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Abstract

This paper addresses the notion that many fractional I(d) processes may fall into the “empty box” category, as

discussed in Granger (1999). We present ex ante forecasting evidence based on an updated version of the absolute

returns series examined by Ding, Granger and Engle (1993) that suggests that ARFIMA models estimated using

a variety of standard estimation procedures yield “approximations” to the true unknown underlying DGPs that

sometimes provide significantly better out-of-sample predictions than AR, MA, ARMA, GARCH, and related models,

with very few models being “better” than ARFIMA models, based on analysis of point mean square forecast errors

(MSFEs), and based on the use of Diebold and Mariano (1995) and Clark and McCracken (2001) predictive accuracy

tests. Results are presented for a variety of forecast horizons and for recursive and rolling estimation schemes. The

strongest evidence in favor of ARFIMA models arises when various transformations of 5 major stock index returns

are examined. For these data, ARFIMA models are frequently found to significantly outperform linear alternatives

around one third of the time, and in the case of 1-month ahead predictions of daily returns based on recursively

estimated models, this number increases to one half of the time. Overall, it is found that ARFIMA models perform

better for greater forecast horizons, while this is clearly not the case for non-ARFIMA models. We provide further

support for our findings via examination of the large (215 variable) dataset used in Stock and Watson (2002), and

via discussion of a series of Monte Carlo experiments that examine the predictive performance of ARFIMA model.

JEL classification: C15; C22; C53
Keywords: fractional integration; long memory; parameter estimation error; stock returns; long
horizon prediction
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1 Introduction

The last 2 decades of macro and financial economic research has resulted in a vast array of important

contributions in the area of long memory modelling, both from a theoretical and an empirical

perspective. From a theoretical perspective, much effort has focussed on issues of testing and

estimation, and a very few important contributions include Granger (1980), Granger and Joyeux

(1980), Hosking (1981), Geweke and Porter-Hudak (1983), Lo (1991), Sowell (1992a,b), Ding,

Granger and Engle (1993), Cheung and Diebold (1994), Robinson (1995), Engle and Smith (1999),

Diebold and Inoue (2001), Breitung and Hassler (2002), and Dittman and Granger (2002). The

empirical analysis of long memory models has seen equally impressive treatment, including studies

by Diebold and Rudebusch (1989, 1991a,b), Hassler and Wolters (1995), Hyung and Franses (2001),

Bos, Franses and Ooms (2002), Chio and Zivot (2002), and van Dijk, Franses and Paap (2002), to

name but a few.1 The impressive array of papers on the subject is perhaps not surprising, given

that long memory models in economics is one of the many important areas of research that has

stemmed from seminal contributions made by Clive W.J. Granger (see e.g. Granger (1980) and

Granger and Joyeux (1980)). Indeed, in the write-up disseminated by the Royal Swedish Academy

of Sciences upon announcement that Clive W.J. Granger and Robert F. Engle had won the 2003

Nobel Prize in Economics, it was stated that:2

Granger has left his mark in a number of areas. [other than in the development of the concept
of cointegration] His development of a testable definition of causality (Granger (1969)) has spawned
a vast literature. He has also contributed to the theory of so-called long-memory models that have
become popular in the econometric literature (Granger and Joyeux (1980)). Furthermore, Granger
was among the first to consider the use of spectral analysis (Granger and Hatanaka (1964)) as well
as nonlinear models (Granger and Andersen (1978)) in research on economic time series.

This paper attempts to add to the wealth of literature on the topic by asking a number of

questions related to prediction using long memory models, and by presenting some new empirical

evidence.

First, as pointed out by many authors, including Diebold and Inoue (2001), Engle and Smith

(1999), and Granger and Hyung (1999), so-called spurious long memory (i.e. when in-sample tests

find long memory even when there is none) arises in many contexts, such as when there are (stochas-

tic) structural breaks in linear and nonlinear models, in the context of regime switching models,

1Many other empirical and theoretical studies are referenced in the entensive survery paper by Baillie (1996).

2see list of references under “Bank of Sweden (2003)” for a reference to the document.
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and when forming models using variables that are (simple) nonlinear transformations of underly-

ing “short memory” variables. The spurious long memory feature has been illustrated convincingly

using theoretical, empirical, and experimental arguments in the above papers. Bhardwaj and Swan-

son (2003) add to the evidence by showing, via Monte Carlo experimentation, that spurious long

memory may arise if reliance is placed on any of 5 standard tests of short memory, even if the

true data generating processes (DGPs) are linear with no data transformation, structural breaks,

and/or regime switching properties. In the current paper, we confirm these finding via predictive

analysis. In particular, three different datasets due to Engle, Granger and Ding (1993), Stock and

Watson (2002) and Leybourne, Harris and McCabe (2003) are examined, and it is shown that

standard short memory tests find ample evidence of long memory, even when ex ante prediction

analysis indicates that ARFIMA models constructed using 4 different estimators of the differenc-

ing parameter, d, are inferior to various AR, MA, ARMA, GARCH, and related models, where

the term inferior is meant to denote that one model outperforms another, based on point mean

square out-of-sample forecast error (MSFE) comparison (using Diebold and Mariano (DM: 1995)

predictive accuracy tests).

Second, there has been little evidence in the literature supporting the usefulness of long mem-

ory models for prediction. In a discussion of this and related issues, for example, Granger (1999)

acknowledges the importance of outliers, breaks, and undesirable distributional properties in the

context of long memory models, and concludes that there is a good case to be made for I(d) pro-

cesses falling into the “empty box” category (i.e. ARFIMA models have stochastic properties that

essentially do not mimic the properties of the data). We attempt to stem the tide of negative

evidence by presenting ex ante forecasting evidence based on various financial and macroeconomic

datasets. One is an updated version of the absolute returns series examined by Ding, Granger

and Engle (DGE: 1993) and Granger and Ding (1996). Evidence based on analysis of this very

large dataset suggests that ARFIMA models estimated using a variety of standard estimation pro-

cedures yield “approximations” to the true unknown underlying DGP that can sometimes provide

significantly better out-of-sample predictions than simple linear non-ARFIMA models of the type

mentioned above, based on analysis of point mean square forecast errors (MSFEs) as well as based

on application of Diebold and Mariano (1995) predictive accuracy tests and Clark and McCracken

(2001) encompassing t-tests. Furthermore, the samples used in the DGE dataset appear to be

sufficiently large so as to remedy finite sample bias properties of 4 standard d-estimators (including
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Geweke and Porter-Hudak, Whittle, rescaled range and modified rescaled range estimators) that

have been so widely discussed in the literature.

Interestingly, similar results arise even when much smaller samples of data are examined, such

as our second dataset which includes daily stock index returns for 5 major indices, as examined

by Leybourne, Harris, and McCabe (LHM: 2003). For example, based on sequences of recursive

ex ante 1 day, 1 week, and 1 month ahead predictions an ARFIMA model is preferred to a non-

ARFIMA model 13, 15, and 21 times, respectively. These results are based on application of

DM tests (using a 10% significance level) to a single ARFIMA and a single non-ARFIMA model,

where the ARFIMA and non-ARFIMA models have previously been selected based on an initial

ex ante predictive evaluation of the first half of the sample. The largest number of “wins” here

is thus 21, which is actually around half of the time, as there are 45 models in total for each

estimation scheme and forecast horizon (i.e. there are 5 different stock indexes times 9 different

data transformation and sample period combinations).3 This sort of evidence does not carry over

to much shorter macroeconomic time series, however. In particular, there are only a limited number

of significant findings in favor of ARFIMA models when comparing truly ex ante predictions of the

215 macroeconomic variables examined by Stock and Watson (SW: 2002). This finding, as well as

many of the other findings discussed above are validated via a series of Monte Carlo experiments

which assess, in a real-time context, the predictive ability of various ARFIMA and non-ARFIMA

models.4

Third, we pose a number of related questions, such as the following: What is the impact of

forecast horizon on predictive performance of various ARFIMA and non-ARFIMA models? How

quickly do empirical estimates of the difference operator deteriorate in settings where the number

of available observations may be limited? Does the parsimony of ARIMA models relative to related
3Our empirical results thus support the conjecture made by two anonymous referees that misspecification of long

memory features is likely to be more important for multi-step ahead forecasts.
4It should be noted that we do not compare our ARFIMA models to models with breaks. In a working paper

version of this paper (see Bhardwaj and Swanson (2003)) simple regime switching models were estimated in our

empirical experiments. These models were outperformed by the simple linear non-ARFIMA models based on ex

ante analysis of the first half of all sample periods examined, and hnece no regime switching models are included in

this version of the paper. However, it is clear that more complicated regime switching models, as well as linear and

nonlinear models with structural breaks, might fare better from a predictive perspective. Analysis of this possibility

is discussed elsewhere in the literature, and is left to future research.
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ARFIMA models ensure that ARIMA models will yield more precise predictions, on average?

With regard to the first question, we present evidence suggesting that long memory models may

be particularly useful at longer forecast horizons. With regard to the second question, we find

that samples of 5000 or more observations yield very stable rolling and recursive estimates of

d, while samples of 2500 or fewer observations lead to substantial increases in estimator standard

errors. Finally, with regard to the third question, it appears that parsimony is not always necessary

to produce accurate predictions, as our less parsimonious ARFIMA models sometimes dominate

their more parsimonious ARMA counterparts, even for moderately sized samples of around 2500

observations.

The rest of the paper is organized as follows. In Section 2 we briefly review ARFIMA processes,

and outline the empirical estimation and testing methodology used in the rest of the paper. In

Section 3 we present the results of an empirical investigation of the 17,054 observation DGE dataset,

the 4,950 observation LHM dataset, and the 215 variable macroeconomic observation SW dataset.

Section 4 contains the results of a series of Monte Carlo experiments that were designed to yield

further evidence on a number of issues and findings based on our empirical analysis. Section 5

concludes.

2 Empirical Methods

The prototypical ARFIMA model examined in the literature is

Φ (L) (1− L)d yt = Θ (L) εt, (1)

where d is the fractional differencing parameter, εt is white noise, and the process is covariance

stationary for −0/5 < d < 0.5, with mean reversion when d < 1. This model is a generalization

of the fractional white noise process described in Granger (1980), Granger and Joyeux (1980), and

Hosking (1981), where, for the purpose of analyzing the properties of the process, Θ (L) is set

equal to unity (Baillie (1996) surveys numerous papers that have analyzed the properties of the

ARFIMA process). Given that many time series exhibit very slowly decaying autocorrelations, the

potential advantage of using ARFIMA models with hyperbolic autocorrelation decay patterns when

modelling economic and financial times series seems clear (as opposed to models such as ARMA

4



processes that have exponential or geometric decay). The potential importance of the hyperbolic

decay property can be easily seen by noting that

(1− L)d =
∞∑

j=0

(−1)j

(
d
j

)
(L)j = 1− dL+

d(d− 1)
2!

L2−d (d− 1) (d− 2)
3!

L3+ · ·· =
∞∑

j=0

bj (d) , (2)

for any d > −1.5 As a simple illustration, Table 1 reports the values of the coefficients associated

with different lags in the expansion of (1 − L)d given in equation (2). The last column of the

table gives the lag after which coefficients of the polynomial become smaller than 1.0e-004. It is

interesting to note that by this crude yardstick the coefficients are included even after 400 lags, in

the case when d = 0.2.

There are currently dozens of estimation methods for and tests of long memory models. Perhaps

one of the reasons for the wide array of tools for estimation and testing is that the current consensus

suggests that good estimation techniques remain elusive, and many of the tests used for long memory

have been shown via finite sample experiments to perform quite poorly. Much of this evidence has

been reported in the context of comparing one or two classes of estimators/tests, such as rescaled

range (RR) type estimators (as introduced by Hurst (1951) and modified by Lo (1991), for example)

and log periodogram regression estimators due to Geweke and Porter-Hudak (GPH: 1983). In the

face of all of the negative publicity, it a bit surprising that few papers seem to compare more

that one or two different (classes of) estimators and/or tests. Our approach, while still far from

exhaustive, is to use a variety of the most widely used estimators and tests in our subsequent

empirical investigation and experimental analysis. In particular, we consider 4 quite widely used

estimation methods and 5 different long memory tests.6

5For d > 0, the differencing filter can also be expanded using hypergeometric functions, as follows: (1 − L)d =

Γ(−d)
∑∞

j=0
LkΓ(j−d)/Γ(j+1) = F (−d, 1, 1, L), where F (a, b, c, z) = Γ(c)/[Γ(a)Γ(b)]

∑∞
j=0

zjΓ(a+j)Γ(b+j)/[Γ(c+

j)Γ(j + 1)]
6Perhaps the most glaring omission from our list of estimators is the full information maximum likelihood estimator

of Sowell (1992a). While his estimator is theoretically appealing, it is computationally demanding as it requires
inversion of TxT matrices of nonlinear functions of hypergeometric functions. For evidence on the finite sample
performance of this estimator, the reader is referred to Cheung and Diebold (1994). For an updated discussion of the
maximum likelihood estimator and its properties, see Doornik and Ooms (2003).
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2.1 Long Memory Model Estimation

2.1.1 GPH Estimator

The GPH estimation procedure is a two-step procedure, which begins with the estimation of d, and

is based on the following log-periodogram regression7:

ln [I (ωj)] = β0 + β1 ln
[
4 sin2

(
ωj

2

)]
+ νj , (3)

where

ωj =
2πj

T
, j = 1, 2 . . . , m.

The estimate of d, say d̂GPH , is −β̂1, ωj represents the m =
√

T Fourier frequencies, and I (ωj)

denotes the sample periodogram defined as

I (ωj) =
1

2πT

∣∣∣∣∣
T∑

t=1

yte
−ωjt

∣∣∣∣∣

2

. (4)

The critical assumption for this estimator is that the spectrum of the ARFIMA(p,d,q) process

is the same as that of an ARFIMA(0,d,0) process (the spectrum of the ARFIMA(p,d,q) process

in (1), under some regularity conditions, is given by I (ωj) = z (ωj)
(
2 sin

(ωj

2

))−2d, where z (ωj)

is the spectrum of an ARMA process). We use m =
√

T , as is done in Diebold and Rudebusch

(1989), although the choice of m when εt is autocorrelated can heavily impact empirical results (see

Sowell (1992b) for discussion). Robinson (1995a) shows that ( π2

24m)−1/2
(
d̂GPH − d

)
→ N (0, 1), for

−1/2 < d < 1/2, and for j = l, ...,m in the equation for ω above, where l is analogous to the usual

lag truncation parameter. As is also the case with the next two estimators, the second step of the

GPH estimation procedure involves fitting an ARMA model to the filtered data, given the estimate

of d. Agiakloglou, Newbold and Wohar (1992) show that the GPH estimator has substantial finite

sample bias, and is inefficient when εt is a persistent AR or MA process. Many authors assume

normality of the filtered data in order to use standard estimation and inference procedures in the

analysis of the final ARFIMA model (see e.g. Diebold and Rudebusch (1989,1991a)). Numerous

variants of this estimator continue to be widely used in the empirical literature.8

2.1.2 WHI Estimator

Another seminparametric estimator, the Whittle estimator, is also often used to estimate d. Perhaps

one of the more promising of these is the local Whittle estimator proposed by Künsch (1987) and
7The regression model is usually estimated using least squares.
8For a recent overview of frequency domain estimators, see Robinson (2003, chapter 1).
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modified by Robinson (1995b). This is another periodogram based estimator, and the crucial

assumption is that for fractionally integrated series, the autocorrelation (ρ) at lag l is proportional

to l2d−1. This implies that the spectral density which is the Fourier transform of the autocovariance

γ is proportional to (ωj)
−2d. The local Whittle estimator of d, say d̂WHI , is obtained by maximizing

the local Whittle log likelihood at Fourier frequencies close to zero, given by

Γ (d) = − 1
2πm

m∑

j=1

I (ωj)
f (ωj ; d)

− 1
2πm

m∑

j=1

f (ωj ; d) , (5)

where f (ωj ; d) is the spectral density (which is proportional to (ωj)
−2d). As frequencies close to

zero are used, we require that m →∞ and 1
m + m

T → 0, as T →∞. Taqqu and Teverovsky (1997)

show that d̂WHI can be obtained by maximizing the following function:

Γ̂ (d) = ln


 1

m

m∑

j=1

I (ωj)
ω−2d

j


− 2d

1
m

m∑

j=1

ln (ωj) . (6)

Robinson (1995b) shows that for estimates of d obtained in this way, (4m)1/2
(
d̂WHI − d

)
→

N (0, 1) , for −1/2 < d < 1/2. Taqqu and Teverovsky (1997) study the robustness of standard,

local, and aggregated Whittle estimators to non-normal innovations, and find that the local Whittle

estimator performs well in finite samples. Shimotsu and Phillips (2002) develop an exact local

Whittle estimator that applies throughout the stationary and nonstationary regions of d, while

Andrews and Sun (2002) develop an adaptive local polynomial Whittle estimator in order to address

the slow rate of convergence and associated large finite sample bias associated with the local Whittle

estimator. In this paper, we use the local Whittle estimator discussed in Taqqu and Teverovsky

(1997).

2.1.3 RR Estimator

The rescaled range estimator was originally proposed as a test for long-term dependence in the

time series. The statistics is calculated by dividing range with standard deviation. In particular,

define:

Q̂T =
R̂T

σ̂T
, (7)

where σ̂2
T is the usual maximum likelihood variance estimator of yt, and R̂T = max

0<i≤T

∑i
t=1 (yt − y)−

min
0<i≤T

∑i
t=1 (yt − y) . The estimate of d, say d̂RR, is obtained using the result that plimT→∞(T−d− 1

2
R̂T

σ̂T
)
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= constant (see Hurst (1951), Lo (1991), and the references cited therein), and is:

d̂RR =
ln

(
Q̂T

)

ln (T )
− 1

2
. (8)

Lo (1991) shows that T−1/2Q̂T is asymptotically distributed as the range of a standard Brownian

bridge. With regard to testing in this context, note that there are extensively documented defi-

ciencies associated with long memory tests based on T−1/2Q̂T , particularly in the presence of data

generated by a short memory processes combined with a long memory component (see e.g. Cheung

(1993)). For this reason, Lo (1991) suggests the modified RR test, whereby σ̂2
T is replaced by a

heteroskedasticity and autocorrelation consistent variance estimator, namely:

σ̂2
T =

1
T

T∑

t=1

(yt − y)2 +
2
T

q∑

j=1

wj (q)





T∑

t=j+1

(yt − y) (yt−j − y)



 , (9)

where

wj (q) = 1− j

q + 1
, q < T,

It is known from Phillips (1987) that σ̂2
T is consistent when q = O(T 1/4), at least in the context of

unit root tests, although choosing q in the current context is a major difficulty. This statistic still

weakly converges to the range of a Brownian bridge.

