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Incentive Contracts and Hedge Fund Management: 
A Numerical Evaluation Procedure 

 
 
 
 
 
 
 
 

Abstract 
 
 

The behavior of a hedge-fund manager naturally depends on her compensation scheme, her 
preferences, and constraints on her risk-taking. We propose a numerical method which can be 
used to analyze the impact of these influences. The model leads to several interesting and novel 
results concerning her risk-taking and other managerial decisions. We are able to relate our 
results to partial results in the literature and show how they fit in a more general context.  We 
also allow the manager to voluntarily shutdown the fund as well as enhancing the fund’s Sharpe 
Ratio through additional effort.  Both these extensions generate additional insights.  Throughout 
the paper, we find that even slight changes in the compensation structure or the extent of 
managerial discretion can lead to drastic changes in her risk-taking. 
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Incentive Contracts and Hedge Fund Management: 

A Numerical Evaluation Procedure 
 
 
 
Several recent papers examine effects of incentive compensation on the optimal dynamic 

investment strategies of money managers.  Carpenter (2000) and Basak, Pavlova, and Shapiro 

(2003) focus directly on this issue.1  Goetzmann, Ingersoll, and Ross (2003) focus primarily on 

valuing claims (including management fees) on a hedge fund’s assets.  Most of that paper 

assumes the fund follows a constant investment policy; however, one section briefly explores 

managerial control of fund risk.  These three papers all generate analytic solutions using 

equivalent martingale frameworks in continuous time.  Interestingly, they generate seemingly 

conflicting results regarding the manager’s optimal risk-taking behavior. 

We pursue a different tack and develop a numerical approach to determine the manager’s 

optimal investment strategy.  In the process, we are able to shed light on the differing results in 

the above papers as we relate them to our own model.  Perhaps not surprisingly, it turns out that 

these papers have differences (sometimes rather subtle) in how they model the manager’s 

compensation structure.  More surprising is that some seemingly minor differences have 

dramatic impacts on optimal risk taking by the manager.  

Our setting is that of a hedge fund controlled by a single risk-averse manager.  We 

choose this setting rather than a mutual fund because there are many fewer constraints on 

managerial behavior.  Our compensation structure is similar to that in Goetzmann, Ingersoll, and 

Ross (hereafter, GIR) and includes both a proportional fee and an incentive based on exceeding a 

“high-water mark.”  Unlike GIR, our focus is on determining the optimal investment strategy 

                                                 
1 There are also related papers by Basak, Shapiro, and Teplá (2002), who investigate risk taking 
when there is benchmarking, and by Ross (forthcoming), who decomposes risk taking according 
to three underlying causes. 
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from the perspective of an expected utility maximizing manager.  In that respect, our paper is 

closer to the focus of Carpenter as well as Basak, Pavlova, and Shapiro (hereafter, BPS).   

Recognizing that a manager will control the hedge fund’s investments, altering them 

through time, means that the hedge fund’s value follows a controlled process.  There is an 

important analogy with Merton (1969) which examines the optimal investment strategy for an 

expected utility maximizing individual who controls his own investment portfolio.2  In Merton’s 

model with constant relative risk aversion, the optimal fraction of wealth invested in the risky 

security is a constant through time. Although optimally controlled, the associated wealth process 

evolves just like a standard geometric Brownian motion.  Under some simple circumstances, the 

hedge fund manager will follow such a strategy.  However, it will frequently be the case that the 

manager’s optimal strategy will differ substantially from the Merton solution. In that case, the 

Merton result represents a useful base case for assessing how the fund manager’s behavior 

differs from what would be preferred by an unconstrained outside investor with the same utility 

function.   

Note that the manager’s compensation is a payoff whose value depends on fund 

performance.  Hence, we are effectively valuing a derivative on a controlled stochastic process.  

Consequently, the basic approach we develop can be applied to other situations where a portfolio 

return process is controlled by a utility maximizing manager.  With some added constraints, a 

mutual fund manager clearly fits this description as does a currency trader at a bank. In a more 

approximate manner, we can think of a firm being controlled by an individual manager (the 

CEO). A useful comparison is Merton (1974), where risky debt is valued based on an exogenous 

underlying process for the firm’s asset value. We are suggesting an alternative perspective where 

that asset value process is controlled via investment and hedging decisions in a manner 

analogous to an investment portfolio. From that perspective, not only risky debt but any 
                                                 
2 Merton’s work in turn is based on Markowitz’s (1959) dynamic programming approach and 
Mossin’s (1968) implementation of that idea in discrete time. 
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derivative based on firm value is (implicitly) based on a controlled process.  Hence, the basic 

valuation technology developed in this paper has numerous potential applications.   

In the next section, we present the basic model and briefly describe the solution 

methodology (more details are in the Appendix).  Section II provides numerical results for a 

standard set of parameters.  We actually begin with a simplified version of the model which 

allows us to build intuition using the Merton (1969) results.  Then we add pieces of the 

compensation structure and examine the effects on managerial behavior.  Section III compares 

our results with those from Carpenter, GIR, and BPS.  This is a useful exercise which allows us 

to see that these papers are effectively looking at different parts of a larger picture.  It also helps 

our understanding of how different pieces of the compensation structure interact to influence risk 

taking in various regions of the state space.  Sections IV and V deal with two additional aspects 

of hedge-fund management.  There, we allow the manager to voluntarily shut down the fund.  If 

this occurs, it would typically be at a fund value well below the high-water mark.  Shutting down 

avoids the costs of running the fund, while allowing the manager to take up a new job or, 

perhaps, start a new fund (with a reset high-water mark, which makes earning an incentive fee 

much more likely).  This voluntary shut-down alternative is modeled in Section IV as an 

American option.  In Section V, we also allow the manager to choose her effort level which 

alters the fund’s return distribution.  The manager suffers a disutility from increased effort, and 

we investigate her optimal strategy for balancing the costs and benefits of effort exertion. Section 

VI concludes. 

 

I. The Basic Model and Solution Methodology 

 

Consider the problem of a hedge fund manager’s optimal allocation of portfolio value into a 

risky and a riskless investment opportunity.  Assume the manager has a compensation contract 
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paying a 2% annual rate on the fund’s value (Net Asset Value) plus 20% of the amount by which 

that value exceeds a “high-water mark” at the end of the period.  Such a fee structure is typical 

for a hedge fund.3  We are treating the manager as having full control and receiving all the fees 

earned by the fund.  Frequently, a hedge fund manager has a substantial personal investment in 

the fund.  Fung and Hsieh (1999) suggest that this “inhibits excessive risk taking.”  For our 

analysis, we will assume the manager owns 10% of the fund.  That level of ownership, or more, 

is certainly plausible for a medium-sized hedge fund.  A large fund with assets exceeding a 

billion dollars would likely have a substantially smaller percentage but still a non-trivial 

managerial ownership stake. 

We use a high-water mark that is indexed so that it grows at the riskless interest rate 

during the evaluation period (a fairly common structure).  Letting H0 denote the high water mark 

at the beginning of an evaluation period with length T, we have H0erT at the period’s end.  If the 

fund performs poorly, it may be shut down.  The simplest approach is to have a prespecified 

liquidation boundary.  Our basic valuation procedure uses this approach with the fund being 

liquidated if its value falls to 50% of the current high-water mark.4  Using Φt to denote the level 

of the liquidation boundary at time time t, we set  Φt= 0.5 H0ert. 

