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On the Returns to Occupational Qualification in

Terms of Subjective and Objective Variables: A

GEE-type Approach to the Estimation of

Two-Equation Panel Models
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Abstract

This article proposes an estimation approach for panel models with

mixed continuous and ordered categorical outcomes based on gen-

eralized estimating equations for the mean and pseudo-score equa-

tions for the covariance parameters. A numerical study suggests

that efficiency can be gained as concerns the mean parameter es-

timators by using individual covariance matrices in the estimating

equations for the mean parameters. The approach is applied to

estimate the returns to occupational qualification in terms of in-

come and perceived job security in a nine-year period based on the

German Socio-Economic Panel (SOEP). To compensate for miss-

ing data, a combined multiple imputation/weighting approach is

adopted.

Key words: generalized estimating equations, mean and covariance model,

multiple imputation, pseudo-score equations, status inconsistency,

weighting
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1 Introduction

This paper describes the estimation of a panel model with mixed continuous and

ordered categorical outcomes. The proposed estimation approach was designed to

achieve two ends: first to study the returns to occupational qualification (univer-

sity, apprenticeship, other completed training; reference category: none) in terms

of objective and subjective gratification variables, i.e., in terms of the dependent

variables income (log of monthly gross real labor income) and perceived job secu-

rity (very concerned about job security, somewhat concerned, not concerned at

all). Second, it was designed to answer the question of whether both outcomes

depend on common unobserved individual and time-invariant variables, given the

covariates explicitly controlled for in the regression model.

A growing body of evidence in economics and related fields supports the view

that in addition to routinely used objective variables, such as income, subjec-

tive variables can be understood as gratification variables as well (e.g., Easterlin,

2002; Diener and Seligman, 2004). According to this view and following the

suggestion, e.g., of Zimmermann (1985) to consider subjective in addition to ob-

jective variables in research on status inconsistency, this paper understands both

gratification variables and occupational qualification as factors that define social

positions. This means, for example, that when occupational qualification shows

a declining effect on income over time, unusual combinations of income and oc-

cupational qualification become more likely to emerge. An increasing proportion

of such status inconsistencies may help explain deviating behavior, voting deci-

sions and social change (e.g., Geschwender, 1967a, 1967b). Furthermore, given

the importance of subjective variables, represented by perceived job security in

this paper, it is even more important to examine their relation to established

objective gratification variables like income.

The analysis is based on data from the German Socio-Economic Panel (SOEP;

www.diw.de/soep). The SOEP is a longitudinal data set of individuals aged 16

and older living in private households in Germany and surveyed on a yearly basis

(SOEP Group, 2001). It consists of several subsamples, the first two of which

started in 1984. Information is collected about the household as a whole and

additionally about each household member. Topics covered by the SOEP include,

among others, occupation, employment, earnings, household composition and

housing, socio-demographic variables and health, as well as subjective variables
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such as worries about certain aspects of life. Hence the SOEP is particularly

suitable for studying income dynamics, the dynamics of subjective gratification

variables, as well as their possible interrelations.

The estimation of models with both continuous and categorical, in most cases

binary, outcomes has in recent years attracted increasing interest in various areas

of research. Since the estimation of these models based on likelihood approaches

(e.g., Fitzmaurice and Laird, 1995; Regan and Catalano, 1999; Gueorguieva and

Agresti, 2001) and Bayesian approaches (e.g., Dunson, 2000) is rather cumber-

some due to excessive computational burdens (Sammel et al., 1997), alternative

approaches have been proposed (e.g., Muthén, 1984; Faes et al., 2004).

If not only the parameters of the mean but also of the covariance structure

are of interest, then approaches are attractive that draw on the assumption of a

latent linear model where each observable outcome is related to a continuous la-

tent outcome. Each latent outcome is in turn a linear function of covariates and,

given the covariates, is generally assumed to be normally distributed. To estimate

the parameters in a model known as the LISCOMP (Linear Structural Equations

with a Comprehensive Measurement) model, e.g., Muthén (1984), Muthén and

Satorra (1995) or Arminger and Küsters (1988), proposed a three-stage estima-

tion approach. The first step estimates the parameters of the mean structure

and, if they are identifiable, variances under the independence assumption. The

second step estimates the correlations of the errors of the latent model, based on

estimators from the first step and under independence of pairs of outcomes. The

third step estimates the parameters of interest, i.e., functions of the parameters

from the first two steps, based on a weighted least squares approach. However,

this approach turned out to perform poorly with respect to bias, efficiency and

convergence (Reboussin and Liang, 1998; Spiess and Hamerle, 2000). Hence,

Reboussin and Liang (1998) proposed that the latent model parameters be es-

timated simultaneously using a quadratic estimating equations approach based

on the correct specification of the means of the outcomes and the covariances of

pairs of outcomes (cf. Zhao and Prentice, 1990).

In the LISCOMP model, the parameters of interest are usually functions of

both the parameters of the mean and of the covariance structure. Hence, in

these models it makes sense to use all information available in the mean and

the covariance structure and explicitly consider all dependencies to estimate the

parameters of interest. The present paper focuses not on functions of both sets
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of parameters but separately on mean and covariance structure parameters. This

leads to a more robust approach, by estimating both sets of parameters as if they

were orthogonal (Prentice, 1988; Prentice and Zhao, 1991). Thus at the price of

lower efficiency, the parameters of the mean can be estimated consistently even

if the covariance structure is misspecified, necessitating a correct specification of

the mean model only (cf. Zhao and Prentice, 1990).