2.1.4 AML Estimator

The fourth estimator that we use is the approximate maximum likelihood estimator of Beran (1995).

For any ARFIMA model given by equation (1), d = m+ δ, where δ ∈
(
−1

2 , 1
2

)
, and m is an integer

(assumed known) denoting the number of times the series must be differenced in order to attain

stationarity, say:

xt = (1− L)m yt. (10)

To form the estimator, a value of δ is fixed, and an ARMA model is fitted to the filtered xt data,

yielding a sequence of residuals. This is repeated over a fine grid of d = m+δ, and d̂AML is the value

which minimizes the sum squared residuals. The choice of m is critical, given that the method only

yields asymptotically normal estimates of the parameters of the ARFIMA model if δ ∈
(
−1

2 , 1
2

)
,

for example (see Robinson (2003, chapter 1) for a critical discussion of the AML estimator).

In summary, three of the estimation methods described in the preceding paragraphs for ARFIMA

models require first estimating d. Thereafter, an ARMA model is fitted to the filtered data by using
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maximum likelihood to estimate parameters, and via the use of the Schwarz Information Criterion

for lag selection. The maximum number of lags was picked for each of the datasets examined in

our empirical section by initially examining the first half of the sample to ascertain what sorts of

lag structures were usually chosen using the SIC. The exception to the above approach is the AML

estimator, for which a grid of d values is searched across, with a new ARMA model fitted for each

values of d in the grid, and resulting models compared using mean square error.

2.2 Short Memory Tests

Four of the five tests that we use when evaluating our time series are based on the above discussion,

including the GPH, RR, MRR, and WHI tests, where the MRR is the modified RR test due to Lo

(1991). Notice that of these, only the GPH and WHI tests are based directly upon examination of

the d estimator, while the RR and MRR tests do not involve first estimating d. The fifth test that

we use is the nonparametric short memory test of Leybourne, Harris and McCabe (LHM: 2003).

Their test is based on the rate of decay of the autocovariance function. In particular, the null

hypothesis of the test is that the data are short memory (i.e. that
∑∞

j=0 |γj | < ∞, where γj is the

autocovariance of yt at lag j), and the test is based on the notion that one can distinguish between

short and long memory via knowledge of the rate at which γj → 0, as j →∞. The test statistics is

Sk,T =
T 1/2γ̂kT

σ̂∞
, (11)

where σ̂2∞ = γ̂2
0 + 2

∑lT
j=1 γ̂2

j , γ̂j = T−1 ∑T
t=j+1 ytyt−j , yt in this case is the demeaned series, and

kT , lT are chosen such that kT ,lT −→∞, as T−→∞ and kT
lT
−→ 0, kT < lT . The values which we

use, as suggested by LHM, are kT = 5.5T 1/2

ln(T ) and lT = 4
(

T
100

)1/4
. In this context, SkT

−→ N (0, 1),

under the null hypothesis. There are many other important tests available in the literature which

are not examined here, including but not limited to the KPSS test (see Lee and Schmidt (1996))

and the augmented Dickey-Fuller test (see Diebold and Rudebusch (1991b)).

2.3 Predictive Accuracy Testing

If, as is often the case, the ultimate goal of an empirical investigation is the specification of predictive

models, then a natural tool for testing for the presence of long memory is the predictive accuracy

test. In this case, if an ARFIMA model can be shown to yield predictions that are superior to those

from a variety of alternative linear (and nonlinear) models, then one has direct evidence of long

9



memory, at least in the sense that the long memory model is the best available “approximation”

to the true underlying DGP. Conversely, even if one finds evidence of long memory via application

of the tests discussed above, then there is little use specifying long memory models if they do not

outpredict simpler alternatives. There is a rich recent literature on predictive accuracy testing,

most of which draws in one way or another on Granger and Newbold (1986), where simple tests

comparing mean square forecast errors (MSFEs) of pairs of alternative models under assumptions

of normality are outlined. Perhaps the most important of the predictive accuracy tests that have

been developed over the last 20 years is the Diebold and Mariano (1995: DM) test. The statistic

is:

d̂P = P−1/2

∑T−1
t=R−h+1(f(v̂0,t+h)− f(v̂1,t+h))

σ̂P
, (12)

where R denotes the estimation period, P is the prediction period, f is some generic loss function,

h ≥ 1 is the forecast horizon, v̂0,t+h and v̂1,t+h are h-step ahead prediction errors for models 0 and

1 (where model 0 is assumed to be the ARFIMA model), constructed using consistent estimators,

and σ̂2
P is defined as

σ̂2
P =

1
P

T−1∑

t=R−h+1

(f(v̂0,t+h)− f(v̂1,t+h))2+
2
P

lP∑

j=1

wj

T−1∑

t=R−h+1+j

(f(v̂0,t+h)− f(v̂1,t+h))(f(v̂0,t+h−j)− f(v̂1,t+h−j))

(13)

where wj = 1− j
lP +1 , lP = o(P 1/4). The hypotheses of interest are

H0 : E(f(v0,t+h)− f(v1,t+h)) = 0,

and

HA : E(f(v0,t+h)− f(v1,t+h)) 6= 0.

The DM test, when constructed as outlined above for nonnested models, has a standard normal

limiting distribution under the null hypothesis.9 West (1996) shows that when the out-of-sample

period grows at a rate not slower than the rate at which the estimation period grows (i.e. P
R → π,

with 0 < π ≤ ∞), parameter estimation error generally affects the limiting distribution of the DM

test in stationary contexts. On the other hand, if π = 0, then parameter estimation error has

no effect. Additionally, Clark and McCracken (2001) point out the importance of addressing the

issue of nestedness when applying DM and related tests.10 Other recent papers in this area include
9We assume quadratic loss in our applications, so that f(v0,t+h) = v2

0,t+h, for example.
10Chao, Corradi, and Swanson (2001) address not only nestedness, by using a consistent specification testing ap-

proach to predictive accuracy testing, but also allow for misspecification amongst competing models; an important
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Christoffersen (1998), Christoffersen and Diebold (1997), Clements and Smith (2000,2002), Corradi

and Swanson (2002), Diebold, Gunther and Tay (1998), Diebold, Hahn and Tay (1999), Harvey,

Leybourne and Newbold (1998), and the references contained therein, to name but a few. Although

the DM test does not have a normal limiting distribution under the null of non causality when

nested models are compared, the statistic can still be used as an important diagnostic in predictive

accuracy analyses. Furthermore, the nonstandard limit distribution is reasonably approximated

by a standard normal in many contexts (see McCracken (1999) for tabulated critical values). For

this reason, and as a rough guide, we use critical values gotten from the N(0, 1) distribution when

carrying out DM tests. A final caveat that should be mentioned is that the work of McCracken (and

that of Clark and McCracken discussed below) assumes stationarity, assumes correct specification

under the null hypothesis, and often assumes that estimation is via least squares. Of course, if

we are willing to make the strong assumption of correct specification under the null, then the

ARFIMA model and the non-ARFIMA models are the same, implying for example that d = 0,

so that only the common ARMA components in the models remain, and hence errors are short-

memory. Nevertheless, it is true that in general some if not many of the assumptions may be

broken in our context, and extensions of their tests and related tests to more general contexts is

the subject of ongoing research by a number of authors.11 This is another reason why the critical

values used in this paper should be viewed only as rough approximations.

We also report results based on the application of the Clark and McCracken (CM: 2001) en-

compassing test, which is designed for comparing nested models. The test statistic is

ENC − t = (P − 1)1/2 c

(P−1
∑T−1

t=R (ct+h − c))1/2
,

where ct+h = v̂0,t+h(v̂0,t+h − v̂1,t+h) and c = P−1 ∑T−1
t=R ct+1. This test has the same hypotheses as

the DM test, except that the alternative is HA : E(f(v0,t+h)− f(vk,t+h)) > 0. If π = 0, the limiting

distribution is N(0, 1) for h = 1. The limiting distribution for h > 1 is non-standard, as discussed

in CM. However, as long as a Newey-West (1987) type estimator (of the generic form given above

for the DM test) is used when h > 1, then the tabulated critical values are quite close to the N(0, 1)

feature if one is to presume that all models are approximations, and hence all models may be (dynamically) mis-
specified. White (2000) further extends the Diebold and Mariano framework by allowing for the joint comparison
of multiple models, while Corradi and Swanson (2003,2004a,b) extend White (2000) to predictive density evaluation
with parameter estimation error.

11For example, for further discussion of the ramifications of using nonstationary variables when constructing tests
of predictive ability, see Corradi, Swanson and Olivetti (2001) and Rossi (2003).
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values, and hence we use the standard normal distribution as a rough guide for all horizons (see

CM for further discussion).

2.4 Predictive Model Selection

In the sequel, forecasts are 1-step, 5-steps and 20-steps ahead, when daily stock market data are

examined, corresponding to 1-day, 1-week and 1-month ahead predictions. For the long DGE

dataset, we also examine 120-step and 240-step ahead forecasts, corresponding to 6-month and

1-year ahead predictions. Additionally, forecasts are 1-step, 3-steps and 12-steps ahead, when

monthly U.S. macroeconomic data are examined, corresponding to 1-month, 1-quarter and 1-year

ahead predictions. Estimation is carried out as discussed above for ARFIMA models, and using

maximum likelihood for non-ARFIMA models. More precisely, each sample of T observations is

first split in half. The first half of the sample is then used to produce 0.25T rolling (and recursive)

predictions (the other 0.25T observations are used as the initial sample for model estimation)

based on rolling (and recursively) estimated models (i.e. parameters are updated before each new

prediction is constructed). These predictions are then used to select a “best” ARFIMA and a

“best” non-ARFIMA model, based on point out-of-sample mean square forecast error comparison.

At this juncture, the specifications of the ARFIMA and non-ARFIMA models to be used in later

predictive evaluation are fixed. Parameters in the models may be updated, however. In particular,

recursive and rolling ex ante predictions of the observations in the second half of the sample are then

constructed, with parameters in the ARFIMA and non-ARFIMA “best” models updated before

each new forecast is constructed. Additionally, different models are constructed for each forecast

horizon, as opposed to estimating a single model and iterating forward when constructing multiple

step ahead forecasts. Reported DM and encompassing t-tests are thus based on the second half of

the sample, and involve comparing only two models. Results for mean absolute deviation and mean

absolute percentage error loss functions have also been tabulated, and are available upon request

from the authors.

It should be stressed that the methodology presented above is often used in ‘horse-races’ of the

type that we are carrying out, so as not to “cherry-pick” the forecast-best models (see e.g. Swanson

and White (1995,1997) and the references cited therein). However, there are many other ways to

avoid issues that arise when comparing many models, such as the prevalence of sequential test-bias

and overfitting. For recent important papers that address model these and related issues, the reader
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is referred to White (2000), Inoue and Kilian(IK: 2003), Corradi and Swanson (2004a), and Hansen,

Lunde and Nason (HLN: 2004). IK suggest the use of information criterion (such as the Schwarz

Information Criterion - SIC) for choosing the best forecasting model, while HLN propose a model

confidence set approach to the same problem. Of note, though, is that the BIC based approach

of IK is not applicable under near stationarity and non-linearity, and is not consistent when non-

nested models are being compared. HLN takes a different approach, as they are concerned with

narrowing down from a larger set of models to a smaller set that includes the best forecasting

model. When their approach is used, for example, it is found that ARFIMA volatility models do

not outperform simpler non-ARFIMA volatility models.

3 Empirical Evidence

In our empirical (and subsequent Monte Carlo) investigation, the following models are used:

1) ARFIMA(p,d,q): Φ(L) (1− L)d yt = α + Θ(L) εt, where d can take fractional values;

2) Random Walk: yt = yt−1 + εt;

3) Random Walk with Drift: yt = α + yt−1 + εt;

4) AR(p): Φ(L) yt = α + εt;

5) MA(q): yt = α + Θ(L) εt;

6) ARMA(p,q): Φ(L) yt = α + Θ (L) εt;

7) ARIMA(p,d,q): Φ(L) (1− L)d yt = α + Θ(L) εt, where d can take integer values;

8) GARCH: Φ(L) yt = α + εt, where εt = h
1/2
t νt with E(ε2t |=t−1) = ht = $ + α1ε

2
t−1 + · · · +

αqε
2
t−q + β1ht−1 + · · ·+ βpht−p, and where =t−1 is the usual filtration of the data; and

In these models, εt is the disturbance term, Φ (L) = 1− φ1L− φ2L
2 − · · · − φpL

p, and Θ (L) =

1− θ1L− θ2L
2− · · · − θqL

q, where L is the lag operator. All models (except ARFIMA models) are

estimated using (quasi) maximum likelihood, with values of p and q chosen via use of the Schwarz

Information Criterion (SIC), and integer values of d in ARIMA models selected via application

of the augmented Dickey Fuller test at a 5% level. Errors in the GARCH models are assumed

to be normally distributed. ARFIMA models are estimated using the four estimation techniques

discussed above (GPH, RR, WHI, and AML). When fitting ARFIMA models, we used an arbitrary

cut-off of 1.0e− 004. Terms in the polynomial expansion with coefficients smaller in absolute value

than this cut-off were truncated.12

12The exception to the rule is the case of the SW data, for which sufficient observations were not available, and for
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In the proceeding sub-sections, we carry out our empirical investigation by examining the long

memory and ARFIMA predictive properties of the S&P500 series used by Ding, Granger and Engle

(1993) and Granger and Ding (1996), the 5 stock index returns used by Leybourne et al. (2003),

and the 215 Stock and Watson (2002) macroeconomic variables. Before discussing the results,

however, some comments concerning the data are in order. Our first dataset is an updated version

of the long historical S&P500 returns dataset of DGE. The period covered is January 4, 1928 -

September 30, 2003 (20,105 observations), so that our dataset is somewhat longer than the 17,054

observations (ending on August 30, 1990) examined by DGE. Our second dataset consists of the

returns data used in Leybourne et al. (2003), where strong evidence of long memory is found via

application of their short memory test. In particular, we model 4,950 (or more, depending on the

particular index) daily returns for the following stock indexes: S&P500, FTSE100, DAX, Nikkei225,

and the Hang Seng.13 We consider absolute returns, squared returns, and log squared returns, thus

nesting a variety of different data transformations that have been shown in earlier papers (see e.g.

Granger and Ding (1996)) to have long memory properties. All series span the period 01/04/1981-

01/18/2002, and the ex ante predictive samples used in our analysis include the entire second half

of the sample, as well as periods in the second half of the sample pre and post the 1987 October

crash. Finally, we examine the Stock-Watson dataset, which consists of the 215 variables used in

their well known diffusion index paper. In the paper, they examine multi-step ahead predictions

of 8 key U.S. macroeconomic variables, in a simulated real-time forecasting environment, using all

215 U.S. series to construct diffusion indexes. Their data were collected in 1999, and so represent a

snapshot of the vintages and releases of data available at that point in time. The data series vary

in length, span the period 1959-1998, and are generally 400-500 observations in length. All series

are monthly. Appendix 2 of Stock and Watson (2002) contains definitions of all of the series (which

are omitted here for the sake of brevity), and discusses the data transformations applied to each

series. Note that all series were “differenced to stationarity” in Stock and Watson (2002), prior to

model fitting. We use the same data transformations as they did, so that many of the series are

expressed in growth rates, and some series are even differenced twice. In summary, our approach is

to use exactly the same dataset as used in Stock and Watson (2002). However, rather than focusing

on predictions of 8 series, we consider predictions of all 215 variables, using estimated versions of

which, after some experimentation, the arbitrary cut-off was set at 120 lags.
13It should be stressed, however, that our sample is first split in half for intial model selection. Thus, our predictive

analyses carried out in order to compare ARFIMA and non-ARFIMA models are based on less than 2,500 observations.
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the models outlined above.

Before turning to our empirical results, it should be pointed out that we found very little

connection between rejection of short memory test null hypotheses and whether or not the ARFIMA

model outperformed the ARIMA model, when comparing predictions. Results confirming this

finding have been tabulated and are available upon request. However, there is little that one can

discern from the results, other than the lack of correlation between findings in favor of long memory

and incidence of ARFIMA forecasting model ‘wins’. One possible explanation of this is the poor

finite sample properties of the short memory tests used in this paper, as pointed out in numerous

papers in the literature on fractionally integrated models. Other possible explanations for this

finding exist, but discussion of them is left to future research.

3.1 S&P500 Returns: January 4, 1928 - September 30, 2003

Table 2 summarizes results based on analysis of our long returns dataset. Before discussing these

results, however, it is first worth noting that the four alternative estimators of d yield quite similar

estimates, as opposed to the types of estimates obtained when our other much shorter datasets are

examined. In particular, note that if one were to use the first half of the sample for estimation, one

would find values of d equal to 0.49 (GPH), 0.41 (AML), 0.31 (RR) and 0.43 (WHI).14 Furthermore,

all methods find one AR lag, and all but one method finds 1 MA lag. This is as expected for large

samples. In the next subsection, we show that our 4 estimators yield radically different values even

when the in-sample period used is moderately large, with approximately 2500 observations, so that

the convergence of the estimators is extremely slow, although they do eventually converge. This

yields credence to Granger’s (1999) observation that estimates of d can vary greatly across different

sample periods and sample sizes, and are generally not robust at all (see next section for further

evidence of this).

In the table, the “best” ARFIMA and non-ARFIMA models are first chosen as discussed above.