The risky investment’s value evolves as: 

 

     d dt dzθ µθ σθ= +      (1) 

 

                                                 
3 See for example, Fung and Hsieh (1999) for a description of incentive fees as well as a variety 
of additional background information on hedge funds. 
4 Apparently such liquidation boundaries are sometimes contractual and sometimes based on an 
unwritten understanding between the fund management and outside investors.  Goetzmann, 
Ingersoll, and Ross (2001) also use a prespecified liquidation boundary based on the high water 
mark. 
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Think of this as a proprietary technology which can be utilized by the fund manger but is not 

fully understood by outside investors (and hence not replicable by them).  The riskfree 

investment grows at the constant rate r: 

 

     dB rBdt=       (2) 

 

Let X denote the current value of the fund’s assets and α the fraction of that value allocated to 

the risky investment. We allow the manager to control α, which is short for α(X,t). Thus, the 

fund’s value evolves as: 

 

    
(1 )

(1 )

d dBdX X X
B

X dt Xrdt X dz

θα α
θ

α µ α α σ

= + −

= + − +
    (3) 

 

Instantaneous changes in log X are then normally distributed.  

We assume the manager seeks to maximize expected utility of terminal wealth WT and 

has a utility function that exhibits constant relative risk aversion γ (an assumption that can 

readily be relaxed): 

 

     
1

( )
1

T
T

WU W
γ

γ

−

=
−

     (4) 

 

The manager is compensated based on the fund’s performance if it is not liquidated prior to time 

T, which is measured in years.  We assume the manager has no outside wealth but rather owns a 

fraction of the fund, with her fractional ownership denoted by a = 10%.  On the remaining (1-a) 

of fund assets, she earns a management fee at a rate of b = 2% annually plus an incentive fee of  
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c = 20% on the amount by which XT exceeds the high-water mark.  If the value of the fund has 

remained above the liquidation boundary prior to date T, her wealth at T is: 

 

   
0

0

(1 ) (1 ) ( )

( ) (1 ) ( )

rT
T T T T

rT
T T

W aX a bTX a c X H e

a abT bT X a c X H e

+

+

= + − + − −

= − + + − −

   (5) 

 

As indicated in (5), the manager’s compensation if the fund doesn’t liquidate is equivalent to a 

fractional share plus a fractional call option struck at the high-water mark H0erT.  We will refer to 

this call as the incentive option. 

 Now consider the manager’s compensation if the fund value hits the lower (liquidation) 

boundary prior to time T.  Suppose the fund’s value hits that boundary at time τ, with 0 ≤ τ ≤ Τ; 

and it is immediately liquidated.  For the moment, we assume no dead weight cost to liquidation 

but do recognize that, in a discrete-time setting, the fund may cross the barrier and have Xτ < Φτ.  

Our base case assumption will be that the manager recovers her personal investment aXτ  plus a 

prorated portion of the management fee τ(1-a)b Φτ .  This total is reinvested until T at the riskless 

interest rate.  This last step is because we have defined the manager’s utility in terms of time T 

wealth.  This results in: 

 
   r(T- ) rT

T 0W =aX e +0.5(1-a)b H e  for 0 Tτ
τ τ τ≤ ≤   (6) 

 
 
where the value of the first term depends on when the fund reaches the boundary and by how 

much it crosses that boundary.  Note, however, that once the boundary has been reached or 

crossed, we know Xτ and  τ so the terminal payoff in (6) is certain.   An obvious alternative to 

(6), which we will also consider, is that the manager receives a smaller amount due either to 

some liquidation costs or an explicit penalty built into the fee structure.  In any case, we will 
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refer to the payment the manager receives if the fund hits the liquidation boundary as her 

severance compensation. 

As we shall see shortly, the lower (liquidation) boundary plays an important role in 

determining the manager’s optimal portfolio allocations over time.  In a different context, such as 

a mutual fund, we could think of the lower boundary as representing a performance level at 

which the manager would be replaced (fired) and receive some sort of severance package.  

Failure to consider such a boundary when modeling managerial behavior leads to very different 

and potentially seriously misleading results. 

It is instructive to compare the basic structure of our model with Merton (1969).  In 

Merton’s model, an individual (analogous to our manager) dynamically chooses the optimal 

allocation of available funds between shares and the riskless asset. In the case where there is no 

intermediate consumption (between 0 and T), she chooses that investment strategy to maximize 

her expected utility of terminal wealth (WT).    This matches the situation of our manager if she 

had no incentive option and there wasn’t a liquidation boundary.  We know from Merton that the 

optimal alpha is constant under those assumptions for an individual with our utility function. 

Simply adding the liquidation boundary to Merton’s model effectively turns the 

individual’s share position into a knockout call with a rebate equal to the severance 

compensation of equation (6).  In addition, the incentive fee adds another call option with a 

higher strike price (at the high-water mark).  Either of these complications alters the optimal 

control (alpha), which creates substantial computational issues. To illustrate, consider the 

standard binomial model for derivative pricing. If alpha is constant, the binomial tree will have 

nodes that recombine. When alpha is not constant, the tree does not generally recombine.  In 

addition, there is an optimization problem to be solved at each node – determining the optimal 

alpha.   
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Our approach for dealing with these issues uses a discretization of the problem onto a 

finite-difference grid structure (more details are provided in the Appendix).  From each grid 

point, we allow a multinomial forward move to a relatively large number of subsequent grid 

points (e.g. 121) at the next time step.  We structure potential forward moves to land on grid 

points and calculate the associated probabilities using a discrete approximation of the normal 

distribution with a specified value for the control parameter alpha.  With the log X step constant, 

this set of probabilities is identical at each grid point for a given alpha.  Using a discrete set of 

alpha values, this allows us to create a matrix of probabilities with a probability vector for each 

potential alpha value.   

At each terminal grid point, we calculate the manager’s payoff and the associated utility.  

We then step backwards in time to T-∆t.   At each grid point within that time step, we calculate 

the expected utilities for all alpha levels in our discrete choice set.  We choose the highest of 

those expected utilities as the optimal indirect utility for that grid point and denote its value as  

J(X, T-∆t).  We record J(X, T-∆t) and the associated optimal alpha for each grid point within that 

time step and then loop backward in time, repeating this process through all time steps.  This 

generates the indirect utility surface and optimal alpha values for our entire grid.  Formally: 

 

 ;     [ ]       t 0, ,2 ,...,T T t t tJ U J E J where t t T t+∆= = = ∆ ∆ − ∆   (7) 

 

II. Some Illustrative Results 
 
 

We will frequently refer to a standard set of parameters as displayed in Table 1, which we will 

use as our reference case. The horizon is three months with portfolio revisions in 60 time steps, 

roughly once per trading day.  For this reference case, the starting fund value of 1.00 equals the 

current high-water mark.  We can think of the risky technology (e.g. convergence trades) 
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employed by the hedge fund as a risky investment.  On an unlevered basis, we assume that 

investment has a mean return of 7% and a volatility of 5%.  The riskless asset yields 5%.  This 

combination of mean returns and volatility would be consistent with a market-neutral strategy 

and implies a Sharpe Ratio of 0.40, which seems reasonable in light of the results reported in 

Brown, Goetzmann, and Ibbotson (1999).  We space 600 log steps between the lower (knock-

out) boundary and the initial X level. There are a further 600 steps above the initial X level 

before reaching the upper boundary. Beyond this artificial upper boundary, we simply use a 

version of the Merton (1969) optimal solution without consumption since the influences of the 

liquidation boundary and the incentive option are no longer felt. 

