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Abstract

Climate policies have stochastic consequences that involve a great number of

generations. This calls for evaluating social risk (what kind of societies will fu-

ture people be born into) rather than individual risk (what will happen to people

during their own lifetimes). As a response we propose and axiomatize proba-

bility adjusted rank-discounted critical-level generalized utilitarianism (PARD-

CLU), through a key axiom that requires that the social welfare order both

be ethical and satisfy first-order stochastic dominance. PARDCLU is useful

for evaluating intergenerational risks, is ethical in contrast to discounted util-

itarianism, and avoids objections that have been raised against other ethical

criteria. PARDCLU is shown to handle situations with positive probability of

human extinction, and is linked to decision theory by yielding rank-dependent

expected utilitarianism—but with additional structure—in a special case.
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1 Introduction

This paper proposes a new ethical normative criterion that can potentially be used

for ranking climate policies in numerical models. Climate policies seeking to abate

anthropogenic greenhouse gas emissions have extremely long-term stochastic conse-

quences, as greenhouse gas emissions cause environmental risks that extend into the

far future. Therefore, to evaluate such policies one must assess risks that involve a

great number of generations.

In this time frame, where people’s lives are short compared to the time period

for which the policies will have an effect, the objective social risk concerning

• what kind of societies will future people be born into

might be more important than the subjective individual risk concerning

• what will happen to people during their own lifetimes.

That is, it might be reasonable to be more concerned about reducing the probability

that future people will lead miserable lives, rather than avoiding volatility in the

living conditions that people experience within their own lifetimes.

This motivates an approach which abstracts from lifetime fluctuations by assum-

ing that people live for one period only. Moreover, the lives of the “same” individual

in two different future realizations might be considered as the lives of two different

people, each living with the probability assigned to the realizations in question.

Hence, if a future individual has equal probability of living a good or bad life, then

this might be modeled as two different people, one living a good life and one living

a bad life, where each has probability 0.5 of coming into existence.

In a setting where people do not experience fluctuations and risk within their

own lifetime, the sole important question for the evaluation of policies with long-

term intergenerational effects is how to handle inequality. Clearly, if, for each chosen

policy, all people—now and in all future realizations—have the same level of life-

time wellbeing, then this uniform wellbeing level can be used to rank policies. In
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our context, only social aversion to inequality matters, while subjective aversion to

individual fluctuations and risk plays no role.

The analysis will be confined to the case where there are objective assessments of

the probabilities of different realizations. Hence, formally we will be concerned with

risk rather than uncertainty. Moreover, we will assume that there is an indicator of

lifetime wellbeing which is at least ordinally measurable and level comparable across

people. Following the usual convention in population ethics, we will normalize the

wellbeing scale so that lifetime well-being equal to 0 represents neutrality. Hence, a

life with lifetime wellbeing above 0 is worth living; below 0, it is not.

We will be concerned with normative evaluation where people are treated equally.

Hence, this differs from the common use of discounted utilitarianism in integrated

assessment models, where transformed wellbeing (utility) is discounted

(i) by a constant and positive per-period time-discount rate and

(ii) by Negishi weights designed to freeze the current distribution.

As a matter of principle, utilitarianism with time-discounting and Negishi weights

means that people across time and space are not treated equally. As a matter of

practical policy evaluation, this criterion is virtually insensitive to the long-term

effects of climate change, beyond year 2100 when the most serious consequences will

occur, in particular for poor groups who are expected to bear the highest costs (see

for instance World Bank, 2013).

Equal treatment of people in axiomatic analysis is captured by the Anonymity

axiom, whereby social evaluation is invariant to permuting two individuals’ wellbe-

ing. Combined with sensitivity for the interests of all people, as captured by the

Strong Pareto principle, this leads to the Suppes-Sen principle (Suppes, 1966; Sen,

1970). This principle requires that one allocation be better than another if the

former dominates the latter when being rank-ordered according to the levels of well-

being. Conversely, the Suppes-Sen principle combined with the Continuity axiom

implies both Anonymity and the Strong Pareto principle. A criterion that satisfies
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the Suppes-Sen principle is called ethical by Svensson (1980). In this paper, we

characterize an ethical criterion that avoids objections raised against other critera.

Undiscounted utilitarianism, where utility is summed without discounting, is

one criterion that satisfies the Suppes-Sen principle. However, when modeling the

many potential future people by assuming that there are infinitely many generations,

this criterion assigns zero relative weight to the present generation’s interests. It

leads to the unappealing prescription that the present generation should endure

heavy sacrifices even if it contributes to only a tiny gain for all future generations.

Moreover, in a variable population setting with an unbounded number of potential

people, it is subject to the Repugnant Conclusion1 or the Very Sadistic Conclusion.2

The criterion of maximizing the wellbeing of the worst-off generation (maximin)

also satisfies the Suppes-Sen principle, but assigns zero relative weight to all gener-

ations but the worst-off. It leads to the unappealing prescription that the present

generation should not do an even negligible sacrifice for the benefit of better off future

generations. Maximin has also problematic implications when applied in a variable

population setting. Asheim and Zuber (2014) discuss the problems of utilitarianism

and maximin, particularly in a variable population setting.

This dilemma—that ethical criteria seem to lead to extreme prescriptions—

motivates rank-discounted utilitarianism (RDU), proposed and analyzed by Zuber

and Asheim (2012). RDU discounts future utility as long as the future is better

than the present, thereby trading-off current sacrifice and future gain. However, if

the present generation is better off than all future generations, then priority shifts

to the future. In this case, zero relative weight is assigned to present utility. RDU

is compatible with equal treatment of generations as discounting is made according

to rank, not according to time.

1The Repugnant Conclusion (Parfit, 1976, 1982, 1984) states that, for any population with
excellent lives, there is a population with lives barely worth living that is better, provided that the
latter includes sufficiently many people.

2The Very Sadistic Conclusion (Arrhenius, 2000, forthcoming) states that, for any population
with terrible lives not worth living, there is a population with good lives that is worse, provided
that the latter includes sufficiently many people.
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Asheim and Zuber (2014) extend RDU to a variable population setting by

proposing and axiomatizing rank-discounted critical-level generalized utilitarianism

(RDCLU). RDCLU avoids both the Repugnant and Very Sadistic Conclusion, thereby

evading serious objections raised against other variable population criteria.

In the present paper we extend RDCLU to risky situations, including the case

with positive probability of human extinction, by proposing the probability adjusted

rank-discounted critical-level generalized utilitarian (PARDCLU) social welfare order

(Definition 1). We start out in Section 2 by developing a framework—as motivated

at the start of the introduction—where each (potential) individual is characterized

by a level of lifetime wellbeing and a probability of existence. We illustrate how

this set-up can be derived from a formulation where information arrives in each of

T time periods, with individuals living for one period only and not being subjected

to risk during their lifetime, reflecting an intergenerational perspective.

We then, in Section 3, present an axiomatic foundation for PARDCLU through

Theorem 1. A key axiom, called Probability adjusted Suppes-Sen, generalizes the

Suppes-Sen principle to a setting where people need not exist with probability one.

In conjunction with the Continuity axiom, it implies invariance to permutations of

individuals with the same wellbeing and the same probability of existence. It also

entails invariance to the replacement of one individual with given wellbeing and

probability with two individuals having the same wellbeing and whose probabilities

of existence sum up the probability of the original individual. In the special case

where the individual probabilities of existence sum up to one, Probability adjusted

Suppes-Sen corresponds to first-order stochastic dominance. Hence, this axiom can

be also considered as a generalization of first-order stochastic dominance to a nor-

mative multi-person setting. Theorem 1 is proven in the appendix. The proof shows

that, although the axiomatic system is closely related to the one found in Asheim

and Zuber (2014, Section 3), our main result is not a trivial extension, because

probabilities are real numbers and we only use a weak Continuity axiom.

