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“the transmission of technological change may also take the form of a circular 
process. Under such a configuration technological improvements have a 
magnified impact. … All these repercussions – vertical or triangular – form 
part of a response mechanism that contributes to technological advancement” 
(Balassa, 1961, p. 150) 

 
I. Introduction 
The process of economic integration after World War II has markedly intensified the 
interdependence of economic systems at all levels of aggregation – among firms, industries, 
regions, and even countries. The removal of barriers to transport and trade, improvements of 
infrastructure facilities, better availability of high-quality information and communication 
technologies, and access to new modes of specialization have induced sizeable growth in 
trade in final goods, foreign direct investment, and trade in components and intermediate 
goods (also referred to as outsourcing). This increase in economic interdependence is widely 
believed to have indirectly triggered productivity effects. Moreover, the mentioned modes of 
interaction have not only likely caused such productivity effects but also rendered their 
impact more global in nature: We suspect that – in a strongly integrated economic 
environment – productivity shocks, negative or positive ones, spill over more intensively to 
other elements of the economic system both nationally as well as internationally. 
 

The international economics literature on productivity spillovers roots in the seminal 
paper by Coe and Helpman (1995), which started off a growing literature assessing the 
magnitude and transmission channels of such spillovers (see Keller, 2004). While spillovers 
take place at various levels – among firms, industries, regions, and countries – the vast 
majority of previous work focuses on spillovers in a narrow, geographical sense, i.e., cross-
border spillovers among regional or national entities. A much smaller number of studies 
considers spillovers between firms or industries. For instance, Smarzynska Javorcik (2004) 
and Görg, Hijzen, and Murakozy (2006) investigate the role of spillovers among firms 
associated with linkage effects that take place in a certain geographical neighborhood. There 
are hardly any studies on productivity spillovers across industries. One notable exception is 
Keller (2002) who considers knowledge spillovers between manufacturing industries of 8 
major OECD countries over the period 1970-1991.1  

 
The present paper investigates the role of intra- and inter-industry productivity 

spillovers within and among 13 OECD countries and 15 manufacturing industries. It goes 
beyond previous studies by considering not only knowledge spillovers (associated with 
research and development, henceforth referred to as R&D) but also other types of productivity 
spillovers. The latter are modeled by using a spatial econometric approach. We specify 
spillover effects as a decreasing function of economic (rather than merely geographical) 
distance, which we measure by using information on the domestic and international use and 
delivery of intermediate goods between industries.2 Hence, our approach is inspired by 

                                                 
1 A comprehensive survey of more than hundred empirical studies on economic growth with 

an emphasis on spillover effects, using conventional or spatial econometric techniques, is 
given by Abreu, De Groot, and Florax (2005). Strikingly, none of the studies included in 
the survey has used industry data.  

2
 We put great effort into constructing an input-output matrix across countries and industries 

for the OECD. This comprehensive data-set on both domestic and international intra- and 
inter-industry use of products enables novel insights into productivity spillovers. However, 
due to the limited availability of internationally comparable input-output data, the focus 
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Balassa’s (1961) view on horizontal and vertical linkages between industries as a key source 
of productivity spillovers and findings of Smarzynska Javorcik (2004) at the firm level that 
linkage effects related to input-output relations entail an important channel of spillovers. The 
novelty of the paper is to allow for, distinguish, and estimate the relative importance of two 
different channels of total factor productivity spillovers, namely intra- versus inter-industry 
spillovers. As a workhorse model, we use a translog primary production function which 
accounts for domestic as well as imported R&D, following Coe and Helpman (1995) in the 
latter regard. 

 
As for the estimation approach, we consider a framework suitable for the analysis of 

cross-sectional interdependence of the units of observation. We adopt a generalized moments 
(GM) approach for ‘spatially dependent’ data by Kelejian and Prucha (2007), which is robust 
to heteroskedasticity. Since we aim at distinguishing between intra- and inter-industry 
spillovers, we extend the set of moment conditions given in Kelejian and Prucha (2007) to 
cope with two spillover channels and parameters of interdependence rather than a single one. 
We also provide evidence from a Monte Carlo analysis that this extension of Kelejian and 
Prucha’s estimation procedure performs well, also in reasonably small samples and for 
heteroskedastic or homoskedastic disturbances.  

 
Our empirical results suggest the following conclusions. First, there are sizeable 

knowledge spillover effects on productivity, both vertically (inter-industry) and horizontally 
(intra-industry). Second, stochastic productivity shocks unrelated to R&D are significantly 
transmitted through input-output relationships, but mainly between similar industries. As a 
result, productivity shocks are magnified through intra-industry spillovers and the associated 
repercussions.  

 
The remainder of this paper is organized as follows. Section II lays out the basic 

empirical model. Section III outlines the spatial econometric approach to modeling and 
estimating productivity spillovers with two rather than a single transmission channel. (The 
detailed extension of the GM estimator by Kelejian and Prucha (2007) and the Monte Carlo 
results are relegated to an Appendix.) Section IV presents the estimation results for our cross-
section of 13 OECD countries and 15 manufacturing industries. Section V summarizes the 
main findings and concludes. 

 
 

II. The Empirical Model 
Point of departure is a standard translog production function with Hicks-neutral technological 
progress and two primary factors of production, labor and capital. An advantage of the 
translog form is its greater flexibility as compared to Cobb-Douglas or, more generally, a 
constant elasticity of transformation (CET) technology. It may also account for the variation 
in production functions across industries, since the first derivatives vary by observation. 
Thereby, it also mitigates endogeneity problems involved in estimating production functions 
(see Mahmut and Morrison Paul, 2007).3 The assumed production technology reads as 
follows: 

                                                                                                                                                         
has to be on the cross-sectional rather than the time-series variation in the data (i.e., on 
long-run relationships).  

3 Given the absence of strong and convincing instruments for conditional factor demands, this 
is particularly important in our cross-section analysis, which precludes the use time lags as 
instruments unlike as with panel data (see Cohen and Morrison Paul, 2004). 
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where Y is value added in real terms, L is labor input, K is the capital stock, and A is total 
factor productivity. The sample comprises i = 1,…,13 OECD countries and k = 1,…,15 
manufacturing industries, yielding 195 observations. A detailed list of the available countries 
and industries is given in Appendix A1.  