 

Table 1 

Standard Parameters 

 

Time to maturity    T 0.25   Interest rate  r 0.05  

Log value steps below/above X0  600/600 Initial fund value X0 1.00 

Risk aversion coefficient   γ 4  Mean    µ 0.07 

Number of time steps   n 60  Volatility  σ 0.05 

High water mark   H0 1.00  Incentive fee rate c 0.20 

Exit boundary at t=0   Φ0 0.50   Basic fee rate   b 0.02 

Manager’s share ownership  a 0.10 

Future nodes for the Normal approx. 1+2×60 = 121 

Log X step   (log (1/0.5))/600 ≈ 0.001155 

 
 

Before displaying results for our reference case, it is useful to build some intuition by 

examining a sequence of simpler situations.  If we eliminate the liquidation boundary and the 

incentive option (struck at the high water mark), we effectively have the case analyzed in Merton 

(1969) where the manager has a linear compensation in fund value and the optimal alpha is 

constant.  Using Merton’s results with our standard parameters, the optimal alpha is: 
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     *
2

( -r)=  = 2µα
γσ

.      (8) 

 

In other words, the optimal alpha surface would be flat at the level 2. 

We now add the liquidation or knockout barrier.  The manager’s optimal alpha levels are 

depicted in Figure 1 for our standard parameters except for setting a = c = 0.  That is, the 

manager has no ownership in the fund nor an incentive option.  The manager exhibits essentially 

four different areas of economic behavior. Two of these areas are intuitively rather 

straightforward.  The “Merton Flats” to the right in the figure is an area where the manager’s 

optimal alpha recedes to the continuous time Merton solution, which in our case is 2.  This 

represents an area where fund value is far enough from the knockout barrier (given the time left 

to T) that the barrier plays essentially no role in her decision making.  
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Figure 1. Optimal Alpha Surface with No Incentive Option and with No Share Ownership of the 

Manager. 
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“Gambler’s Ridge” in the far left corner of Figure 1 is also not surprising. Here the 

manager is in a situation just prior to T that could be described as “heads I win and tails I don’t 

lose very much.”  She is thus willing to gamble with a very large alpha. Due to excluding alpha 

values where we did not get a good approximation for the normal distribution, the maximum 

available alpha here is only 10.  Nevertheless, her gambling behavior is pronounced.  

More interesting and perhaps more surprising are the “Valley of Prudence” toward the 

left boundary and the “Hill of Anticipation” toward the center of Figure 1.  The Valley of 

Prudence can be interpreted as a region where the manager chooses an alpha only slightly above 
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zero in order to dramatically reduce the chance of hitting the boundary at an early date.5  Hitting 

the boundary early incurs a cost since the manager can no longer improve on her severance 

compensation by managing the portfolio.  Approaching the terminal date, the remaining potential 

for her gaining from continuing to manage the portfolio becomes progressively smaller. 

Eventually, the possible upside from a high-alpha bet comes to dominate the alternative of 

carefully managing the portfolio, as she encounters Gambler’s Ridge. 

 The Hill of Anticipation is a novel area of managerial behavior that to our knowledge 

has not been previously documented. It occurs a few percent above the lower boundary and starts 

some two months before the end. Here, the manager increases the risk of the controlled process 

substantially but not in the indiscriminate manner of the Gambler’s Ridge. She has more to lose 

and more time left to manage the fund than on the Gambler’s Ridge area, and this moderates her 

behavior regarding alpha. Nevertheless, she finds it attractive to increase alpha above the Merton 

optimum since the potential loss is limited and the time to maturity is relatively short. If she is 

fortunate and her higher-alpha bet pays off with a large increase in X, she heads toward Merton 

Flats. There the higher alpha level is too risky. So it gets revised downward.  Hence, the Hill of 

Anticipation tails off to the right approaching Merton Flats. The Hill of Anticipation also tails off 

to the left, dropping into the Valley of Prudence where she prefers to wait until very close to T 

before undertaking the high-alpha bets associated with Gambler’s Ridge. 

Thus, introducing a knockout barrier causes the manager to follow an optimal strategy 

that is much richer than the constant alpha solution of the Merton model.  A key factor in these 

results is the absence of dead-weight liquidation costs or some penalty which reduces the 

manager’s severance compensation.  Even a relatively small penalty that reduces her severance 

                                                 
5 Since we approximate the normal distributions very accurately, there is still some exceedingly 
small probability of crossing the boundary as long as alpha is not exactly zero.  The manager 
does not entertain negative alpha strategies as these are risky and can thus hit the boundary. 
Moreover, their expected return is less than the riskfree rate. 
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compensation can eliminate her gambling behavior both at the boundary and on the Hill of 

Anticipation.  This is illustrated in Figure 2 using a 3% penalty.   

 

Figure 2. Optimal Alpha Surface with a 3% Penalty for Hitting the Lower Boundary and No 

Incentive Option and No Share Ownership by the Manager.  
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We now consider results for our reference case using the set of parameters in Table 1 but 

still without share ownership by the manager.  In effect, this adds an incentive option (struck at 

the high-water mark) to the manager’s knockout call examined previously (with no penalty to the 

severance compensation).  In Figure 3, we see the same features as in Figure 1 plus a new region 

of high alpha values, which we term Option Ridge.  This region is centered just below the 

terminal high-water mark of H0erT=1.0125.  Again the manager dramatically increases the fund’s 

riskiness as she approaches the terminal date.  Now the motivation is to increase the chance of 
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finishing with her option substantially in the money.  She thus increases the alpha considerably if 

the fund value is either somewhat below or slightly above the strike price.   

There is a Merton Flats region between the Hill of Anticipation and Option Ridge.  This 

is because the liquidation boundary is relatively far below the high-water mark.  If the liquidation 

boundary is sufficiently close to the high-water mark, the incentive option starts to affect the Hill 

of Anticipation causing it to spread into Option Ridge and eliminating the Merton Flats region in 

between.  There is also another Merton Flats region that is far to the right.  To reach that upper 

Merton Flats, her incentive option has to be sufficiently deep in the money that it acts like a 

fractional share position.  Gambler’s Ridge and the Valley of Prudence are driven almost 

exclusively by the lower boundary and therefore do not change noticeably when an incentive 

option is added to the manager’s compensation.6 

 

                                                 
6 They appear compressed in Figure 3 due to the change of horizontal scale relative to Figure 1. 
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Figure 3. Optimal Alpha Surface with Incentive Option and with No Share Ownership of the 

Manager. 
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 We now reintroduce the manager’s share ownership (a = 10%) and examine the effect on 

her optimal alpha choice in Figure 4.  The most dramatic differences between Figures 3 and 4 are 

that Gambler’s Ridge almost disappears and the Hill of Anticipation does vanish.  In previous 

figures, Gambler’s Ridge and the Hill of Anticipation were induced by partial protection of the 

basic management fee (b = 2% annually) when fund value hits the liquidation boundary.  