In Section 4 we illustrate the usefulness of PARDCLU by showing its conse-
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quences in various special cases. When individual probabilities of existence sum up to

one, PARDCLU yields rank-dependent expected utilitarianism, but with additional

structure. This additional structure derives from the axiom Existence independence

of the worst-off, which plays the same role as Koopmans’ (1960) stationarity postu-

late. We also show how PARDCLU handles human extinction. In Sections 5–7 we

discuss some issues faced by the PARDCLU approach, in particular how it can be

practically implemented by dealing with the planning horizon, how it may achieve

time consistency, and how it relates to the ex ante vs. ex post debate in social choice

theory. In the final Section 8 we provide concluding remarks.

2 Framework

Let N denote the natural numbers, let R denote the real numbers, and let R+ (resp.

R++) denote the non-negative (resp. positive) real numbers.

Individuals are described by two numbers: their lifetime wellbeing and their

probability of existence. An allocation x ∈ (R× (0, 1])n determines the finite popu-

lation size, n(x) = n, and the distribution of wellbeing and probability,

x =
(
x1, . . . , xn(x)

)
=
(

(xw1 , x
p
1), . . . , (xwn(x), x

p
n(x))

)
,

among the n(x) individuals that make up the population. For each i ∈ {1, . . . , n(x)},

xwi is the individual’s wellbeing and xpi is her probability of existence. We denote

by ν(x) =
∑n(x)

i=1 xpi the probability adjusted population size of x and by

X = ∪n∈N(R× (0, 1])n

the set of possible finite allocations.

The concept of an allocation, as defined above, can be derived from a formulation

where information arrives in each of T time periods. To see this, let S be the finite

set of potential signals in each t = 1, . . . , T , let Ω = ST denote the set of states of
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the world, and let p ∈ ∆(Ω) be an objective probability distribution over this set.

For any ω = (s1, . . . , sT ) ∈ Ω and t = 1, . . . , T , let ωt = (s1, . . . , st) ∈ St

be the history of signals up to time t, with pt(ωt) denoting the probability of ωt

derived from p. For each t = 1, . . . , T , let the function nt : St → N ∪ {0} determine

the number of individuals living at time t, and let the function wt : {ωt ∈ St :

nt(ωt) > 0} → ∪n∈NRn determine the distribution of wellbeing after histories at

time t with positive population size. For each t = 1, . . . , T and ωt ∈ St with

nt(ωt) > 0, individual j’s pair of wellbeing and probability of existence, where j ∈

{1, . . . , nt(ωt)}, is given by (wtj(ω
t), pt(ωt)). Hence and allocation x correspond to a

probability distribution p, where x = (((wtj(ω
t), pt(ωt))j∈{1,··· ,nt(ωt)})ωt∈St)t∈{1,··· ,T}.

The functions nt and wt are permitted to vary so that we can retrieve the whole set

X from this dynamic setting although the set of signals is finite.

This formulation implies that individuals live for one period only, and are not

subjected to risk during their lifetime. Rather, there is social risk associated with

the lifetime wellbeing of future individuals. Our focus on intergenerational issues

motivates this abstraction from lifetime fluctuations and individual risk.

As mentioned in the introduction, we follow the usual convention in population

ethics, by letting lifetime wellbeing equal to 0 represents neutrality, above which a

life, as a whole, is worth living, and below which, it is not.

A social welfare relation (SWR) on the set X is a binary relation %, where for

all x, y ∈ X, x % y implies that the allocation x is deemed socially at least as good

as y. Let ∼ and � denote the symmetric and asymmetric parts of %.

For each x ∈ X, let π : {1, . . . , n(x)} → {1, . . . , n(x)} be a bijection that reorders

individuals in increasing wellbeing order:

xwπ(r) ≤ x
w
π(r+1) for all r ∈ {1, . . . , n(x)− 1} .

Let ρ0 = 0 and define the probability adjusted rank ρr inductively as follows:

ρr = xpπ(r) + ρr−1
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for r ∈ {1, . . . , n(x)}. Define the rank-ordered allocation x[ ] : (0, ν(x)]→ R by

x[ρ] = xwπ(r) for ρr−1 < ρ ≤ ρr and 1 < r ≤ n(x)

and write x[0] := limρ↓0 x[ρ]. Note that the permutation π need not be unique (if,

for instance, xwi = xwi′ for some i 6= i′), but the resulting rank-ordered allocation x[ ]

is unique. Note also that the definitions imply that ρn(x) = ν(x).

For every ν ∈ R, write Xν = {x ∈ X : ν(x) = ν} for the set of finite allocations

with probability adjusted population size equal to ν. For x, y ∈ Xν , write x[ ] > y[ ]

if x[ρ] ≥ y[ρ] for all ρ ∈ (0, ν] and x[ρ′] > y[ρ′] for some ρ′ ∈ (0, ν]; note that, by the

definitions of the step functions x[ ] and y[ ], x[ρ′] > y[ρ′] implies that x[ρ] > y[ρ] for

all ρ in a subset of (0, ν] that includes a non-empty proper interval.

For z ∈ R, p ∈ (0, 1] and n ∈ N, let x ∈ (R× (0, 1])n with (xwi , x
p
i ) = (z, p) for all

i ∈ {1, . . . , n} be denoted by (z)ν , where ν = np. For x ∈ X, z ∈ R, p ∈ (0, 1] and

n ∈ N, let y ∈ (R×(0, 1])n(x)+n such that (ywi , y
p
i ) = (xwi , x

p
i ) for all i ∈ {0, . . . , n(x)}

and (ywi , y
p
i ) = (z, p) for all i ∈ {n(x) + 1, . . . , n(x) + n} be denoted by

(
x, (z)np

)
.

3 Axioms and representation result

Probability adjusted rank-discounted critical-level utilitarianism can be character-

ized by the following seven axioms.

The first three axioms are sufficient to ensure numerical representation of the

SWR for any fixed probability adjusted population size. They also entail that indi-

viduals are treated anonymously and with sensitivity for their well-being.

Axiom 1 (Order) The relation % is complete, reflexive and transitive on X.

An SWR satisfying Axiom 1 is called a social welfare order (SWO).

Axiom 2 (Continuity) For all ν ∈ R++ and x ∈ Xν , the sets
{
y ∈ Xν : y % x

}
and

{
y ∈ X : x % y

}
are closed for the topology induced by the supnorm applied to
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rank-ordered allocations.3

Axiom 3 (Probability adjusted Suppes-Sen) For all ν ∈ R++ and x, y ∈ Xν ,

if x[ ] > y[ ], then x � y.

Jointly with axiom 2, axiom 3 implies anonymity wrt. different individuals with the

same probability of existence. Hence, permuting the wellbeing levels of individuals

with the same probability of existence leads to an equally good allocation.

In line with Asheim and Zuber’s (2014) axiomatization of rank-discounted critical-

level utilitarianism we impose independence to adding an individual only if the added

individual is best-off (relative to two allocations with the same probability adjusted

population size) or worst-off.

Axiom 4 (Existence independence of the best-off) For all ν ∈ R++, x, y ∈

Xν , p ∈ (0, 1], and z ∈ R satisfying z ≥ max{x[ν],y[ν]}, (x, (z)p) % (y, (z)p) if and

only if x % y.

Axiom 5 (Existence independence of the worst-off) For all x, y ∈ X, p ∈

(0, 1], and z ∈ R satisfying z ≤ min{x[0],y[0]}, (x, (z)p) % (y, (z)p) if and only if

x % y.

Moreover, we introduce a critical wellbeing level c ∈ R+, which if experienced by

an added individual without changing the utilities of the existing population, leads

to an alternative which is as good as the original if x[ν(x)] ≤ c. Since c ≥ 0, c is at

least as large as the neutral wellbeing level.

Axiom 6 (Existence of a critical level) There exist c ∈ R+ and ν ∈ R++ such

that for all p ∈ (0, 1] and x ∈ Xν satisfying x[ν] ≤ c, (x, (c)p) ∼ x.