As d is re-estimated prior to the construction of each new forecast, means and standard errors of the

sequence of d values are reported in the table. As might be expected, different d mean values, which

are calculated for each estimation scheme (i.e. recursive or rolling) and each forecast horizon, are

all quite close to one another, with the exception of the RR estimator. Additionally, all standard
14These estimates of d are very close to those obtained by Ding, Granger and Engle (1993) and by Granger and

Ding (1996) using their fractionally integrated ARCH model.
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errors are extremely small. Interestingly, though, the means are always above 0.5 except in the

case of RR estimator. This is in contrast to the usual finding that d < 0.5. Although various

explanations for these seemingly large values of d are possible, a leading explanation might be as

follows. If, as suggested by Clive Granger and others, long memory arises in part due to various sorts

of misspecification, then it may be the case that greater accumulation of misspecification problems

leads to greater “spurious” long memory. In the sense that our multiple step ahead prediction

models may be more poorly specified than our 1-step ahead models (given that we construct a

new prediction model for each horizon, and that greater horizons involve using more distant lags of

the dependent variable on the RHS of the forecasting model), we have indirect evidence that more

severe misspecification, in the form of missing dynamic information, may lead to larger estimated

values for d. This finding, if true, has implications for empirical research, as it may help us to

better understand the relative merits of using different approaches for constructing multiple-step

ahead forecasting models. Finally, it should be stressed that the best ARFIMA/non-ARFIMA

models yield significantly better forecasts, when compared to a ‘naive’ forecasts based on a random

walk (or no-change) model. The DM test favors best ARFIMA/non-ARFIMA at all the forecast

horizons, though the p-values are slightly higher for longer multi-step ahead forecasts.

Turning next to the DM and encompassing test results reported in the table, notice that the

DM statistics are negative in all but three cases. As the ARFIMA model is taken as model 0 (see

discussion in Section 2.3), this means that the point MSFEs are lower for the ARFIMA model than

the non-ARFIMA model. One exception is the case where the rolling estimation scheme is used

and h = 1 (this is the case where the RR estimator is used, and where the average d value across

the out-of-sample period is 0.25). Interestingly the other two exceptions are when we use recursive

estimation and significantly longer forecast horizons (120 and 240 step ahead predictions). However,

in all three of these exceptional cases, the DM statistics does not significantly favor either model. On

the other hand, use of the rolling estimation scheme results in significantly superior multiple-step

ahead predictions for the ARFIMA model, at standard significance levels. This finding is relevant,

given that the MSFEs are quite similar when comparing recursive and rolling estimation schemes.

The encompassing t-test yields somewhat similar results. In particular, the null hypothesis is

most clearly rejected in favor of the alternative that the non-ARFIMA model is the more precise

predictive model for the rolling estimation scheme with h = 1, and the two recursive estimation

schemes with the longest forecasting horizons (h = 120, and 240). Interestingly, the null may also
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be rejected for h = 20 when recursive estimation is used (the statistic value is 2.91) and h = 240

when rolling estimation is used (the statistic value is 2.72), although in this case using critical values

from the N(0, 1) is only a rough approximation, as the distribution is nonstandard, and contains

nuisance parameters (so that, in principle, bootstrap methods need to be should to be valid and

need to be used in order to obtain valid critical values, for example).

While these results are somewhat mixed, they do constitute evidence that long memory models

may actually be useful in certain cases, when constructing forecasting models. Furthermore, as long

as the in-sample period is very large, then all of our differencing operator estimators perform ade-

quately (with the possible exception of the RR estimator), and any one of them can be successfully

used to estimate “winning” prediction models. Put differently, no model from amongst those con-

sidered performs better than our simple ARFIMA models, at least based on point MSFE (with the

one exception that is noted above). It should, however, be stressed that structural breaks, regime

switching, etc. have not been accounted for in any of our models, and it remains to see whether

the types of results obtained here will also hold when structural breaks and regime switching are

allowed for in both our short memory and long memory models. Some results in this regard are

given in the next subsection, where different return series are examined both pre- and post-1987.

3.2 International Stock Index Returns: January 4, 1981 - January 18, 2002

Table 3 contains a summary of empirical results for 5 different stock market indices. Absolute,

squared, and log squared returns are evaluated using the 5 short memory tests discussed above, an

ARFIMA and a non-ARFIMA model is estimated, with these models chosen based on prior ex ante

analysis of the first half of the sample, and rolling and recursive ex-ante predictions are made and

compared using the second half of the sample. A number of conclusions can be made based on the

analysis reported in the table. First, note that the short memory null hypothesis (given in brackets

in the first column of the table) is rejected most of the time, for most of the indexes, regardless of

how returns are transformed prior to test statistic construction. At face value, this might be taken

as strong evidence of the potential usefulness of ARFIMA models for these data. However, it is well

known that the 5 tests used in our study have poor finite sample size properties when faced with

nonlinear models, such as regime switching models. Indeed, results reported in a working paper

version of this paper (see Bhardwaj and Swanson (2003)) suggest that size is very poor even when

data are generated according to linear models, such as AR processes with reasonably large roots
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(e.g. an AR(1) with slope = 0.75). Thus, the tests are probably unreliable for the types of data

usually examined by macroeconomic and financial economists. This is one of the reasons why we

focus on out-of-sample forecast evaluation.

A second conclusion concerns the reported DM test results. Negative entries in the “DM”

columns in the table indicate cases for which point MSFEs are lower when the ARFIMA model

is used.15 Starred entries correspond to rejections based on 10% level tests using the N(0, 1)

distribution (see above for further discussion). Consider recursive forecasts. In this case, the

ARFIMA model is preferred 13, 15, and 21 times at the 1, 5, and 20 day ahead horizons, respectively.

Notice that the largest number of “wins” for the ARFIMA model is 21, which is around half of

the time, as there are 45 models in total for each estimation scheme and forecast horizon (i.e.

5 different stock indexes times 9 different data transformation and sample period combinations).

Thus, at least at the 20 day ahead horizon, the empirical findings can hardly be accounted for

by chance.16 Analogous numbers corresponding the number of times the non-ARFIMA model is

preferred are 9, 5, and 7. Thus, the ARFIMA models are preferred around twice as frequently, and

the number of ARFIMA “wins” increases with forecast horizon, while the number of non-ARFIMA

wins stays the same or decreases with forecast horizon. Although the ARFIMA model no longer

wins twice as often under the rolling estimation scheme, the pattern of increasing wins with horizon

remains. In particular, in the rolling case, the corresponding numbers for ARFIMA wins are 8,

10, and 13; and those for non-ARFIMA wins are 11, 6, and 8. Indeed, the only case for which the

non-ARFIMA model appears to consistently dominate the ARFIMA model is the post-1987 crash

period when log r2
t is modelled.

Notice also in the table that the mean and standard error (in brackets) of estimated d values

are given. These correspond to estimates for the recursive estimation and 1-day ahead prediction

models. Estimates for 5 and 20 day ahead models and for rolling estimation schemes are qualita-

tively similar and are not been included, for the sake of brevity (tabulated values are available upon

request from the authors). It is important to note that even with the relatively large samples used

in this example, the estimates of d clearly vary depending on which stock market index is used,

how the data are transformed, and whether or not pre or post October 1987 data are examined.
15More detailed tables of results for this and the next empirical example that include specifics on which ARFIMA

and non-ARFIMA models are compared for each estimation scheme and forecast horizon have been tabulated and
are available upon request from the authors.

16It should be of interest to establish whether this result holds up when the set of possible non-ARFIMA models
is augmented by various nonlinear regime switching and related models.
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However, the estimates for daily S&P500 absolute returns are very close to those estimates reported

in Table 2 for a much longer sample, suggesting that the spread of different d estimates may be

as much due to data transformation as sample size. The standard errors are around two orders of

magnitude greater, though, suggesting that parameter estimation error plays a great role. Never-

theless, in our context, as we are re-estimating the ARFIMA model many times, and constructing a

new prediction each time, the parameter estimation error is likely mitigated somewhat, so that our

prediction results are more indicative of what one might expect when using long memory models

than if one were to simply estimate the model a single time and construct a sequence of h−step

ahead predictions without parameter updating.

A final finding from this empirical example is that the encompassing null hypothesis is only

rejected, yielding evidence that the non-ARFIMA model dominates the ARFIMA, around 10 or

fewer times, regardless of which estimation scheme and forecast horizon is considered (see each of

the 6 columns with header “ENC-t” in the table).17

Overall, there is no clear evidence against the use of ARFIMA models for prediction in the

context of stock market data, and indeed our evidence slightly favors the ARFIMA models relative

to simpler non-ARFIMA alternatives, particularly at multiple step ahead horizons.

3.3 Stock-Watson Macroeconomic Dataset: 1959-1998

Tables 4, 5, and 6 collect results analogous to those reported in Table 3, but for the much shorter

SW dataset. These results are broken into three groupings: general macroeconomic variables (Table

4); financial variables (Table 5); and monetary variables (Table 6). As mentioned above, the 215

different time series have variously been differenced, log differenced, etc., according to the definitions

given in Appendix 2 of SW. Perhaps the most important feature of the dataset is that it contains

variables with sample periods ranging from 1959-1998, so that only 400-500 monthly observations

are available. Thus, we are subjecting the ARFIMA models to a very stringent test when using

them to construct prediction models. Given that we know the estimates of d will be suspect, it

would be very surprising if any ARFIMA models were shown to out-predict more parsimonious and

precisely estimated AR, ARMA, and related models.

Turning to the results reported in the tables, notice that across all 215 variables, and for the
17As is the case when the DGE dataset is examined, best ARFIMA/non-ARFIMA models yield significantly better

forecasts when compared with ‘naive’ no-change forecasts (i.e. when compared with random walk prediction models),
when absolute returns are examined (full results on this are available upon request from the authors).
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recursive estimation scheme, the ARFIMA model is selected, based on application of 10% level

DM tests, 30, 18, and 14 times, at the 1, 3, and 12 month horizons. Corresponding numbers for

non-ARFIMA “wins” are 34, 14, and 22. Now consider the rolling estimation scheme. the numbers

of wins corresponding to those mentioned above are 23, 9, and 12 for the ARFIMA model and 30,

14, and 24 for the non-ARFIMA model. Thus, each model wins around the same number of times.

Furthermore, it is only at the 1-month ahead horizon that the total number of wins (63 for the

recursive scheme and 50 for the rolling scheme) are substantially greater than 22 (i.e. 10% of the

total number of models). Ultimately, then, one might expect that as the sample is decreased, the

proportion of models rejecting the null will approach the size of the test. It is interesting, though,

that even 400-500 observations seems to be enough to ensure that empirical findings favoring the

ARFIMA and non-ARFIMA models around the same number of times may not simply be due to

chance.

Of final note is that the encompassing test statistic suggests rejection of the encompassing null

in around half of the models, regardless of variable, estimation scheme, and forecast horizon. This

is again evidence that the two different models are faring equally well.

In summary, our analysis of the SW dataset suggests two things. First, ARFIMA models may

even be useful in rather small samples, particularly when the alternative linear models are of the

variety we have considered here.18 However, the number of times the ARFIMA model “wins”

is clearly much greater when larger samples of data are available. Overall, this is a somewhat

surprising finding, given that d is estimated extremely imprecisely with such small samples. Second,

small samples of data choose the less parsimonious ARFIMA model as often as the non-ARFIMA

model. This is again surprising, given that all experiments are truly ex-ante.

4 Experimental Evidence

Table 7 summarizes the DGPs and parameterizations considered in our experiments. The generic

DGPs are the same as those used in our empirical analysis. For the ARFIMA models, data are gen-

erated using fractional values of d over the interval (0, 1), including d = {0.20, 0.30, 0.40, 0.60, 0.90}.
Additionally, MA(1) and AR(1) coefficients were specified, including {0.0,−0.5} (MA) and {0.3, 0.6, 0.9}

18It should be stressed, however, that our ‘small’ samples begin with data in 1959, and are usually 400-500 ob-
servations long. It is far from clear that our findings would hold up for smaller samples of, say, quarterly data
post-1980.
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(AR). Thus, we examine 35 different ARFIMA specifications. When generating ARFIMA data, we

used an arbitrary cut-off of 1.0e−004. Terms in the polynomial expansion with coefficients smaller

in absolute value than this cut-off were truncated. All DGPs include at most one lag, so that AR

models have one autoregressive lag and MA models have one moving average lag, etc. All vari-

ables are generated using standard normal errors. In the non-ARFIMA models, autoregressive slope

parameters considered include {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, the MA models have coefficients

equal to {−0.7,−0.4,−0.1, 0.2, 0.3, 0.4, 0.5, 0.9}, and values of d equal to 0 and 1 are considered.

For the GARCH DGP, 8 different specifications were considered. All of the parameteriztions in

this case were chosen to mirror the types of parameters observed when estimating the models using

our stock market and macroeconomic variables. Samples of T = {1000, 4000} were used. Given the

generated data, all analysis was carried out in exactly the same way as for our empirical examples.

In particular, a “best” ARFIMA and non-ARFIMA model was first selected using point MSFE

comparison of recursive (rolling) predictions based on the first half of the sample, for 3 prediction

horizons (1, 5, and 20 step ahead). Then, the second half of the sample was used for ex ante

comparison of the 2 models, again using either recursive or rolling estimation schemes, and for all

three horizons. All results are based on 500 Monte Carlo replications.

A summary of our experimental findings is given in Tables 8.1-8.2 (ARFIMA DGPs) and Ta-

bles 9.1-9.2 (non-ARFIMA DGPs). The tables report the proportion of times that the ARFIMA

models win a forecasting competition, based on direct comparison of point MSFE first entry in

each bracketed trio of numbers) and based on 10% level DM tests (second entry). The last entry

in each bracketed group of numbers reports the proportion of times that the encompassing null

hypothesis fails to reject. Thus, all entries report various measures of the proportional of ARFIMA

model “wins”. Columns in the tables refer to the estimation scheme used, and to the forecast hori-

zon. The clear pattern that emerges when comparing Tables 8.1 and 8.2 is that the proportion of

times that the ARFIMA model wins (when the true DGP is an ARFIMA process) increases rather

substantially when the sample is increased from 1000 to 4000 observations. Note also that the first

half of the sample is used to select the ARFIMA and non-ARFIMA model to use in the subse-

quent “horse-race”, and hence results reported in Table 8.1, for example, are based on sequences

of only 500 predictions. Given that estimation of d in this table is thus also carried out with far

fewer than 1000 observations, it is perhaps noteworthy that the ARFIMA model still outperforms

the non-ARFIMA model around 50% of the time, and sometimes as much as 70-80% of the time.
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These numbers increase dramatically when the sample is 4000 observations, with ARFIMA models

“wins” occurring around 70-100% of the time in most cases. Thus, moderately sized samples may

be enough to achieve gains from using ARFIMA models. This finding is in accord with the findings

reported in the empirical part of the paper.

Not surprisingly, the ARFIMA model wins very little of the time, when the true DGP is a

non-ARFIMA model. Furthermore, the incidence of ARFIMA “wins” decreases when the sample

is 4000 rather than 1000 observations (compare Tables 9.1 with 9.2).

Although the above results appear somewhat promising, it should be stressed that parameter

estimation error does play an important role. To illustrate this point, note that in Table 10 two

different ARFIMA models are compared using the modelling approach discussed above. One is an

ARFIMA model with d estimated, and the other assumes that d is known - so that parameters

estimated each time predictions are constructed are only the ARMA parameters. Numerical values

in the table are percentages, and are extremely high, as expected, as they measure the percentage

of times that models with all parameters known outperform models with d estimated, based on

point MSFE comparison. What is perhaps surprising is that the impact of estimating d remains

essentially unchanged when the sample size is increased from 1000 to 4000 observations, again

affirming that very long samples are needed before the impact of parameter estimation error begins

to diminish.19

5 Concluding Remarks

We present the results of an empirical and Monte Carlo investigation of the usefulness of ARFIMA

models in practical prediction based applications, and find evidence that such models may yield

reasonable approximations to unknown underlying DGPs, in the sense that the models often sig-

nificantly outperform a fairly wide class of the benchmark non-ARFIMA models, including AR,

ARMA, ARIMA, random walk, GARCH, and related models. This finding is particularly appar-

ent with longer samples of data such as an international stock index return dataset with around

5000 observations. Another finding of our analysis is that more parsimonious ARIMA models are
19It should be noted that the performance of ARFIMA models where d is known always improves when the

sample size is increased from 1000 to 4000 observations. Thus, any parameter estimation error reduction (and hence
improvement in performance of our ARFIMA models which use estimates of d) due to increasing sample size appears
to be more than offset by improved performance of our arbitrary cut-off for polynomial expansion (as this is the
only ‘approximation’ inherant to the ARFIMA models used to construct predictions when d is known), at least when
samples are between one and four thousand observations.
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clearly not always preferred when predicting financial data - a rather surprising result given the

large body of research suggesting that more parsimonious models often outperform more heavily

parameterized models.20 Finally, there appears little to choose between various estimators of d

when samples are as large as often encountered in financial economics. For shorter samples such as

those encountered in macroeconomics, parameter estimation error appears to plague estimates of

d, and predictive performance of ARFIMA models is appreciably worsened, relative to the longer

financial datasets examined in this paper. Overall, we conclude that long memory processes, and

in particular ARFIMA processes, might not fall into the “empty box” category after all, although

much further research is needed before overwhelmingly conclusive evidence in either direction can

be given. For example, it should be of interest to investigate whether our finding that ARFIMA

models most frequently outperform simpler linear models at longer prediction horizons hold up

when the alternatives considered also include various types of regime switching, threshold, and

related nonlinear models. On a related note, alternative estimators of d may be useful when build-

ing forecasting models using smaller datasets, such as estimators based on predictive error loss

minimization (see e.g. Bhardwaj and Swanson (2003)). These and related issues are left to future

research.
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Table 1: The Long-Memory Filter (1− L)d (∗)

d lag = 5 lag = 10 lag = 20 lag = 25 lag = 50 lag = 75 lag = 100 Lag Truncation
0.2 -0.0255 -0.0110 -0.0047 -0.0036 -0.0016 -0.001 -0.0007 496
0.3 -0.0297 -0.0118 -0.0048 -0.0035 -0.0014 -0.0008 -0.0006 387
0.4 -0.0300 -0.0110 -0.0041 -0.0030 -0.0011 -0.0006 -0.0004 281
0.6 -0.0228 -0.0071 -0.0023 -0.0016 -0.0005 -0.0003 -0.0002 139
0.7 -0.0173 -0.0050 -0.0015 -0.0010 -0.0003 -0.0002 -0.0001 96