Following Prentice (1988) and Zhao and Prentice (1990), Qu et al. (1992,

1994) adopted this approach to estimate probit models with correlated binary

outcomes based on two sets of generalized estimating equations. Spiess (1998)

and Spiess and Keller (1999) proposed a similar approach, where pseudo-score

equations based on pairs of outcomes replace the estimating equations for the

correlation structure parameters. In a simulation study, Spiess (1998) compared

this mixed approach with the one adopted by Qu et al. (1992, 1994). The results

suggest that the parameter estimators of the mean structure are equally efficient,

but the mixed approach leads to estimators of the correlation structure which are

substantially more efficient. Hence, the present paper generalizes this approach

to estimate probit models with correlated continuous and ordered categorical

outcomes.

The paper is organized as follows. Section 2 describes the panel model with

mixed continuous and ordered categorical outcomes, and Section 3 outlines its

estimation. One version of estimating equations adopts a working correlation

matrix which is common to all units, whereas another version takes advantage of

individual covariance matrices that follow from the covariance structure model.

Section 4 presents the results of a numerical study comparing these two versions

of the estimator with respect to their efficiency. Section 5 describes the mixed

imputation/weighting strategy adopted to compensate for missing data and gives

the estimation results with respect to the returns to occupational qualification.

Section 6 concludes.

2 The Model

Consider measurements on a continuous outcome, yit1, and an ordered categor-

ical outcome, zit2, obtained on each of N units at each of T points in time

(i = 1, . . . , N ; t = 1, . . . , T ). In addition, there is a vector of fixed covariates xit1

thought to be related to yit1 and a vector of fixed covariates xit2 thought to be
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related to zit2. In the model to be estimated, yit1 is log(income), where income

is the monthly gross real labor income, deflated by the national consumer price

index (base year 1995), and zit2 is perceived job security (0: very concerned about

job security, 1: somewhat concerned and 2: not concerned at all). The covariates

assumed to have an effect on both outcomes are age, number of children under 17

living in the same household, marital status (married: yes, no), nationality (Ger-

man nationality: yes, no), industrial sector (chemicals industry, building trade,

commerce, metalworking industry; reference category: other), occupational qual-

ification (university, apprenticeship, other completed training; reference category:

none) and tenure (in years) as well as tenure squared.

The model assumes that each observable outcome is related to a continuous

latent variable. In particular, the observable continuous outcome is identical to

the latent outcome. The ordered categorical outcome, zit2 with K + 1 possible

values 0, . . . , K (in our application K = 2), is represented by a (K × 1) vector of

binary indicators, yit2 = (yit21, . . . , yit2K)T . The binary indicators relate to the

continuous latent variable, y∗it2, via the threshold relation

yit2k =

{
1 if κtk < y∗it2 ≤ κt(k+1)

0 else
for k = 1, . . . , K,

where κtk and κt(k+1) are unknown thresholds and κt(K+1) = ∞.

The latent model is

y∗itj = ηitj + εitj and ηitj = xT
itjβtj,

where j = 1 denotes the equation with the continuous outcome, j = 2 denotes

the equation with the ordered categorical outcome, βtj is an unknown time and

equation-specific vector of parameters of the mean structure. The random error

εitj is independent of ηitj for all i, t, j.

Let εi be the (2T ×1) vector with elements εi11, . . . , εiT2. Since the estimation

approach discussed in the next section does not involve higher-order moments

specifications, only conditional first and second moments need to be correctly

specified. That is, the underlying assumptions are that all possible pairs of εit2’s

are bivariate normally distributed, each y∗it2 conditional on yi11, . . . , yiT1 is uni-

variate normally distributed and each εit2 depends on all εit1, t = 1, . . . , T , only

through a linear function. Note that for a valid inference with respect to the

parameters of the mean structure, only the assumption of univariate normality
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of the εit2’s is necessary. The covariance matrix of εi will be denoted as Σ. The

units i are assumed to be independent throughout.

In the general model not all parameters are identifiable. Hence, the errors in

the regression equations with the observable continuous outcome, i.e., in the linear

part of the model, are restricted to have mean zero. In the nonlinear part, i.e.,

in the regression equations corresponding to the ordered categorical outcomes,

constants and means are set equal to zero. Furthermore, in the simulation section,

unit variance of the errors and in the application section, unit variance of a

component of the errors is assumed in the equations with ordered categorical

variables.

Depending on the covariance structure, Σ is a function of at most 2T 2 para-

meters. For example, since the population considered can — for fixed covariates

— be assumed to be rather stable with respect to income but there is no in-

dication of the same stability with respect to perceived job security, the model

estimated assumes unobserved subject-specific time-invariant random variables

with equation-specific effects and a stationary AR(1) process over time in the

equation with the ordered categorical outcome. More general covariance struc-

tures than the one described above were considered as well but were not identified.