3This means that we use the metric d(x, y) = supr∈[0,ν]|x[r] − y[r]|. In functional spaces, the
topology induced by the sup metric is strong, so that the associated notion of continuity is weak (in
the sense that if continuity would hold for a weaker topology, it would be satisfied for the stronger
topology proposed here). This is an advantage of our definition.
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In the case with no risk (i.e., for the subset of allocations with xpi = 1 for

all i ∈ {1, . . . , n(x)}), all axioms above are satisfied also by ordinary critical-level

utilitarianism. However, as discussed by Arrhenius (forthcoming, Sect. 5.1), critical-

level utilitarianism has the properties that adding sufficiently many individuals with

wellbeing just above c makes the allocation better than any fixed alternative (thus

leading to the Repugnant Conclusion if c = 0) and adding sufficiently many individu-

als with wellbeing just below c makes the allocation worse than any fixed alternative

(thus leading to the Very Sadistic Conclusion if c > 0). The following axiom ensures

that adding individuals at a given level of lifetime wellbeing has bounded impor-

tance, thereby avoiding the Repugnant and Very Sadistic Conclusions.

Axiom 7 (Existence of egalitarian equivalence) For all x, y ∈ X and p ∈

(0, 1], if x � y, then there exists z ∈ R such that, for all N ∈ N, x � (z)np � y for

some n ≥ N .

We will now state our main result, namely that these seven axioms characterize

the probability-adjusted rank-discounted critical-level generalized utilitarian SWOs.

Definition 1 An SWR % on X is a probability adjusted rank-discounted critical-

level generalized utilitarian (PARDCLU) SWO if there exist c ∈ R+, δ ∈ R++, and

a continuous and increasing function u : R→ R such that, for all x, y ∈ X,

x % y ⇔
∫ ν(x)

0
e−δρ

(
u(x[ρ])− u(c)

)
dρ ≥

∫ ν(y)

0
e−δρ

(
u(y[ρ])− u(c)

)
dρ .

Parameter δ is the rank utility discount rate.

Theorem 1 The following two statements are equivalent.

(1) The SWR % satisfies axioms 1–7.

(2) The SWR % is a PARDCLU SWO.

It follows from the PARDCLU SWO that c is the wellbeing level which, if ex-

perienced by an added individual without changing the utilities of the existing pop-

ulation, leads to an alternative which is as good as the original only if x[ν(x)] ≤ c.
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If x[ν(x)] > c, then there is a context-dependent critical level in the open interval

(c,x[ν(x)]) which depends on the wellbeing levels that exceed c (as well as the proba-

bility p with which the added individual exists). This follows from Definition 1, since

adding an individual at wellbeing level x[ν(x)] increases welfare, while adding an in-

dividual at wellbeing level c lowers the weights assigned to individuals at wellbeing

levels that exceed c and thereby reduces welfare.

4 Special cases

Cases with no risk correspond to situations where only allocations

x =
(

(xw1 , x
p
1), . . . , (xwn(x), x

p
n(x))

)
with xpi = 1 for all i = 1, . . . n(x) are considered. In the formulation presented in

Section 2, where information arrives in each of T time periods, these correspond to

cases where S and, thus, Ω are singleton sets.

The implications of rank-discounted utilitarianism in such settings are discussed

in Zuber and Asheim (2012) and Asheim and Zuber (2014). With no risk the

modeling here translates exactly to the variable population framework of Asheim

and Zuber (2014), while it specializes the fixed population framework of Zuber and

Asheim (2012) to a situation with an unbounded but finite number of generations.

Here we highlight special cases with risk. First, we show how PARDCLU reduces

to rank-dependent expected utilitarianism in the special case where the probability

adjusted population size is equal to 1. Second, we discuss to what extent PARDCLU

provides a foundation for discounting according to the probability of human extinc-

tion, as applied in, e.g., the Stern Review (2007, Ch. 2).

Rank-dependent expected utilitarianism. In the special fixed population case

where only allocations x with probability adjusted population size ν(x) =
∑n(x)

i=1 xpi

equal to 1 is considered, the result of Theorem 1 leads to rank-dependent expected

utility maximization—where the decision maker substitutes ‘decision weights’ for
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probability—but with additional structure. Quiggin (1982) was the first to axioma-

tize such a theory for decisions under risk, even though the substitution of ‘decision

weights’ for probability had been argued by earlier writers to explain behavior in-

consistent with the vNM theory.

In the formulation presented in Section 2, where information arrives in each of

T time periods, this corresponds to the case where T = 1, so that Ω = S, and where

n1(s) = 1 for all s ∈ S, so that one individual lives independently of how the risk is

resolved. Even though we thereby depart from our basic setting without individual

risk, we may interpret this as one person being subject to a lottery where the prizes

(w1
1(s1), . . . , w1

1(s|S|)) are won with probabilities (p1(s1), . . . , p1(s|S|)).

Let s[ ] = (s[1], . . . , s[|S|]) denote a reordering of s that turns (w1
1(s1), . . . , w1

1(s|S|))

into a non-decreasing profile: w1
1(s[r]) ≤ w1

1(s[r+1]) for all ranks r = 1, . . . , |S| − 1.

Then PARDCLU implies preferences for lotteries that are represented by:

∑|S|

r=1
hr(p)u(w1

1(s[r])) ,

where the probability weighting functions hr : ∆(S)→ [0, 1] are defined by

hr(p) = f
(∑r

r′=1
p1(s[r′])

)
− f

(∑r−1

r′=1
p1(s[r′])

)
,

with f : [0, 1]→ [0, 1] given by f(ρ) = (1− e−δρ)/(1− e−δ) and using the convention∑0
r′=1p

1(s[r′]) = 0.4 Note that the function f is concave; the plausibility of this

property is discussed by Quiggin (1987). In addition, our axioms (in particular,

Axiom 5) lead to the special exponential structure implied by the function f . As

can be easily checked by applying l’Hôpital’s rule, f approaches the identify function

as δ ↓ 0. Thus, if the probability adjusted population size equals 1, then PARDCLU

approaches ordinary expected utility maximization as rank-discounting vanishes.

Human extinction. By appealing to Harsanyi’s (1953) original position and us-

4This follows from Definition 1 by integrating the utility weights e−δρ, leading to the follow-
ing cumulative utility weights:

∫ ρ
0
e−δρ

′
dρ′ = −

(
e−δρ − 1

)
/δ. The function f is determined by

multiplying these cumulative weights by δ/
(
1− e−δ

)
so that f(0) = 0 and f(1) = 1.
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ing Harsanyi’s (1955) theorem, Dasgupta and Heal (1979, pp. 269–275) justified the

use of discounted utilitarianism where the utility discount rate is the probability of

human extinction. Also the Stern Review (2007, Ch. 2) argued that this probabil-

ity is the primary justification for utility discounting (other contributions include

Bommier and Zuber, 2008, and Roemer, 2011). Blackorby, Bossert and Donaldson

(2007) supported this justification within a variable population framework. To what

extent is PARDCLU consistent with this position?

The variable population case where population remains constant up to the time

of human extinction can be captured in the formulation presented in Section 2,

where information arrives in each of T time periods, by having T > 1, letting the

set of potential signals, S, equal {sc, se}, where sc signals continued existence and

se signals extinction, and assuming that population is constant (and normalized to

1) up to the first time t at which the signal at t, st, equals se:

nt(s1, . . . , st) =


1 if sτ = sc for all τ = 1, . . . , t ,

0 otherwise.

Normalizing population to 1 amounts to assuming no intragenerational inequality.

Assume that st is i.i.d. where sc is observed with probability π and se is observed

with probability 1−π, implying that the probability of continued existence in period t

is πt: pt(sc, . . . , sc) = πt. If well-being is correlated with time so that wt1(sc, . . . , sc) ≤

wt+1
1 (sc, . . . , sc) for all times t = 1, . . . , T − 1, then PARDCLU implies preferences

over streams that are represented by:

∑T

t=1

[
f
(
π(1−πt)

1−π

)
− f

(
π(1−πt−1)

1−π

)]
u(wt1(sc, . . . , sc)) ,

where, as above, f : R+ → R+ is given by f(ρ) = (1− e−δρ)/(1− e−δ), but with an

extended domain. This follows from Definition 1 and the argument of footnote 4 by

noting that π + · · ·+ πt = π(1− πt)/(1− π).

12



Note that as δ ↓ 0, f approaches the identity function:

f
(
π(1−πt)

1−π

)
− f

(
π(1−πt−1)

1−π

)
→ π

1−π
(
πt−1 − πt

)
= πt .