However, over a three-month interval, that management fee represents only 0.5% of fund value; 

and it’s effects near the lower boundary are largely overwhelmed by the manager’s 10% 

ownership stake.  Consequently, this part of the picture is consistent with Fung and Hsieh’s 

(1999) comment about managerial share ownership inhibiting excessive risk taking.  Note that 
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this qualitative result depends importantly on the degree of managerial ownership.  Moreover, 

Option Ridge remains an area of very high alpha values, although somewhat narrower than 

previously.  Above Option Ridge, the manager’s optimal alpha does not drop quite as low as in 

Figure 3 and also ramps up faster towards a Merton Flats region at high fund values. 

 

Figure 4:  Optimal Alpha Surface with Incentive Option and with Share Ownership of the 

Manager. 
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III.  Managerial Control and Risk Taking  

 

Recently there have been a number of papers examining the nature and effects of incentive 

compensation mechanisms for money managers.  Although using different valuation 
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technologies and somewhat different incentive structures, some of these papers have generated 

results which can be related to portions of our Figure 4.  It’s instructive to make those 

comparisons.  It not only promotes a better understanding of how these papers fit together but 

also strengthens our knowledge of how shares, options, knockout barriers, and horizon times 

interact in influencing managerial behavior. 

Carpenter (2000) utilizes an equivalent martingale technology to determine the optimal 

trading strategy for a risk-averse money manager whose compensation includes an option 

component.  The manager seeks to maximize expected utility of terminal wealth, which is 

composed of a constant amount (external wealth and a fixed wage) plus a fractional call option 

on the assets under management with a strike price equal to a specified benchmark.  There are 

substantial similarities to our model structure, with Carpenter’s benchmark corresponding to our 

high-water mark at time T.  There are also important differences.  Carpenter’s manager doesn’t 

have a personal investment in the fund (a = 0) and also doesn’t earn a percentage fee on the 

funds under management (b = 0).  These two differences remove the manager’s fractional share 

ownership – see equation (5).  Also, Carpenter does not have a knockout barrier where the fund 

is liquidated or the manager is fired for poor performance.   

Carpenter finds results which qualitatively correspond to our manager’s behavior when 

the fund value is above the high-water mark.  However, at lower fund values Carpenter’s 

manager undertakes increasingly risky strategies.  We illustrate this in Figure 5 by 

superimposing a graph similar to Carpenter’s figure 3 on a stylized time slice from our Figure 4.   

 

 



 18

Figure 5.  Comparison of Risk Choices in Different Models I:  Hodder & Jackwerth, Merton, and 

Carpenter. 
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Carpenter describes her results as follows: 
 

On the one hand, the convexity of the option makes the manager shun payoffs that are 
likely to be near the money.  Under the optimal policy, the manager either significantly 
outperforms his benchmark or else incurs severe losses.  Furthermore, in examples of 
optimal trading strategies, asset volatility goes to infinity as asset value goes to zero.   
 
Yet the option compensation does not strictly lead to greater risk seeking. As asset value 
grows large, or if the evaluation date is far away, the manager moderates asset risk.  For 
example, if the manager has constant relative risk aversion (CRRA), asset volatility 
converges to the Merton constant as asset value goes to infinity.  In some situations, the 
manager actually chooses a lower asset volatility than he would if he were investing on 
his own, because the leverage inherent in his option magnifies his exposure to the asset 
volatility.  (Page 2311) 

 
The second paragraph of Carpenter’s description corresponds very well to the behavior of our 

manager for relative high fund values.  However, her manager behaves very differently from 

ours as fund value drops below the strike of the incentive option.  Her manager continues to 

increase volatility as the fund value declines and there is no limit to this behavior since it is 
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costless to the manager.  On the other hand, our manager moderates volatility and gradually 

reduces risk to the level prevailing in Merton Flats.  This difference in behavior is induced by our 

manager owning a fractional share in the fund which makes is very expensive for a risk averse 

manager to increase risk without limit.  Parenthetically, even if the manager didn’t explicitly own 

a fractional share (a = 0), having a percentage fee based on the (terminal) value of funds under 

management (b > 0) generates similar results. 

The liquidation boundary and the extent of severance compensation also play important 

roles in our model whereas Carpenter doesn’t have a knockout barrier.  This aspect of the 

analysis is partially examined in Goetzmann, Ingersoll, and Ross (GIR).  That paper has a fee 

structure that is similar to ours (except for no explicit managerial ownership) as well as a 

liquidation boundary.  In most of their paper, the hedge fund’s investment policy is fixed.  

However, in Section IV they briefly explore an extension with the state space (measuring fund 

value) split into multiple regions, where different volatilities could be chosen by the manager.  

GIR use an equilibrium pricing approach with a martingale pricing operator based on the 

attitudes of a “representative investor” in the hedge fund.  Hence, they can’t directly address 

choices based on managerial utility.  However, they are able to examine volatility choices which 

maximize the capitalized value of fees (performance plus annual) earned by the fund.   

In that context, they examine two alternative cases (GIR, p. 1708).  With no lower 

liquidation boundary, they find that “the volatility in each region should be set as high as 

possible if the goal is to maximize the present value of future fees.”  When they have a 

liquidation boundary, GIR find that “volatility should be reduced as the asset value drops near 

the liquidation level to ensure that liquidation does not occur.”   They also point out that “this 

conclusion is inconsistent with that of Carpenter (2000) in which volatility goes to infinity as 

asset value goes to zero.”   
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Clearly the knockout boundary plays a vital role.  Carpenter doesn’t have such a 

boundary (or managerial share ownership).  Hence, at low asset values her manager is motivated 

only by the probability of getting back into the money prior to the evaluation date.  The further 

out-of-the-money and the shorter time to maturity, the more the manager is willing to gamble.  In 

contrast, GIR have a boundary at which fees go to zero.  If the objective is to maximize fees, 

such a boundary is to be avoided, and this drives their result that volatility should be decreased as 

asset values approach the boundary.  In effect, this is the result in our Figure 2 where a penalty 

imposed at the lower boundary causes the manger to reduce alpha (and volatility) as the fund 

value declines near the boundary.7  

An important but perhaps subtle issue in the GIR model is the timing of performance 

fees.  In GIR, such fees are earned continuously whenever the fund value reaches the high-water 

mark.  In our model as well as Carpenter’s, such fees are earned only on an evaluation date.  This 

difference means that GIR’s manager can never be deep in-the-money.  Similarly, their manager 

can’t lose an accrued incentive fee by falling out-of-the-money prior to an evaluation date.  

Hence, the GIR manager would always want to increase volatility as the fund value moves 

further away from the liquidation boundary.  This serves to emphasize the role of timing in 

performance measurement.  If performance evaluations are quarterly or annual, then the sort of 

behavior seen on the upside of Gambler’s Ridge and beyond in Figures 3 and 4 is more realistic 

than GIR’s continuously increasing volatility.     