Together with the assumption of constant variances over time, this amounts to

the estimation of four covariance structure parameters. The corresponding model

in the errors is

εnt1 = θ11πn + θ12wnt1,

εnt2 = θ21πn + νnt2, νnt2 = θ22νn(t−1)2 + wnt2,

πn ∼ N(0, 1), E(wnt1) = 0, var(wnt1) = 1, E(νnt2) = µν,2, var(νnt2) = σ2
ν,2,

cov(νnt2, νnt′2) = γt,t′ , |θ22| < 1, νn02 ∼ N(µν,2, σ
2
ν,2), wnt2 ∼ N(0, 1 − θ2

22) and

E(πnνn02) = E(πnwntj) = E(νn02wntj) = E(wntjwnt′j′) = 0 for all j, j′, t, t′. From

these assumptions, µν,2 = 0, σ2
ν,2 = 1 and cov(νnt2, νnt′2) = θ

|t−t′|
22 . The elements

of Σ are

var(εnt1) = θ2
11 + θ2

12, cov(εnt1εnt′1) = θ2
11 if t 6= t′,

cov(εnt2εnt′2) = θ2
21 + θ

|t−t′|
22 and cov(εnt1εnt′2) = θ11θ21.
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3 Estimation of the Model

Generalizing the work of Spiess (1998) and Spiess and Keller (1999), who con-

sider panel models with binary outcomes, this section describes an approach for

estimating the parameters of the mean and covariance structure simultaneously

as if they were orthogonal. Hence, the mean parameter estimator which is the

root of generalized estimating equations (Liang and Zeger, 1986) is robust against

misspecification of the covariance structure.

Parameters of the covariance structure are estimated using generalized esti-

mating equations which are equal to pseudo-score equations derived from pseudo-

log-likelihood functions based on subsets of outcomes. This is in contrast to

Prentice (1988), Qu et al. (1992, 1994) and Reboussin and Liang (1998), who

consider estimating equations equating empirical and theoretical centered second

moments in models with binary outcomes (Prentice, 1988, Qu et al., 1992, 1994)

and in a model with mixed continuous and binary outcomes, respectively (Re-

boussin and Liang, 1998). To avoid a heavy computational burden, they adopt

the identity matrix as a working correlation matrix in the estimating equations

for the covariance parameters. In a simulation study, Spiess (1998) compares

the approach of Qu et al. (1992, 1994) with an approach based on pseudo-score

equations in longitudinal models with binary outcomes. The results suggest that

both approaches lead to equally efficient estimators in finite samples for the mean

structure but the estimators of the covariance structure turn out to be substan-

tially more efficient based on the latter approach. Furthermore, in a simple model

with an exchangeable correlation structure, the loss of efficiency relative to the

marginal maximum likelihood estimator is negligible.

3.1 Estimating Equations for the Mean Parameters

Let yi be the vector of all continuous outcomes and binary indicators representing

the ordered categorical outcomes of unit i, and µi be the vector of the theoretical

first conditional moments, E(yitj|xitj). For continuous outcomes, E(yit1|xit1)

is equal to ηit1. For binary indicators, E(yit2k|xit2) = Φ(ηit2 − κtk) − Φ(ηit2 −
κt(k+1)), where Φ(·) is the cumulative standard normal distribution. Further, yi

and µi are partitioned into vectors yi1, yi2 and µi1, µi2, respectively, where yi1 =

(yi11, . . . , yiT1)
T , µi1 = {E(yi11|xi11), . . . , E(yiT1|xiT1)}T , yi2 = (yT

i12, . . . ,y
T
iT2)

T ,
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µi2 = (µT
i12, . . . ,µ

T
iT2)

T and µit2 = E(yit2|xit2).

Collecting all βtj and thresholds in β, this parameter is estimated by solving

the estimating equations

0 =
N∑

i=1

(∂ µi

∂ β

)T

Ω−1
i (yi − µi), (1)

(Liang and Zeger, 1986), where Ωi is a unit-specific covariance matrix. Usually

Ωi is of the form Ωi = V
1/2
i R(α)V

1/2
i , where Vi is a block-diagonal matrix with

diagonal entries equal to var(yit1|xit1) and Cov(yit2|xit2), respectively, and R(α)

is a suitable ‘working’ correlation matrix common to all units. However, here Ωi

follows directly from the assumed latent covariance structure and is a function of

the covariance parameters.

3.2 Estimating Equations for the Covariance Parameters

Let Σ11 denote the part of Σ corresponding to variances and covariances of the

linear part of the model, R11 the corresponding correlation matrix and V11 a

diagonal matrix with diagonal entries equal to the diagonal elements of Σ11.

Let δ11 be the vector of all elements on and below the diagonal of Σ11, δ12 the

vector of all T 2 polyserial correlations between errors of the T nonlinear and

T linear equations and δ22 the vector of all T (T − 1)/2 polychoric correlations

corresponding to the nonlinear part of the model, and δ = (δT
11, δ

T
12, δ

T
22)

T .

Estimation of all 2T 2 covariance parameters is usually prohibitive as it may

lead to unstable results or convergence problems in small data sets. Further-

more, the research question may imply a covariance structure parameter of lower

dimensionality. Hence, usually one would be interested in a function of all 2T 2 pa-

rameters of lower dimensionality. Let δ = δ(θ) be a differentiable vector-valued

function, where θ is the vector of covariance structure parameters of interest.