 
Our main goal is to model and estimate productivity spillovers as determinants of total 

factor productivity A and to consider whether such spillovers take place only between or 
within similar industries (intra-industry spillovers) or also between different types of 
industries (inter-industry spillovers). In particular, we model total factor productivity A the 
following way: 

 
ikikikiik uRDRDA +++= *

21 lnln δδα , (2) 
 
where αi denotes a country-specific fixed effect, which captures differences in the level of 
development across economies, RDik is ‘own’ research and development (R&D) of country i’s 
industry k, *

ikRD  captures the contributions to productivity of country i’s industry k from R&D 
in other (both domestic and foreign) industries, and uik is a stochastic term, which will be 
talked about in greater detail below. Adopting the convention used in previous studies, the 
spillover term *

ikRD  will be constructed as import-share weighted average of all other 
industries’ R&D (see Section III).  
 

Inserting equation (2) in (1), the full model may be written as 
 

.ln            

lnlnlnlnlnlnln
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ikikik

ikikikikikikiik

uRDRD

KLKLKLY
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++++++=

δδ

βββββα
 (3) 

 
We do not expect the variable *

ikRD  to capture all possible spillover effects; on the one 
hand it captures only private and business enterprise R&D and does not account for 
knowledge spillovers related to public research. In addition, there are other types of intra- and 
inter industry effects which are not or only indirectly related to knowledge transmitted 
through the use of intermediate goods. An early discussion of such external economies across 
industries, including historical examples, is given by Balassa (1961, chapter 7). One example 
is that output price-reducing innovations in one industry will also increase demand for goods 
from input-producing industries, allowing firms in those industries to exploit economies of 
scale. More generally, Balassa (1961, p. 150) points out that “the transmission of 
technological change may also take the form of a circular process [between industries]. 
Under such a configuration technological improvements have a magnified impact. … All 
these repercussions – vertical or triangular – form part of a response mechanism that 
contributes to technological advancement as the economy grows.”  

 
As a result, part of the spillovers in our model will be reflected in the 1×n  error term 

vector u = [uik], where 195=n  is the number of observations in the sample.4 In econometric 

                                                 
4
 We use the convention that bold figures indicate vectors or matrices. 
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terms, the error term is expected to exhibit ‘spatial’ correlation (i.e., interdependence across 
units of observations), which we will talk about in more detail in the subsequent section. In 
matrix form, the full model reads 

 
y = Zαα  + Xβ + RDδ + u = Zγ + u.  (4) 

 
The vector y is defined as y ≡ [lnyik], Zα is an 13×n  selector (or dummy variable) 

matrix, α is a 113×  parameter vector containing the country-specific effects, RD ≡ [rd rd*] 
consists of the R&D-related parts of total factor productivity with rd = [lnRDik] and rd* = 
[ *

ikRD ], and X ≡ [l k l2 k2 lk] is the matrix collecting the respective parts of the translog 

production technology in equation (3), i.e., l = [lnLik], k = [lnKik], l2 = [ ikL2ln2
1 ], k2 = 

[ ikK2ln2
1 ], and lk = [lnLik lnKik]. Hence, the full 20×n  regressor matrix is defined as Z  = 

[Zα X RD] and the corresponding 120 ×  parameter vector is γ = [α β δ]′.  
 
 
III. Modeling Intra- and Inter-Industry Productivity Spillovers: A Spatial Econometric 
Perspective 
 
1. General Remarks 
With cross-sectional data, it is infeasible to estimate the nn ×  matrix of interdependence 
parameters for all observations in the model. But rather, it is necessary to adopt an assumption 
about the channel(s) and the structure of interdependence, captured by an observable nn ×  
(‘spatial weights’) matrix commonly referred to as W (see Anselin, 1988, Kelejian and 
Prucha, 1999). For instance, in a so-called first-order spatial autoregressive residuals model 
(SAR1), the residual vector would be defined as ε+= Wuu ρ , where ρ  is an unknown 
interdependence parameter which needs to be estimated, and ε  is an 1×n  vector of 
remainder disturbances.5 As a consequence, we may write the error process as 

ε1)( −−= WIu ρ , where I refers to the nn ×  identity matrix. Using a Leontief expansion of 
the form ...)( 33221 ++++=− − WWWIWI ρρρρ , it is readily seen that the complete 
structure of the variance-covariance matrix of u, E(uu′), yields a sum of terms containing the 
matrix powers of I and W, scaled by powers of the parameter ρ. Hence, the pattern of 
interdependence between the cross-sectional units may be viewed as an equilibrium outcome 
of a process that follows from ‘global spatial correlation’, where every unit is related to every 
other one through the weights matrix W (see Anselin, 2003).  

 
Of course, the same argument applies to higher-order SAR processes, 

ε1
1

)( −
=∑−=

K

k
WIu ρ , where K denotes the order of the process. Since we will allow for both 

intra- and inter-industry spillovers, assuming spillovers to be global in nature seems natural. 
That is, we hypothesize that productivity shocks in one industry will be transmitted to all 
other industries, where the impact depends on the interaction intensity among the industries 
and countries as captured by the weights matrix. 

 

                                                 
5 This process is referred to as ‘first order’, since it only involves a single ‘spatial lag’, 

namely Wu. 
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Notice that equation (4) may be interpreted as a restricted version of a more general 
model, which includes the ‘spatially’ weighted dependent variable (Wy) on the right-hand-
side. Models with spatial interdependence (e.g., channeled through input-output relationships) 
in both the error term and the dependent variable are referred to as SARAR models. However, 
with our data at hand, it turns out that a SAR model (without Wy on the right-hand-side) is 
preferable as compared to its SARAR counterpart, according to a series of specification tests 
(see subsection 2 in section IV).  
 
2. Specification of the Weights Matrix W 
In most applications, a first-order process is assumed and the elements of the weights matrix 
are specified as some decreasing function of geographical distance or as function of 
adjacency. With two-dimensional data such as ours (exhibiting country and industry 
variation), using a geographical spillover channel would unnecessarily restrict spillovers to 
occur in the country dimension but not across industries. Inspired by Balassa (1961) and 
Smarzynska Javorcik (2004), we pursue an approach which relies on intermediate goods use 
within and across both industries and countries. Productivity spillovers, which are the subject 
of this study, are supposed to take place mainly among firms. Since a large share of inter-firm 
trade is in intermediate goods, input-output data appear to be a suitable (and feasible) choice 
to measure the extent and intensity of interactions both within and across industries. Such a 
measure of interdependence naturally spans both dimensions of our data, namely industries 
and countries.

