructure capital generate(s) higher levels of per-

capita-income. By contrast, white or light grey-shaded regions are efficient compared to the 



nearby regions. The rather homogeneous picture in the sample’s centre shows that perform-

ance is rather similar. The higher efficiency of some German regions results from their neigh-

borhood to weak performing czech regions. The picture is more heterogenous for the Iberian 

Peninsula and Eastern Europe. Since the absolute level of patent application differs signifi-

cantly in these regions, a general conclusion cannot be drawn at this stage. Some regions in 

Eastern Europe, however, show similar absolute input and output levels. In this case, the find-

ings could help to identify appropriate funding measures in the future. While relatively effi-

cient regions (in terms of non-spatial efficiency) might indeed benefit by further increasing 

R&D expenditures, most likely this strategy is less effective for relatively inefficient regions.  

 

4 Conclusions  

Taking into account the regions’ human capital and intramural R&D expenditures, the pre-

sented paper calculates, in a first step, the regional efficiency by using the order-α-frontier 

analysis. The approach, which can be considered an outlier-robust extension of the DEA, 

identifies rather high efficiency for the core of continental Europe and generally low effi-

ciency for Eastern Europe and the Iberian Peninsula. 

The results indicate the existence of a spatial effect driven by knowledge spillovers. There-

fore, efficiency is further decomposed into a spatial and a non-spatial part by applying a 

geoadditive approach. The results confirm the existence of the spatial effect. While regions in 

Eastern France, the Benelux, Western Germany and Northern Italy benefit from their location 

in space, Eastern European and Spanish regions seem to have a comparative disadvantage in 

generating knowledge. 

A policy devoted to increase the competitiveness of EU regions by enhancing the regions’ 

ability to generate knowledge could either follow the efficiency argument, according to which 

return on public investments should be maximized. In this case public R&D expenditures 

should particularly go to already efficient regions with high spillover potentials. If, however, 

the focus is on the equity argument, two alternative strategies arise. First, the distribution of 

R&D expenditures could again be based on the degree of efficiency, which this time yields a 

funding of the relatively inefficient, spatially disadvantaged regions (Athanassopoulos 1996, 

Camagni 1990). In this case the effectiveness of funding could still be increased, if the (spa-

tially disadvantaged) regions’ structural efficiency would be taken into account as well. 

Spatially inefficient regions with relatively high scores compared to their neighbors would 

benefit more from additional R&D expenditures compared to their spatially and structurally 

inefficient neighbors. The latter might benefit more by other funding, which could help to 



foster structural change towards a more knowledge based structure. Alternatively, the region 

might for some reasons not be in a position to turn into a knowledge intensive economy but 

shows other strengths worth to be further developed. Clearly, the decision on appropriate 

funding patterns in terms of public R&D cannot be based on regional efficiency alone. Instead 

the absolute dimensions and the national institutional framework must be taken into account 

as well. Vice versa, a funding scheme that does not account for the regions’ productivity 

level, might easily fall short as well.  
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ANNEX 

Table 1. Efficiency scores of order-α-frontier analysis (high scores point to low efficiency). 