Therefore, as rank-discounting vanishes, PARDCLU approaches the principle of dis-

counting utility according to the probability of human extinction, as applied by the

Stern Review (2007, Ch. 2). However, for δ > 0, PARDCLU implies that utility

is discounted according to both rank and the probability of human extinction. If

well-being is correlated with time—which is the case considered above—discounting

according to rank and the probability of human extinction reinforce each other,

while they might pull in opposite directions otherwise. In all cases, wellbeing is

also discounted according to the absolute wellbeing level if the function u is strictly

concave, so that wellbeing is transformed into utility at a decreasing rate.

5 The length of the planning horizon

Despite the normative appeal of the PARDCLU approach, as expressed by the ax-

ioms characterizing it, it raises several issues that need to be discussed. We do so

in this and the two subsequent sections.

One important feature of evaluation based on PARDCLU is its dependence on the

planning horizon and the risk of the planning horizon. It is important to note that,

according to PARDCLU, it is the total population, rather than the planning horizon,

that matters. In particular, social evaluation based on PARDCLU is completely

indifferent between having 10 billion people alive for 100 years and 1 billion people

alive for 1000 years if all have the same wellbeing and live for sure, as total population

is the same in both alternatives. One may object to this conclusion on the basis

that people might prefer to live in a society with more people (so as to have richer

scope for social interactions), or on the contrary to have more descendants.

Two responses can be made to this objection. First, one can argue that if

these sentiments are valid components of welfare, they should be included in the

13



xwi numbers, so that the equality of these numbers in the two situations means

that these phenomena are appropriately taken into account. Second, one might

argue that such interpersonal welfare effects are not part of a well-defined notion of

wellbeing so that a theory of justice should not take them into account.

It must be noted that this feature actually extends to the case where population

size is risky. If wellbeing is perfectly equal, then only expected total population

size matters, so that society is completely risk neutral with respect to the risk of

population size. Evaluation based on PARDCLU is indifferent whether n people

exist for sure, or n1 people exist with probability p and n2 people with probability

1 − p, provided that pn1 + (1 − p)n2 = n. This is in stark contrast with criteria

exhibiting catastrophe avoidance in the sense of Bommier and Zuber (2008).

A more practical problem has to do with the possible discrepancy between the

actual length of society and the planning horizon considered in applied models. It

is a common practice in applied model, for instance in integrated climate-economy

assessment models, to assume that the economy reaches a steady state at a certain

point (the planning horizon), and to either neglect what happens next, or use a

simple recursive formula to value the future. In particular, the actual length of the

society is not taken into account. However, it is not possible to neglect the far future

in such a way in the PARDCLU approach.

In the following we present a method for dealing with this issue. Assume a

dynastic model with n dynasties, where there is risk about the wellbeing of the

dynasties. All dynasties reach a steady state wellbeing level simultaneously, with

the steady state distribution of wellbeing and probability of existence being given

by x̄ = ((x̄w1 , x̄
p
1), · · · , (x̄wn , x̄

p
n)). Let y the distribution of wellbeing and probability

before attaining the limiting distribution.

Assume that the duration of all dynasties is subject to the same risk. Con-

ditional on dynasty i existing when we reach the steady state (which occurs with

probability x̄pi ) the dynasty will last for exactly T more generations with probability

πT . Hence, conditional on dynasty i existing, generation T of the dynasty will exist

14



with probability qT =
∑

t≥T πt (where generation 0 is the label for the generation

existing when the steady state is reached). The expected number of generations

after reaching the steady state is N =
∑

t≥0 πtt =
∑

t≥0 qt (assumed to be finite).

In such a framework the actual allocation we should consider is

x =
(
y, (x̄w1 , x̄

p
1), . . . , (x̄w1 , qtx̄

p
1), . . . , . . . , (x̄wn , x̄

p
n), . . . , (x̄wn , qtx̄

p
n), . . .

)
.

In the steady state, all individuals of dynasty i have the same wellbeing level x̄wi

and they have probabilities of existence x̄pi , q1x̄
p
i , . . . , qtx̄

p
i , . . . . Hence the probability

adjusted number of people at wellbeing level x̄wi is
∑

t qtx̄
p
i = Nx̄pi . Hence, using

Axiom 3, we can rewrite x as follows: x =
(
y, (x̄w1 , Nx̄

p
1), . . . , (x̄wn , Nx̄

p
n)
)
.

If we had neglected the generations in the far future, we would instead have

considered the allocation z =
(
y, (x̄w1 , x̄

p
1), . . . , (x̄wn , x̄

p
n)
)
. Obviously, by using such

a naive approach where the far future is neglected, the weights on transformed

wellbeing in the PARDCLU formula are changed. More precisely, assuming that

x̄wi < x̄wi+1, the weight in the näıve approach on the transformed wellbeing u(xwk )

of people with wellbeing xwk between x̄wi and x̄wi+1 must be multiplied by a factor

e−δ(N−1)
∑
j≤i x̄

p
j (< 1) to arrive at the weights in the actual PARDCLU formula.

In the limit where N → +∞, the weights on the transformed wellbeing of people

with wellbeing higher than x̄w1 = mini∈{1,··· ,n} x̄
w
i would be negligible. If function u

is bounded, this might mean that anything that happens to people with wellbeing

higher than the lowest wellbeing of the limiting distribution is unimportant from the

social choice point of view. This gives a clear indication where we should provide

improvements in wellbeing.

Although we have argued that neglecting the future when there is a limiting

distribution can be quite misleading, the above discussion also provides a fix that

can be used in practical applications of the class of PARDCLU criteria. If we

know the expected number of future generations N , then we can easily construct

the allocation x using the information on the limiting distribution x̄, by simply

changing the probability of the existence of last generations from xpi to Nxpi .
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6 Time consistency

The decision maker will be time inconsistent when decisions in later periods do not

coincide with the plan that was made in earlier periods. Hammond (1983) suggested

that if social decision-making is consequentialist (that is, if social situations in each

state of the world are assessed only on basis of their consequences in this state of

the world), time consistency is ensured only by using an expected utility criterion.

The PARDCLU is not an expected utility. Hence, if decision making is conse-

quentialist, PARDCLU are bound to yield time inconsistencies. Note that the issue

also arises when there is no risk, as discussed in Zuber and Asheim (2012). Indeed,

rank discount factors may depend on the relative position of past generations so

that, when the PARDCLU is used at later periods ignoring the past, it may chose

a different plan than decided earlier, because the relative weight on the wellbeing

of future generations has changed.5 The problem of time consistency when there

is risk is more severe because not only the past, but also unrealized states of the

world matter. This dependence on unrealized states of the world is not specific to

the PARDCLU approach, for it also arises for criteria such as those suggested by

Diamond (1967), Epstein and Segal (1992) and Grant at al. (2010).

Given the result by Hammond (1983), two options are possible: reject consequen-

tialism or time consistency. If one wants to avoid the time inconsistency problem,

one has to abandon the hypothesis of time invariant and consequentialist decision

making. This involves defining social preferences that are conditional on the past

and on unrealized events. Consider again the dynamic framework introduced in

Section 2, where the allocations x and y are derived from probability distributions

p and q, for fixed functions nt and wt determining the numbers of individuals and

the distribution of wellbeing at every time t. Also assume that there is a history of

signal ωt = {s1, · · · , st} such that

5However, as shown by Zuber and Asheim (2012, Section 6) in the setting of the Ramsey and
Dasgupta-Heal-Solow models of optimal growth, it might happen that no time inconsistency arise
at the optimal plan for a rank-discounted utilitarian criterion. This property is not true in general
and depends on the precise economic model which is considered.
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(1) pτ (ω̃τ ) = qτ (ω̃τ ) for all ω̃ ∈ Ω and τ < t, and

(2) pτ (ω̃τ ) = qτ (ω̃τ ) for all τ ≥ t and all ω̃ = (s̃1, · · · , s̃t, s̃t+1, · · · , s̃T ) ∈ Ω such

that (s̃1, · · · , s̃t) 6= (s1, · · · , st).