                                                 
7 In the continuous time limit of our model, it would always be possible for the manager to avoid 
hitting the boundary by switching completely into the riskless asset just before reaching the 
boundary. If there is any penalty associated with hitting the boundary, this behavior will obtain. 
On the other hand, if the manager is indifferent between continuing to manage the fund and 
hitting the boundary, we should observe the constant-alpha Merton result approaching the 
boundary.  In either case, Gambler’s Ridge and the Hill of Anticipation would vanish. In other 
words, these features are characteristics of the discrete-time nature of our model. Arguably, such 
features are realistic in the sense that continuous adjustments of the fund’s portfolio would be 
impractical – e.g. due to transactions costs. 
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Another related paper is Basak, Pavlova, and Shapiro (BPS).  That paper examines the 

use of benchmarking to control the risk taking behavior of a money manager.  The manager 

maximizes expected utility with respect to a terminal payoff function and exercises continuous 

control of the investment process.  One version of their model examines optimal behavior with a 

single risky plus a riskless asset and generates results which can be fairly readily compared with 

ours.   

Figure 6 illustrates the GIR and BPS results compared with ours and with Merton’s.  As 

discussed above, GIR’s liquidation boundary and incentive structure with continuous earning of 

performance fees results in volatility being optimally zero at the knockout boundary and then 

increasing as the fund value rises.  Their paper doesn’t examine this situation graphically, but we 

illustrate the qualitative result at the left-hand side of Figure 6. 
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Figure 6.  Comparison of Risk Choices in Different Models II:  Hodder & Jackwerth, Merton, 

GIR, and BPS. 
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Our illustration of BPS results in Figure 6 is based on their figure 1a8.  First of all, BPS 

does not have a knockout boundary; and consequently, they don’t get the types of boundary 

induced behavior (depending on the severance compensation structure) that occur in our model 

or in GIR.  Instead, the BPS manager optimally pursues a Merton Flats strategy toward the left of 

Figure 6.  This is because their manager’s compensation in that region is effectively a fractional 

share.  As fund value increases toward 1.0 (our high-water mark H0), the portfolio weight in the 

risky security rises9 then dives dramatically to zero before rising gradually back to a Merton 

                                                 
8 In their model, the benchmark is risky.  An example would be the S&P 500.  Consequently, it’s 
possible for their manager to follow a strategy which is either more or less risky than the 
benchmark.  In the current version of our model, the high-water mark is known and it’s not 
possible to follow a less risky strategy than setting alpha to zero (investing completely in the 
riskless asset).  Hence, BPS figure 1b is not applicable to our situation. 
9 However, the exact shape of this Option Ridge (our terminology) in BPS will depend on the 
parameter choices and can differ from our model. 
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Flats strategy for high fund values.  Differences in their manager’s behavior in this region as 

compared with ours or Carpenter’s are due to differences in the compensation structure.  

BPS is attempting to model both implicit and explicit incentives for managerial 

performance.  The explicit incentive comes from making the manager’s compensation 

proportional to terminal fund value (assets under management in their terminology).  This has 

the same effect as managerial share ownership and (absent other incentives) leads to a Merton 

Flats strategy.  The implicit incentive comes from capital inflow or outflow in response to, 

respectively, good or poor performance.  Performance is measured in their model relative to a 

benchmark.  If managed returns at time T exceed those of the benchmark by a specified 

threshold amount (which can be positive, negative or zero), then capital flows into the fund.  For 

comparison purposes, we set the threshold amount to zero and align their benchmark with our 

high-water mark at H0=1.0.  

BPS model fund flow by adjusting the terminal fund value using a multiplier which takes 

on just two values  --  fL < 1 for poor performance and fH  > 1 when performance is good. Using 

our notation of XT for terminal fund value and WT for the manager’s payoff, the BPS 

compensation structure is equivalent to: 

 

  
0{ }

( ) 1
≥

= + − rT
T

T L T H L T X H e
W f X f f X     (9) 

 

The indicator variable takes on the value one in good performance states, where XT equals or 

exceeds what corresponds to our high-water mark.  The BPS manager’s compensation as 

portrayed in (9) is effectively a partial share of fund value plus a binary “asset or nothing” call 

option struck at the high-water mark.  There are clear similarities between this compensation 

structure and our manager’s payoff in equation (5) when she doesn’t hit the liquidation boundary 

prior to date T.  In both cases, the manager has a partial share plus an incentive option. 
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There is also a very important difference between (5) and (9).  The incentive option for 

our manager is a standard call option struck at the high-water mark.  If at date T that option is 

exactly at-the-money, it would add nothing to our manager’s compensation.  In contrast, the 

binary option in (9) has an at-the-money value of (fH  - fL) H0erT.  In other words, the incentive 

structure of equation (9) implies a jump in the manager’s compensation when performance just 

reaches the benchmark.10  That jump is what causes the BPS manager’s optimal alpha in Figure 6 

to dive to zero when fund value touches 1.0 (the strike price).  In effect, that jump is sufficiently 

valuable to the manager that she chooses to “lock-in” the at-the-money position and hold it until 

date T.11  With higher fund values above the strike price, the BPS manager’s risk taking heads 

back toward a Merton Flats strategy, as in our model as well as Carpenter’s.  

Comparison of these models highlights the importance of seemingly minor changes in the 

manager’s compensation structure.  For example, whether or not the manager has a share 

position as well as an incentive option can substantially mitigate risk taking behavior – compare 

our results and those of BPS with Carpenter.  The nature of the incentive option (e.g. plain 

vanilla call versus binary asset-or-nothing) can make a substantial difference.  We’re inclined to 

believe that the BPS structure is too simple for modeling the capital flow in response to 

performance.  However, it suggests that explicitly building binary options into performance 

incentives can lead to dramatic shifts in risk taking.  On the other hand, inducing active managers 

to lock-in on a benchmark months before an evaluation date may not be that desirable.  We also 

get the message that knockout barriers as well as the frequency of evaluation can have dramatic 

effects.  In summary, there is a lot to be seen in this relatively simple comparison.  Our Figure 4 

                                                 
10 In the next section, we will examine fund outflow in our own model in response to poor 
performance.  Our structure is different from BPS and the effects on managerial behavior are 
rather moderate. 
11 Presumably how far from maturity the manager would lock-in an at-the-money position 
depends on the parameters, including the size of the jump and the manager’s risk aversion.  In 
BPS figure 1a, the time to maturity is 2.4 months, so lock-in can hypothetically continue for a 
substantial period of time. 
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may not depict the “whole elephant,” but it does illustrate how managerial behavior can vary 

dramatically in different parts of the state space. 