Code Region alpha=0.9 alpha=0.95 alpha=0.99
AT11 Burgenland 1,000 1,480 2,461
AT12 Niederösterreich 0,629 0,917 1,330
AT13 Wien 1,255 1,872 2,839
AT21 Kärnten 0,983 1,233 2,089
AT22 Steiermark 0,734 0,970 1,828
AT31 Oberösterreich 0,572 0,796 1,219
AT32 Salzburg 0,780 0,977 1,264
AT33 Tirol 0,660 0,819 1,140
AT34 Vorarlberg 0,330 0,526 1,000
BE10 Région de Bruxelles-Capitale 1,309 1,558 2,570
BE21 Prov. Antwerpen 0,849 1,077 1,600
BE22 Prov. Limburg (B) 1,420 1,759 2,267
BE23 Prov. Oost-Vlaanderen 1,147 1,365 2,252
BE24 Prov. Vlaams Brabant 0,966 1,180 1,752
BE25 Prov. West-Vlaanderen 0,729 1,000 1,533
BE31 Prov. Brabant Wallon 0,581 0,822 1,257
BE32 Prov. Hainaut 1,134 1,422 2,325
BE33 Prov. Liège 0,897 1,062 1,649
BE34 Prov. Luxembourg (B) 0,861 1,083 2,050
BE35 Prov. Namur 1,436 1,716 2,501
CH01 Région Lémanique 0,812 1,196 1,729
CH02 Espace Mittelland 1,027 1,652 2,568
CH03 Nordwestschweiz 0,897 1,336 2,026
CH04 Zürich 0,784 1,165 1,668
CH05 Ostschweiz 1,074 1,553 2,080
CH06 Zentralschweiz 1,500 2,197 3,848
CH07 Ticino 2,659 3,373 5,008
CZ01 Praha 6,609 8,289 12,163
CZ02 Strední Cechy 6,107 8,321 15,301
CZ03 Jihozápad 1,142 6,619 11,008
CZ04 Severozápad 1,000 1,000 1,000
CZ05 1,517 5,829 8,193
CZ06 5,192 7,298 13,821
CZ07 Strední Morava 1,389 2,147 11,600
CZ08 Moravskoslezko 1,165 1,496 1,704
DE11 Stuttgart 0,293 0,484 0,752
DE12 Karlsruhe 0,385 0,636 1,000
DE13 Freiburg 0,384 0,446 0,755
DE14 Tübingen 0,398 0,584 1,000
DE21 Oberbayern 0,408 0,624 1,000
DE22 Niederbayern 0,516 0,701 1,210
DE23 Oberpfalz 0,364 0,466 1,000
DE24 Oberfranken 0,417 0,542 1,000
DE25 Mittelfranken 0,375 0,571 0,873
DE26 Unterfranken 0,405 0,556 1,000
DE27 Schwaben 0,512 0,606 1,025
DE30 Berlin 1,313 1,954 2,797
DE41 Brandenburg - Nordost 2,078 2,484 3,620
DE42 Brandenburg - Südwest 1,736 2,052 2,506
DE50 Bremen 2,613 3,033 5,132
DE60 Hamburg 0,740 0,928 1,133
DE71 Darmstadt 0,521 0,706 1,000
DE72 Gießen 0,699 0,819 1,199
DE73 Kassel 0,753 1,000 1,252
DE80 Mecklenburg-Vorpommern 3,321 5,294 6,762
DE91 Braunschweig 0,709 0,968 1,284
DE92 Hannover 0,790 1,000 1,557
DE93 Lüneburg 0,564 0,938 1,000
DE94 Weser-Ems 0,074 0,080 1,000  



 

Code Region alpha=0.9 alpha=0.95 alpha=0.99

DEA1 Düsseldorf 0,583 0,682 1,000
DEA2 Köln 0,549 0,784 1,200
DEA3 Münster 0,387 0,514 1,000
DEA4 Detmold 0,491 0,701 1,000
DEA5 Arnsberg 0,509 0,797 1,000
DEB1 Koblenz 0,423 0,689 1,000
DEB2 Trier 1,686 1,909 2,782
DEB3 Rheinhessen-Pfalz 0,432 0,586 0,969
DEC0 Saarland 0,432 0,629 1,028
DED1 Chemnitz 2,097 3,430 6,025
DED2 Dresden 1,122 1,460 2,152
DED3 Leipzig 4,200 4,875 8,249
DEE1 Dessau 1,000 2,101 3,495
DEE2 Halle 1,810 2,245 3,956
DEE3 Magdeburg 2,469 3,007 5,192
DEF0 Schleswig-Holstein 0,901 1,117 1,439
DEG0 Thüringen 1,783 2,083 3,057
DK00 Danmark 1,024 1,296 1,928
ES11 Galicia 4,200 6,039 10,042
ES12 Principado de Asturias 6,841 10,124 16,835
ES13 Cantabria 10,558 15,656 17,558
ES21 Pais Vasco 3,221 4,287 5,199
ES22 Comunidad Foral de Navarra 1,591 1,800 2,624
ES23 La Rioja 1,000 3,361 5,590
ES24 Aragón 1,795 2,331 3,015
ES30 Comunidad de Madrid 4,212 4,858 6,939
ES41 Castilla y León 4,218 5,293 8,647
ES42 Castilla-la Mancha 1,620 2,177 2,177
ES43 Extremadura 1,861 2,389 2,389
ES51 Cataluña 1,605 2,557 3,507
ES52 Comunidad Valenciana 1,629 2,341 3,894
ES53 Illes Balears 1,320 1,320 1,320
ES61 Andalucia 0,713 1,000 5,702
ES62 Región de Murcia 1,000 5,795 9,636
FR10 Île de France 0,821 1,223 1,855
FR21 Champagne-Ardenne 0,110 0,125 1,000
FR22 Picardie 0,916 1,000 1,752
FR23 Haute-Normandie 0,890 1,155 2,134
FR24 Centre 1,000 1,302 2,403
FR25 Basse-Normandie 0,206 0,790 1,110
FR26 Bourgogne 0,712 1,000 1,727
FR30 Nord - Pas-de-Calais 1,000 1,502 2,741
FR41 Lorraine 1,034 1,258 1,814
FR42 Alsace 0,725 1,057 1,856
FR43 Franche-Comté 0,766 1,093 1,675
FR51 Pays de la Loire 1,055 1,350 2,558
FR52 Bretagne 0,849 1,053 1,855
FR53 Poitou-Charentes 1,000 1,233 2,050
FR61 Aquitaine 1,551 2,021 3,490
FR62 Midi-Pyrénées 1,176 1,636 3,082
FR63 Limousin 0,208 1,000 1,841
FR71 Rhône-Alpes 0,692 0,900 1,327
FR72 Auvergne 1,000 1,272 1,948
FR81 Languedoc-Roussillon 1,804 2,474 4,452
FR82 Provence-Alpes-Côte d'Azur 1,278 1,519 1,924
FR83 Corse 0,839 0,927 1,000
HU10 Közép-Magyarország 3,242 3,923 4,967
HU21 Közép-Dunántúl 1,000 1,024 1,571
HU22 Nyugat-Dunántúl 1,000 1,000 1,000
HU23 Dél-Dunántúl 0,684 0,878 1,000
HU31 Észak-Magyarország 1,000 1,000 1,000
HU32 Észak-Alföld 0,691 1,000 1,060
HU33 Dél-Alföld 0,571 0,647 1,000
ITC1 Piemonte 0,097 0,136 1,000