This means that x and y are allocations where people in the past and unrealized

states of the world have the same wellbeing and probability of existence. We can

define xωt and yωt as the allocations for people in future generations and still possible

states of the world.6 Then we can simply formulate the social preference ordering

conditional on the history ωt, denoted �ωt in the following way:

xωt �ωt yωt ⇐⇒ x � y.

Such a construction would trivially imply time consistency.

Such a construction is actually the solution proposed by Epstein and Segal (1992)

when they develop a formula to update the weights on individuals’ utilities ex post to

obtain consistent planning. What the updating rule does is to aggregate the informa-

tion needed on unrealized alternatives, so that ex post decision making does depend

on unrealized alternatives in a proper way. The issue is rather that the updating

rule for social preferences may be rather complex. This solution may be possible for

some problems when the amount of information required is not too important. But

for most dynamic decision problems involving many unrealized alternatives this may

be difficult to implement. Furthermore, if the past and unrealized states of the world

matter in the future, then one might argue that the past and unrealized states of

the world matter already at present. This raises the question to what extent history

and hypothetical but unrealized developments should be taken into account.

The second option would be to insist on consequentialism and accept the possi-

bility of time inconsistencies in social decision making. It is not uncontroversial to

6The definition of xωt would be

xωt = (((wτj (ωτ ), pτ (ωτ ))j∈{1,··· ,nτ (ωt)})ωτ∈{s1}×···×{st}×Sτ−t)τ∈{t,··· ,T} ,

and similarly for yωt by substituting qτ (ωτ ) by pτ (ωτ ).
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adopt normative criteria of intergenerational equity that do not lead to time inconsis-

tent decision making. However, there are several examples of such time inconsistent

criteria, including the SWO that Chichilnisky (1996, Theorem 2) characterizes.

Even if we stick to consequentialist decision making, there are still situations

where time consistency problem does not arise for PARDCLU. Axioms 4 and 5

precisely describe situations where the information on the past or unrealized al-

ternatives is not needed to evaluate allocations. It should be clear that only very

specific problems would permit use of the independence Axioms 4 and 5: as soon as

someone in the past (or in unrealized states of the world) has a wellbeing level in

between the wellbeing levels of two future (potential) individuals he will matter for

decision making.

Then, if one anticipates that the decision process will be time invariant and

consequentialist, the only way to mitigate the time inconsistency problem is to devise

a sophisticated planning strategy (see Pollak, 1968; Blackorby et al., 1973, for early

references). The main idea is that we can anticipate today that the time consistency

problem will arise tomorrow, and therefore chose a policy that will induce the next

generations to do the best choices according to the use of an PARDCLU criterion

today. Typically, the sophisticated planning solution does not yield a solution which

is as good as the optimal plan if we could commit to a policy at any future decision

node. But it may improve upon a naive solution which does not anticipate the

problem, and it yields consistent planning. The exact form of the sophisticated

planning solution, and how far it can go in reducing the suboptimality will depend

on the specific economic problem under consideration. But it seems to be a promising

route when one use criteria such as PARDCLU that do not satisfy strong enough

separability and time invariance properties.

7 Ex ante vs ex post approaches

A seminal result in the literature on social choice in risky situations is Harsanyi’s

theorem (Harsanyi, 1955). Harsanyi proved that, in the context of risk, social ra-

18



tionality (embodied in the expected utility assumption) and the Pareto principle

impose severe constraints on the form of the social welfare function. Specifically,

the social criterion should be a linear combination of individuals’ expected utility,

ruling out preference for (utility) redistribution both ex ante and ex post.

Since then, the literature has hesitated between an ex ante approach that relaxes

rationality (Diamond, 1967; Epstein and Segal, 1992; Grant at al., 2010) to allow for

ex ante fairness, and an ex post approach that fails the Pareto principle (Broome,

1991; Hammond, 1983; Fleurbaey, 2010) to allow for ex post fairness.

How does the PARDCLU approach fit in this debate? This is not clear, because

we interpret individuals in different states of the world as essentially different indi-

viduals. The key issue in the ex ante versus ex post debate is whether we should

respect individuals’ ex ante preference, which is not possible to formulate in our

framework because we do not assume that individuals face risk: only the society

faces some risk on the identity of individuals and wellbeing distribution. One possi-

bility though would be to interpret the wellbeing numbers xwi as incorporating the

risk actual individuals face during their lifetime. In that case, and if the wellbeing

index is concordant with individuals’ ex ante preferences, one could consider the

PARDCLU approach as an ex ante approach in the sense that it respects individu-

als’ risk preferences. It would therefore be related to criteria suggested by Diamond

(1967), Epstein and Segal (1992) and Grant at al. (2010). As we discussed in Section

6, PARDCLU criteria actually face the same difficulty in terms of time inconsistency

as these ex ante criteria.

This time inconsistency is related to the fact that the PARDCLU are not ex post

criteria, in a sense somewhat different from the one discussed in the ex ante versus

ex post debate. Following Fleurbaey (2010), one could define an ex post approach

as one first assessing social welfare in each state of the world, and then performing

and aggregation of these ex post welfare judgements to assess a risky situation.

There is clear tension between such an approach and our axiom 3 (Probability

adjusted Suppes-Sen). Assume like Fleurbaey (2010) that the social criterion is

19



the expected value of an equally-distributed equivalent level of utility, where utility

(transformed wellbeing) is measured in terms of the Bernoulli utility functions – used

to compute expected utility in the VNM framework. Hence we need to consider a

function φ such that φ(x) is the Bernoulli utility function for any wellbeing level

x. There are two equiprobable states of the world and two individuals in each state

of the world. Consider the following allocations: in allocation x the distribution

of wellbeing is (z, z̄) in each state of the world; in allocation y, the distribution

of wellbeing is (z, z) in one state of the world and (z̄, z̄) in the other state of the

world. The Probability adjusted Suppes-Sen axiom imply that x and y should

be deemed equivalent. However, if social welfare is inequality-averse (with respect

to the distribution of utility), the equally-distributed equivalent in each state of the

world in x should be less than
(
φ(z)+φ(z̄)

)
/2, which is the expected social welfare in

y. Inequality averse expected equally-distributed equivalent criteria would therefore

prefer y to x, contradicting the Probability adjusted Suppes-Sen axiom.

An important aspect of equitable ex post approaches is that they favor the equal-

ization of wellbeing among actual individuals in the same state of the world to equal-

ization of wellbeing among potential individuals in different states of the world. The

PARDCLU approach is compatible with this judgement if we allow altruistic or re-

distributive considerations to be part of individuals’ wellbeing. There is a growing

literature on social and altruistic preferences, both from a theoretical and from

an experimental perspective (classical references include Fehr and Schmidt, 1999;

Bolton and Ockenfels, 2000; Charness and Rabin, 2002; Andreoni and Miller, 2002).

If people do have social and altruistic preferences, if they care about their relative

position in the society and about the wellbeing of their own children, this will in

practice induce the society to chose realized allocations with limited intra- and in-

tergenerational inequality. Taking these motives into account, we may be able to

combine the ethical principle of equal treatment of people with the same probabil-

ity of existence, embodied in our Suppes-Sen principle, and a fairness principle of

equality of wellbeing among actual people in realized states of the world.
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If one does not accept that the definition of wellbeing should incorporate such

social and altruistic preferences, and wants to ensure fairness in realized outcomes a

possibility could be the following: endorsing the expected equally-distributed equiv-

alent approach à la Fleurbaey (2010) and take the expected value of a RDCLU social

welfare function. This is a direction we do not investigate in the present paper.

8 Concluding remarks

The present paper contributes to the fields of population ethics and social evaluation

in risky situations by proposing and axiomatizing the probability adjusted rank-

discounted critical-level generalized utilitarian (PARDCLU) SWO. By doing so we

have taken an important step towards preparing the rank-discounted utilitarian

(RDU) criterion (see Zuber and Asheim, 2012) for practical use, e.g. for evaluation

of climate policies and other policy issues with long-run consequences.