(∗) Notes: Values taken by the filter (1− L)d are reported in columns 2 to 8. The last column gives the lag after
which the absolute value of coefficients of the polynomial become smaller than 1.0e− 004.
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Table 2: Analysis of U.S. S&P500 Daily Absolute Returns (∗)

Estimation Scheme ARFIMA d non-ARFIMA DM ENC-t DM
and Forecast Horizon Model Model Best vs. RW
1 day ahead, recursive WHI (1,1) 0.41 (0.0001) ARMA(4,2) -1.18 0.47 -13.64
5 day ahead, recursive GPH (1,2) 0.57 (0.0011) ARMA(4,2) -0.71 1.75 -10.10
20 day ahead, recursive GPH (1,2) 0.57 (0.0011) ARMA(4,2) -0.68 2.91 -5.96
120 day ahead, recursive GPH (1,2) 0.57 (0.0011) ARMA(4,2) 0.38 7.52 -6.33
240 day ahead, recursive GPH (1,2) 0.57 (0.0011) ARMA(4,2) 0.52 10.22 -6.16
1 day ahead, rolling RR (1,1) 0.25 (0.0009) ARMA(4,2) 2.02 4.56 -12.44
5 day ahead, rolling GPH (1,2) 0.55 (0.0044) ARMA(4,2) -2.28 0.26 -10.24
20 day ahead, rolling GPH (1,2) 0.55 (0.0044) ARMA(4,2) -2.44 0.79 -5.91
120 day ahead, rolling GPH (1,2) 0.55 (0.0044) ARMA(4,2) -4.07 0.09 -6.32
240 day ahead, rolling RR (1,1) 0.25 (0.0009) ARMA(4,2) -2.62 2.72 -5.90

(∗) Models are estimated as discussed above, and model acronyms used are as outlined in Section 3 and Table 7.
Data used in this table correspond to those used in Ding, Granger, and Engle (1993), are daily, and span the period
1928-2003. Reported results are based on predictive evaluation using the second half of the sample. The ‘ARFIMA
Model’ and the ‘non-ARFIMA Model’ are the models chosen using MSFEs associated with ex ante recursive (rolling)
estimation and 1, 5, 20, 120 and 240 step ahead prediction of the different model/lag combinations using the first 50%
of sample. The remaining 50% of sample is used for subsequent ex ante prediction, the results of which are reported
in the table. Further details are given in Section 2.4. In the second column, entries in brackets indicate the number
of AR and MA lags chosen for the ARFIMA model. The third column lists the average (and standard error) of the
estimated values of d across the entire ex ante sample, thus these entries are conditional on the selected ARFIMA
model. Diebold and Mariano (DM) test statistics are based on MSFE loss, and application of the test assumes that
parameter estimation error vanishes and that the standard normal limiting distribution is asymptotically valid, as
discussed in Section 2.3. Negative statistic values for DM statistics indicate that the point MSFE associated with
the ARFIMA model is lower than that for the non-ARFIMA model, and the null hypothesis of the test is that of
equal predictive accuracy. ENC-t statistics reported in the sixth column of the table, are normally distributed for
h = 1, and correspond to the null hypothesis that the ARFIMA model encompasses the non ARFIMA model. The
last column of the table reports the MSFE loss based DM test statistics, where the best ARFIMA/non-ARFIMA
model is taken as model 0 (see discussion in Section 2.3) which is compared to RW based forecast.
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Table 3: Analysis of International Stock Market Data (∗)
SERIES SM d Recursive Estimation Scheme Rolling Estimation Scheme

Rejec 1 day ahead 5 day ahead 20 day ahead 1 day ahead 5 day ahead 20 day ahead

DM ENC-t DM ENC-t DM ENC-t DM ENC-t DM ENC-t DM ENC-t

S & P 500

|rt| 5 0.64 (0.05) -2.07* -4.28 -0.58 -3.73 -2.12* -1.14 -1.17 -3.80 -0.23 -2.75 -6.53* -5.26

r2
t 3 0.07 (0.01) -4.19* -3.36 -3.90* -1.42 -7.00* -8.95 -4.03* -1.48 -4.23* -0.37 -4.75* -3.88

log
(
r2
t

)
5 0.97 (0.04) -8.09* 0.56 -7.67* 0.76 -8.11* 0.09 -7.02* 0.57 0.59 0.14 -0.80 0.96

|rt| Pre 87 5 0.52 (0.02) -1.68* 0.97 -1.94* 0.24 -1.83* 0.05 -1.53 0.86 -1.43 0.48 -1.73* 0.18

r2
t Pre 87 5 0.58 (0.04) 2.49

†
3.64

†
1.44 3.27

†
0.40 1.94

†
1.24 3.71

†
0.83 0.40 1.30 2.78

†

log r2
t Pre 87 5 0.12 (0.03) -1.29 0.30 -1.14 0.95 -1.28 0.83 0.90 0.53 0.01 0.61 -0.78 0.24

|rt| Post 87 5 0.46 (0.01) 0.20 1.75
†

-0.04 0.15 -0.63 0.90 0.32 0.03 -1.32 0.15 -3.31* -1.92

r2
t Post 87 4 0.53 (0.08) 0.51 0.81 -0.10 1.06 -1.32 0.13 -0.11 0.45 -1.14 0.61 2.86

†
4.95

†

log r2
t Post 87 4 0.23 (0.02) 2.69

†
5.70

†
3.59

†
7.16

†
5.96

†
11.07

†
4.46

†
7.62

†
5.16

†
9.40

†
1.91

†
4.20

†

FTSE

|rt| 4 0.19 (0.03) 1.72
†

3.60
†

-2.52* -0.70 -3.35* -0.53 -0.63 1.04 -1.26 0.72 -2.34* 0.19

r2
t 4 0.21 (0.03) -5.52* 0.04 -4.76* 0.16 -4.96* 1.21 -2.70* 0.98 -4.18* -2.15 1.37 5.14

†

log r2
t 3 0.15 (0.04) 1.92

†
4.05

†
2.08

†
4.67

†
2.29

†
5.68

†
-0.70 0.32 -0.04 0.79 -3.37* -0.48

|rt| Pre 87 4 0.68 (0.06) -0.10 0.37 -1.67* -0.92 -3.69* -3.18 2.36
†

3.98
†

0.11 0.32 -0.92 0.40

r2
t Pre 87 3 0.34 (0.01) -6.07* -1.19 -5.36* -1.66 -4.39* 0.58 2.22

†
3.74

†
1.80

†
3.29

†
-7.05* 0.12

log r2
t Pre 87 4 0.15 (0.01) 0.80 0.50 0.93 0.33 3.70

†
10.01

†
4.35

†
6.97

†
0.72 1.54

†
0.62 0.31

|rt| Post 87 4 0.47 (0.01) -1.18 -0.60 -1.64 -1.52 -1.99* -1.79 -1.27 -0.16 -1.59 -1.10 -1.80* -1.42

r2
t Post 87 3 0.17 (0.05) 1.69

†
3.97

†
1.60 2.71

†
-3.50* -2.60 1.76

†
4.02

†
0.05 0.73 -0.79 1.06

log r2
t Post 87 4 0.17 (0.03) 1.43 3.95

†
-2.49* 0.05 -3.33* 0.28 2.55

†
6.84

†
-3.00* 0.76 -3.00* 0.09

DAX

|rt| 5 0.47 (0.01) 0.08 0.18 -0.22 0.24 -0.64 0.66 -0.49 0.96 0.49 1.15 -1.43 0.77

r2
t 5 0.16 (0.02) 0.74 1.96

†
-3.21* -3.43 -3.82* -4.07 0.26 0.55 -3.00* -2.60 -3.88* -2.90

log r2
t 5 0.20 (0.02) 0.51 0.83 0.34 0.12 1.13 4.71

†
0.79 0.60 1.55 4.58

†
1.63 5.42

†

|rt| Pre 87 5 0.18 (0.04) 1.47 3.73
†

0.98 0.31 -1.76* 0.24 1.26 3.63
†

-0.22 0.58 -0.83 0.13

r2
t Pre 87 5 0.17 (0.04) -2.93* -1.51 -0.44 0.91 -1.50 0.78 -2.54* -0.04 -1.49 -0.33 -0.55 0.72

log r2
t Pre 87 4 0.14 (0.04) -0.22 0.66 0.35 2.40

†
0.73 3.73

†
-1.10 0.16 0.31 0.33 -0.33 0.71

|rt| Post 87 5 0.68 (0.07) 0.78 0.01 -1.61 -0.36 -1.78* 0.24 -1.53 -0.46 -1.76* -0.76 -1.63 -0.40

r2
t Post 87 4 0.16 (0.03) 0.36 0.29 -1.10 0.12 -1.75* 0.69 0.02 0.05 -0.48 0.45 -0.48 0.35

log r2
t Post 87 5 0.20 (0.02) 2.83

†
5.80

†
3.39

†
6.73

†
3.45

†
6.79

†
0.97 0.93 1.36 0.36 3.06

†
6.92

†

Nikkei

|rt| 5 0.47 (0.01) 0.29 0.20 -2.33* 0.14 -3.03* 0.41 3.77
†

6.32
†

-1.21 0.19 -1.09 0.90

r2
t 5 0.18 (0.02) -6.73* -2.10 -0.84 0.82 -0.92 0.69 1.33 2.56

†
-4.65* -3.30 0.98 4.32

†

log r2
t 5 0.94 (0.04) 0.03 0.15 0.81 2.94

†
0.24 3.78

†
0.13 0.59 0.48 0.39 -1.43 0.93

|rt| Pre 87 5 0.15 (0.03) 0.02 0.62 -0.52 0.80 -1.09 0.92 -0.31 0.38 -0.96 0.77 -1.10 0.75

r2
t Pre 87 4 0.11 (0.02) -2.56* -1.92 1.02 2.04

†
-0.68 0.63 -2.48* -1.19 -0.49 0.27 -0.17 0.42

log r2
t Pre 87 4 0.67 (0.19) -3.92* -0.75 -1.40 0.95 -1.66* 0.08 -3.30* 0.11 -2.24* 0.62 -2.45* 0.41

|rt| Post 87 5 0.22 (0.02) 0.67 0.50 -3.01* -0.98 -0.19 0.12 2.53
†

4.89
†

2.03
†

4.07
†

2.15
†

4.75
†

r2
t Post 87 4 0.17 (0.02) 0.84 0.62 0.73 2.85

†
0.50 2.10

†
0.18 0.27 1.75

†
3.78

†
0.79 2.16

†

log r2
t Post 87 5 0.78 (0.14) 2.44

†
3.78

†
3.10

†
4.75

†
3.54

†
6.30

†
0.83 0.57 0.30 0.18 3.93

†
6.56

†
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Table 3 (continued): Analysis of International Stock Market Data
SERIES SM d Recursive Estimation Scheme Rolling Estimation Scheme

Rejec 1 day ahead 5 day ahead 20 day ahead 1 day ahead 5 day ahead 20 day ahead

DM ENC-t DM ENC-t DM ENC-t DM ENC-t DM ENC-t DM ENC-t

Hang Sang

|rt| 5 0.21 (0.02) -2.47* 0.30 -2.56* -0.38 -2.67* -1.72 -1.06 0.32 -2.59* -0.12 -3.07* -1.76

r2
t 0 0.16 (0.05) -2.75* 0.96 -3.57* -2.91 -2.46* -3.06 -2.71* -0.91 -3.61* -2.41 -2.41* -2.19

log r2
t 4 0.22 (0.01) 3.19

†
5.05

†
2.27

†
5.55

†
2.55

†
6.92

†
3.07

†
5.84

†
2.52

†
5.62

†
2.34

†
6.77

†

|rt| Pre 87 4 0.15 (0.05) -1.47 -0.42 -3.19* -3.24 -4.02* -5.77 -0.26 0.33 -0.65 0.29 -0.73 0.40

r2
t Pre 87 3 0.13 (0.03) -6.96* -4.85 -5.78* -9.27 13.15

†
14.94

†
-2.86* 0.01 -4.94* -5.90 4.15

†
8.26

†

log r2
t Pre 87 2 1.07 (0.07) -0.21 0.71 -0.60 0.52 -2.42* 0.16 1.89

†
4.99

†
-0.06 0.86 -1.51 0.63

|rt| Post 87 5 0.19 (0.04) 0.40 0.74 0.33 0.04 -1.47 1.07 -0.60 0.80 -0.14 0.61 -0.92 0.22

r2
t Post 87 1 0.26 (0.13) 0.67 0.32 -0.99 -0.12 -0.92 1.12 -1.11 0.79 -1.14 -1.27 -1.36 0.38

log r2
t Post 87 5 0.18 (0.02) 2.61

†
4.81

†
1.05 3.09

†
0.70 3.77

†
2.74

†
5.25

†
1.68

†
4.19

†
2.19

†
5.67

†

(∗) Notes: See notes to Table 2. Data used in this table correspond to those used in Leybourne, Harris and McCabe
(2003), and the variables are daily, spanning the period 1981-2002. Reported results are based on predictive evaluation
using the second half of the sample. The number in brackets appearing beside the series name reports the number of
short memory test rejections based on application of all 5 SM tests discussed above, at a 10% nominal significance
level. The second column of entries reports the average and standard error of estimated d values for the case of one
step ahead recursive forecasting. Starred and daggered DM and ENC-t test statistics indicate rejection of the tests’
null hypothesis at a 10% nominal significance level, based on MSFE loss, with starred entries indicating rejection in
favor of ARFIMA models and daggered entries indicating rejection in favor of non-ARFIMA models (see notes to
Table 2 for further details).
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Table 4: Analysis of U.S. Macroeconomic Data (Stock and Watson Dataset)(∗)

Variable SM Rejec Recursive Estimation Scheme Rolling Estimation Scheme
1 month ahead 3 month ahead 12 month ahead 1 month ahead 3 month ahead 12 month ahead
DM ENC-t DM ENC-t DM ENC-t DM ENC-t DM ENC-t DM ENC-t