6
  

 
However, we are not the first to use input-output-based data to model inter-industrial 

interdependence. Moretti (2004) investigates the effects of human capital spillovers on 
productivity and wages using US plant level data over the period 1982 to 1992, using rank 
indices based on the value of input output flows. He allows for industry-specific parameter 
estimates, to test whether human capital spillovers decrease with an industry’s economic 
‘distance’ (captured by smaller levels of input-output flows) from manufacturing. An 
important difference to our study is that Moretti rules out cross-country spillovers and focuses 
on a single channel (inter-industry) rather than two channels (intra- versus inter-industry) of 
interdependence. Keller (2002) also uses input-output data to construct knowledge spillover 
variables in his investigation of R&D spillovers between manufacturing industries of 8 major 
OECD countries. Our study goes beyond that of Keller by considering not only knowledge 
spillovers in the systematic part of the model, i.e., equation (4) but also other types of 
spillovers captured in the disturbance term u, which we account for by using a spatial 
econometric approach.   

 
To construct the matrix of interdependence (the ‘spatial weights’ matrix), we use the 

production share of trade in intermediate goods. Specifically, we define the elements of the 
(unnormalized) weights matrix W0 = [ 0

, jlikw ] as:  
 

ik

jlik
jlik PROD

IO
w ,0

, = . (5) 

 
The numerator IOik,jl denotes exchange of intermediate goods between country i’s industry k 

                                                 
6
 Notice that, for instance, using total international trade flows at the industry level would not 

entertain this feature, and would rule out spillovers across industrial boundaries.  
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and country j’s industry l. We consider three alternative measures of input-output flows: use, 
delivery, and use-plus-delivery of intermediate goods. 
  

IOik,jl in (5) is constructed as follows. Domestic input-output flows by between 
industries are available from the OECD’s input-output database. International input-output 
flows are only available at a gross basis (total imported intermediates by industry for each 
importer-country and industry-pair). Accordingly, we have to adopt an assumption about the 
pattern of international trade in intermediate goods. We follow various examples in the 
literature by assuming that the foreign trade pattern of intermediate goods in a particular 
industry is similar to that of total trade.7 (See Appendix A1 for details.)  

 
The denominator in equation (5), PRODik, equals production (gross output) of country 

i’s industry k. Hence, the corresponding weights matrix models the magnitude of the 
interactions between two industries by the intensity of the use (or delivery) of intermediate 
goods in terms of the respective industry’s size.   

 
For technical reasons and to avoid the possible singularity of (I–φW0), the elements of 

the weights matrix are typically normalized. Two normalizations are widely used. Under 
maximum (row or column sum) normalization the weights matrix Wmn = [ mn

jlikw , ] is obtained 
by dividing each element of W0 by the maximum row or column sum of W0 (see Kelejian and 
Prucha, 2007, p. 9):8 

 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

==
∑∑ ]max,maxmin[

][
0

,
0

,

0
,

,

ik
jlikjljl

jlikik

jlikmn
jlik ww

w
wmnW . (6) 

 
We refer to the normalization in (9) as maximum-normalization in the sequel. The 
individually row-normalized weights matrix Win = [ in

jlikw , ] is obtained by dividing each 
element of W0 by the corresponding row sum, such that the elements in each row sum up to 
one: 9 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

∑
jl

jlik

jlikin
jlik w

w
w 0

,

0
,

, ][inW . (7) 

 

                                                 
7
 A similar approach is used by Feenstra and Hanson (1999), who combine data on imports of 

final goods with data on total input purchases, to obtain a breakdown of imported 
intermediate inputs by industry for US data. Bergstrand and Egger (2007) provide evidence 
that at least aggregate trade among the OECD countries in intermediate goods behaves 
remarkably similar to final goods trade. 

8
 Notice that this is a normalization by a scalar, since the maximum row (column) sum is 

identical for all elements of W.  
9
 This is a normalization by a vector, since row sums vary across the rows of W.  
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Kelejian and Prucha (2007) advocate using the maximum-normalization for economic 
reasons. Its advantage is that, if the original matrix is symmetric, it remains so and its 
economic interpretation is unaffected. Technically, the choice of the maximum-normalization 
ensures the existence of a single rescaling factor for the interdependence parameter that leads 
to a specification that is equivalent to that corresponding to the model with the unnormalized 
weights matrix. But this approach has also drawbacks. If there is a large difference between 
the average and the maximum row sum, maximum-normalization may lead to an excessive 
downscaling of all elements in the weights matrix and, in turn, to an excessively large 
estimate of the interdependence parameter. This is what happens in some of our models, 
where the use of a maximum-normalized weights matrix in the spatial regressive error process 
leads to parameter estimates outside the admissible parameter range. This is not the case here 
if a row-normalized weights matrix is used instead.   

 
One contribution of this paper is to assess whether there are differences between intra- 

and inter-industry spillovers. This will be achieved by splitting up the unnormalized weights 
matrix W0 into two components, 0

intraW  and 0
interW . The elements of 0

intraW  correspond to that 
of the nn ×  weights matrix W0 for intra-industry relations, i.e., 00

jlikjlik ww ,intra,, = for k = l and 0 

otherwise. 0
interW  reflects the elements of the nn ×  weights matrix W0 for inter-industry 

relations, i.e., 00
jlikjlik ww ,erint,, = for k ≠ l and 0 otherwise. It holds that 0

inter
0
intra WW + = W0.  

 
Under maximum-normalization the final weights matrices mn

intraW  and mn
interW  are then 

obtained by dividing each unnormalized matrix 0
intraW  and 0

interW by their respective 
maximum row sum. Under individual row-normalization, the final weights matrices in

intraW  
and in

interW  are obtained by (separately) row-normalizing 0
intraW  and 0

interW , i.e., dividing each 
row of each matrix by the respective row sum. Hence, all row sums of both in

intraW  and in
interW  

are equal to one. This is in line with the approach by Lee and Xiaodong (2006), who 
considers a higher order spatial autoregressive model. 