We have shown how the PARDCLU SWO can be used to handle the situation

where there is a positive probability of human extinction. We have discussed issues

to be faced before applying the PARDCLU SWO in numerical models of climate

change. We have established how the PARDCLU SWO reduces to rank-dependent

expected utility maximization with additional structure in the special case where

the probability adjusted population size equals 1, thereby linking our criterion to

the theory of decisions under risk.

When evaluating consequences that stretch centuries into the future, it seems

less important to consider the fluctuations in wellbeing and individual risk that

people face during their own lifetimes. Rather, the important issues are interpersonal

inequality and the social risk associated with what level of wellbeing future people

will experience in the world they will be born into.

Consequently, we have presented a framework where individuals live for one

period only and are not subject to individual risk. In this framework one cannot

differentiate between inequality aversion, fluctuation aversion, and risk aversion—a

distinction that is sometimes highlighted in literature on climate change evaluation—
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only inequality aversion matters in the present context.

Zuber and Asheim (2012, Section 6) show how RDU leads to sustainable out-

comes in models of economic growth within a setting where there are infinitely many

time periods. This basic support for sustainability does not extend to the present

criterion with endogenous population size and probability of existence, where the

main concern is to avoid lives with low wellbeing. A stark conclusion is that it might

be social preferable to increase the per-period probability of extinction if per capita

wellbeing is decreasing over time, as this increases the utility weight on the better-off

earlier generations. This points towards reevaluating the concept of sustainability

in a context where the number of future generations is bounded and their existence

is uncertain, and where there might be a trade-off between the number of future

people and their wellbeing.

In general, there might be an argument in favor of distinguishing the conception

of justice from the forces (like altruism) that are instrumental in attaining it, e.g.,

if impartiality follows from considering an original position where individuals do

not have extensive times of natural sentiments (Rawls, 1971, p. 129). However,

considering the social context in which people live seems essential when applying

the PARDCLU SWO in a setting where population size and probability of existence

are endogenous. In particular, a more pro-natal implication would follow if we

assume that the wellbeing of individuals depends also on their reproductive choices,

so that wellbeing of one generation increases with the size and living conditions of

the next.
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A Proof of Theorem 1

To prove the Theorem 1, we need to introduce subsets of X. For any k ∈ N, denote by

X1/k =
{
x ∈ X : xpi = 1/k, ∀i ∈ {1, . . . , n(x)}

}
the set of allocations where all individuals

have the same rational probability 1/k of existing. Denote by Q++ the positive rational

numbers and by XQ++ =
{
x ∈ X : xpi ∈ Q++, ∀i ∈ {1, . . . , n(x)}

}
the set of allocations

where all individuals have probabilities of existing which are positive rational numbers.

It is straightforward to show that (2) implies (1) in Theorem 1. We show that (1) implies

(2) by proving the four following lemmas.

We start with Lemmas 1 and 2 which establish how the representation result of Asheim

and Zuber (2014) can be extended to the present case as long as the probabilities of existence

are given by rational numbers.

Lemma 1 If Axioms 1–7 hold, then there exists c ∈ R+, δ ∈ R++ and a continuous and

increasing function u : R→ R such that for any k ∈ N for any x,y ∈ X1/k,

x % y⇐⇒
∫ ν(x)

0

e−δρ
(
u(x[ρ])− u(c)

)
dρ ≥

∫ ν(y)

0

e−δρ
(
u(y[ρ])− u(c)

)
dρ

Proof. For any k ∈ N, Axioms 1–7 above restricted to X1/k collapse to Axioms 1–7 of

Asheim and Zuber (2014), provided we take p = 1/k in Axioms 4-7. Hence, by Theorem 1

of Asheim and Zuber (2014) there exist β1/k ∈ (0, 1) and a continuous increasing function

u1/k : R→ R such that, for all x, y ∈ X1/k, x % y if and only if

(1− β1/k)
∑n(x)

r=1
βr−11/k

(
u1/k

(
xwπ(r)

)
− u1/k(c)

)
≥ (1− β1/k)

∑n(y)

r=1
βr−11/k

(
u1/k

(
ywπ(r)

)
− u1/k(c)

)
,

(A1)

where the critical level parameter c is determined by Axiom 6 and is therefore independent

of k, and where the factor 1 − β1/k ensures that utility weights sum up to 1 − βn(x)1/k and

1− βn(y)1/k respectively.

25



Consider any x,y ∈ X1 such that n(x) = n(y) = n. For any k ∈ N, construct x̂, ŷ ∈

X1/k such that n(x̂) = n(ŷ) = nk and, for any i ∈ {1, . . . , n}, x̂wki−j = xwi and ŷwki−j = ywi

for all j ∈ {0, . . . , k − 1}. By construction, ν(x) = ν(y) = ν(x̂) = ν(ŷ) = n, x[ ] = x̂[ ] and

y[ ] = ŷ[ ]. By Axioms 1, 2 and 3, we have x % y⇐⇒ x̂ % ŷ, and therefore, using the above

representation:

(1− β1)
∑n

r=1
βr−11 u1

(
x(π(r)

)
≥ (1− β1)

∑n

r=1
βr−11 u1

(
y(π(r))

)
⇐⇒ (1− β1/k)

∑nk

r′=1
βr
′−1

1/k u1/k
(
x̂(π(r′)

)
≥ (1− β1/k)

∑nk

r′=1
βr
′−1

1/k u1/k
(
ŷ(π(r′))

)
⇐⇒ (1− βk1/k)

∑n

r=1
(βk1/k)r−1u1/k

(
x(π(r)

)
≥ (1− βk1/k)

∑nk

r′=1
(βk1/k)r−1u1/k

(
y(π(r))

)
since (1 − β1/k)

∑k
r′=1β

r′−1
1/k = 1 − βk1/k. Because additive representations are unique up

to an affine transformation, the above equivalence implies βk1/k = β1 and that we can set

u1/k = u1, using the normalization u1/k(0) = u1(0) = 0.

Denoting p = 1/k and δ = − lnβ1, this implies that β1/k = (β1)1/k = e−δp. Moreover,

since

(1− βp)βr−1p =
(
1− e−δp

)
e−δp(r−1) = e−δp(r−1) − e−δpr = δ

∫ pr

p(r−1)
e−δρdρ ,

and by denoting u = u1 we can rewrite inequality (A1) as:

δ

∫ ν(x)

0

e−δρ
(
u(x[ρ])− u(c)

)
dρ ≥ δ

∫ ν(y)

0

e−δρ
(
u(y[ρ])− u(c)

)
dρ ,

where ν(x) = n(x)/k and ν(y) = n(y)/k. This establishes Lemma 1.

Lemmas 2 is concerned only with the same-number case, as a separate argument has to

be used anyway for the case where the difference between the probability adjusted population

size of two different allocations is irrational.

Lemma 2 If Axioms 1–7 hold, then there exists c ∈ R+, δ ∈ R++ and a continuous and

increasing function u : R → R such that for any ν ∈ Q++, for any x,y ∈ XQ++
such that

ν(x) = ν(y) = ν,

x % y⇐⇒
∫ ν

0

e−δρu(x[ρ])dρ ≥
∫ ν

0

e−δρu(y[ρ])dρ
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Proof. For any x,y ∈ XQ++ such that ν(x) = ν(y) = ν, let k be the least common

denominator of all the probabilities in the two allocations. This means that for all i ∈

{1, . . . , n(x}} there exists a positive integer `xi such that xpi = `xi /k. Similarly, for all

i ∈ {1, . . . , n(y}}, there exists a positive integer `yi such that ypi = `yj /k.

We can construct x̂, ŷ ∈ X1/k in the following way:7

(a) For any i ∈ {1, . . . , n(x)}, x̂w
`+

∑i−1
j=1 `

x
j

= xwi , for all ` ∈ {1, . . . , `xi };

(b) For any i ∈ {1, . . . , n(y)}, ŷw
`+

∑i−1
j=1 `

y
j

= ywi , for all ` ∈ {1, . . . , `yi }.