CONDO9 5 0.10 2.91
†

0.10 2.96
†

0.14 1.97
†

0.72 2.87
†

0.19 1.10 0.12 2.06
†

CONPC 5 1.63 2.41
†

1.67
†

3.52
†

1.69
†

2.01
†

0.19 2.89
†

0.01 3.11
†

0.61 2.32
†

CONQC 5 2.50
†

6.24
†

2.53
†

3.84
†

2.58
†

3.72
†

0.37 2.17
†

0.26 1.87
†

0.45 3.33
†

CONTC 5 1.93
†

2.31
†

1.97
†

2.26
†

2.00
†

2.13
†

0.06 2.53
†

0.12 4.10
†

1.05 2.84
†

FTB 0 1.90
†

2.63
†

0.80 1.24 1.38 1.41
†

0.60 1.52
†

1.46 1.46
†

0.11 0.43

FTMD 1 0.63 2.87
†

-2.04* -1.43 -2.06* -1.43 1.02 2.59
†

0.03 0.93 -1.84* -1.10

FWAFIT 4 -0.26 1.49
†

0.21 2.92
†

1.11 9.68
†

1.01 2.62
†

0.82 2.40
†

1.27 8.11
†

GMCANQ 0 -1.34 -1.34 0.60 2.15
†

-1.02 -0.61 0.62 1.99
†

0.75 1.79
†

1.00 1.89
†

GMCDQ 2 -0.75 1.19 0.07 1.18 1.56 2.83
†

0.23 1.21 0.01 1.32
†

-0.56 0.92
GMCNQ 2 -0.76 0.60 -1.06 -1.15 -3.04* -1.54 -0.75 0.71 0.08 0.55 -0.58 -0.27

GMCQ 2 1.54 2.76
†

-1.83* -0.81 1.31 0.71 -1.29 0.48 -1.95* -0.71 1.38 1.57
†

GMCSQ 2 -2.23* -1.60 -1.32 -0.46 -0.36 0.58 2.37
†

3.48
†

0.27 1.24 0.81 1.33
†

GMPYQ 2 1.21 1.57
†

0.26 1.22 2.34
†

1.86
†

0.70 1.20 0.82 2.85
†

2.64
†

3.10
†

GMYXPQ 3 -2.45* -0.10 -1.49 -0.18 1.60 1.94
†

-0.39 0.68 -0.18 1.25 1.87
†

2.21
†

HHSNTN 4 1.76
†

2.15
†

-1.66* -1.87 -1.67* -4.26 1.84
†

2.15
†

-1.05 -0.62 -1.25 -2.11

HMOB 5 0.82 2.76
†

0.82 2.81
†

0.84 2.45
†

0.01 2.87
†

0.02 2.22
†

0.45 1.78
†

HNIV 5 3.62
†

6.08
†

3.98
†

3.57
†

1.91
†

1.94
†

3.44
†

2.35
†

3.45
†

2.79
†

1.11 2.88
†

HNR 5 1.72
†

2.30
†

0.63 3.67
†

1.93
†

2.58
†

1.17 2.37
†

1.14 3.55
†

0.85 1.81
†

HNS 5 0.80 3.16
†

0.78 3.44
†

0.75 4.78
†

0.02 2.93
†

0.31 1.44
†

0.68 2.34
†

HNSMW 5 0.81 2.82
†

0.80 2.59
†

0.78 1.94
†

0.51 2.50
†

0.29 3.75
†

0.06 1.13

HNSNE 5 -0.10 -0.07 -2.93* -1.31 0.26 2.64
†

1.00 1.27 -2.62* -0.62 0.49 4.21
†

HNSSOU 5 0.94 2.85
†

0.91 2.15
†

0.89 3.42
†

0.02 2.67
†

0.03 1.02 0.18 1.18

HNSWST 5 0.36 2.89
†

0.34 2.10
†

0.33 3.04
†

0.66 2.55
†

0.35 2.78
†

0.20 2.34
†

HSBMW 4 0.73 3.54
†

0.72 2.69
†

0.67 3.08
†

0.22 3.65
†

0.15 2.91
†

0.26 2.84
†

HSBNE 4 -0.14 -0.10 -0.71 2.08
†

-0.39 -0.70 1.14 1.26 -2.38* -1.56 0.05 1.50
†

HSBR 4 0.28 2.55
†

0.21 2.85
†

0.21 5.06
†

0.28 2.97
†

0.10 2.45
†

0.09 2.61
†

HSBSOU 4 0.52 3.85
†

0.51 2.12
†

0.50 4.22
†

0.02 2.87
†

0.05 2.26
†

0.13 2.34
†

HSBWST 4 0.15 6.66
†

0.13 1.86
†

0.14 3.33
†

0.16 2.77
†

0.09 2.10
†

0.14 2.61
†

HSFR 4 -1.73* -0.87 0.10 0.41 0.45 3.50
†

-1.65* -0.83 -0.06 -0.02 0.32 2.89
†

HSMW 4 -1.11 -1.46 -1.14 -1.99 -1.43 -2.88 2.05
†

1.94
†

1.62 3.21
†

-1.65* -0.65

HSNE 4 0.74 1.00 0.80 3.71
†

-0.57 -2.59 0.85 1.01 0.65 3.08
†

-0.26 -0.47

HSSOU 4 0.01 2.22
†

0.02 2.22
†

0.02 4.35
†

0.40 2.93
†

0.05 2.30
†

0.21 2.96
†

HSWST 4 0.02 2.81
†

0.01 1.80
†

0.01 3.45
†

0.33 2.72
†

0.01 2.99
†

0.13 2.92
†

IP 2 -0.73 0.67 0.07 1.46
†

-0.61 0.38 -0.37 1.47
†

0.42 2.15
†

0.24 1.64
†

IPC 1 1.49 1.73
†

0.29 0.33 0.28 0.41 -0.35 0.13 0.80 0.70 -0.67 0.02

IPCD 1 -0.12 0.28 1.39 2.10
†

-0.90 -0.57 0.10 2.54
†

1.44 2.31
†

0.23 0.65

IPCN 2 -1.64 -1.23 -1.7* -1.31 -2.79* -1.93 1.27 2.31
†

0.08 0.14 -1.48 -1.47

IPD 2 0.22 1.09 -0.25 0.10 0.60 2.18
†

-2.43* -0.67 0.28 2.39
†

-0.16 0.01

IPE 2 -2.85* -2.08 -0.44 0.01 -0.05 0.69 -0.84 0.01 -0.22 0.60 1.06 1.99
†

IPF 2 -2.91* -2.35 -2.08* -0.98 -2.03* -1.14 -0.59 1.07 -0.18 -0.02 1.71
†

2.76
†

IPI 1 -2.20* -1.29 -0.41 0.15 -0.97 0.07 -1.79* -0.91 -0.02 1.74
†

1.93
†

1.80
†

IPM 1 0.86 1.55
†

-0.41 0.78 2.52
†

2.91
†

-0.55 1.09 -0.08 1.49
†

-1.20 -0.87

IPMD 1 -0.80 0.31 1.31 3.92
†

-0.42 -0.18 0.27 1.88
†

0.67 2.61
†

-1.23 -0.45

IPMFG 2 -1.60 0.09 0.35 2.02
†

-0.28 1.03 -1.10 0.31 0.23 2.23
†

0.14 1.68
†

IPMIN 1 -1.38 -1.26 1.50 2.89
†

1.27 1.89
†

1.24 2.00
†

1.16 2.48
†

0.73 1.20
IPMND 1 -3.26* -1.52 -0.41 0.20 -1.65* -1.22 -0.34 0.72 -0.19 0.47 -0.03 0.03

35



Table 4 (continued): Analysis of U.S. Macroeconomic Data (Stock and Watson Dataset)
Variable SM Rejec Recursive Estimation Scheme Rolling Estimation Scheme

1 month ahead 3 month ahead 12 month ahead 1 month ahead 3 month ahead 12 month ahead
DM ENC-t DM ENC-t DM ENC-t DM ENC-t DM ENC-t DM ENC-t

IPN 1 0.27 1.48
†

-0.83 -0.28 0.44 0.42 1.00 1.00 -0.17 0.34 1.40 1.25

IPP 2 -3.03* -1.27 -2.09* -0.82 -2.02* -1.02 0.82 1.35
†

-0.04 0.36 1.98
†

1.90
†

IPUT 2 -2.54* -0.81 -0.36 0.12 -0.21 1.05 -2.72* -0.72 -0.20 0.01 -0.41 -0.17

IPX 4 0.56 2.63
†

0.29 3.80
†

0.01 2.71
†

1.06 2.28
†

1.03 2.48
†

0.48 2.92
†

IPXDCA 4 0.14 2.15
†

0.13 2.21
†

0.11 2.43
†

0.67 2.64
†

0.19 1.02 0.06 2.18
†

IPXMCA 3 0.28 2.94
†

0.27 2.12
†

0.28 2.41
†

0.53 2.82
†

0.60 1.17 0.25 2.32
†

IPXMIN 4 0.44 2.80
†

0.44 2.05
†

0.48 2.26
†

0.64 2.61
†

0.41 2.94
†

0.41 2.14
†

IPXNCA 4 1.48 2.73
†

0.12 3.24
†

0.32 2.69
†

1.16 8.21
†

1.42 2.03
†

1.09 2.35
†

IPXUT 4 0.50 3.79
†

0.49 1.86
†

0.49 1.85
†

0.40 2.65
†

0.41 2.50
†

0.00 2.14
†

IVMFDQ 4 0.05 1.11 -1.00 -2.21 -0.84 -2.25 0.30 1.04 -0.46 -0.40 0.52 3.95
†

IVMFGQ 3 0.43 1.26 -0.98 -2.30 -1.16 -2.71 0.55 1.47
†

-0.22 0.12 -0.59 -0.84

IVMFNQ 2 6.97
†

7.31
†

0.32 0.99 -0.89 -1.30 0.38 2.26
†

0.43 0.98 1.73
†

2.10
†

IVMTQ 3 -1.88* -1.58 -1.92* -3.16 -1.48 -3.48 -1.04 -0.39 -0.84 -0.89 -0.12 0.47

IVRRQ 3 -0.26 0.92 0.26 0.59 0.80 1.38
†

-0.46 1.09 0.58 1.26 1.37 2.21
†

IVSRMQ 1 1.45 2.04
†

1.45 2.19
†

0.59 1.16 2.01
†

4.90
†

1.29 2.39
†

1.22 1.83
†

IVSRQ 1 -0.70 0.90 1.00 2.26
†

0.62 1.20 0.78 3.63
†

1.12 2.72
†

-0.53 0.62

IVSRRQ 1 4.40
†

5.16
†

0.40 1.97
†

-0.86 -0.68 0.07 2.74
†

1.94
†

2.72
†

0.24 0.43
IVSRWQ 0 -0.65 0.06 0.23 0.93 0.21 0.93 -0.74 -0.05 0.20 0.79 0.11 0.80

IVWRQ 2 -0.13 0.87 0.85 2.20
†

-0.55 1.29
†

-0.43 1.53
†

-1.61 -0.15 2.02
†

4.43
†

LEH 4 1.69
†

2.65
†

-1.09 -0.45 -1.81* -0.33 1.09 1.69
†

-0.09 -0.05 1.19 1.86
†

LEHCC 2 -0.40 -0.01 -0.15 -0.01 0.57 0.18 -0.20 0.82 -0.83 -0.76 -1.24 -1.22

LEHFR 3 -2.68* -0.15 1.79
†

2.81
†

0.66 0.22 -2.33* 0.44 1.79
†

2.81
†

2.05
†

2.44
†

LEHM 2 -0.98 -1.29 -0.83 -0.46 0.76 0.14 -0.75 0.22 -0.93 -0.19 0.91 0.91

LEHS 3 1.70
†

3.02
†

1.05 2.05
†

-1.52 4.27
†

1.72
†

3.77
†

0.41 2.14
†

-1.52 4.27
†

LEHTT 4 1.70
†

2.06
†

1.34 2.59
†

0.61 0.70 1.91
†

2.81
†

0.18 0.18 -0.20 -0.07

LEHTU 3 -2.22* -2.23 1.56 0.31 -0.89 -0.47 1.97
†

3.02
†

0.92 0.76 1.34 1.08

LHEL 2 2.67
†

4.45
†

-1.54 2.11
†

-1.33 2.07
†

2.83
†

2.82
†

2.17
†

2.74
†

-1.25 2.66
†

LHELX 4 1.30 4.10
†

1.48 2.36
†

-0.23 4.91
†

3.08
†

4.52
†

0.66 5.16
†

-0.18 4.77
†

LHEM 1 -1.26 -0.64 -0.16 0.77 1.64 1.62
†

-0.49 0.28 1.59 2.78
†

2.59
†

4.31
†

LHNAG 2 -1.14 -1.84 -0.14 1.06 1.70
†

3.10
†

-0.49 -0.01 1.02 2.44
†

2.54
†

4.91
†

LHU14 4 -2.29* -1.44 -1.26 0.95 -0.65 -2.22 -1.84* -0.50 0.10 2.88
†

0.01 5.26
†

LHU15 4 1.12 1.85
†

0.82 4.15
†

-0.63 1.19 0.93 1.70
†

0.85 2.82
†

-0.36 3.20
†

LHU26 3 -0.38 0.71 -0.67 -0.22 -0.86 -1.04 0.14 1.22 -0.23 0.77 -0.45 0.62

LHU5 4 0.34 2.93
†

0.77 3.21
†

1.02 6.17
†

0.15 2.04
†

1.32 4.83
†

1.28 2.45
†

LHU680 4 -0.49 3.27
†

0.49 2.85
†

0.52 2.99
†

-0.67 2.69
†

0.32 5.65
†

0.55 2.43
†

LHUR 4 1.17 3.56
†

0.81 2.68
†

0.86 2.48
†

1.11 1.62
†

0.89 2.13
†

1.19 2.36
†

LP 1 1.58 2.11
†

1.05 2.75
†

1.37 6.66
†

1.83
†

2.03
†

-0.86 -0.35 1.30 7.24
†

LPCC 1 -1.98* -0.34 -1.80* -1.69 1.50 5.45
†

-2.10* -0.53 -1.80* -1.49 -0.10 1.36
†

LPED 1 1.65
†

5.58
†

0.98 2.87
†

1.26 4.13
†

-1.32 0.10 1.13 4.13
†

1.18 3.91
†

LPEM 2 1.23 6.11
†

0.92 6.44
†

0.36 3.93
†

1.02 1.75
†

0.85 4.45
†

0.32 1.62
†

LPEN 1 -3.24* 0.73 0.92 4.40
†

0.81 4.31
†

-3.70* 0.11 0.59 3.48
†

0.11 1.70
†

LPFR 4 0.29 0.92 0.54 3.09
†

-0.10 2.63
†

1.27 1.42
†

1.01 4.29
†

0.60 5.58
†

LPGD 2 1.60 6.07
†

-0.70 -1.41 0.84 4.00
†

1.00 2.13
†

0.97 4.81
†

0.41 2.10
†

LPGOV 4 0.50 1.06 1.74
†

2.24
†

1.58 1.99
†

1.56 2.11
†

1.08 2.06
†

0.96 2.54
†

LPHRM 3 2.09
†

3.83
†

1.81
†

4.90
†

0.17 2.26
†

2.52
†

2.58
†

2.76
†

2.30
†

0.52 2.98
†

LPMI 1 0.82 1.43
†

0.12 0.29 0.59 2.11
†

1.37 1.98
†

1.50 2.04
†

0.49 2.12
†

LPMOSA 4 -0.43 2.25
†

0.21 4.26
†

0.34 2.76
†

1.00 2.31
†

-0.18 4.71
†

0.04 2.52
†

LPNAG 1 0.74 1.14 1.45 4.39
†

1.38 8.33
†

1.79
†

1.70
†

-0.72 -0.78 1.23 7.91
†
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Table 4 (continued): Analysis of U.S. Macroeconomic Data (Stock and Watson Dataset)
Variable SM Rejec Recursive Estimation Scheme Rolling Estimation Scheme

1 month ahead 3 month ahead 12 month ahead 1 month ahead 3 month ahead 12 month ahead
DM ENC-t DM ENC-t DM ENC-t DM ENC-t DM ENC-t DM ENC-t

LPS 2 -1.87* -3.23 0.90 3.23
†

1.03 5.64
†

-1.91* -2.58 1.00 3.98
†

1.10 6.00
†

LPSP 3 -1.60 -1.19 -0.76 -1.24 1.33 7.99
†

2.22
†

2.36
†

0.93 1.93
†

1.28 7.98
†

LPT 3 -1.61 -3.94 1.46 4.73
†

1.90
†

8.17
†

-2.18* -1.90 -1.06 -2.31 1.88
†

8.80
†

LPTU 1 -0.86 1.62
†

0.28 0.19 1.88
†

0.85 -0.87 1.76
†

-1.00 -0.93 1.41 1.30
†

LW 1 -1.34 -0.64 1.21 1.63
†

0.01 -0.60 -1.41 -0.30 1.32 1.77
†

0.10 -0.15

MDO 1 -0.37 1.64
†

0.06 1.55
†

-1.42 -1.46 -0.45 1.37
†

-0.36 0.83 -1.12 -1.25

MDOQ 0 -2.74* -0.99 -0.26 0.98 1.53 2.84
†

1.00 1.00 1.00 1.00 0.29 1.61
†

MDU 4 -5.18* -4.08 0.58 1.96
†

1.06 4.07
†

-4.45* -2.34 -0.63 -0.53 -1.38 -3.76
MDUWU 1 0.52 0.92 0.52 0.70 -1.86* -1.30 0.15 0.79 -1.61 -0.88 -1.78* -1.59

MNO 2 0.10 1.96
†

0.38 0.76 1.83
†

3.19
†

-0.92 0.17 -0.33 -0.10 1.28 2.41
†

MNOU 2 1.93
†

3.00
†

0.75 0.99 2.13
†

1.31
†

2.48
†

3.24
†

0.46 0.62 1.33 0.63

MNU 0 2.78
†

2.34
†

-1.56 -1.33 0.71 1.77
†

1.17 1.55
†

0.30 0.90 0.61 2.12
†

MO 2 0.74 1.62
†

-1.64 -0.59 0.63 1.88
†

1.26 2.12
†

-0.14 0.86 2.05
†

3.23
†

MOCMQ 0 -0.44 0.60 -0.01 -0.19 -0.67 -0.75 1.86
†

3.39
†

0.30 0.81 -0.60 0.07

MOWU 1 -0.77 1.55
†

0.00 1.64
†

-1.14 -1.19 0.06 0.88 0.42 0.63 -1.37 -1.94

MPCON 1 0.83 1.63
†

0.75 1.08 2.04
†

1.21 1.48 2.51
†

1.16 1.80
†

0.05 0.19

MPCONQ 0 0.95 1.05 0.60 0.97 1.35 0.82 1.12 1.49
†

0.81 1.30
†

0.42 0.18

MSDQ 1 -0.23 -0.19 0.56 1.10 1.67
†

2.00
†

1.48 2.13
†

1.90
†

2.23
†

0.72 1.38
†

MSMQ 1 1.85
†

2.18
†

0.45 0.89 0.28 0.78 2.49
†

2.78
†

-0.23 0.59 -0.70 -0.03

MSMTQ 1 1.14 1.94
†

-0.56 -0.51 1.48 1.45
†

1.21 2.00
†

-1.18 -1.14 0.39 0.48

MSNQ 0 3.97
†

4.06
†

-0.22 0.30 -0.99 -0.73 1.45 1.51
†

0.15 0.92 -2.45* -1.44

MSONDQ 0 -1.39 -0.20 0.55 1.01 -0.62 -0.38 0.81 4.43
†

0.40 0.79 -0.17 -0.08

MU 4 -4.93* -3.38 0.70 2.11
†

-1.69* -3.44 -5.09* -3.78 -0.22 0.17 -1.69* -3.55

PMDEL 3 1.25 2.40
†

1.51 5.05
†

1.53 2.91
†

0.88 2.38
†

1.43 4.93
†

1.48 8.70
†

PMEMP 3 0.39 2.07
†

-0.79 -1.14 -0.31 1.20 1.95
†

2.52
†

1.81
†

3.25
†

0.70 3.62
†

PMI 3 -0.64 -0.42 -0.25 -0.09 0.12 1.58
†

-0.44 0.02 1.27 3.75
†

0.91 4.07
†

PMNO 3 0.68 1.17 0.01 1.24 0.02 1.94
†

1.65
†

1.70
†

0.87 2.54
†

0.56 2.73
†

PMNV 3 1.82
†

1.64
†

1.98
†

3.36
†

1.28 3.52
†

-2.46* -1.55 -0.14 0.87 -0.21 1.31
†

PMP 3 0.37 0.55 -0.27 0.71 -0.25 0.89 -0.75 -0.38 1.01 2.67
†

0.62 3.04
†

RTNQ 2 -0.96 0.31 -0.61 -0.65 -1.45 -1.85 -1.21 0.11 0.39 0.50 1.25 0.73
RTQ 1 -0.82 0.52 -0.98 -0.61 1.23 0.56 -0.87 0.84 -0.57 -0.27 1.38 0.58

WTDQ 2 -2.4* -1.00 -0.23 -0.06 1.44 1.19 -2.68* -1.20 -0.39 0.48 3.02
†

2.66
†

WTNQ 1 -0.75 0.06 -0.96 -1.22 -1.26 -1.65 -0.47 0.18 0.31 0.79 1.63 2.27
†

WTQ 1 -1.00 -0.78 -0.19 -0.20 -0.64 -0.91 -0.64 -0.45 0.22 0.17 0.62 0.42

(∗) Notes: See notes to Tables 2 and 3. Data used in this table correspond to those used in Stock and Watson (2002),
and the variables are monthly, spanning the period 1959-1998. Reported results are based on predictive evaluation
using the second half of the sample.
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Table 5: Analysis of U.S. Financial Data (Stock and Watson Dataset)(∗)