The vector θ fully determines Σ.

The ith individual contribution to the estimating equations for δ11 is

ui,11 =
(∂Σ11

∂δ11

)T

(Σ−1
11 ⊗Σ−1

11 ) vec(Si −Σ11), (2)

where Si = (yi1−µi1)(yi1−µi1)
′, ⊗ is the Kronecker product and vec(·) is the vec

operator. Note that if all outcomes were continuous, then (2) would be equal to
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the individual score equations derived from the log-likelihood under multivariate

normality.

While the estimating equations (2) require no distributional assumption, this

is different for the estimation of polyserial and polychoric correlations. Let δt,12

denote the vector of correlations of the errors of the linear part of the model

with the error of the tth latent equation corresponding to an ordered categorical

outcome. Let Diag(a) denote a diagonal matrix with diagonal elements equal to

a. Then the ith individual contribution to the estimating equations for δt,12 is

uit,12 =
(∂µit,b|c

∂δt,12

)T

W−1
it,12(yit2 − µit,b|c), (3)

where µit,b|c is the conditional mean of yit2 given yi1 for fixed xit2,xi11, . . . ,xiT1,

and Wit,12 = (Diag(µit,b|c)−µit,b|cµ
T
it,b|c). The estimating equations (3) are equal

to the pseudo-score equations derived from the pseudo-log-likelihood function of

δt,12. Details are given in Appendix A.1.

The estimating equations (3) are generalizations of those given in Catalano

and Ryan (1992), who consider a model with mixed continuous and binary out-

comes and an exchangeable correlation matrix. In contrast to Catalano and Ryan

(1992), the above estimating equations are not solved to estimate both mean and

covariance structure parameters. Hence estimation of the mean structure para-

meters via (1) remains robust with respect to a misspecification of the covariance

structure.

The estimating equations for the polychoric correlations consider each possi-

ble pair of ordered categorical outcomes as one polytomous variable and equate

this variable with its theoretical expectation. Let vitt′2 be a vector with binary

indicators coding the observed non-redundant combination of values of the two

ordered categorical outcomes for the ith unit at time points t and t′. Let µitt′2 de-

note its mean for fixed xit2 and xit′2, which is easily evaluated using the bivariate

cumulative standard normal distribution function. Then the individual contribu-

tion to the estimating equations for the tt′th element (t = 2, . . . , T , t′ = 1, . . . , t)

of δ22, δtt′,22, is

uitt′,22 =
(∂µitt′2

∂δtt′,22

)T

W−1
itt′,22(vitt′ − µitt′2). (4)

where Witt′,22 = (Diag(µitt′2) − µitt′2µ
T
itt′2). Again, the above estimating equa-

tions are equal to pseudo-score equations derived from the pseudo-log-likelihood
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for δtt′,22 based on observations yit2 and yit′2 under the assumption of bivari-

ate normality of the errors (Appendix A.1). All ui,22,tt′ are collected in the

(T (T − 1)/2× 1) vector of individual estimating equations ui,22.

3.3 The Stacked Estimating Equations

Let ϑ = (βT ,θT )T be the parameter to be estimated. For ease of presentation,

let Bi,1 be equal to ∂µi/∂β and Bi,2 a partitioned matrix with block diago-

nal elements equal to ∂Σ11/∂δ11, ∂µit,b|c/∂δt,12 (t = 1, . . . , T ), ∂µitt′2/∂δ22,tt′

(t = 2, . . . , T , t′ = 1, . . . , t) and off-diagonal blocks equal to null matrices and

∂µit,b|c/∂δ11 (t = 1, . . . , T ). Let Bi be a block diagonal matrix with diagonal

blocks equal to Bi,1 and ∂δ/∂θ Bi,2. Let Γi be a block diagonal matrix with diag-

onal blocks equal to Ωi, Σ11⊗Σ11, Wit,12 (t = 1, . . . , T ) and Witt′,22 (t = 2, . . . , T ,

t′ = 1, . . . , t), where Ωi is given in Appendix A.2. Further, let ei be a vector with

subvectors equal to (yi − µi), (vec(Si) − vec(Σi)), (yit2 − µit,b|c) (t = 1, . . . , T )

and (vitt′ − µitt′2) (t = 2, . . . , T , t′ = 1, . . . , t).

The estimating equations for mean and covariance structure parameters are

stacked to yield the unbiased estimating equations

0 =
N∑

i=1

BT
i Γ−1

i ei

for the simultaneous estimation of mean and covariance structure parameters.

The vector of estimates, ϑ̂, is iteratively calculated with updated value in the

(q + 1)th iteration given by

ϑ̂q+1 = ϑ̂q +

(
N∑

i=1

B̂
T

i Γ̂
−1

i B̂i

)−1 N∑
i=1

B̂
T

i Γ̂
−1

i êi.