  
We emphasize that the distinction drawn between intra- and inter-industry spillovers 

depends on the level of disaggregation. In the present paper, the choice of 15 fairly highly 
aggregated manufacturing industries (see Appendix A1) is dictated by the high level of 
industry aggregation in internationally comparable input-output matrices. These 15 industries 
are clearly heterogeneous enough to regard any cross-industrial relationship to be of the 
‘inter-industry’ type. However, one could argue that each of these industries is made up of 
sub-sectors that are distinct enough from each other to regard their relationships as ‘inter-
industrial’ among similar industries. Hence, the figures about intra-industry spillovers should 
be interpreted as an upper bound, capturing true intra-industry spillovers as well as inter-
industry spillovers among fairly similar industries.  
 
3. R&D Spillovers 
Our approach to modeling R&D spillovers is closely related to that of Coe and Helpman 
(1995). They use (macro-economic) data from 21 OECD countries and Israel over the period 
1971 to 1990 to estimate the contributions of the domestic knowledge capital stock and 
(bilateral import share weighted) foreign knowledge stocks to total factor productivity. A 
large number of studies has extended and econometrically refined this seminal procedure by 
Coe and Helpman (1995). (See Keller (2004) for a survey of the literature.)  
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The empirical model by Coe and Helpman (1995) is closely related to a spatial 
econometric framework. Their R&D spillover variable (the import share weighted foreign 
knowledge stock) can be interpreted as a ‘spatial lag’ of the vector of R&D stocks. The 
weights matrix, reflecting the share of bilateral imports in total imports, can be thought of as a 
row-normalized weights matrix based on import flows. 

 
To account not only for the relative but also the absolute size of imports, Coe and 

Helpman (1995) use an alternative specification, where (the log of) each country’s import-
share weighted foreign knowledge stocks is multiplied by the respective country’s import 
share in GDP. A similar specification is chosen here. We calculate the R&D spillover term 
(rd*) as spatial lag of rd = [lnRDik], using an unnormalized10 weights matrix based on the use 
of intermediate goods, i.e., rd* = WU,0rd, where the elements 0

, jlikw  of the weights matrix 
WM,0 are defined as the use of intermediate goods (indicated by superscript U) of country i’s 
industry k from country j’s industry l, expressed as a share of the production of country i’s 
industry k. Hence, in matrix form equation (2) reads  
 

urdWrdαA U,0 +++= 21 δδ . (8) 
 
Consequently, the (average) productivity spillover effect of a simultaneous, uniform increase 
in all industries’ R&D by one percent is equal to δ2 times the (average) row sum of WU,0. 
 

Coe and Helpman (1995) rule out domestic (i.e., within-country) spillovers transmitted 
through domestic (within-country) trade or intermediate goods usage, since their focus is on 
international spillovers.11 Here, the availability of domestic intra-industry use of intermediate 
goods enables us to consider this dimension of R&D spillovers as well. Technically, this 
means that the matrix WU,0 has non-zero diagonal elements which are defined as domestic 
intra-industry use of intermediates as a share of production. 
 

The spillover term rd* reflects both intra-industry and inter-industry spillovers at the 
national and international level. A contribution of this paper is to estimate the relative strength 
of intra-industry versus inter-industry spillovers. For this, we split up the matrix WU,0 into two 
components: U,0

intraW , reflecting intra-industry relationships (intermediate goods use) only, and 
U,0
interW , reflecting inter-industry relationships only (see the discussion in subsection 2). We 

then calculate two R&D spillover terms, rdW*rd U,0
interintra =  and rdW*rd U,0

intrainter =  (where 
*rd*rd*rd interintra =+ ) and allow their effects on total factor productivity to differ. We test the 

hypothesis δ2,intra = δ2,inter in 
 

                                                 
10 The use of an unnormalized weights matrix ensures that the absolute level of intermediates 

usage is accounted for. The weights matrix could also be normalized by any finite and non-
zero scalar (such as the maximum row or column sum of the matrix), but this would imply 
a mere rescaling of the unnormalized matrix without consequences for inference or the 
magnitude of the implied effects.  

11 Frankel and Romer (1999) emphasize the role of domestic trade besides international trade. 
They specify productivity as a function of both international and domestic trade; since 
domestic trade is unobservable, they approximate it by country size (population and land 
area) in their estimation. 
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urdWrdWrdαA U,0
inter

U,0
intra ++++= inter2,intra,21 δδδ . (9) 

 
which is a more general version of equations (2) and (8).  
 

As a final remark, notice that U,0
intraW  and U,0

interW  capture both domestic as well as 
international input-output relationships. This reflects the main focus of this paper, which is to 
distinguish between intra- and inter-industry spillovers rather than between domestic and 
international ones. Hence, we implicitly restrict the parameters of domestic and international 
spillovers to be equal (both for intra- and inter-industry R&D spillovers). This assumption 
appears to be justified for spillovers among the developed and highly integrated OECD 
countries. Differences in the magnitude of domestic and cross-border spillovers are mainly 
due to distance, trade costs, and border effects, which are reflected already in the magnitude 
of input-output flows (intermediate goods usage) the spillover weights matrices are based 
upon. Accordingly, equation (9) assumes that differences between domestic and international 
productivity spillovers will only materialize in potentially different magnitudes of the entries 
in the weights matrix. By contrast, differences between intra-industry and inter-industry 
spillovers are allowed to be qualitative in nature and show up in possibly different 
interdependence parameters. 
 