By construction, ν(x) = ν(y) = ν(x̂) = ν(ŷ) = n, x[ ] = x̂[ ] and y[ ] = ŷ[ ], and

x % y ⇐⇒ x̂ % ŷ

⇐⇒
∫ ν

0

e−δρu(x[ρ])dρ ≥
∫ ν

0

e−δρu(y[ρ])dρ

by Axioms 1, 2, 3, and Lemma 1.

Lemma 3 shows how the representation of Lemma 2 in the same-number case (where

the compared allocations have the same probability adjusted population size) can be applied

also when probabilities of existence are allowed to irrational, using the property that the

rational numbers are dense in the real numbers.

Lemma 3 If Axioms 1–7 hold, then there exist c ∈ R+, δ ∈ R++ and a continuous and

increasing function u : R→ R such that for any ν ∈ R++, for any x, y ∈ Xν ,

x % y⇐⇒
∫ ν

0

e−δρu(x[ρ])dρ ≥
∫ ν

0

e−δρu(y[ρ])dρ (A2)

Proof. Consider any ν ∈ R++, and any x, y ∈ Xν . If x, y ∈ Q++ (so that ν ∈ Q++), then

Lemma 2 yields the result. Assume therefore that x, y /∈ Q++ and more specifically that

xpi ∈ Q++ for all i ∈ {1, . . . , n(x) − 1}, ypi ∈ Q++ for all j ∈ {1, . . . , n(y) − 1}, and xn(x),

yn(y) /∈ Q++. Assuming that the last individual is the one with an irrational probability

of existing is made without loss of generality because of Axiom 3. Extension of the proof

to more than one individual with an irrational probability of existing is similar to the one

developed below. Because of Axiom 1, equivalence (A2) holds if and only if the following

7Using the convention
∑0
j=1 `

x
j =

∑0
j=1 `

y
j = 0.
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equivalence holds:

x � y⇐⇒
∫ ν

0

e−δρu(x[ρ])dρ >

∫ ν

0

e−δρu(y[ρ])dρ . (A3)

Step 1: x � y =⇒
∫ ν
0
e−δρu(x[ρ])dρ >

∫ ν
0
e−δρu(y[ρ])dρ.

Assume that x � y. By Axiom 2, there exists x̃ ∈ Xν such that x̃[ ] < x[ ] and

x̃ � y. It is sufficient to show
∫ ν
0
e−δρu(x̃[ρ])dρ ≥

∫ ν
0
e−δρu(y[ρ])dρ since then it follows by

the definitions of the step functions x[ ] and x̃[ ] that x[ ] > x̃[ ] implies
∫ ν
0
e−δρu(x[ρ])dρ >∫ ν

0
e−δρu(y[ρ])dρ.

Let ν̂ ∈ Q++ such that 0 < ν̂ − ν < 1, and denote p̂ = ν̂ − ν. Let px̃ ∈ Q++ be such

that 0 < px̃ < x̃pn(x̃) and denote εx̃ = x̃pn(x̃) − px̃. Likewise, let py ∈ Q++ be such that

xpn(y) < py < p̂ and denote εy = py − xpn(y).

Let z = max{x̃[ν],y[ν]}. By Axiom 4,

x̃ � y =⇒ (x̃, zp̂) % (y, zp̂) .

Construct x̂, ŷ ∈ Xν̂ such that

(a) x̂i = x̃i for all i ∈ {1, . . . , n(x̃)− 1}; x̂n(x̃) = (x̃wn(x̃), px̃); x̂n(x̃)+1 = (z, p̂+ εx̃);

(b) ŷi = yi for all i ∈ {1, . . . , n(y)− 1}; ŷn(y) = (ywn(y), py); ŷn(y)+1 = (z, p̂− εy).

By construction, ν(x̂) = ν(ŷ) = ν(x̃, zp̂) = ν(y, zp̂) = ν̂, x̂[ ] > (x̃, zp̂)[ ] and ŷ[ ] < (y, zp̂)[ ].

By Axioms 1 and 3,

(x̃, zp̂) % (y, zp̂) =⇒ x̂ � ŷ .

Also, by construction, x̂, ŷ ∈ XQ++ .8 Hence, by Lemma 2, we know that

x̂ � ŷ⇐⇒
∫ ν′

0

e−δρu(x̂[ρ])dρ >

∫ ν′

0

e−δρu(ŷ[ρ])dρ

Let r̃ be the rank of xn(x̃) in x̃ and r be the rank of yn(y) in y. By definition of x̂[ ] and

ŷ[ ], we have:

∫ ν̂

0

e−δρu(x̂[ρ])dρ

8Indeed, ν − x̃pn(x̃) and ν − ypn(y) are rational number because all individuals but the last one
have rational probabilities of existing.
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=

∫ ρr̃−εx̃

0

e−δρu(x̃[ρ])dρ+ eδεx̃
∫ ν

ρr̃

e−δρu(x̃[ρr̃])dρ

+

∫ ν

ν−εx̃
e−δρu(z)dρ+

∫ ν̂

ν

e−δρu(z)dρ

=

∫ ν

0

e−δρu(x̃[ρ])dρ+ (eδεx̃ − 1)

∫ ν

ρr̃

e−δρu(x̃[ρr̃])dρ−
∫ ρr̃

ρr̃−εx̃
e−δρu(xwn(x̃))dρ

+

∫ ν

ν−εx̃
e−δρu(z)dρ+

∫ ν̂

ν

e−δρu(z)dρ

=

∫ ν

0

e−δρu(x̃[ρ])dρ+

∫ ν̂

ν

e−δρu(z)dρ

+ (eδεx̃ − 1)

(∫ ν

ρr̃

e−δρu(x̃[ρr̃])dρ+
e−δνu(z)−e−δρr̃u(x̃wn(x̃))

δ

)

and likewise

∫ ν̂

0

e−δρu(ŷ[ρ])dρ

=

∫ ρr+εy

0

e−δρu(y[ρ])dρ+ e−δεy
∫ ν

ρr

e−δρu(y[ρr])dρ

−
∫ ν+εy

ν

e−δρu(z)dρ+

∫ ν̂

ν

e−δρu(z)dρ

=

∫ ν

0

e−δρu(y[ρ])dρ+

∫ ν̂

ν

e−δρu(z)dρ

− (1− e−δεy )

(∫ ν

ρr

e−δρu(y[ρr])dρ+
e−δνu(z)−e−δρru(xwn(y))

δ

)

To sum up: x � y =⇒ x̃ � y =⇒ (x̃, (z)p̂) % (y, (z)p̂) =⇒ x̂ � ŷ =⇒

∫ ν

0

e−δρu(x̃[ρ])dρ+ (eδεx̃ − 1)

(∫ ν

ρr̃

e−δρu(x̃[ρr̃])dρ+
e−δνu(z)−e−δρr̃u(x̃wn(x̃))

δ

)
>∫ ν

0

e−δρu(y[ρ])dρ− (1− e−δεy )

(∫ ν

ρr

e−δρu(y[ρr])dρ+
e−δνu(z)−e−δρru(xwn(y))

δ

)
.

This implication is true for any (εx̃, εy) ∈ R2
++ as defined above. Since rational number are

dense in the real number, it is possible to find a sequence of ((εx̃, εy)) ∈ (R2)N such that

each of εx̃ and εy tends to zero. Hence:

x � y =⇒
∫ ν

0

e−δρu(x̃[ρ])dρ ≥
∫ ν

0

e−δρu(y[ρ])dρ .

Figure 1 illustrates the construction of the different allocations involved in Step 1.

Step 2:
∫ ν
0
e−δρu(x[ρ])dρ >

∫ ν
0
e−δρu(y[ρ])dρ =⇒ x � y.
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Probability adjusted

population size

wellbeing

ν̂ν

z

εx̃εy

(x̃, (z)p̂)[ ] :

x̂[ ] :

(y, (z)p̂)[ ] :

ŷ[ ] :

Figure 1: Allocations involved in Step 1 of the proof

Assume that
∫ ν
0
e−δρu(x[ρ])dρ >

∫ ν
0
e−δρu(y[ρ])dρ. Since rational number are dense

in real numbers, it is possible to find (εx, εy) ∈ (0, 1)2 such that px = xpn(x) + εx and

py = ypn(y) − εy satisfy (px, py) ∈ Q2
++, and:

∫ ν
0
e−δρu(x[ρ])dρ− (1− e−δεx)

(∫ ν
ρr̃
e−δρu(x[ρr̃])dρ+

e−δνu(z)−e−δρr̃u(xwn(x))

δ

)
>

∫ ν
0
e−δρu(y[ρ])dρ+ (eδεy − 1)

(∫ ν
ρr
e−δρu(y[ρr])dρ+

e−δνu(z)−e−δρru(xwn(y))

δ

)

where r̃ is the rank of xn(x) in x, r is the rank of yn(y) in y, and z = max{x̃[ν],y[ν]}.