Adapting results given in Prentice and Zhao (1991),
√
N(ϑ̂ − ϑ0) is asymp-

totically normally distributed with mean zero and asymptotic covariance matrix,

Vϑ̂, consistently estimated by

V̂ϑ̂ =

(
N∑

i=1

B̂
T

i Γ̂
−1

i B̂i

)−1{ N∑
i=1

B̂
T

i Γ̂
−1

i êiê
T
i Γ̂

−1

i B̂i

}(
N∑

i=1

B̂
T

i Γ̂
−1

i B̂i

)−1

,

where all unknowns are replaced by their sample counterparts and estimates,

respectively.
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The following points should be noted. First, solving the estimating equations

requires evaluation of one- and two-dimensional integrals only. Second, the esti-

mate Ω̂i needed to calculate ϑ̂ and V̂ϑ̂ is not guaranteed to be positive definite in

general. Hence, one strategy is to consider the simple function Ω̄ = N−1
∑N

i=1 Ω̂i.

Let V̄ = Diag(Ω̄). Then a working correlation matrix is R̂ = V̄
−1/2

Ω̄V̄
−1/2

and

individual covariance matrices can be calculated by Ω̃i = V̂
1/2

i R̂V̂
1/2

i , where V̂i

is a diagonal matrix with diagonal elements equal to the estimated variances of

the corresponding outcomes. This closely resembles the strategy of Liang and

Zeger (1986), who adopt a working correlation matrix identical for all N . How-

ever, note that the consistent estimation of ϑ̂ and V̂ϑ̂ does not depend on the

correlation matrix implied by Ω̂i. A second strategy is to first try to invert Ω̂i

for each unit and replace this individual matrix by Ω̃i only if the former is not

positive definite.

4 A Numerical Study

This section compares the estimator based on a correlation matrix common to

all units, denoted as GEE∗ with the estimator based on covariance matrices not

depending on a common correlation matrix, denoted as GEE. The data sets

were simulated according to the model described in Section 2 with T = 5 with

four covariates generated independently of each other. The covariates followed

a uniform, a standard normal, a Bernoulli, and a mixture of a gamma and a

uniform distribution. The former two were generated independently over time and

equations, the third was held fixed over equations, and the fourth was correlated

over time with a correlation of 0.5. The parameters weighting the covariates in

the linear equations were βc,1 = −1, βc,2 = .8, βc,3 = 0 and βc,4 = −.1, those

weighting the covariates in the equations with ordered categorical outcomes were

βo,1 = −1, βo,2 = .8, βo,3 = −.8 and βo,4 = 0. The constant in the linear equations

was −.3 and the thresholds in the equations with ordered categorical outcomes

were set equal to κ1 = −.4 and κ2 = .7, respectively.

The error term followed a multivariate normal distribution with unit variances

and Σ = (Qθ ⊗ 121
T
2 ) + (1 − θ1)I10, where Qθ is a symmetric Toeplitz matrix

with diagonal elements θ1 and off-diagonal elements θ2, . . . , θ5, arranged in such a

way that the correlations decrease with increasing distance in time. Two versions

of true correlation matrices were considered. For the high correlation condition,
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Model I, θ1 = .8, θ2 = .68, θ3 = .584, θ4 = .507 and θ5 = .4468. For the low

correlation condition, Model II, θ1 = .4, θ2 = .25, θ3 = .175, θ4 = .138 and

θ5 = .119, respectively.

According to both models, data sets were generated with N = 200, N =

500 and N = 1000 units. Statistics calculated over 500 simulations under each

condition are the mean (m) and standard deviation (sd) of the estimates, the

square root of the mean of estimated variances of the estimators, denoted as

estimated standard deviation (ŝd), and the portion of rejections of the hypothesis

H0 : ϑs = ϑs,0 for α = .05, where s denotes the sth element of ϑ.

The general pattern of results does not differ with increasing sample sizes,

the only obvious differences being decreasing standard deviations and decreasing

differences of means of estimates and true values. The portions of rejections of

the null are in an acceptable range of approximately .05 ± .02. Further, since

there are nearly no differences with respect to the estimators of the covariance

structure parameters under both types of covariance matrices, Table 1 gives the

results for N = 500 and the parameters βc,1, βc,4, βo,1 and βo,2 only.

Table 1: Mean (m), estimated standard deviation (ŝd) and standard deviation

(sd) over 500 simulations.

Model I Model II

GEE∗ GEE GEE∗ GEE GEE∗ GEE GEE∗ GEE

βc,1 = −1 βo,1 = −1 βc,1 = −1 βo,1 = −1

m −.9997 −.9997 −1.005 −1.005 −.9979 −.9981 −1.005 −1.005

ŝd 0.0289 0.0284 0.0541 0.0488 0.0412 0.0410 0.0597 0.0564

sd 0.0294 0.0286 0.0555 0.0491 0.0413 0.0408 0.0617 0.0574

βc,4 = −.1 βo,2 = .8 βc,4 = −.1 βo,2 = .8

m −.0988 −.0987 0.8037 0.8031 −.0988 −.0988 0.8083 0.8029

ŝd 0.0151 0.0141 0.0296 0.0266 0.0200 0.0196 0.0300 0.0278

sd 0.0154 0.0140 0.0293 0.0258 0.0206 0.0201 0.0312 0.0277

The results in Table 1 suggest that there is a gain in efficiency if individual

correlation matrices are used as compared to using a common correlation matrix.