4. Remainder Productivity Spillovers in the Residuals 
In our application, there are (significant) productivity spillovers that work through channels 
other than the import of knowledge. These spillovers are reflected in the residuals. While 
previous studies on productivity spillovers have focused on knowledge spillovers, this paper 
allows for linkage effects channeled through input-output relationships which are not related 
to knowledge or R&D. Such spillovers could be related to market structure, factor market 
characteristics and other economic fundamentals with a potential impact on total factor 
productivity (Balassa, 1961; Smarzynska Javorcik, 2004). The productivity effects of such 
‘remainder’ spillovers may be captured and estimated in an econometric framework allowing 
for a ‘spatial’ regressive error process. We hypothesize that these other spillover effects could 
partly be related to the delivery of intermediates and use a row-normalized weights matrix 
based on the share of intermediate goods use (U) plus delivery (D) in production. 
Distinguishing again between intra- and inter-industry spillovers, we allow for parameter 
heterogeneity in the spatial regressive process of u:  

 
u = ε++ inUD,

inter
inUD,

intra WW nterintra iρρ . (10) 
 

With the data-set employed below and an error process allowing for more than a single 
spillover channel as captured by two alternative spatial weights matrices and heterogeneous 
associated parameters of interdependence as in equation (10), the use of individual row-
normalization will turn out to be more suitable than maximum-normalization. Then, what 
matters is another industry and country’s relative (rather than the absolute) weight for a given 
country-industry dyad. Moreover, with row-normalization of either matrix, in

intraW  and in
interW , 

the two channels of interdependence obtain the same ex-ante ‘weight’ in terms of their row 
sums in the error process, such that their relative importance is reflected in the parameter 
estimates of intraρ  and interρ , respectively.12 

                                                 
12

 Under maximum-normalization, there can be a large difference in the maximum (and 
average) rows of the two matrices, such that – by construction – there will be a difference 
in the parameters which is simply due to a scaling effect and difficult to interpret. 
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Regarding the model specification, the interdependence parameters (ρintra,  ρinter) have to 

be restricted to lie in the interval 1|||| 0 interintra <+≤ ρρ  under row-normalization and the main 
diagonal elements of both inUD,

intraW  and inUD,
interW  have to be zero. As a consequence, we cannot 

incorporate domestic intra-industry spillovers in the spatial regressive specification of the 
residual u. Accordingly, the weights matrix inUD,

intraW  captures only international intra-industry 
spillovers, whereas inUD,

interW  reflects both domestic and international inter-industry spillovers.  
 

To check the sensitivity of the results with respect to the choice of the weights matrix, 
we will consider three alternative specifications below: first, we use a maximum-normalized 
weights matrix rather than a row-normalized one; second, we employ a weights matrix which 
is based on delivery (rather than use-plus-delivery) of intermediate goods; finally, to address 
endogeneity concerns, we consider the case of a weights matrix whose elements are based 
upon the predicted values from a gravity-type model. (See subsection 3 in section IV and 
appendix A3 for details.)  
 

Regarding estimation, two approaches dominate the literature: maximum likelihood 
estimation (see Anselin, 1988; Lee, 2004) and generalized method of moments estimation 
(Lee and Xiaodong, 2006; Kelejian and Prucha, 2007). A drawback of the maximum 
likelihood approach is that it is computationally cumbersome (particularly for large weights 
matrices) and that it is inconsistent, if the error term ε exhibits (unknown) heteroskedasticity. 
Since heteroskedasticity indeed turns out to be pronounced in our data as we will show below, 
we choose the GM estimator by Kelejian and Prucha (2007) to obtain consistent estimates of 
the interdependence parameters. The estimation approach is briefly sketched in formal 
accounts in Appendix A2.1. 
 

Kelejian and Prucha (2007) consider only one channel and parameter of 
interdependence. In Appendix A2.2.1, we extend their set of moment conditions to the case of 
a second order spatial autoregressive error process as specified in equation (10).13 While it is 
beyond the scope of this paper to elaborate on the asymptotic properties of the GM estimator 
for more than one spatial weights matrix, Appendix A2.2.2 illustrates by means of a Monte 
Carlo simulation study that the estimator based on the extended moment conditions performs 
reasonably well, even in small samples.  
 
 
IV. Estimation Results 
Our estimates of the empirical models derived in section II are based on a cross-section, 
consisting of 13 OECD countries and 15 manufacturing industries (making a total of 195 
observations) and refer (mainly) to the year 1995. Real value added is measured in 1995 
prices, labor input is expressed in terms of hours worked. Due to lacking data on capital 

                                                 
13

 This approach is related to the ones of Bell and Bockstael (2000) and Cohen and Morrison 
Paul (2007), who also consider GM estimation of higher order spatial regressive error 
processes but assuming homoskedastic residuals. However, apart from technicalities, there 
is a conceptual difference between our approach and the ones of Bell and Bockstael (2000) 
and Cohen and Morrison Paul (2007): In our case, the different weights matrices refer to 
qualitatively different relationships – intra- versus inter-industry – among units in the 
sample rather than different geographical ‘bands’ (or gradual differences in neighborhood) 
there. 
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stocks, we use the investment-intensity, defined as gross fixed capital formation relative to 
value added. Similarly, instead of the knowledge stock we employ the R&D intensity, defined 
as private and business enterprise R&D expenditures as a share of value added.14 While the 
use of intensities rather than stocks allows us to estimate productivity effects of knowledge 
and associated spillovers, the corresponding parameters need to be interpreted differently 
from a specification which employs (capital or R&D) stocks. This issue will be discussed 
below. Appendix A1 provides a description of the sample of countries and industries as well 
as data sources and associated descriptive statistics of the variables in use. 
 
1. R&D Spillovers  
Table 1 summarizes least squares estimates of the parameters for alternative empirical 
models. We first consider the results for the main equation only, i.e., the estimates of γ in 
equation (4), and then turn to the error process, i.e., ρintra and ρinter, in equation (10). We start 
with the most parsimonious specification, including capital and labor only (except for country 
dummies, which are included in all models),15 and proceed by stepwise including the R&D 
variables discussed above. For comparison, column (1) shows the estimates of the Cobb-
Douglas production function. Column (2) reports the estimates of the translog production 
function without any additional regressors. The nonlinear terms (ln2 K, ln2 L, and lnK lnL) are 
jointly significant at 10 percent, indicating misspecification of the Cobb-Douglas model. 
Evaluated at the sample mean, the implied average derivatives are 0.507 with respect to the 
log of the investment intensity and 0.872 with respect to the log of labor, which is quite close 
to the estimates in column (1). Recovering the output elasticity with respect to the capital 
stock and labor from our estimates would require additional assumptions about the particular 
form of the production function. While the parameter estimates appear to be in a plausible 
range,16 we do no pursue this issue further here and turn to our main goal, i.e., the estimation 
of productivity spillovers.  

 

                                                 
14 Physical and knowledge capital stock data are not available. One could approximate capital 

stocks by using the perpetual inventory method. But apart from introducing measurement 
error this would drastically reduce our sample size, since sufficiently long time series on 
real investment or R&D expenditures are not available for many of the observations.  