Let εx < p̂ < 1 be such that ν̂ = ν + p̂ satisfies ν̂ ∈ Q++. We can construct x̂, ŷ ∈ Xν̂

in the following way:

(a) x̂i = xi for all i ∈ {1, . . . , n(x)− 1}; x̂n(x) = (xwn(x), px); x̂n(x)+1 = (z, p̂− εx);

(b) ŷi = yi for all i ∈ {1, . . . , n(y)− 1}; ŷn(y) = (ywn(y), py); ŷn(y)+1 = (z, p̂+ εy);

so that x̂, ŷ ∈ XQ++
, ν(x̂) = ν(ŷ) = ν(x, (z)p̂) = ν(y, (z)p̂) = ν̂, x̂[ ] < (x, (z)p̂)[ ] and

ŷ[ ] > (y, (z)p̂)[ ] (see Figure 2).
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Probability adjusted

population size

wellbeing

ν̂ν

z

εxεy

(x, (z)p̂)[ ] :

x̂[ ] :

(y, (z)p̂)[ ] :

ŷ[ ] :

Figure 2: Allocations involved in Step 2 of the proof

By Lemma 2 and by construction of x̂ and ŷ,

∫ ν

0

e−δρu(x[ρ])dρ− (1− e−δεx)

(∫ ν

ρr

e−δρu(x[ρr])dρ+
e−δνu(z)−e−δρru(xwn(x))

δ

)
>∫ ν

0

e−δρu(y[ρ])dρ+ (eδεy − 1)

(∫ ν

ρr′

e−δρu(y[ρr′ ]
)dρ+

e−δνu(z)−e−δρr′ u(xwn(y))

δ

)

=⇒
∫ ν̂
0
e−δρu(x̂[ρ])dρ >

∫ ν̂
0
e−δρu(ŷ[ρ])dρ =⇒ x̂ � ŷ. And by Axioms 1, 3 and 4,

x̂ � ŷ =⇒ (x, (z)p̂) � (y, (z)p̂) =⇒ x � y.

Finally, we extend the representation to the entire domain X of all finite allocations

(thereby also considering allocations with different probability adjusted population sizes) by

showing that any finite allocation x can be made as bad as an allocation where all individuals

are at the critical level c by adding sufficiently many people at a low wellbeing level z, and

thus indifferent to an egalitarian allocation where each individual’s wellbeing equals x ≤ c.

This allows us to apply Axiom 6, thereby completing the demonstration of the result that

statement (1) of Theorem 1 implies statement (2).
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Lemma 4 If Axioms 1-7 hold, then there exists c ∈ R+, δ ∈ R++ and a continuous and

increasing function u : R→ R such that for any x,y ∈ X,

x % y⇐⇒
∫ ν(x)

0

e−δρ
(
u(x[ρ])− u(c)

)
dρ ≥

∫ ν(y)

0

e−δρ
(
u(y[ρ])− u(c)

)
dρ . (A4)

Proof. Step 1: Representation when well-being does not exceed c.

Let c ∈ R+ be the critical level parameter defined in Axiom 6.

Assume that x, y ∈ X are such that x[ν(x)] ≤ c and y[ν(y)] ≤ c. If ν(x) = ν(y), then

equivalence (A4) follows from Lemma 3. Therefore, assume that ν(x) < ν(y) (the case

ν(x) > ν(y) can be treated similarly). Let k := minl∈N{` : (ν(y) − ν(x))/` ≤ 1} and

p = (ν(y) − ν(x))/k. Then, by k applications of Axiom 6, using Axiom 5 repeatedly to

ensure that the allocation is in Xν when Axiom 6 is applied, x ∼ (x, (c)kp). By Axiom 1

and Lemma 3:

x % y ⇐⇒ (x, (c)kp) % y

⇐⇒
∫ ν(x)

0

e−δρu
(
x[ρ]

)
dρ+

∫ ν(y)

ν(x)

e−δρu(c)dρ ≥
∫ ν(y)

0

e−δρu
(
y[ρ]

)
dρ

⇐⇒
∫ ν(x)

0

e−δρ
(
u
(
x[ρ]

)
− u(c)

)
dρ ≥

∫ ν(y)

0

e−δρ
(
u
(
y[ρ]

)
− u(c)

)
dρ .

Step 2: Equally distributed equivalent.

For any ν ∈ R++ and x ∈ Xν , let the ν–equally distributed equivalent of x, denoted

eν(x), be x ∈ R such that (x)ν ∼ x. Axioms 1–3 imply that eν : Xν → R is well-defined.

By Lemma 3, and since Axioms 1–7 hold, it is defined as follows:

eν(x) = u−1
(

δ
1−e−δν

∫ ν

0

e−δρu(x[ρ])dρ
)
.

Let x ∈ Xν and z < min{x[0], c}, leading to the following expression for k ∈ N:

eν+k
(
x, (z)k

)
= u−1

(
δ

1−e−δ(ν+k)

(∫ k

0

e−δρu(z)dρ+

∫ ν+k

k

e−δρu(x[ρ−k])dρ

))

= u−1
(

1−e−δk
1−e−δ(ν+k)u(z) + e−δk−e−δ(ν+k)

1−e−δ(ν+k) ·
δ

1−e−δν

∫ ν

0

e−δρu(x[ρ])dρ
)
.

Write a(k) :=
(
1− e−δk

)
/
(
1− e−δ(ν+k)

)
; note that a : N→ R is an increasing function
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of k converging to 1. Since z < x[0] ≤ eν(x) and

eν+k
(
x, (z)k

)
= u−1

(
a(k)u(z) + (1− a(k))u

(
eν(x)

))
,

it follows that eν+k
(
x, (z)k

)
is a decreasing function of k converging to z as k approaches

infinity. As z < c, we deduce that, for any x ∈ X, there exists K(x) ∈ N such that, for all

k ≥ K(x), eν(x)+k
(
x, (z)k

)
≤ c.

Step 3: Conclusion. For any x, y ∈ X, choose z such that z < min{x[0],y[0], z}.

Let ` = max{K(x),K(y)}, x = eν(x)+`
(
x, (z)`

)
and y = eν(y)+`

(
y, (z)`

)
. By definition,

(x, (z)`) ∼ (x)ν(x)+`, (y, (z)`) ∼ (y)ν(y)+`, x ≤ c and y ≤ c. Hence, by repeated applications

of Axioms 1 and 5, and by Step 1:

x % y ⇐⇒ (x, (z)`) % (y, (z)`)

⇐⇒ (x)ν(x)+` % (y)ν(y)+`

⇐⇒
∫ ν(x)+`

0

e−δρ (u(x)− u(c)) dρ ≥
∫ ν(y)+`

0

e−δρ (u(y)− u(c)) dρ .

However, by the definition of equally distributed equivalents,

∫ ν(x)+`

0

e−δρu(x)dρ =

∫ `

0

e−δρu(z)dρ+ e−δ`
∫ ν(x)

0

e−δρu(x[ρ])dρ ,∫ ν(y)+`

0

e−δρu(x)dρ =

∫ `

0

e−δρu(z)dρ+ e−δ`
∫ ν(y)

0

e−δρu(y[ρ])dρ ,

Thereby we obtain equivalence (A4).

33


	memo0615.pdf
	MEMORANDUM
	No 06/2015
	Evaluating Intergenerational Risks: Probabillity Adjusted Rank-Discounted Utilitarianism
	Geir B. Asheim  and Stéphane Zuber

	Last 10 Memoranda