This efficiency gain seems to be largest for the parameters in the equations with
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ordered categorical outcomes under the high correlation condition. They are

negligible for the mean structure parameters of the linear part under Model I

and Model II. In fact, the relative variances of the GEE and the GEE∗ estimator

range from approximately 0.98 for βc,1 under Model II to 0.78 for βo,1 and βo,2

under Model I. Put differently, a gain in efficiency up to 22% is possible by using

the GEE instead of the GEE∗ estimator, which is a substantial improvement

given that using individual correlation matrices does not necessitate additional

assumptions. Hence, the GEE approach is used to estimate the model described

in Section 2.

5 Application

5.1 The Data

The analysis involves panel data on full-time employed males from nine panel

waves beginning in 1991 of the West German subsamples of the German Socio-

Economic Panel (SOEP). As is typical for survey data, the SOEP suffers from

missing information. Not all households sampled in 1984 were actually observed

in the first wave (62%) and not all individuals interviewed in 1984 were also

observed in 1991. That is, in 1984 the number of individuals aged 16 years and

older observed is 12,245 living in 5,921 households. The same subsamples cover

9,467 individuals living in 4,669 households in 1991, the eighth wave of SOEP.

Additionally, there is item nonresponse, up to approximately 20% (e.g., monthly

gross income 1985), varying depending on the question being asked.

5.2 Handling of Missing Data

To compensate for attrition from 1991 up to 1999 and for missing items, the ap-

plication draws on multiple imputations. Basically, multiple imputations should

be draws from the joint posterior (predictive) distribution of the variables whose

values are unobserved given the observed values of all other variables and should

reflect the entire uncertainty inherent in these predictions (Rubin, 1987, 1996).

However, a general problem with complicated patterns of missing values is that

it is hard to specify this joint predictive distribution. Therefore, simpler and less

formally rigorous methods that approximate draws from this distribution have

14



been proposed.

One such method is implemented in the program IVEware (Raghunathan et

al., 2001, 2002), where imputations are generated based on the repeated estima-

tion of regression models for the variables to be imputed conditional on all other

variables with observed or already imputed values, and assuming non-informative

prior distributions for the parameters of these models. For a continuous response

variable this amounts to estimating a simple linear regression model, for a binary

response variable a logit model, for categorical response variables a polytomous

logit model, and for count variables a Poisson loglinear model. For a detailed de-

scription see Raghunathan et al. (2001, 2002). The whole procedure was repeated

ten times to create M = 10 completed data sets.

The imputations were generated based on males selected into the imputa-

tion data set if they were observed in 1991 and unless their year of death was

known to lie between 1991 and 1999 or if they were in the army or doing civil-

ian service. Finally, N = 4043 males entered the imputation data set. Among

the variables considered to be important with respect to the imputation models,

aside from those included in the final model of interest, are variables indicating a

separation from or the death of a partner within the last year, schooling, working

experience, size of the firm or institute, number of overtime hours worked in the

month before the interview, employment status and a dummy variable coding

whether the individual is employed in the public sector. Additionally, tenure

squared and experience squared but also the estimated probability of observing

the corresponding household in 1991 entered the imputation models.

The assumption underlying the generation of imputations was that the missing-

data mechanism is ignorable, which is largely equivalent to assuming that the

missing values are missing at random (MAR; Little and Rubin, 2002). Unfortu-

nately it is not possible to test the MAR assumption against the assumptions that

the missing data are not missing at random (NMAR; Little and Rubin, 2002).

Furthermore, with survey data and a complex missing pattern it is hard to justify

any hypothesis about the exact missing mechanism, which, if misspecified, would

usually lead to improper imputations. On the other hand, by including as many

variables as possible that are thought to be relevant, the MAR assumption be-

comes more likely to hold (e.g., Rubin, 1996). Furthermore, if the missing values

are NMAR, then proper imputation methods based on the MAR assumption are

still preferable to procedures that rely on the missing data being missing com-
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pletely at random, such as simply ignoring the missing data (Schafer, 1997, Little

and Rubin, 2002).

Although the validity of Rubin’s (1987) variance estimator based on multiple

imputations has been questioned in the context of frequentist inference if the

estimator is not fully efficient (e.g., Nielsen, 2003), simulation results in Paik

(1997), Xie and Paik (1997) and Spiess and Keller (1999) do not suggest invalid

variance estimation for GEE estimators. In contrast, the variance estimation

seems to be quite robust even with respect to moderate misspecifications of the

imputation model.

To compensate for first wave nonresponse and attrition up to 1991 in the

data analyzed, again under the MAR assumption, each individual contribution

to the estimating equations is divided by the estimated probability of observing

that unit in 1991 (e.g., Robins et al., 1995, or, Wooldridge, 2002). These weights

can be derived from information delivered with the SOEP. There is, however, no

information available that allows one to take into account the uncertainty in the

estimated probabilities, leading to conservative inferences (Robins et al., 1995).

To estimate the model, individuals were selected from the multiply imputed

data set into the final samples if they lived in former West Germany and were full-

time employed in the private sector in each year from 1991 to 1999. Observations

with high leverage were excluded from the analysis. Thus, only those individuals

with weights lower than or equal to the 99%-quantile were included in the final

analysis. Since selection is based on variables with missings replaced by multiple

imputations, the size of the ten final samples varies from N = 702 to N = 781.