15
 Including industry dummies is not feasible with the data at hand, since they are highly 
collinear with the covariates in the model. However, the goodness of fit increases only 
moderately in a model with industry dummies as compared to our more parsimonious 
specifications. We thus opt for the latter model and pool the constants across industries. 

16 For example, if we interpret the parameters using the steady-state of a neoclassical growth 
model – assuming a Cobb-Douglas production technology, constant returns to scale (as 
well as exogenous technological progress and labor growth) and imposing a parameter for 
the log of labor equal to unity (which is very close to our average estimate) – the output 
elasticity with respect to the capital stock (α) can be recovered from the relation 

α
αε
−

=
1s , where εs is the elasticity of output with respect to the investment-ratio. For the 

data at hand, this would imply that output elasticities with respect to the capital stock range 
from 0.32 to 0.49, depending on the specification. The corresponding average elasticities 
based on the translog form are very similar.  
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Table 1. Estimation Results, Least-squares Estimates of the Systematic Part of the Model and 
GM Estimates of the Remainder Spillover Process in the Residuals 

 (1) (2) (3) (4a) (4b) (4c) 

lnL 0.900*** 1.628*** 1.667*** 1.688*** as in (4a)  as in (4a) 
 (0.031) (0.334) (0.332) (0.309)   
lnK 0.547*** 2.783*** 2.978*** 2.321***   
 (0.069) (0.951) (0.948) (0.891)   
0.5ln2L  -0.040* -0.040* -0.045**   
  (0.022) (0.021) (0.020)   
0.5ln2K  -0.387* -0.406** -0.317*   
  (0.204) (0.202) (0.190)   
lnL lnK  -0.099** -0.112** -0.086*   
  (0.050) (0.050) (0.047)   
rd   0.032* 0.043**   
   (0.017) (0.018)   

U,0
intraW rd    0.231***   

    (0.075)   
U,0
interW rd    0.443***   

    (0.082)   

R2 0.959 0.961 0.962 0.967   

uσ̂  0.309 0.303 0.300 0.277   

Error Process      

 uW inUD,  0.568 0.660 0.634 0.399 1)   

 uW inUD,
intra     0.534 2) 0 (imposed) 0.526 

 uW inUD,
inter     -0.168 2) -0.018 0 (imposed)

εσ̂  0.301 0.292 0.291 0.274 0.277 0.240 

Moran’s I  5.530*** 6.172*** 5.867*** 4.824*** 1.702* 7.937*** 
LM-Error 6.538** 9.241*** 7.314*** 3.417* 0.403 53.510*** 
LM-ErrorR 3.165* 4.911** 4.523** 1.903 1.151 37.237*** 
LM-Lag 5.415** 6.345*** 3.430*** 2.123 0.151 16.709*** 
LM-LagR 2.043 2.015 0.639 0.609 0.898 0.436 

Obs 195 195 195 195 195 195 
Notes: Dependent variable is lnY. ***, **, * indicate significance at 1, 5, and 10 percent. 
Standard errors in parenthesis. All models include country-specific fixed effects. uσ̂  and εσ̂  
are asymptotic standard errors of u and ε. Spatial correlation tests, referring to model y = 
φWy + … + u, u = ρWu +  ε , are as follows. Superscript R refers to “robust”. Small sample 
corrected Moran’s I: H0: φ = 0, ρ = 0; LM-Lag:  H0: φ = 0 under ρ = 0; LM-LagR: H0: φ = 0, ρ 
unrestricted; LM-Error:  H0: ρ = 0 under φ = 0; LM-ErrorR: H0: ρ = 0, φ unrestricted (Anselin, 
Bera, Florax, and Yoon, 1996). 1) Estimate of ρ assuming a SAR1 process (i.e., ρintra =ρinter = 
ρ). 2) Estimates of ρintra and ρinter assuming a SAR2 process as given in equation (10). 
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Column (3) shows the results when including the (log of) ‘own’ R&D intensity – captured by 
vector rd – as an additional regressor (‘own’ here refers to the same country and industry). 
The corresponding coefficient turns out to be significant at ten percent, reflecting an elasticity 
of 0.032, which is below the effect obtained in previous (country) studies.17 For instance, Coe 
and Helpman (1995) estimate an elasticity of total factor productivity with respect to the 
domestic R&D stock, ranging from 0.08 to 0.23. In the most recent study in the tradition of 
Coe and Helpman (1995), Madsen (2007) finds an elasticity of 0.07 for 16 OECD countries 
and the post-1950 period. That we obtain a smaller estimate is not too surprising, since we use 
disaggregated data; we will return to this point below. 
 

In a next step we include the R&D spillover terms rdW*rd U,0
intraintra =  and 

rdW*rd U,0
interinter = , allowing their parameters to differ as in equation (9). As can be seen from 

column (4a), both *rdintra  and *rdinter  enter significantly at the one percent level. Moreover, the 
restriction that δ2, intra = δ2, inter  is clearly rejected. (The p-value of the corresponding F-test is 
0.006.) In light of the fact that the average row sums of the weights matrices U,0

intraW  and 
U,0
interW  are fairly close, the coefficients suggest that inter-industry R&D spillovers are more 

important than intra-industry R&D spillovers.   
 
In terms of magnitude the estimates imply that a simultaneous increase in all industries’ 

R&D (i.e., including own R&D) by one percent induces spillover effects (both across 
industries as well as within the same industry) on total factor productivity by 0.108 percent 
(0.072 of which is due to inter-industry spillovers and 0.036 of which is due to intra-industry 
spillovers).  

 
Turning to the effect of country i’s and industry k’s “own” R&D again – i.e., the effect 

of a change in rd in equation (9) – we have to bear in mind that U,0
intraW  contains nonzero 

diagonal elements. Hence, in the notation of equation (9), the average total effect of own 
R&D on productivity is given by δ1 + U,0

intra,intra,2 jlikw =δ , where U,0
intra,jlikw =  is the average of the 

main diagonal elements of U,0
intraW . The interpretation is that the productivity effect of an 

increase in R&D is larger for industries, whose subsectors show stronger interdependence. 
Accounting for both the direct productivity effect of own R&D ( 1̂δ ) and the indirect effect of 
own R&D on productivity through spillovers within the same industry and country 
( U,0

intra,intra2,
ˆ

jlikw =δ ), the total elasticity with respect to own R&D turns out to be 0.069. The effect 
on an industry’s productivity of an increase in R&D by one percent in all other industries – 
that is the productivity effect due to spillovers except those taking place within the same 
industry and country – amounts to 0.081. This is consistent with the results by Keller (2002), 
who finds that an industry’s own R&D and spillovers from other industries account for some 
half of the total effect.  