 

IV.  Endogenous Liquidation 

 

The model developed in Section I used a prespecified liquidation boundary.  This is a convenient 

simplification for a more complex reality in which the shutdown decision is endogenous and may 

depend on multiple factors.  We will consider several of these scenarios in turn.  For example, 

GIR suggest that fund liquidation results from outside investors withdrawing their funds in 

response to poor fund performance.  Brown, Goetzmann, and Ibbotson (1999) indicate a belief 

that funds are terminated because it appears unlikely that performance will reach the high-water 

mark (presumably within a “reasonable” time frame).  This later scenario is clearly a 

management decision and forces the outside investors to switch to another fund, resetting their 

high-water mark and forgoing the possibility of gains in the current fund without triggering 

incentive fees.  Fung and Hsieh (1997, p. 297) point out the possibility that relatively poor 

performance may trigger fund outflow which is sufficiently large that “assets shrink so much that 

it is no longer economical to cover the fund’s fixed overhead and the manager closes it down.”  

They also mention the possibility that a young fund with good performance may go unnoticed, 

the managers get impatient, close down the fund, and return to trading for a financial institution. 

 These are all plausible scenarios, although it seems appropriate to view shutdown as a 

managerial decision which may be triggered by a large-scale investor withdrawal as well as other 

considerations.  To the extent that managers have attractive outside opportunities and that 

covering fixed costs is an issue, a shutdown may well occur before outside investors would 

prefer – given the induced reset of their high water mark at a different fund.  In this section, we 

explore the possibility of a decision by management to shutdown the fund using a relatively 
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simple structure for the manager’s payoff at this endogenous self-liquidation boundary.  If the 

manager chooses to shutdown the fund at time τ at some X level above Φt= 0.5 H0ert, she 

receives at maturity: 

 

   aX er(T-τ) + b(1-a) τ X er(T-τ) + L (T-τ)        for 0 ≤ τ ≤  T  (10) 

 

where L represents an annual compensation rate which is independent of the fund value.  The 

first two terms of (10) indicate that the manager recovers her share of the fund (aX) plus a 

prorated fraction of the management fee (with no incentive payment).  These two amounts are 

invested for the time remaining until T at the riskless rate r, since the manager no longer has 

access to the fund’s investment technology after shutdown.  She also earns L prorated over the 

time remaining until T.  One could think of L as representing what the manager could earn by 

going to work for a financial institution as suggested by Fung and Hsieh (1997). 

We have included a prorated management fee in (10) based on the notion that this fee is 

intended (roughly) to cover operating costs and has been “earned” by operating the fund up to 

time τ.  What largely motivates the manager to keep the fund alive are the possibility of earning 

an incentive by exceeding the high-water mark and the ability to manage her own share using the 

fund’s higher return technology.  If L is large enough to offset those effects, she will choose to 

shutdown the fund below Option Ridge and potentially well above Φt.  This is illustrated in 

Figure 7 using an L value of 0.015  (1.5% of the fund’s initial asset value).    
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Figure 7.  Optimal Alpha Surface with Incentive Option and with Share Ownership by the 

Manager.  Also, the Manager has the Option to Shutdown the Fund at her Discretion. 
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 Intuitively, the probability of reaching the high-water mark becomes very small below 

Option Ridge and essentially disappears as an influence on the manager’s decisions.  There, she 

trades off the expected premium (above r) for managing her own share in the fund versus 

receiving external compensation at the annual rate L.  If L is sufficiently small, the manager will 

not voluntarily choose to shutdown and must be forced to liquidate at Φt. 

An alternative interpretation of (10) is that b represents a percentage management fee net 

of operating costs and L is a fixed annual component of those operating costs.  From that 

perspective, L represents an annualized opportunity cost savings from shutting down the fund -- 
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along the lines suggested by Fung and Hsieh (1997).  Realistically, L may well be a combination 

of cost savings plus an external employment opportunity.   

The comments of GIR as well as Fung and Hsieh (1997) suggest that fund outflow in 

response to poor performance may be an important contributing factor to the shutdown decision.    

To gain some intuition on this possibility, we replace Xt with e-rtXt
2 as the asset value for 

calculations at nodes below the high-water mark.12  Since our initial high-water mark is at 

H0=1.0, this transformation compounds the reduction of asset values as we move lower in the 

grid.  For example at time t = 0.25, a 20% loss via poor performance is accompanied by an 

additional fund outflow amounting to 21% of the remaining assets.  The combined effect is that 

assets drop to (0.80)(0.79)=0.63. 13  

Interestingly, this modeling of fund outflow has a rather modest impact on the manager’s 

shutdown decision.  Below the high-water mark at maturity, replacing XT with e-rtXT
2 effectively 

increases the exponent of the manager’s utility function in equation (4) and thus increases the 

manager’s risk aversion in that region of the state space.  At earlier dates, this mitigates slightly 

the manager’s gambling behavior on the lower side of Option Ridge; however, the most obvious 

effect is to lower the level of Merton Flats below Option Ridge.  If the manager is choosing to 

shutdown some distance below Option Ridge (as in Figure 7), this causes her to marginally shift 

the closure point upward toward the lower edge of Option Ridge.  If she is already shutting down 

the fund at the lower edge of Option Ridge, the fund outflow has almost no effect since the level 

of a (potential) Merton Flats below that shutdown level becomes irrelevant. 

 

                                                 
12 We chose to discount in order to penalize any performance that does not even earn the riskfree 
rate. 
13 To avoid creating path dependence, we treat fund inflows and outflows symmetrically which 
ignores the possibility that inflows could have a differing high-water mark.  For purposes of this 
illustration, that treatment seems innocuous. 
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 To summarize, the fund’s cost structure and the manager’s external opportunities appear 

to play important roles in her decision whether or not to shut down the fund.  With our model’s 

structure, a relatively modest external opportunity and/or cost savings can induce her to shut 

down below Option Ridge and well above the prespecified liquidation boundary.  The risk of 

fund outflow effectively increases the manager’s risk aversion in the lower portion of the state 

space but has little effect on her shutdown decision. Under such circumstances, outside investors 

experience a pattern of heavy gambling along Option Ridge with fund closure at perhaps only 

slightly lower asset values.   This could be described as “heads the manager wins a performance 

incentive, tails outside investors have to find a new fund with their high-water mark reset to their 

detriment.”   That description sounds rather unappealing from the perspective of an outside 

investor but serves to illustrate the importance of being able to address the manager’s optimal 

actions in an American Option framework.  

 

V.   Managerial Effort 

 

Presumably, outsiders invest in a hedge fund because they believe the manager has an expertise 

that they can’t replicate for themselves (or that replication is too costly).  In previous sections, 

we modeled the manager as working with equal effort and skill at all grid points where the fund 

was in operation.  We now consider the possibility that the manager has some control over the 

effort (and skill) she uses in managing the fund.  We model this by assuming that she can 

enhance µ (the expected return of the risky investment technology) via expending more effort.14    

However, expending effort reduces her utility.   

                                                 
14 Alternatively, we can model her effort as reducing the volatility (σ) of the risky process.  
Altering σ affects both the drift and volatility of the log X process, whereas altering µ affects just 
the drift.  However, the qualitative effects are similar. 
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 We model this situation using ψ to denote the level of effort expended.   We use ψ = 0 to 

denote the low effort level and increase ψ in steps of  0.01  to a maximum of  0.02 (high effort 

level).  The enhanced drift for the risky investment technology becomes µ+ψ, and the manager’s 

indirect utility function takes on the modified form of: 

 

   G(X,ψ,t) = E[G(X, ψ, t+∆t)] –  0.5gψ2    (11) 

 

where g is a parameter that scales the manager’s aversion to effort. 