Variable SM Rejec Recursive Estimation Scheme Rolling Estimation Scheme
1 month ahead 3 month ahead 12 month ahead 1 month ahead 3 month ahead 12 month ahead
DM ENC-t DM ENC-t DM ENC-t DM ENC-t DM ENC-t DM ENC-t

FSDXP 4 2.55
†

2.74
†

2.47
†

5.76
†

1.43 9.12
†

1.80
†

2.87
†

2.36
†

5.73
†

1.93
†

2.06
†

FSNFI 3 -0.14 0.40 -1.12 -0.41 1.36 1.39
†

0.11 0.76 0.86 1.50
†

0.78 0.80

FSNIN 2 1.17 2.28
†

-2.39* -1.40 -2.6* -1.65 1.09 2.28
†

0.19 0.41 -1.07 -1.03

FSNTR 3 1.89
†

3.31
†

-1.13 -0.48 -1.39 -1.40 0.94 2.73
†

-1.11 -0.39 -1.51 -0.90
FSNUT 2 -1.73* -0.93 -1.77* -1.33 -0.98 0.20 -1.98* -1.22 -1.85* -1.21 -1.06 0.08
FSNVV3 1 -3.58* -0.87 0.28 0.45 -0.37 -0.30 -0.90 -0.14 -1.32 -1.50 0.54 1.03

FSTB 0 -0.70 1.99
†

1.23 1.31
†

1.00 1.02 -0.85 1.43
†

2.19
†

2.06
†

0.40 0.28
FSTE 2 0.27 -0.53 0.29 0.37 -2.65* 0.48 0.52 1.20 -0.38 -0.15 -2.69* 0.43

FSTM 1 -2.7* -0.48 0.81 1.33
†

-2.38* -1.23 -1.08 1.78
†

1.58 1.22 -2.16* -0.99

FSNCOM 1 1.67
†

2.28
†

-1.80* -0.43 2.24
†

3.47
†

0.66 1.00 -1.16 0.50 -2.04* -1.65

FSPCAP 0 2.52
†

3.35
†

-0.15 0.78 1.25 1.57
†

0.99 1.19 -0.72 0.84 -0.77 0.34

FSPCOM 0 2.27
†

2.85
†

-2.16* -0.78 2.66
†

4.14
†

1.43 2.70
†

-2.63* -1.62 -2.27* -1.05

FSPFI 1 1.66
†

2.43
†

0.32 0.50 0.23 0.37 1.79
†

2.32
†

-1.35 -0.40 -1.63 -1.04

FSPIN 0 1.92
†

2.42
†

-2.12* -0.75 1.43 1.86
†

0.60 0.88 -1.38 -0.47 -2.14* -1.63

FSPTR 0 -0.28 0.32 0.15 0.50 0.72 0.66 1.23 2.82
†

-1.16 -0.70 0.13 0.84

FSPUT 2 2.58
†

3.26
†

-1.70* -0.79 -1.58 -0.97 0.26 1.71
†

-1.41 -0.49 0.79 1.94
†

FSPXE 4 -0.54 2.47
†

0.18 3.20
†

-0.31 -1.05 1.31 2.57
†

0.40 3.07
†

-0.10 -0.01

EXRCAN 3 0.69 1.18 0.00 0.72 1.24 1.58
†

0.44 0.94 -0.31 0.23 1.89
†

3.24
†

EXRGER 1 2.47
†

3.60
†

0.16 0.74 1.43 2.65
†

2.33
†

3.44
†

0.37 1.08 1.88
†

3.10
†

EXRJAN 1 -1.05 -0.15 0.93 1.50
†

1.14 1.70
†

-0.82 0.02 1.04 1.73
†

1.26 1.96
†

EXRSW 3 -0.61 -0.18 0.68 1.29
†

1.74
†

3.08
†

0.29 0.87 1.29 2.27
†

1.66
†

2.75
†

EXRUK 0 -1.00 -1.00 -0.52 -0.29 -1.16 -1.11 -0.88 -0.94 -0.49 -0.27 0.53 1.01

EXRUS 0 0.28 1.01 0.36 1.02 1.24 2.10
†

0.64 1.47
†

0.64 1.45
†

1.06 2.00
†

FYAAAC 0 -0.09 1.00 0.87 1.13 1.78
†

2.29
†

1.44 3.77
†

1.01 1.32
†

1.52 1.94
†

FYBAAC 2 1.08 2.96
†

0.81 1.67
†

1.54 2.34
†

1.41 1.77
†

0.84 1.80
†

1.49 2.38
†

FYCP90 1 0.32 1.61
†

0.92 0.81 1.51 1.74
†

0.40 1.61
†

0.54 1.44
†

1.48 1.65
†

FYFF 1 0.31 0.83 -2.69* -1.32 1.45 2.25
†

0.32 1.46
†

-1.31 1.00 1.54 2.22
†

FYFHA 0 1.82
†

2.11
†

1.15 1.19 1.75
†

2.10
†

0.74 1.06 1.55 2.58
†

1.72
†

2.14
†

FYGM3 0 0.22 1.81
†

0.86 0.63 0.73 0.90 0.15 1.75
†

0.94 0.74 0.80 0.93

FYGM6 0 0.60 1.25 1.81
†

1.27 1.49 2.19
†

0.32 2.08
†

1.99
†

1.31
†

1.59 1.42
†

FYGT1 0 1.39 1.40
†

0.57 0.59 1.39 1.39
†

0.48 0.89 0.64 0.75 1.63 2.13
†

FYGT10 0 1.11 2.76
†

1.81
†

2.62
†

0.48 0.59 0.30 1.50
†

1.75
†

2.75
†

0.31 0.41

FYGT5 0 1.19 2.38
†

1.34 1.91
†

1.35 2.72
†

1.41 2.64
†

-1.49 -0.57 1.29 2.48
†

SFYAAAC 3 -0.22 0.67 0.27 2.63
†

-0.85 0.46 0.39 0.99 0.79 3.69
†

-0.65 0.78

SFYBAAC 3 -0.40 0.85 -0.08 2.42
†

-0.91 0.95 0.37 1.32
†

0.83 3.81
†

-0.42 1.65
†

SFYFHA 3 -0.29 0.80 -0.23 2.53
†

-0.27 1.51
†

0.28 1.25 0.17 3.21
†

-0.28 1.46
†

SFYGM3 3 -1.54 0.14 0.50 3.03
†

-0.35 1.66
†

-0.71 0.74 0.17 1.03 -0.51 0.55

SFYGM6 2 -1.32 0.12 0.18 2.50
†

-1.18 3.04
†

-0.66 0.57 0.59 2.16
†

0.99 4.62
†

SFYGT1 2 -1.36 -0.23 0.77 2.62
†

1.15 3.19
†

-1.18 0.22 1.07 3.02
†

2.07
†

4.82
†

SFYGT10 2 1.37 1.16 1.14 3.98
†

-0.12 1.16 1.89
†

1.49
†

1.22 4.74
†

-1.13 1.25

SFYGT5 2 1.54 1.47
†

1.27 4.10
†

0.28 1.46
†

1.91
†

1.74
†

1.15 4.48
†

-0.94 1.60
†

SFYCP90 2 -1.77* 0.29 -1.54 -0.43 -1.12 2.42
†

-2.10* -1.72 -1.09 1.10 0.46 4.75
†

(∗)Notes: See notes to Table 4. Data used in this table correspond to those used in Stock and Watson (2002), and
the variables are monthly, spanning the period 1959-1998, under the sub-categories; stock prices, exchange rates and
interest rates.
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Table 6: Analysis of U.S. Monetary Data (Stock and Watson Dataset)(∗)

Variable SM Rejec Recursive Estimation Scheme Rolling Estimation Scheme
1 month ahead 3 month ahead 12 month ahead 1 month ahead 3 month ahead 12 month ahead
DM ENC-t DM ENC-t DM ENC-t DM ENC-t DM ENC-t DM ENC-t

CCI30M 5 -2.95* -0.49 1.98
†

4.54
†

2.09
†

7.64
†

-1.27 1.71
†

-0.50 0.96 2.03
†

7.9
†

CCINRV 4 0.03 0.87 0.65 2.85
†

-1.00 -4.99 -0.74 -0.27 -0.87 -3.08 -1.19 -3.26

CCINT 4 -1.20 -0.38 -1.16 -0.75 -1.04 -0.15 -0.44 1.31
†

0.36 3.55
†

0.15 1.22

CCINV 4 0.66 1.97
†

0.06 1.42
†

1.45 6.90
†

1.60 3.38
†

1.49 3.61
†

1.40 8.46
†

FCLBMC 2 0.85 1.49
†

-2.16* 0.63 -0.60 -0.75 0.94 1.52
†

-1.68* 0.82 -0.55 -0.58

FCLIN 3 0.64 15.8
†

1.23 2.10
†

1.60 10.01
†

0.76 3.21
†

0.23 1.07 0.97 4.66
†

FCLNBF 3 0.41 0.83 -0.02 0.80 -0.27 0.36 -0.89 -0.30 0.24 0.88 -0.70 -0.33

FCLNQ 3 1.01 1.20 -0.52 1.68
†

-0.55 1.06 1.22 1.21 -0.75 0.90 -0.90 0.31

FCLRE 3 3.16
†

6.42
†

-0.04 1.78
†

0.02 5.15
†

-1.25 -0.19 1.13 3.02
†

0.74 6.15
†

FCLS 3 0.59 1.39
†

0.05 2.02
†

1.67
†

5.05
†

-0.93 0.07 0.46 1.78
†

2.10
†

4.89
†

FCSGV 2 0.10 1.11 1.01 3.55
†

0.34 1.88
†

-1.08 -0.58 -0.39 0.16 0.53 3.11
†

FM1 2 -0.30 1.13 -0.80 0.28 0.07 0.04 0.15 2.50
†

-0.91 0.24 0.41 0.41

FM2 2 1.16 2.03
†

-0.15 0.39 0.53 0.36 0.97 1.30
†

-0.70 0.22 0.46 0.32
FM2DQ 3 -3.07* -0.36 -1.04 -0.95 -1.33 -2.13 -2.46* -1.65 -1.14 -0.57 -1.26 -0.86

FM3 2 -0.70 1.19 0.44 0.41 0.27 -0.18 2.21
†

4.31
†

0.11 1.03 -0.67 -0.50

FMFBA 2 0.71 2.40
†

-0.32 -0.56 -0.56 0.16 0.78 1.89
†

0.41 0.23 0.88 0.52

FML 2 -0.93 1.75
†

0.67 1.21 0.61 0.19 -1.70* 0.19 0.89 1.63
†

-0.25 -0.09

FMRNBC 2 0.00 1.13 0.45 -0.02 1.12 0.35 0.21 1.58
†

0.47 1.37
†

-1.20 -1.03

FMRRA 2 0.65 1.98
†

1.12 0.75 0.08 0.07 0.40 1.89
†

-1.12 -0.45 0.70 0.81
GMDC 3 -2.58* -1.15 1.57 0.66 0.29 0.30 -2.51* -1.06 0.57 0.72 0.91 0.63

GMDCD 2 -1.56 1.18 0.67 0.66 1.09 0.45 -2.2* 0.35 2.21
†

2.33
†

0.92 1.32
†

GMDCN 2 -1.39 0.81 -0.46 -0.26 0.64 0.33 -1.65* 0.47 0.97 0.89 -1.72* -1.12

GMDCS 2 -1.24 -0.50 0.93 1.82
†

1.77
†

0.45 1.15 1.37
†

0.93 0.72 0.58 0.32
PCGOLD 3 -1.68* -0.45 0.02 0.22 0.61 0.33 -0.18 1.15 0.84 1.24 0.84 0.98

PMCP 3 -0.97 0.82 1.62 3.44
†

1.34 2.99
†

0.34 2.36
†

1.62 5.11
†

1.24 8.85
†

PSM99Q 2 -0.41 1.45
†

-0.61 0.46 -0.22 -0.23 -0.19 1.65
†

-1.09 -0.04 -1.37 -1.06

PU81 3 1.23 2.47
†

1.11 0.51 1.23 0.29 0.43 1.66
†

0.20 0.19 1.02 1.07

PU83 3 0.48 0.47 -2.25* -1.39 1.04 1.31
†

0.84 1.79
†

-1.92* -0.95 -0.15 -0.11
PU84 3 -1.46 0.48 -0.18 0.06 0.30 0.20 -1.10 0.53 -0.88 -0.54 -1.27 -0.88
PU85 2 -0.25 1.15 -0.95 -0.27 -1.14 -0.46 -0.34 0.08 -0.27 -0.27 0.30 0.54

PUC 3 2.07
†

3.85
†

0.80 0.49 0.98 0.89 1.94
†

3.96
†

0.21 0.09 0.01 -0.17

PUCD 2 -0.90 -0.35 1.39 1.63
†

-0.08 0.10 -2.70* -0.20 0.74 0.65 -0.34 -0.10

PUH 3 1.40 2.74
†

2.48
†

1.68
†

0.45 0.22 1.89
†

2.95
†

1.56 1.39
†

1.22 0.86

PUNEW 2 1.59 2.30
†

0.53 0.57 1.17 1.16 1.44 1.83
†

1.10 1.28 0.28 0.53

PUS 2 0.11 1.74
†

-0.42 0.88 -0.86 -0.74 1.10 2.28
†

0.08 3.04
†

-1.04 -1.07
PUXF 1 -2.04* -0.92 0.20 0.24 -0.90 -0.65 -2.10* -1.14 0.57 0.49 0.78 0.49

PUXHS 2 -1.10 0.64 2.71
†

1.44
†

-0.87 -0.16 2.04
†

4.10
†

1.36 1.14 -0.63 -0.39
PUXM 2 -0.52 0.39 0.66 0.63 0.12 0.32 -0.05 0.86 0.63 0.66 0.79 0.76

PW150A 4 3.23
†

8.14
†

0.99 0.67 -0.28 -0.13 -0.08 0.91 0.49 0.61 -0.12 0.12

PW160A 3 0.45 2.39
†

-0.13 -0.10 1.39 1.14 1.12 1.74
†

0.54 0.43 -2.21* -1.67

PWCMSA 2 1.22 2.15
†

-1.04 -0.64 -0.40 -0.09 0.33 1.46
†

1.68
†

1.75
†

-0.84 -1.02

PWFCSA 2 1.96
†

2.49
†

-0.35 -0.13 1.22 0.54 2.35
†

3.20
†

-0.42 -0.25 2.15
†

1.20

PWFSA 2 2.00
†

2.83
†

0.74 0.59 0.02 0.16 2.31
†

2.47
†

1.65
†

1.51
†

-0.73 -0.44

PWFXSA 4 -2.03* -0.53 -1.30 -1.02 0.56 0.34 1.20 1.44
†

-0.77 -0.31 1.79
†

1.27

PWIMSA 2 -1.52 -0.77 -0.95 -0.49 -2.41* -1.08 -0.71 0.42 -1.93* -0.96 1.67
†

2.64
†

(∗)Notes: See notes to Table 4. Data used in this table correspond to those used in Stock and Watson (2002), and the
variables are monthly, spanning the period 1959-1998, under the sub-categories; money and credit quantity aggregates
and price indexes.
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Table 7: Data Generating Processes Used in the Monte Carlo Experiments(∗)

Name DGP, ARFIMA(p,d,q) Name DGP, NON-ARFIMA

ARFIMA1 p=0, d=0.2, q=0 RW Random Walk without drift

ARFIMA2 p=1, d=0.2, q=0, AR coef=0.3 AR1 AR(p),p=1, AR coef= 0.2

ARFIMA3 p=1, d=0.2, q=1, AR coef=0.3, MA coef =-0.5 AR2 AR(p),p=1, AR coef= 0.3

ARFIMA4 p=1, d=0.2, q=0, AR coef=0.6 AR3 AR(p),p=1, AR coef= 0.4

ARFIMA5 p=1, d=0.2, q=1, AR coef=0.6, MA coef =-0.5 AR4 AR(p),p=1, AR coef= 0.5

ARFIMA6 p=1, d=0.2, q=0, AR coef=0.9 AR5 AR(p),p=1, AR coef= 0.6

ARFIMA7 p=1, d=0.2, q=1, AR coef=0.9, MA coef =-0.5 AR6 AR(p),p=1, AR coef= 0.7

ARFIMA8 p=0, d=0.3, q=0 AR7 AR(p),p=1, AR coef= 0.8

ARFIMA9 p=1, d=0.3, q=0, AR coef=0.3 AR8 AR(p),p=1, AR coef= 0.9

ARFIMA10 p=1, d=0.3, q=1, AR coef=0.3, MA coef =-0.5 MA1 MA(q),q=1, MA coef= -0.7

ARFIMA11 p=1, d=0.3, q=0, AR coef=0.6 MA2 MA(q),q=1, MA coef= -0.4

ARFIMA12 p=1, d=0.3, q=1, AR coef=0.6, MA coef =-0.5 MA3 MA(q),q=1, MA coef= -0.1

ARFIMA13 p=1, d=0.3, q=0, AR coef=0.9 MA4 MA(q),q=1, MA coef= 0.2

ARFIMA14 p=1, d=0.3, q=1, AR coef=0.9, MA coef =-0.5 MA5 MA(q),q=1, MA coef= 0.3

ARFIMA15 p=0, d=0.4, q=0 MA6 MA(q),q=1, MA coef= 0.4

ARFIMA16 p=1, d=0.4, q=0, AR coef=0.3 MA7 MA(q),q=1, MA coef= 0.5

ARFIMA17 p=1, d=0.4, q=1, AR coef=0.3, MA coef =-0.5 MA8 MA(q),q=1, MA coef= 0.9

ARFIMA18 p=1, d=0.4, q=0, AR coef=0.6 GARCH1 AR-GARCH AR coef=-0.3 ARCH coef=0.20, GARCH Coef=0.45