 
Based on our assumption that the parameters are equal for domestic and international 

relationships (see the discussion in subsection 2 of section III), the sums of the weights 
expressing domestic and international (intra- and inter-industry) relations can be used to infer 
the relative magnitudes of domestic versus international spillovers. With an average domestic 

                                                 
17 Recall that the estimated elasticity with respect to the R&D intensity does not directly 

measure the elasticity with respect to the knowledge stock. 
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share of some 0.75 and 0.79 percent in total intra-industry and inter-industry use of 
intermediate goods, this implies that some three quarters of the R&D spillovers take place 
domestically. If we exclude spillover effects within the same industry (domestic intra-industry 
spillovers), domestic spillovers still account for some two thirds of all spillover effects. Again 
this is fairly close the estimates by Keller (2002), who finds that some 60 percent of all 
spillover effects stem from domestic industries.  

 
The specification of the main equation given in column (4a) is our preferred model. The 

fit is satisfactory with an R2 of 0.967 and a standard error of 0.277. We now turn to a 
discussion of the results regarding the spatial regressive error process of u.  

 
2. Remainder Productivity Spillovers 
The lower panel of Table 1 reports the Moran’s I test for spatial correlation in u and a series 
of LM tests suggested by Anselin, Bera, Florax, and Yoon (1996) for specification search 
with spatial econometric models. For the data at hand, the results unambiguously point to the 
importance of spatial autocorrelation in the error term but not the dependent variable in all 
models. It should be noted, however, that the LM tests assume that the error term ε is 
homoskedastic and, for the most part, that there is only a single mode of interdependence (i.e., 
first-order spatial correlation). Since some of our models include a second-order spatial 
regressive error process and heteroskedasticity in ε turns out to be pronounced in our 
sample,18 the test statistics should only be regarded as indicative of spatial correlation in the 
residuals, i.e., further productivity spillovers transmitted through input-output relationships 
but unrelated to R&D. 

 
In columns (1)-(4a), we report the interdependence coefficient when assuming a first-

order SAR structure of the error process (i.e., ρintra = ρinter = ρ ). In these cases, we assume that 
the error process is represented by ε+= inUD,Wu ρ  rather than the second-order process 
reflected in equation (10). The parameter ρ is estimated under the presumption of 
heteroskedasticity in ε, following Kelejian and Prucha (2007; see Appendix A2.1 for details). 

 
In our preferred specification in column (4a), the estimate of ρ is approximately 0.399. 

This is supportive of the arguments by Balassa (1961) that technological improvements have 
a magnified impact on productivity. The coefficient suggests that a productivity shock in one 
industry is amplified by a factor of 1.664 in the long-run, accounting for spillovers to other 
industries and their repercussions. A comparison of column (3) with column (4a) in Table 1 
indicates that ρ  declines in response to the inclusion of the R&D spillover terms in the main 
equation. Hence, part – yet not all – of the interdependence across countries and industries 
identified in columns (1)-(3) is due to R&D spillovers channeled through national and 
international input-output relationships.  

 
Using the specification in column (4a), we now take a closer look at remainder 

productivity spillovers as captured in the residuals. The corresponding analysis is based on the 
least squares residuals of the model in column (4a) and summarized in columns (4a)-(4c) in 
Table 1. We first allow the spatial autoregressive parameter to vary between intra- and inter-
industry relations as in equation (10). For estimation, we use the extended set of moment 
conditions for ρintra and ρinter as derived in Appendix A2.2. Both weights matrices in the 

                                                 
18

 A Breusch-Pagan test rejects the null hypothesis of homoskedasticity of the error term ε at 
one percent in all models. 
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residual term are row-normalized as outlined in Section III. The estimates of ρintra and ρinter 
are reported in Table (4a) right below the results for the model, which assumes that ρintra = 
ρinter = ρ. (Results for the systematic part of the model, i.e., the main equation, are the same.) 
Compared with the estimate for one common ρ, the coefficient ρintra (measuring productivity 
effects transmitted through international intra-industry use of intermediate goods) is higher, 
while that of ρinter (measuring productivity effects transmitted through both domestic and 
international inter-industry use of intermediates) turns slightly negative, according to the 
center panel of column (4a).  

 
We regard the negative estimate and the small absolute value of ρinter as an indication 

for the negligible importance of remainder inter-industry spillovers (i.e., ones beyond those 
embodied in R&D). This conclusion is also supported by our Monte Carlo evidence in 
Appendix A2.2.2, which suggests that, in small samples, estimates of the interdependence 
parameters that are close to zero tend to be somewhat downward biased. 

 
Our interpretation of the role of intra- versus inter-industry interdependence is also 

supported by the results from two alternative specifications of the error process, which 
exclude uW inUD,

intra  and, alternatively, uW inUD,
inter  in columns (4b) and (4c), respectively. If only 

inter-industry spillovers are allowed as in column (4b), where ρintra = 0 is assumed, the 
estimate of ρinter is again negative and tests for spatial autocorrelation in the residuals are all 
insignificant at five percent.19 In contrast, if only intra-industry spillovers are allowed as in 
column (4c), where ρinter = 0 is assumed, the estimate of ρintra increases relative to the 
benchmark estimates in column (4a) and all tests reject the null hypothesis of zero spatial 
autocorrelation. As expected from the previous results, the coefficient of uW inUD,

intra  in column 
(4c) is larger than in the model, where ρintra and ρinter are restricted to be equal in column (4a).  

 
Hence, our analysis of nested spillover effects suggests that there are no inter-industry 

spillovers associated with the stochastic part of total factor productivity. Accordingly, we 
proceed with a restricted version of the error process, setting ρinter = 0. This model 
corresponds to the one in column (4c), and the estimate of ρintra implies that a remainder 
productivity shock is amplified roughly by a factor of two in the long run through spillovers 
to similar industries (both domestic and foreign) and the associated repercussions. 