 At each grid point, the manager jointly chooses α and ψ to maximize her indirect utility 

(G).    Previously, we had a discrete set of alpha values that allowed us to calculate a matrix of 

probabilities (a probability vector for each potential alpha value) that was the same for all grid 

points.  Now, we change that matrix to have a probability vector for each possible combination 

of  α and ψ.15  Our augmented probability matrix is again the same throughout the grid.  Hence, 

we employ the same basic procedure as previously and select the highest indirect utility from the 

set calculated using each of the probability vectors.  We denote that value as the optimal 

G(X,ψ,t) as we loop backward through time.  We also record the optimal alpha and psi values for 

each grid point.  For modest numbers of effort levels, this augmented procedure is not 

particularly onerous.  Using three possible effort levels, there are three times as many probability 

vectors as previously.  However, our procedure can easily handle the increased computation.16     

                                                 
15 We simply calculate the probabilities of reaching the various subsequent grid points using the 
appropriate drift and volatility for each combination of α and ψ. 
16 We have experimented with up to ten effort levels.  This provides more refinement, but the 
overall qualitative results are much the same as with three effort levels. 
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Figure 8:  Optimal Alpha Surface with Standard Parameters plus a Choice of Three Effort 

Levels.  Manager does not have a Shutdown Option. 
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 We use for our results an effort aversion coefficient of g = 2500.  Figure 8 displays 

typical results for the situation where the fund is liquidated at a prespecified barrier (one-half the 

high-water mark) as in Section II.  We observe that the manager expends little effort at relatively 

high X values.   These are states where she expects a relatively high terminal payoff and 

incremental income is less valuable for her utility than in low X states.  Hence, she is less willing 

to expend effort in high X states.  By making effort more beneficial or less costly (in terms of 

reduced utility), we can induce the manager to increase her effort level; but it still remains 

relatively low in states with high X values.  On the other hand, she expends greater effort along 
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Option Ridge and approaching Gamblers Ridge.  These are also locations where she chooses 

high alpha values.  As a somewhat loose generalization, she tends to exert maximum effort to get 

her incentive option into the money and to avoid liquidation.   

 Compared with Figure 4, the optimal alpha levels are higher below Option Ridge except 

for the lower portions of the Valley of Prudence -- where the manager is trying to avoid hitting 

the liquidation boundary by choosing very low alpha values.  Alpha values are the same above 

Option Ridge in both figures.  This is consistent with the manager expending low effort (ψ = 0) 

in Figure 8, while we have ψ = 0 in Figure 4 by construction.  Option Ridge is wider, indicating 

higher alpha values on the shoulders of that ridge.  Intuitively, positive psi values increase the 

Sharpe Ratio for the risky technology and make greater investment (larger alpha) more attractive.  

This motivation is very clear in the Merton Flats region below Option Ridge.  In Figure 4, the 

optimal alpha for that region is 2.  In Figure 8, the optimal alpha increases to 3 with moderate 

effort (ψ=0.01) and to 4 with high effort (ψ=0.02).  Using equation (8) with µ replaced by µ+ψ, 

one can readily see that these are the appropriate optimal alpha values conditional on those levels 

of effort. 

 We now add the possibility of the manager choosing to shutdown the fund using the same 

modeling structure as in Section IV.   This is illustrated in Figure 9 using an L value of 0.015, 

which is large enough to induce a shutdown somewhat below Option Ridge.  This results in her 

choosing to shutdown shortly after encountering the lower region of Merton Flats with an 

optimal alpha of 4.17  Above that endogenous shutdown level, Figures 8 and 9 are almost 

identical, indicating virtually the same alpha and effort choices. 

 

                                                 
17 We can shift the shutdown level up and down by altering L. 
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Figure 9:  Optimal Alpha Surface with Standard Parameters plus a Choice of Three Effort 

Levels.  Here the Manager has the Option to Shut Down the Fund at her Discretion. 
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    As in Section IV, the manager’s ability to voluntarily shutdown damages outside 

investors by forcing them to reset their high-water marks at other funds.  However, the increased 

alpha value (4) in the high-effort portion of Merton Flats causes the manager to lower slightly the 

endogenous shutdown level as compared with that in Figure 7.   

 Including effort as a managerial choice variable yields some interesting results; but ones 

that are intuitively reasonable after some reflection.  We see increased effort only on and below 

Option Ridge. The manager becomes something of a “slacker” when things are going well.  

Admittedly, the model is simplified; however, this result suggests that the typical hedge-fund 

incentive structure may not elicit intensive managerial effort at high X levels.  It is also 
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interesting that increased effort goes together with higher alpha values rather than resulting in a 

tradeoff between the two.  Thus, one needs to exercise some caution before inferring whether a 

relatively high alpha is the result of just gambling or in response to enhanced upside probabilities 

resulting from extra effort by the manager. 

 

VI.  Concluding Comments 

 

The major thrust of this paper is to explore the optimal behavior of an expected utility 

maximizing hedge-fund manager who can control the fund’s investments.  Controlling those 

investments implies controlling the stochastic process for fund value.  An underlying theme of 

the paper is developing a methodology for valuing payoffs (derivatives) based on such a 

controlled process.  We feel this is a research direction that warrants attention.  Our manager 

does not follow anything close to a constant risk strategy; and hence, the stochastic process 

followed by fund value is far from exogenous.   

Exploring the effects of a typical hedge-fund compensation contract as well as the 

implications of differing shutdown alternatives, we find a range of rich and interesting 

managerial behavior.  We also find that seemingly slight adjustments in the compensation 

structure can have dramatic effects on managerial risk taking.  For example, even a relatively 

small penalty for hitting the lower boundary can dramatically reduce risk-taking in the lower 

portions of the state space (compare Figures 1 and 2).   Whether or not the manager has an 

ownership stake has major implications for risk-taking behavior, as does the precise nature of 

any incentive options. 

This is again illustrated in Section III (see Figures 5 and 6), where we examine results 

from recent papers by Carpenter (2000),  Goetzmann, Ingersoll, and Ross (2003), and  Basak, 

Pavlova, and Shapiro (2003).  Seemingly slight differences in their compensation structures 
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result in striking differences in managerial behavior.  Although we can explain these results 

using our model and put them into a more general context, their divergence illustrates that one 

needs to be cautious with generalities about managerial behavior.  Seemingly minor additions to 

the model can have major implications.    

 Allowing the manager to voluntarily shutdown the fund adds an American-style option to 

the analysis.  Our methodology can readily handle this situation, and it adds an interesting aspect 

of managerial discretion.  Our analysis suggest that two key drivers in the shutdown decision are 

the manager’s outside opportunities and it being very unlikely that fund value will get above the 

high-water mark by the evaluation date.  Fund outflow may accelerate the shutdown decision but 

appears to play a secondary role, at least with our modeling structure.  Being below Option 

Ridge can be viewed as a necessary condition for the manager to voluntarily liquidate the fund.   