The weighted standard analysis was then carried out M = 10 times and the

estimation results were combined according to the rules given, e.g., in Little and

Rubin (2002).

5.3 Results

Table 2 displays the test statistic D̃ and the corresponding p-values to test the

hypothesis that the effects of the covariates are identical over time based on the

weighted analyses of the M = 10 imputed data sets (Little and Rubin, 2002, see

also Li et al., 1991). In the case of the variables economic sector and occupational

qualification, the corresponding test is a test that the differences of the effects of

the corresponding dummy variables over time are, separately for both variables,
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simultaneously zero. The test for equal effects of tenure amounts to testing that

differences of linear and quadratic effects over time are simultaneously zero.

Table 2: Test statistic (D̃) and p-values to test H0 : ‘Effects are identical over

time’.

Response: log(Income) Response: Perceived job security

Variable D̃5 p Variable D̃5 p

Threshold 1 0.70 0.69
Constant 1.17 0.31

Threshold 2 0.54 0.83

Age 0.70 0.69 Age 1.14 0.33

Children 0.31 0.96 Children 0.66 0.72

Married 0.37 0.94 Married 1.38 0.20

Nationality 0.16 0.99 Nationality 1.61 0.12

Econ. Sector 0.21 1.00 Econ. Sector 0.73 0.82

Occup. Qual. 0.56 0.92 Occup. Qual. 1.04 0.41

Tenure 0.54 0.93 Tenure 0.48 0.96

Obviously, the hypothesis of time-invariant effects cannot be rejected for the

covariates (α = .05). In particular, the results in Table 2 do not support the

hypothesis of a changing effect of the social investment variable occupational

qualification on the objective and subjective gratification variables income and

perceived job security. This is also supported if one considers the unrestricted

parameter estimates weighting the three dummies university, apprenticeship and

other graduation separately (not shown in form of a table): for all three dummies,

the estimates do not change in a systematic way over time.

Table 3 provides the estimation results with the parameters of the systematic

part of the model restricted to be equal over time.

According to the upper first part of Table 3, the hypothesis of no effect on gross

income can be rejected at the .05-level for the covariates age, children, university,

apprenticeship, tenure and tenure squared, the former covariates having a positive

effect, whereas tenure squared seems to have a negative effect.

With respect to perceived job security, the results in the upper part of Table

3 suggest that only the covariates university, tenure and tenure squared seem to

have an effect at the .05 level. Interestingly, the nonlinear effect of job tenure
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Table 3: Estimates (θ̂), standard errors (ŝd) and p-values; mean structure

parameters and thresholds restricted to the same value over time.

Mean Structure

Perceived
log(Income)

job security

Variable θ̂ ŝd p θ̂ ŝd p

Constant 7.84 0.08 0.00

Threshold 1 −1.58 0.23 0.00

Threshold 2 −0.19 0.23 0.41

Agea 1.15 0.16 0.00 −0.58 0.47 0.21

Tenurea 0.64 0.30 0.03 −3.27 1.06 0.00

Tenure Squareda −0.02 0.01 0.03 0.08 0.03 0.01

Childrenb 0.23 0.11 0.04 −0.47 0.29 0.11

Marriedb −0.03 0.29 0.91 −0.14 0.77 0.85

Nationalityb 0.77 0.46 0.11 0.97 1.10 0.38

Building Tradeb −0.35 0.55 0.53 1.66 1.20 0.17

Chemicals Ind.b −0.30 0.46 0.51 −0.91 1.17 0.43

Commerceb −0.55 0.52 0.29 1.16 1.21 0.34

Metalworking Ind.b −0.41 0.46 0.38 −1.47 1.15 0.20

University 0.56 0.08 0.00 0.59 0.17 0.00

Apprenticeship 0.15 0.06 0.02 0.15 0.12 0.22

Other Graduation −0.00 0.08 0.96 0.19 0.13 0.15

Covariance Structure

θ11 0.24 0.005 0.00

θ2
12 0.03 0.004 0.00

θ21 0.10 0.017 0.18

θ22 0.72 0.013 0.00
a Estimate and standard deviation multiplied by 102,
b Estimate and standard deviation multiplied by 101.

on perceived job security is contrary to its effect on log(income): the longer the

employee belongs to a company, the higher the probability of reporting concerns

about job security, although with a diminishing effect over time. Not surprisingly,
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having a university degree seems to have a positive effect on perceived job security.

Estimation results with respect to the covariance structure are presented in

the lower part of Table 3. In the light of the assumption of a possible dependence

of the responses given the covariates, a surprising result is that the estimated

correlation of the corresponding error terms is close to zero, i.e., θ21 is not signif-

icantly different from zero. This does not support the hypothesis of unobserved

individual effects that are important with respect to both outcomes simultane-

ously. On the other hand, the estimates of the correlation structure parameters

θ11 and θ22 for each equation over time are significantly different from zero. This

implies that there is substantive dependence over time within this nine-year in-

terval.

6 Discussion

The results of the last section do not suggest noticeable changes in the returns to

social investments. As might be expected, holding a university degree or having

finished training seems to have a rather stable positive effect on income. Holding

a university degree also seems to have a positive effect on perceived job security.