ARFIMA19 p=1, d=0.4, q=1, AR coef=0.6, MA coef =-0.5 GARCH2 AR-GARCH AR coef=-0.2 ARCH coef=0.25, GARCH Coef=0.10

ARFIMA20 p=1, d=0.4, q=0, AR coef=0.9 GARCH3 AR-GARCH AR coef=-0.1 ARCH coef=0.35, GARCH Coef=0.30

ARFIMA21 p=1, d=0.4, q=1, AR coef=0.9, MA coef =-0.5 GARCH4 AR-GARCH AR coef=0.2 ARCH coef=0.15, GARCH Coef=0.80

ARFIMA22 p=0, d=0.6, q=0 GARCH5 AR-GARCH AR coef=0.3 ARCH coef=0.15, GARCH Coef=0.75

ARFIMA23 p=1, d=0.6, q=0, AR coef=0.3 GARCH6 AR-GARCH AR coef=0.5 ARCH coef=0.20, GARCH Coef=0.70

ARFIMA24 p=1, d=0.6, q=1, AR coef=0.3, MA coef =-0.5 GARCH7 AR-GARCH AR coef=0.7 ARCH coef=0.20, GARCH Coef=0.70

ARFIMA25 p=1, d=0.6, q=0, AR coef=0.6 GARCH8 AR-GARCH AR coef=0.9 ARCH coef=0.10, GARCH Coef=0.80

ARFIMA26 p=1, d=0.6, q=1, AR coef=0.6, MA coef =-0.5 ARIMA1 ARIMA(p,d,q), p=1, d=0, q=1, AR coef= 0.1, MA coef= -0.52

ARFIMA27 p=1, d=0.6, q=0, AR coef=0.9 ARIMA2 ARIMA(p,d,q), p=1, d=0, q=1, AR coef= 0.3, MA coef= -0.9

ARFIMA28 p=1, d=0.6, q=1, AR coef=0.9, MA coef =-0.5 ARIMA3 ARIMA(p,d,q), p=1,d=0, q=1, AR coef= 0.6, MA coef= -0.2

ARFIMA29 p=0, d=0.9, q=0 ARIMA4 ARIMA(p,d,q), p=1, d=0, q=1, AR coef= 0.9, MA coef= -0.7

ARFIMA30 p=1, d=0.9, q=0, AR coef=0.3 ARIMA5 ARIMA(p,d,q), p=1, d=1, q=1, AR coef= 0.1, MA coef= -0.2

ARFIMA31 p=1, d=0.9, q=1, AR coef=0.3, MA coef =-0.5 ARIMA6 ARIMA(p,d,q), p=1,d=1, q=1, AR coef= 0.3, MA coef= -0.9

ARFIMA32 p=1, d=0.9, q=0, AR coef=0.6 ARIMA7 ARIMA(p,d,q), p=1, d=1, q=1, AR coef= 0.6, MA coef= -0.2

ARFIMA33 p=1, d=0.9, q=1, AR coef=0.6, MA coef =-0.5 ARIMA8 ARIMA(p,d,q), p=1, d=1, q=1, AR coef= 0.9, MA coef= -0.7

ARFIMA34 p=1, d=0.9, q=0, AR coef=0.9

ARFIMA35 p=1, d=0.9, q=1, AR coef=0.9, MA coef =-0.5

(∗) Notes: This table summarizes all of the DGPs used in the Monte Carlo experiments reported in Section 4 of the
paper. Parameters of non-ARFIMA DGPs are chosen on the basis of fitting these linear models to selected SW, LHM
and DGE data, as discussed in Section 3. Parameters for the ARFIMA DGPs are based on values reported in the
literature.

40



Table 8.1: Relative Forecasting Performance ARFIMA DGP (Sample Size = 1000)(∗)

Model Rec-1 Rec-5 Rec-20 Rol-1 Rol-5 Rol-20
ARFIMA1 (0.57,0.19,0.58) (0.60,0.21,0.60) (0.41,0.11,0.43) (0.60,0.29,0.60) (0.64,0.19,0.60) (0.31,0.10,0.30)
ARFIMA2 (0.46,0.15,0.40) (0.69,0.25,0.58) (0.45,0.12,0.39) (0.45,0.11,0.33) (0.61,0.21,0.48) (0.31,0.08,0.25)
ARFIMA3 (0.50,0.15,0.54) (0.61,0.23,0.66) (0.42,0.12,0.50) (0.55,0.12,0.51) (0.61,0.19,0.63) (0.33,0.10,0.49)
ARFIMA4 (0.57,0.16,0.65) (0.47,0.18,0.36) (0.41,0.02,0.27) (0.44,0.14,0.57) (0.51,0.20,0.41) (0.31,0.02,0.19)
ARFIMA5 (0.45,0.12,0.42) (0.62,0.19,0.56) (0.40,0.09,0.40) (0.43,0.16,0.40) (0.60,0.22,0.55) (0.33,0.09,0.24)
ARFIMA6 (0.60,0.21,0.69) (0.41,0.12,0.39) (0.49,0.09,0.26) (0.56,0.18,0.68) (0.50,0.17,0.44) (0.45,0.10,0.13)
ARFIMA7 (0.61,0.19,0.71) (0.40,0.13,0.40) (0.53,0.09,0.23) (0.66,0.20,0.72) (0.40,0.11,0.42) (0.51,0.08,0.15)
ARFIMA8 (0.65,0.22,0.35) (0.78,0.26,0.57) (0.61,0.13,0.48) (0.35,0.17,0.35) (0.65,0.39,0.57) (0.61,0.22,0.48)
ARFIMA9 (0.55,0.28,0.53) (0.78,0.40,0.60) (0.47,0.11,0.36) (0.49,0.24,0.44) (0.74,0.39,0.48) (0.46,0.16,0.30)
ARFIMA10 (0.41,0.15,0.42) (0.54,0.23,0.54) (0.48,0.16,0.48) (0.53,0.32,0.53) (0.53,0.23,0.50) (0.46,0.18,0.47)
ARFIMA11 (0.61,0.27,0.73) (0.70,0.24,0.50) (0.46,0.10,0.37) (0.63,0.18,0.67) (0.60,0.24,0.44) (0.49,0.08,0.24)
ARFIMA12 (0.60,0.23,0.52) (0.68,0.23,0.49) (0.49,0.16,0.38) (0.47,0.12,0.46) (0.66,0.29,0.50) (0.50,0.18,0.37)
ARFIMA13 (0.63,0.29,0.71) (0.55,0.15,0.52) (0.55,0.08,0.33) (0.68,0.29,0.77) (0.51,0.10,0.42) (0.59,0.11,0.30)
ARFIMA14 (0.65,0.27,0.74) (0.53,0.14,0.50) (0.59,0.12,0.38) (0.66,0.28,0.76) (0.52,0.10,0.46) (0.60,0.14,0.34)
ARFIMA15 (0.50,0.25,0.38) (0.75,0.38,0.50) (0.88,0.50,0.50) (0.50,0.25,0.38) (0.75,0.38,0.38) (0.88,0.25,0.38)
ARFIMA16 (0.75,0.51,0.62) (0.83,0.43,0.54) (0.60,0.33,0.39) (0.77,0.42,0.63) (0.80,0.48,0.52) (0.66,0.32,0.39)
ARFIMA17 (0.29,0.07,0.36) (0.57,0.21,0.43) (0.57,0.32,0.46) (0.39,0.18,0.36) (0.43,0.21,0.32) (0.57,0.36,0.36)
ARFIMA18 (0.79,0.43,0.80) (0.71,0.35,0.50) (0.66,0.28,0.44) (0.72,0.39,0.78) (0.69,0.32,0.46) (0.66,0.22,0.41)
ARFIMA19 (0.79,0.41,0.68) (0.74,0.35,0.53) (0.66,0.33,0.49) (0.65,0.27,0.55) (0.75,0.32,0.54) (0.67,0.29,0.42)
ARFIMA20 (0.55,0.15,0.61) (0.63,0.24,0.52) (0.64,0.16,0.44) (0.57,0.21,0.66) (0.53,0.19,0.41) (0.49,0.08,0.27)
ARFIMA21 (0.40,0.20,0.40) (0.80,0.40,0.80) (1.00,0.40,0.60) (0.60,0.40,0.40) (0.60,0.40,0.60) (0.40,0.40,0.20)
ARFIMA22 (0.73,0.45,0.64) (0.81,0.47,0.59) (0.84,0.56,0.49) (0.71,0.41,0.64) (0.67,0.34,0.42) (0.83,0.48,0.48)
ARFIMA23 (0.78,0.40,0.67) (0.85,0.57,0.50) (0.75,0.48,0.45) (0.65,0.31,0.45) (0.77,0.46,0.38) (0.64,0.34,0.34)
ARFIMA24 (0.71,0.21,0.61) (0.79,0.32,0.46) (0.79,0.46,0.36) (0.57,0.25,0.54) (0.61,0.25,0.39) (0.79,0.29,0.29)
ARFIMA25 (0.63,0.30,0.65) (0.61,0.32,0.50) (0.78,0.50,0.56) (0.55,0.23,0.58) (0.50,0.24,0.32) (0.65,0.24,0.36)
ARFIMA26 (0.66,0.37,0.67) (0.78,0.48,0.56) (0.77,0.47,0.46) (0.64,0.30,0.55) (0.66,0.35,0.42) (0.77,0.35,0.43)
ARFIMA27 (0.46,0.19,0.49) (0.52,0.16,0.33) (0.54,0.16,0.32) (0.46,0.27,0.26) (0.52,0.14,0.34) (0.46,0.19,0.25)
ARFIMA28 (0.37,0.09,0.39) (0.42,0.08,0.27) (0.40,0.11,0.22) (0.36,0.07,0.30) (0.42,0.04,0.24) (0.28,0.09,0.15)
ARFIMA29 (0.63,0.27,0.59) (0.61,0.32,0.40) (0.65,0.41,0.43) (0.59,0.27,0.47) (0.61,0.25,0.36) (0.59,0.27,0.39)
ARFIMA30 (0.61,0.26,0.49) (0.68,0.28,0.39) (0.48,0.29,0.28) (0.54,0.14,0.40) (0.52,0.22,0.27) (0.37,0.16,0.24)
ARFIMA31 (0.72,0.41,0.71) (0.70,0.36,0.52) (0.70,0.44,0.46) (0.73,0.34,0.60) (0.64,0.29,0.47) (0.73,0.42,0.41)
ARFIMA32 (0.34,0.04,0.37) (0.29,0.09,0.21) (0.42,0.21,0.27) (0.35,0.10,0.41) (0.33,0.08,0.18) (0.33,0.15,0.24)
ARFIMA33 (0.51,0.26,0.50) (0.63,0.26,0.40) (0.55,0.26,0.33) (0.52,0.20,0.45) (0.61,0.24,0.35) (0.45,0.21,0.28)
ARFIMA34 (0.43,0.19,0.16) (0.43,0.17,0.28) (0.49,0.17,0.21) (0.24,0.12,0.21) (0.26,0.15,0.07) (0.24,0.07,0.08)
ARFIMA35 (0.23,0.09,0.20) (0.23,0.07,0.18) (0.39,0.07,0.11) (0.14,0.02,0.11) (0.16,0.05,0.07) (0.23,0.05,0.07)

(∗) Notes: Model acronyms used are outlined in Section 3 and Table 7. All estimation, model fitting, and prediction
mirrors that used in the empirical analysis (see notes to Table 2 and 3 and well as the discussion in Sections 2 and
3 of the paper). Rec-1 (Rol-1) refers to one step ahead forecasts based on recursive (rolling) estimation schemes.
Additionally, 5 and 20 step ahead results are reported in the 3rd, 4th, 6th, and 7th columns of entries. The first
entry in each bracketed triple shows the proportion of times the ARFIMA model is preferred based on comparison of
its’ point MSFE with that of the non-ARFIMA model, where each model is ‘pre-selected’ using the first half of the
sample, as discussed above and in the footnote to Table 2. The second entry reported the number of ARFIMA ‘wins’
based on application of the DM test at a nominal 10% level of significance. The third entry is analogous to the DM
test entry, except that rejection incidence based on application of the ENC-t test is reported. All results are based
on 500 Monte Carlo iterations.
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Table 8.2: Relative Forecasting Performance ARFIMA DGP (Sample Size = 4000)(∗)

Model Rec-1 Rec-5 Rec-20 Rol-1 Rol-5 Rol-20
ARFIMA1 (0.61,0.33,0.50) (0.78,0.44,0.56) (0.67,0.44,0.61) (0.56,0.33,0.44) (0.94,0.56,0.83) (0.83,0.44,0.83)
ARFIMA2 (0.78,0.41,0.62) (0.84,0.59,0.70) (0.81,0.35,0.68) (0.70,0.46,0.68) (0.89,0.49,0.65) (0.76,0.27,0.54)
ARFIMA3 (0.54,0.27,0.39) (0.63,0.37,0.63) (0.63,0.39,0.73) (0.68,0.34,0.51) (0.83,0.41,0.76) (0.71,0.39,0.73)
ARFIMA4 (0.90,0.80,0.85) (0.90,0.70,0.80) (0.90,0.60,0.82) (0.88,0.70,0.84) (0.87,0.54,0.51) (0.89,0.50,0.70)
ARFIMA5 (0.92,0.71,0.82) (0.89,0.65,0.75) (0.85,0.63,0.84) (0.85,0.62,0.75) (0.94,0.55,0.85) (0.91,0.51,0.70)
ARFIMA6 (0.72,0.29,0.55) (0.78,0.35,0.48) (0.78,0.31,0.44) (0.87,0.39,0.74) (0.75,0.27,0.35) (0.78,0.25,0.48)
ARFIMA7 (0.71,0.21,0.55) (0.75,0.25,0.45) (0.79,0.45,0.64) (0.58,0.30,0.47) (0.78,0.32,0.35) (0.87,0.35,0.43)
ARFIMA8 (0.78,0.60,0.70) (0.85,0.65,0.75) (0.90,0.75,0.70) (0.75,0.54,0.55) (0.85,0.71,0.67) (0.95,0.65,0.66)
ARFIMA9 (0.78,0.45,0.67) (0.72,0.40,0.61) (0.86,0.64,0.71) (0.65,0.56,0.60) (0.80,0.56,0.65) (0.85,0.65,0.76)
ARFIMA10 (0.42,0.15,0.25) (0.65,0.32,0.55) (0.82,0.55,0.72) (0.31,0.13,0.25) (0.53,0.25,0.41) (0.82,0.61,0.53)
ARFIMA11 (0.97,0.80,0.85) (0.94,0.79,0.89) (0.95,0.82,0.80) (0.98,0.94,0.95) (0.91,0.80,0.65) (0.94,0.88,0.68)
ARFIMA12 (0.90,0.85,0.85) (0.95,0.75,0.7) (0.90,0.75,0.65) (0.89,0.80,0.85) (0.90,0.71,0.80) (0.95,0.88,0.74)
ARFIMA13 (0.88,0.63,0.75) (0.75,0.35,0.65) (0.70,0.35,0.45) (0.80,0.31,0.68) (0.85,0.35,0.50) (0.75,0.35,0.55)
ARFIMA14 (0.85,0.67,0.74) (0.83,0.54,0.58) (0.89,0.52,0.38) (0.86,0.48,0.78) (0.82,0.40,0.56) (0.80,0.44,0.54)
ARFIMA15 (0.85,0.65,0.65) (0.90,0.60,0.55) (0.85,0.55,0.50) (0.91,0.62,0.65) (0.94,0.60,0.55) (0.88,0.60,0.45)
ARFIMA16 (0.65,0.43,0.44) (0.64,0.34,0.35) (0.84,0.45,0.55) (0.54,0.45,0.50) (0.60,0.40,0.45) (0.65,0.45,0.35)
ARFIMA17 (0.78,0.55,0.54) (0.85,0.45,0.60) (1.00,0.65,0.69) (0.65,0.45,0.55) (0.75,0.45,0.55) (0.85,0.65,0.55)
ARFIMA18 (0.95,0.85,0.89) (1.00,0.95,0.55) (1.00,0.85,0.77) (1.00,0.85,0.95) (1.00,0.9,0.70) (1.00,0.85,0.70)
ARFIMA19 (0.95,0.80,0.82) (0.95,0.70,0.55) (0.94,0.78,0.65) (0.95,0.80,0.75) (0.94,0.70,0.65) (0.96,0.65,0.75)
ARFIMA20 (0.75,0.38,0.68) (0.75,0.44,0.64) (0.84,0.42,0.54) (0.65,0.41,0.60) (0.74,0.45,0.65) (0.75,0.30,0.55)
ARFIMA21 (0.84,0.42,0.74) (0.82,0.46,0.78) (0.99,0.45,0.68) (0.76,0.40,0.64) (0.86,0.40,0.66) (0.94,0.44,0.62)
ARFIMA22 (0.95,0.55,0.75) (0.94,0.58,0.67) (1.00,0.64,0.76) (0.76,0.40,0.46) (0.86,0.32,0.40) (0.85,0.36,0.48)
ARFIMA23 (0.80,0.51,0.65) (0.76,0.45,0.52) (0.80,0.35,0.65) (0.72,0.51,0.72) (0.63,0.45,0.51) (0.65,0.32,0.41)
ARFIMA24 (0.77,0.31,0.60) (0.77,0.32,0.46) (0.89,0.56,0.66) (0.77,0.35,0.60) (0.68,0.30,0.44) (0.84,0.32,0.48)
ARFIMA25 (0.91,0.79,0.95) (0.90,0.80,0.76) (0.94,0.76,0.52) (0.95,0.86,0.95) (0.94,0.76,0.62) (0.92,0.62,0.57)
ARFIMA26 (0.64,0.67,0.83) (0.83,0.67,0.83) (0.81,0.50,0.65) (0.67,0.50,0.64) (0.67,0.43,0.31) (0.83,0.33,0.50)
ARFIMA27 (0.64,0.30,0.60) (0.66,0.38,0.60) (0.82,0.32,0.70) (0.53,0.31,0.40) (0.65,0.32,0.42) (0.58,0.31,0.36)
ARFIMA28 (0.55,0.32,0.48) (0.63,0.34,0.45) (0.64,0.30,0.31) (0.54,0.25,0.50) (0.63,0.31,0.41) (0.55,0.25,0.31)
ARFIMA29 (0.65,0.32,0.52) (0.68,0.35,0.42) (0.65,0.44,0.42) (0.67,0.35,0.53) (0.70,0.41,0.61) (0.64,0.34,0.44)
ARFIMA30 (0.60,0.28,0.50) (0.66,0.30,0.41) (0.50,0.24,0.30) (0.52,0.20,0.38) (0.48,0.24,0.36) (0.42,0.26,0.30)
ARFIMA31 (0.64,0.32,0.56) (0.62,0.36,0.44) (0.66,0.40,0.42) (0.63,0.30,0.56) (0.64,0.30,0.40) (0.62,0.40,0.34)
ARFIMA32 (0.54,0.24,0.30) (0.49,0.19,0.28) (0.44,0.20,0.32) (0.45,0.19,0.38) (0.40,0.17,0.22) (0.41,0.16,0.24)
ARFIMA33 (0.45,0.22,0.36) (0.58,0.24,0.37) (0.50,0.22,0.30) (0.48,0.21,0.40) (0.56,0.21,0.33) (0.41,0.19,0.30)
ARFIMA34 (0.40,0.17,0.18) (0.37,0.20,0.27) (0.44,0.23,0.29) (0.21,0.13,0.20) (0.23,0.14,0.11) (0.20,0.10,0.11)
ARFIMA35 (0.21,0.10,0.15) (0.20,0.09,0.14) (0.35,0.15,0.18) (0.16,0.07,0.10) (0.17,0.09,0.11) (0.25,0.13,0.14)