However, it’s possible that the manager chooses to shutdown at a fund value well above what 

outside investors would prefer. 

 Allowing the manager to enhance the fund’s Sharpe Ratio via increased effort adds 

another interesting dimension to the analysis.   One striking result is that high effort tends to go 

together with relatively high risk taking.  This makes sense because the effort enhances the 

Sharpe Ratio, which makes greater risk taking more attractive.  A second potentially important 

result is that standard hedge fund compensation contracts appear to not provide much incentive 

for high effort levels when the fund is doing well.  Our model is definitely simplified, but such 

issues clearly warrant further attention. 

 Similar statements could be made regarding our analysis of the shutdown option, the 

manager’s severance compensation, and indeed her basic compensation structure.  We certainly 

do not feel that we have the final answer on these issues.  Rather, we feel that the methodology 

introduced in this paper has allowed us to identify a number of interesting issues which warrant 

further research.     
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Appendix:  Numerical Procedure 

 

We discretize the continuous problem onto a finite-difference grid which spans across fund value 

[∆(log X) = constant] and time [∆t = constant]. We choose the value dimension with equal log 

spacing and with the initial level X0 on the grid. It is convenient to have the grid points for the ith 

fund level increase over each time step at the riskfree rate r te ∆ . This choice stems from the fact 

that in the limiting case where the manager chooses α=0 and only invests in the riskfree asset, 

the value process will still reach a regular grid point. Thus, the grid structure will not prevent the 

manager from switching to the riskfree strategy. Maintaining this structure for the lower 

boundary implies having 0
rt

t eΦ = Φ .  

Given the grid, we calculate the terminal payoff for the manager based on her 

compensation scheme and the realization of the optimally controlled fund value process at time 

T.  We also compute the associated utility at each of those terminal grid points.  Our next task is 

to calculate the indirect utility function at earlier time steps as an expectation of future indirect 

utility levels.  We thus need the probability of moving from one fund value level at time t to 

another value level at time t+∆t.  These probabilities depend on α(X,t) since the choice of alpha 

determines the process for X over the next time step.  

For a given alpha, the log change in X is normally distributed with mean 

 

  2 21
, 2[ (1 ) ]t r tαµ αµ α α σ∆ = + − − ∆      (A1) 

 

and volatility , t tασ ασ∆ = ∆ .  Recall that we need these log changes in X to fall on grid points. 

To accomplish this, we approximate the normal distribution of log changes in the following 

manner. The possible log X moves are (log )r t i X∆ + ∆ . The first term in that expression is due 
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to the riskfree drift in the X grid. In the second term, we limit outcomes to lie on grid points 

indexed by i, which is measured as an offset relative to the current grid point level.  In our 

standard model, we let the offset i range from –60, …, 0, …, 60.  For a given alpha, we calculate 

the probabilities based on the normal density times a normalization constant so that the computed 

probabilities sum to one: 
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∑
   (A2) 

 

For a specified alpha value, these probabilities are identical at each grid point. This 

results from our choosing the log X step size to be constant. We keep a table of the probabilities 

for different choices of alpha which we vary from 0, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3, 3.5, 4, 5, 6, 

7, 8, 10, to 20.  However, the ends of this range are problematic and can result in poor 

approximations to the normal distribution. For low alpha values, the approximation suffers from 

not having fine enough value steps. For high alpha values, the difficulty arises from potentially 

not having enough offset range to accommodate the extreme tails of the distribution.  

To insure reasonable accuracy, we compare the standardized moments of our 

approximated normal distribution ˆ jµ with the theoretical moments of the standard normal, 

1 3 ... ( 1) j jµ = ⋅ ⋅ ⋅ − for j even and 0jµ = for j odd. In particular, we calculate a test statistic based 

on the differences of the first 10 approximated and theoretical moments scaled by the asymptotic 

variance of the moment estimation – see Stuart and Ord (1987, p. 322): 
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2
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2 2 21
1 2 2 1 1 1

ˆ1 ,  where we set 1
10 ( 2 )

j j

j j j j j jn

n
j j
µ µ

µ µ µ µ µ µ= − − +

 −
=  − + − 

∑    (A3) 

 

After some experimentation, we discard distributions with a test statistic of more than 0.01. For 

our standard model, this results in eliminating the distributions associated with the alpha level of 

0.1 and the alpha levels greater than 10.  We finally have a matrix of probabilities with a 

probability vector for each alpha value in our remaining choice set. 

We now commence stepping backwards in time from the terminal date T. At each grid 

point within a time step, we calculate the expected indirect utilities for all alpha levels and 

choose the highest as our optimal indirect utility, J(X,t).  We record that value and the associated 

optimal alpha for each grid point. This procedure for identifying the best alpha at each grid point 

is analogous to using a lookup table. In our situation, this has two advantages compared with 

using an optimization routine. For one, lookups are faster although coarser than optimizations. 

Second, a sufficiently fine lookup table is a global optimization method that will find the true 

maximum even for non-concave indirect utility functions. In such situations, a local optimization 

routine can get stuck at a local maximum and gradient-based methods might face difficulties due 

to discontinuous derivatives.  We compute the indirect utility surface for all grid points within a 

time step and then loop backward in time through all time steps.  

When implementing our backward sweep through the grid, we have to deal with behavior 

at the boundaries. The terminal step is trivial in that we calculate the terminal utility from the 

terminal wealth. The lower boundary is also quite straightforward.  We stop the process upon 

reaching or crossing the boundary and calculate the utility associated with hitting the boundary at 

that time.  For our basic model, the manager’s severance pay is reinvested at the riskfree rate 

until time T; and consequently, she receives r(T- ) rT
T 0W =aX e +0.5(1-a)b H eτ

τ τ   for sure at the 

terminal date. In terms of a grid with indirect utilities, we are effectively copying terminal 
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(indirect) utility values (one for each Xτ and τ combination) into appropriate grid points below 

the liquidation boundary that can be reached by our normal approximation.  

For the numerical implementation, we need an upper boundary to approximate indirect 

utilities associated with high X values.  We use a boundary 600 steps above the initial X level. 

For grid points near that boundary, our normal approximation procedure will seek indirect utility 

values associated with points above the boundary.  We deal with this by keeping a buffer of grid 

points above the boundary so that the expected indirect utility can be calculated by looking up 

values from such points.   We set the terminal buffer values simply to the utility for the wealth 

level at that grid point. We then step back in time and use as our indirect utility the utility of the 

following date times a multiplier which is based on the optimal Merton solution. This allows for 

general utility functions but biases the results low. However, the distortion ripples only some 20-

50 steps below the upper boundary, affecting mainly the early time steps.  

Although computationally somewhat intensive, the above numerical procedure is both 

intuitive and flexible.  Moreover, it allows us to analyze situations that do not appear amenable 

to closed-form analytic solutions.  Three aspects contribute to the performance of our approach. 

First, we use a finely spaced finite-difference grid to insure high resolution of the results. 

Second, we use the terminal distribution over each time step directly and approximate this 

normal distribution very accurately. Third, we use a fast and globally convergent grid search for 

the optimizations.  The end result is a relative fast and very flexible approach for valuing 

potentially complex payoffs on a controlled process. 
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