Code Region alpha=0.9 alpha=0.95 alpha=0.99
ITC2 Valle d'Aosta/Vallée d'Aoste 0,106 0,120 1,000
ITC3 Liguria 1,903 2,131 3,106
ITC4 Lombardia 0,572 0,743 1,083
ITD1 Provincia Autonoma Bolzano-Bozen 0,250 0,961 1,351
ITD2 Provincia Autonoma Trento 0,879 1,070 1,543
ITD3 Veneto 0,060 0,068 1,000
ITD4 Friuli-Venezia Giulia 0,712 0,911 1,184
ITD5 Emilia-Romagna 0,376 0,528 1,000
ITE1 Toscana 1,000 1,358 2,345
ITE2 Umbria 1,656 2,078 3,395
ITE3 Marche 0,100 0,114 1,000
ITE4 Lazio 2,793 3,589 5,181
ITF1 Abruzzo 1,119 1,608 2,675
ITF2 Molise 1,542 2,072 2,072
ITF3 Campania 0,798 0,904 1,000
ITF4 Puglia 0,652 1,000 1,000
ITF5 Basilicata 0,973 1,031 1,594
ITF6 Calabria 0,674 1,000 1,000
ITG1 Sicilia 0,793 1,000 1,225
ITG2 Sardegna 1,000 1,000 1,000
LU00 Luxembourg (Grand-Duché) 1,041 1,219 1,785
NL11 Groningen 1,608 2,016 2,959
NL12 Friesland 1,457 1,628 2,660
NL13 Drenthe 0,664 0,982 1,634
NL21 Overijssel 1,388 2,002 3,393
NL22 Gelderland 1,503 1,920 3,037
NL23 Flevoland 2,910 3,378 4,949
NL31 Utrecht 1,138 1,312 1,875
NL32 Noord-Holland 1,427 1,789 2,626
NL33 Zuid-Holland 1,229 1,542 2,262
NL34 Zeeland 1,298 1,825 2,369
NL41 Noord-Brabant 0,261 0,382 0,669
NL42 Limburg (NL) 1,000 1,161 1,700
PL11 Lódzkie 1,411 1,811 2,779
PL12 Mazowieckie 8,193 10,639 19,647
PL21 Malopolskie 1,000 1,894 1,894
PL22 Slaskie 1,347 1,778 1,778
PL31 Lubelskie 2,923 2,923 2,923
PL32 Podkarpackie 1,583 1,583 1,583
PL33 Swietokrzyskie 1,000 1,000 1,000
PL34 Podlaskie 2,452 2,452 2,452
PL41 Wielkopolskie 1,000 1,000 1,000
PL42 Zachodniopomorskie 3,459 3,459 3,459
PL43 Lubuskie 1,000 1,000 1,000
PL51 Dolnoslaskie 0,567 1,000 1,000
PL52 Opolskie 1,000 1,000 1,000
PL61 Kujawsko-Pomorskie 1,551 1,551 1,551
PL62 Warminsko-Mazurskie 1,643 1,643 1,643
PL63 Pomorskie 1,000 1,000 1,000
PT11 Norte 1,000 1,000 1,000
PT15 Algarve 3,345 3,345 3,345
PT16 Centro (PT) 1,183 1,183 1,183
PT17 Lisboa 12,139 14,965 24,887
PT18 Alentejo 1,000 1,000 1,000
SI00 Slovenija 2,298 3,279 5,024
SK01 3,948 5,060 7,677
SK02 Západné Slovensko 1,031 1,323 1,323
SK03 Stredné Slovensko 1,488 2,000 2,000
SK04 1,000 1,000 1,000  