Interestingly, the results also suggest that the effect of job tenure on log(income)

is contrary to its effect on perceived job security. In the former case, job tenure

has a positive although decreasing effect, whereas its effect on perceived job se-

curity is, although diminishing, negative. However, given the covariates, there

seems to be no additional dependence between the objective and the subjective

gratification variable, suggesting that, given that the underlying model assump-

tions are correct, both gratification variables are not interchangeable and should

be treated as conditionally independent returns to the social investment variable

occupational qualification. This result reveals, ex post, that fitting two separate

regression models for the two outcomes would lead to the same results.

The general approach of estimating the covariance parameters in the above

model based on pseudo-score equations was justified with simulation results pre-

sented in Spiess (1998), which suggest that this approach leads to more efficient

covariance parameter estimators than estimators based on equating empirical and

theoretical centered second moments under a working independence assumption.

As suggested by the simulation results of the present paper, additional efficiency

can be gained for the estimators of mean parameters by using unit-specific co-
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variance matrices that directly follow from the assumed covariance structure and

do not depend on a correlation matrix common to all units. Having the most

efficient estimators possible with a given set of assumptions is particularly impor-

tant if estimation is based on survey data with missing values. For example, if

the weights used to compensate for missing units are based on estimated response

probabilities, as delivered with some public-use data sets, then one usually has no

information available to properly account for the uncertainty in these estimates.

As a consequence, the resulting inference tends to be conservative (Robins et al.,

1995). Similarly, mild misspecifications of models to generate imputations typi-

cally lead to an overestimation of standard errors and to conservative inferences

(e.g., Little and Rubin, 2002; Rubin, 2003).

It should be noted that although the estimation approach proposed in this

paper is applied to a model with one continuous and one ordered categorical

outcome, it can easily be generalized to models with more than two outcomes

and unequal numbers of possible values of ordered categorical outcomes. Further,

to avoid problems with estimating too many unrestricted mean parameters, the

estimation approach can easily be supplemented to estimate lower dimensional

functions of the mean parameters. However, it should also be noted that the

approach proposed in this paper is appropriate only for a balanced panel design.

A Appendix

A.1 Pseudo-log-likelihood functions for δt,12 and δtt′,22

To derive the estimating equations for δt,12 note that the pseudo-log-likelihood

of δt,12 can be written as

l∗(δt,12) = const +
N∑

i=1

{yT
it2 log µit,b|c + (1− 1T

Kyit2) log(1− 1T
Kµit,b|c)}

where 1K is a (K×1) vector of ones, const is a term not involving δt,12 and µit,b|c

is the vector of conditional means E(yit2|yi1,xit2,xi11, . . . ,xiT1), with elements

Pr(yit2k = 1|yit1,xit2,xi11, . . . ,xiT1) = Φ(ψit2k)− Φ(ψit2(k+1)), k = 1, . . . , K, and

ψit2r = {ηit2 − κtr + δT
t,12R

−1
11 V

−1/2
11 (yi1 − µi1)}/(1− δT

t,12R
−1
11 δt,12)

1/2

if r ≤ K and ψit2r = −∞ if r = K + 1. The derivative of l∗(δt,12) with respect to

δt,12 leads to the estimating equations (3) given in Section 3.
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To derive the estimating equations (4) note that each pair of binary indicator

vectors representing a pair of ordered categorical outcomes is represented by a

polytomous variable. Thus, let y+
it2 = (yit20,y

T
it2)

T , where yit20 = 1 − 1T
Kyit2, let

vitt′2 be a S = {(K+1)2−1}-dimensional column vector of elements vec(y+
it2y

+,T
it′2 ),

t 6= t′ but not including the element yit20yit′20, and µitt′2 = E(vitt′2|xit2,xit′2),

with elements Pr(yit2l = 1, yit′2l′ = 1|xit2,xit′2), l = 0, . . . , K, not including the

elements Pr(yit20 = 1, yit′20 = 1|xit2,xit′2). Then the derivative of the pseudo-log-

likelihood function

l∗(δtt′,22) =
N∑

i=1

{vT
itt′2 log µitt′2 + (1− 1T

Svitt′2) log(1− 1T
Sµitt′2)}.

with respect to δtt′,22 leads to the estimating equations (4) given in Section 3.

A.2 The Matrix Ωi

The assumed structure of Σ implies Ωi as follows. The partition of Ωi corre-

sponding to variances and covariances of the linear part of the model is identical

to Σ11. Let ζ∗it2k = ηit2 − κtk and ζ∗it2(k+1) = ηit2 − κt(k+1), respectively. The

partition of Ωi corresponding to covariances of the linear and the non-linear part

of the model, Ω12, is a matrix made up of vectors

Cov(yi1, yit2k) = −V
1/2
11 δt,12{ϕ(ζ∗it2k)− ϕ(ζ∗it2(k+1))},

where ϕ(·) is the standard normal density function. The elements of the partition

of Ωi corresponding to the nonlinear part of the model represented by the binary

indicators are

Cov(yit2) = Diag(µit2)− µit2µ
T
it2 t = 1, . . . , T

on the diagonal, and, as off-diagonal elements,

Cov(yit2k, yit′2k′) = µitt′2,kk′ − µit2kµit′2k′ ,

where µitt′2,kk′ and µit2,k are the corresponding elements from µitt′2 and µit2,

respectively.
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