(∗) Notes: See notes to Table 8.1.
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Table 9.1: Relative Forecasting Performance non-ARFIMA DGP (Sample Size = 1000)
Model Rec-1 Rec-5 Rec-20 Rol-1 Rol-5 Rol-20
RW (0.02,0.00,0.02) (0.06,0.00,0.04) (0.18,0.02,0.10) (0.04,0.00,0.02) (0.08,0.02,0.02) (0.12,0.08,0.08)
AR1 (0.24,0.04,0.34) (0.24,0.02,0.56) (0.28,0.02,0.64) (0.24,0.08,0.44) (0.16,0.00,0.42) (0.24,0.02,0.46)
AR2 (0.34,0.08,0.52) (0.24,0.04,0.40) (0.32,0.02,0.64) (0.34,0.12,0.42) (0.16,0.00,0.30) (0.24,0.02,0.46)
AR3 (0.24,0.03,0.24) (0.13,0.00,0.21) (0.29,0.03,0.47) (0.21,0.08,0.26) (0.16,0.00,0.24) (0.21,0.03,0.45)
AR4 (0.08,0.00,0.22) (0.26,0.02,0.34) (0.28,0.02,0.40) (0.10,0.00,0.14) (0.20,0.02,0.24) (0.24,0.02,0.30)
AR5 (0.26,0.00,0.42) (0.26,0.06,0.26) (0.26,0.00,0.38) (0.14,0.02,0.28) (0.14,0.02,0.12) (0.22,0.00,0.28)
AR6 (0.32,0.02,0.50) (0.32,0.02,0.24) (0.26,0.00,0.32) (0.14,0.04,0.28) (0.26,0.06,0.20) (0.20,0.00,0.18)
AR7 (0.26,0.04,0.44) (0.32,0.10,0.30) (0.24,0.02,0.24) (0.18,0.04,0.34) (0.30,0.02,0.20) (0.24,0.00,0.14)
AR8 (0.21,0.05,0.50) (0.16,0.05,0.18) (0.37,0.03,0.08) (0.21,0.03,0.32) (0.18,0.05,0.18) (0.39,0.00,0.11)
MA1 (0.26,0.04,0.48) (0.22,0.11,0.96) (0.33,0.00,0.93) (0.26,0.04,0.59) (0.37,0.11,0.89) (0.52,0.11,0.93)
MA2 (0.46,0.08,0.68) (0.40,0.06,0.90) (0.48,0.02,0.96) (0.50,0.10,0.68) (0.32,0.08,0.84) (0.30,0.04,0.90)
MA3 (0.20,0.05,0.37) (0.27,0.00,0.71) (0.41,0.02,0.80) (0.27,0.12,0.44) (0.20,0.05,0.71) (0.39,0.05,0.78)
MA4 (0.22,0.02,0.40) (0.32,0.02,0.60) (0.32,0.02,0.62) (0.28,0.06,0.40) (0.20,0.00,0.40) (0.22,0.04,0.54)
MA5 (0.30,0.08,0.50) (0.28,0.02,0.58) (0.32,0.02,0.60) (0.24,0.04,0.44) (0.18,0.02,0.40) (0.24,0.02,0.48)
MA6 (0.32,0.08,0.42) (0.28,0.06,0.54) (0.28,0.00,0.56) (0.24,0.06,0.42) (0.22,0.02,0.42) (0.24,0.02,0.46)
MA7 (0.28,0.10,0.40) (0.28,0.04,0.46) (0.38,0.02,0.58) (0.24,0.06,0.34) (0.22,0.00,0.34) (0.22,0.00,0.44)
MA8 (0.20,0.02,0.24) (0.30,0.04,0.42) (0.32,0.00,0.52) (0.10,0.00,0.18) (0.18,0.00,0.34) (0.22,0.04,0.44)
GARCH1 (0.26,0.04,0.38) (0.44,0.06,0.74) (0.32,0.08,0.86) (0.18,0.02,0.36) (0.28,0.08,0.84) (0.20,0.02,0.78)
GARCH2 (0.30,0.08,0.54) (0.20,0.00,0.68) (0.32,0.06,0.80) (0.30,0.08,0.54) (0.32,0.06,0.64) (0.24,0.04,0.76)
GARCH3 (0.28,0.12,0.46) (0.26,0.02,0.60) (0.32,0.06,0.70) (0.26,0.06,0.48) (0.32,0.04,0.66) (0.32,0.04,0.68)
GARCH4 (0.42,0.08,0.52) (0.34,0.04,0.50) (0.24,0.02,0.62) (0.54,0.12,0.66) (0.28,0.00,0.42) (0.20,0.00,0.54)
GARCH5 (0.26,0.04,0.46) (0.26,0.04,0.42) (0.20,0.04,0.42) (0.28,0.02,0.46) (0.18,0.02,0.30) (0.14,0.02,0.38)
GARCH6 (0.08,0.04,0.20) (0.20,0.02,0.22) (0.26,0.06,0.34) (0.16,0.06,0.26) (0.16,0.02,0.22) (0.16,0.02,0.30)
GARCH7 (0.30,0.08,0.52) (0.44,0.04,0.38) (0.24,0.02,0.24) (0.28,0.04,0.50) (0.42,0.02,0.38) (0.22,0.02,0.22)
GARCH8 (0.32,0.04,0.44) (0.24,0.08,0.20) (0.22,0.02,0.12) (0.16,0.06,0.36) (0.24,0.08,0.16) (0.20,0.06,0.12)
ARIMA1 (0.28,0.06,0.46) (0.34,0.00,0.76) (0.30,0.00,0.80) (0.46,0.10,0.58) (0.20,0.04,0.68) (0.34,0.02,0.68)
ARIMA2 (0.52,0.08,0.62) (0.44,0.06,0.94) (0.36,0.10,0.96) (0.56,0.10,0.74) (0.52,0.16,0.94) (0.44,0.08,0.94)
ARIMA3 (0.36,0.04,0.46) (0.26,0.02,0.32) (0.34,0.02,0.46) (0.14,0.02,0.26) (0.22,0.00,0.20) (0.26,0.02,0.30)
ARIMA4 (0.26,0.10,0.32) (0.38,0.16,0.38) (0.36,0.04,0.28) (0.16,0.08,0.20) (0.42,0.14,0.46) (0.24,0.04,0.16)
ARIMA5 (0.12,0.00,0.10) (0.04,0.00,0.04) (0.14,0.02,0.06) (0.08,0.02,0.04) (0.10,0.00,0.02) (0.12,0.00,0.02)
ARIMA6 (0.48,0.20,0.36) (0.42,0.16,0.24) (0.52,0.22,0.18) (0.50,0.22,0.28) (0.50,0.22,0.28) (0.48,0.30,0.16)
ARIMA7 (0.30,0.10,0.34) (0.26,0.08,0.16) (0.20,0.02,0.12) (0.24,0.08,0.18) (0.38,0.06,0.12) (0.26,0.00,0.02)
ARIMA8 (0.60,0.32,0.68) (0.68,0.32,0.62) (0.74,0.16,0.52) (0.26,0.16,0.22) (0.66,0.26,0.30) (0.70,0.04,0.24)

(∗) Notes: See notes to Table 8.1.
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Table 9.2: Relative Forecasting Performance non-ARFIMA DGP (Sample Size = 4000)
Model Rec-1 Rec-5 Rec-20 Rol-1 Rol-5 Rol-20
RW (0.03,0.00,0.02) (0.07,0.01,0.04) (0.12,0.01,0.09) (0.03,0.01,0.02) (0.07,0.01,0.02) (0.09,0.05,0.06)
AR1 (0.23,0.05,0.38) (0.23,0.02,0.63) (0.26,0.02,0.72) (0.23,0.09,0.51) (0.15,0.00,0.47) (0.23,0.02,0.52)
AR2 (0.32,0.09,0.59) (0.23,0.05,0.45) (0.3,0.02,0.72) (0.32,0.14,0.47) (0.15,0.00,0.34) (0.23,0.02,0.52)
AR3 (0.23,0.03,0.27) (0.12,0.01,0.24) (0.27,0.03,0.53) (0.22,0.09,0.29) (0.15,0.01,0.27) (0.21,0.03,0.51)
AR4 (0.08,0.00,0.25) (0.24,0.02,0.38) (0.26,0.02,0.45) (0.09,0.01,0.16) (0.19,0.02,0.27) (0.23,0.02,0.34)
AR5 (0.24,0.01,0.47) (0.24,0.07,0.29) (0.24,0.03,0.43) (0.13,0.02,0.32) (0.13,0.02,0.14) (0.21,0.02,0.32)
AR6 (0.31,0.02,0.57) (0.29,0.02,0.27) (0.24,0.00,0.36) (0.13,0.05,0.32) (0.24,0.07,0.23) (0.19,0.00,0.19)
AR7 (0.24,0.05,0.35) (0.31,0.11,0.34) (0.23,0.02,0.27) (0.17,0.05,0.38) (0.28,0.02,0.23) (0.23,00.3,0.16)
AR8 (0.21,0.06,0.57) (0.15,0.06,0.21) (0.35,0.03,0.09) (0.19,0.03,0.36) (0.17,0.06,0.19) (0.37,0.05,0.12)
MA1 (0.27,0.04,0.45) (0.22,0.11,0.14) (0.34,0.10,0.87) (0.27,0.04,0.55) (0.38,0.11,0.84) (0.53,0.10,0.87)
MA2 (0.47,0.08,0.64) (0.41,0.06,0.85) (0.49,0.02,0.79) (0.51,0.09,0.64) (0.33,0.08,0.79) (0.31,0.04,0.85)
MA3 (0.21,0.05,0.35) (0.28,0.01,0.67) (0.42,0.02,0.75) (0.28,0.11,0.41) (0.21,0.05,0.67) (0.41,0.05,0.73)
MA4 (0.22,0.02,0.38) (0.33,0.02,0.56) (0.33,0.02,0.58) (0.29,0.06,0.38) (0.18,0.02,0.38) (0.22,0.04,0.51)
MA5 (0.31,0.08,0.47) (0.29,0.02,0.55) (0.33,0.02,0.56) (0.24,0.04,0.41) (0.18,0.02,0.38) (0.24,0.02,0.45)
MA6 (0.33,0.08,0.39) (0.29,0.06,0.51) (0.29,0.05,0.53) (0.24,0.06,0.39) (0.22,0.02,0.39) (0.24,0.02,0.43)
MA7 (0.29,0.09,0.38) (0.29,0.04,0.43) (0.39,0.02,0.55) (0.24,0.06,0.32) (0.22,0.05,0.32) (0.22,0.05,0.41)
MA8 (0.20,0.02,0.23) (0.31,0.04,0.39) (0.33,0.06,0.49) (0.10,0.01,0.17) (0.18,0.03,0.32) (0.22,0.04,0.41)
GARCH1 (0.22,0.04,0.39) (0.37,0.06,0.76) (0.27,0.08,0.89) (0.15,0.02,0.37) (0.24,0.08,0.87) (0.17,0.02,0.79)
GARCH2 (0.26,0.08,0.56) (0.17,0.01,0.70) (0.27,0.06,0.82) (0.26,0.08,0.56) (0.27,0.06,0.66) (0.20,0.04,0.78)
GARCH3 (0.24,0.12,0.47) (0.22,0.02,0.62) (0.27,0.06,0.72) (0.22,0.06,0.49) (0.27,0.04,0.68) (0.27,0.04,0.70)
GARCH4 (0.36,0.08,0.54) (0.29,0.04,0.52) (0.21,0.02,0.64) (0.46,0.12,0.68) (0.24,0.02,0.43) (0.17,0.01,0.56)
GARCH5 (0.22,0.04,0.47) (0.22,0.04,0.43) (0.17,0.04,0.43) (0.24,0.02,0.47) (0.15,0.02,0.31) (0.12,0.02,0.39)
GARCH6 (0.07,0.04,0.21) (0.17,0.02,0.23) (0.22,0.06,0.35) (0.14,0.06,0.27) (0.14,0.02,0.23) (0.14,0.02,0.31)
GARCH7 (0.26,0.08,0.54) (0.37,0.04,0.39) (0.20,0.02,0.25) (0.24,0.04,0.52) (0.36,0.02,0.39) (0.19,0.02,0.23)
GARCH8 (0.27,0.04,0.45) (0.20,0.08,0.21) (0.19,0.02,0.12) (0.14,0.06,0.37) (0.21,0.08,0.16) (0.17,0.06,0.12)
ARIMA1 (0.28,0.05,0.36) (0.34,0.02,0.60) (0.30,0.01,0.63) (0.46,0.08,0.46) (0.20,0.03,0.54) (0.34,0.02,0.54)
ARIMA2 (0.51,0.06,0.49) (0.44,0.05,0.74) (0.36,0.08,0.76) (0.55,0.08,0.58) (0.51,0.13,0.74) (0.44,0.06,0.74)
ARIMA3 (0.36,0.03,0.36) (0.26,0.02,0.25) (0.34,0.02,0.36) (0.14,0.02,0.21) (0.22,0.01,0.16) (0.26,0.02,0.24)
ARIMA4 (0.26,0.08,0.25) (0.38,0.13,0.30) (0.36,0.03,0.22) (0.16,0.06,0.16) (0.42,0.11,0.36) (0.24,0.03,0.13)
ARIMA5 (0.10,0.00,0.07) (0.03,0.00,0.03) (0.12,0.01,0.04) (0.07,0.01,0.03) (0.08,0.00,0.01) (0.10,0.00,0.01)
ARIMA6 (0.48,0.15,0.26) (0.42,0.12,0.18) (0.51,0.16,0.13) (0.50,0.16,0.20) (0.50,0.16,0.20) (0.48,0.22,0.12)
ARIMA7 (0.30,0.07,0.25) (0.26,0.06,0.12) (0.20,0.01,0.09) (0.24,0.06,0.13) (0.38,0.04,0.09) (0.26,0.00,0.01)
ARIMA8 (0.59,0.23,0.50) (0.67,0.23,0.45) (0.73,0.12,0.38) (0.26,0.12,0.16) (0.65,0.19,0.22) (0.69,0.03,0.18)

(∗) Notes: See notes to Table 8.1.
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Table 10: The Impact of Estimating d(∗)

Sample Size 1000 Sample Size 4000
Model d Rec-1 Rec-5 Rec-20 Rol-1 Rol-5 Rol-20 Rec-1 Rec-5 Rec-20 Rol-1 Rol-5 Rol-20
ARFIMA2 0.2 87.0 89.0 96.0 88.0 90.0 91.0 89.0 92.0 95.0 89.0 92.0 94.0
ARFIMA7 99.0 99.0 100.0 97.0 96.0 99.0 98.0 99.0 99.0 98.0 99.0 100.0
ARFIMA9 0.3 88.0 92.0 97.0 90.0 94.0 96.0 92.0 94.0 98.0 91.0 96.0 97.0
ARFIMA14 100.0 99.0 100.0 99.0 100.0 99.0 100.0 100.0 100.0 100.0 100.0 100.0
ARFIMA16 0.4 89.0 92.0 98.0 89.0 91.0 95.0 93.0 94.0 99.0 94.0 94.0 98.0
ARFIMA21 98.0 100.0 100.0 90.0 96.0 94.0 99.0 100.0 100.0 100.0 100.0 100.0
ARFIMA23 0.6 92.0 94.0 97.0 89.0 92.0 94.0 94.0 95.0 99.0 94.0 96.0 99.0
ARFIMA28 97.0 100.0 99.0 95.0 96.0 94.0 99.0 100.0 100.0 98.0 99.0 100.0
ARFIMA30 0.7 93.0 94.0 97.0 91.0 98.0 97.0 95.0 96.0 99.0 95.0 96.0 99.0
ARFIMA35 99.8 100.0 100.0 97.0 99.0 100.0 99.0 100.0 100.0 100.0 100.0 100.0

(∗) Notes: Entries report the results of point MSFE comparison between ARFIMA models with all parameters known
and models where all parameters except d are known. In particular, the percentage of times that the ARFIMA model
with d known ‘wins’ is reported. See Sections 2.4 and 3 as well as the notes to Table 2 and Table 8.1 for a discussion
of how models are estimated, predictions are formed, acronyms used, etc. Results are based on 500 Monte Carlo
iterations.
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