 
3. Feasible GLS Estimates and Sensitivity Analysis  
Having determined the preferred specification of the error process, we can improve the 
efficiency of the estimates of the model parameters by using a feasible generalized least 
squares (FGLS) approach. Kelejian and Prucha (2007, p. 22) suggest applying a standard 
Cochrane-Orcutt transformation to (4):  

 
uγZy ~~~ +=  (14) 

 
where yWIy inUD,

intra )ˆ(~
intraρ−= , ZWIZ inUD,

intra )ˆ(~
intraρ−= , and ε=−= uWIu inUD,

intra )ˆ(~
intraρ .  

 

                                                 
19 This result does not depend on the normalization used and also holds up under maximum-

normalization. 
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Table 2. Estimation Results, Least-squares and FGLS Estimates of the Systematic Part of the 
Model and GM Estimates of the Remainder Spillover Process in the Residuals Using 
Alternative Weights Matrices 

 (1a) (1b) (2) (3a) (3b) (3c) (4) 

lnL 1.688*** 1.688*** 1.652*** 1.765*** 1.628*** 1.654*** 1.658*** 
 (0.339) (0.073) (0.087) (0.070) (0.100) (0.061) (0.085) 
lnK 2.321*** 2.110*** 2.491*** 2.624*** 2.287*** 2.261*** 2.276*** 
 (0.758) (0.191) (0.227) (0.196) (0.259) (0.159) (0.246) 
0.5ln2L -0.045* -0.048*** -0.041*** -0.051*** -0.038*** -0.043*** -0.044*** 
 (0.024) (0.005) (0.006) (0.005) (0.007) (0.005) (0.006) 
0.5ln2K -0.317 -0.320*** -0.356*** -0.412*** -0.281*** -0.333*** -0.322*** 
 (0.219) (0.055) (0.054) (0.057) (0.054) (0.044) (0.057) 
lnL lnK -0.086** -0.069*** -0.091*** -0.090*** -0.090*** -0.078*** -0.080*** 
 (0.042) (0.012) (0.013) (0.011) (0.015) (0.009) (0.014) 
rd 0.043** 0.043*** 0.051*** 0.050*** 0.044*** 0.042*** 0.046*** 
 (0.019) (0.005) (0.006) (0.006) (0.006) (0.004) (0.006) 

U,0
intraW rd 0.231** 0.219*** 0.164*** 0.203*** 0.186*** 0.196*** 0.191*** 

 (0.097) (0.019) (0.027) (0.024) (0.027) (0.018) (0.027) 
U,0
interW rd 0.443*** 0.452*** 0.396*** 0.429*** 0.398*** 0.440*** 0.418*** 

 (0.110) (0.032) (0.034) (0.029) (0.034) (0.025) (0.033) 

R2 0.967 0.967 0.967 0.967 0.967 0.967 0.967 

uσ̂  0.277 0.278 0.279 0.279 0.278 0.278 0.278 

Error Process 1) 

 Wu  0.526 0.526 0.806 0.556   0.247 
 uWintra    2.033 0.505 0 (imposed) 0.501 0.504 
 uWinter    -0.216 -0.106 0.018 0 (imposed) -0.120 

εσ̂   0.238 0.277 0.272 0.278 0.240 0.277 

Moran’s I  7.937*** 7.937*** 4.147*** 4.752*** 2.553** 7.539*** 3.896*** 
LM-Error 53.510*** 53.510*** 2.991* 4.451** 0.000 48.553*** 1.433 
LM-ErrorR 37.237*** 37.237*** 2.855* 3.353* 0.033 29.509*** 0.050 
LM-Lag 16.709*** 16.709*** 3.480* 1.423 2.412 20.834*** 4.698** 
LM-LagR 0.436 0.436 3.345* 0.325 2.445 1.789 3.314* 

Obs 195 195 195 195 195 195 195 
Notes: See Table 1. Column (1a): Least squares estimates with heteroskedasticity-consistent 
standard errors. Columns (1b)-(4): FGLS estimates, using )ˆ)(ˆ/1(1 WI ρε −= i

N
idiag as 

transformation matrix; R2 refers to original model (generalized R2). 1) Columns (1) and (1a): 
inUD,WW =  (based on use-plus-delivery, row-normalized). Column (2): mnUD,WW = (based 

on use-plus-delivery, maximum-normalized). Columns (3a)-(3c): inD,WW = (based on 

delivery, row-normalized). Column (4): inUD,WW ˆ= , based on predicted values from gravity 
model (see Appendix A3). 
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It is worth noting that this transformation suggested by Kelejian and Prucha (2007) is 
based on a homoskedastic error term ε, as assumed in Kelejian and Prucha (1999). In other 
words, this transformation removes heteroskedasticity in u induced by its spatial regressive 
structure, but it does not remove the heteroskedasticity of the error term ε (which is 
pronounced in our sample). Hence, ordinary standard errors from the least squares estimation 
of (14) would be (still) invalid in our case.  
 

There are two approaches to address this issue. First, heteroskedasticity-consistent 
standard errors rather than a GLS transformation of the (untransformed) model (4) can be 
used. Second, a ‘full-fledged’ FGLS procedure can be employed, based on a model 
transformation that accounts for the heteroskedasticity of ε as well, using 

)ˆ)(ˆ/1( intra1
inUD,

intraWI ρε −= i
N
idiag  instead of )ˆ( ntra

inUD,
intraWI iρ−  as transformation matrix in 

equation (14).  
 
Results for both alternatives are shown in columns (1a) and (1b) of Table 2. The use of 

heteroskedasticity-consistent standard errors leads to very modest changes in the standard 
errors with no effect on significance of the variables, see column (1a). Using a full-fledged 
FGLS transformation for heteroskedastic and spatially autocorrelated residuals leads to 
substantially lower standard errors of the parameters, see column (1b). Again, the original 
conclusions do not change qualitatively. In fact the least squares and the FGLS parameter 
estimates are very close.20 The similarity of the least-squares and the FGLS parameter 
estimates may be interpreted as indirect evidence that our estimates are not flawed by 
endogeneity of the regressors. In the absence of endogeneity, both the least-squares and the 
FGLS estimates are unbiased and should be similar. In the presence of endogeneity, both the 
least-squares and the FGLS estimates are biased but the bias is generally different for the two 
estimators (see Wooldridge, 2006, p. 294). Against this background, the similarity of the sets 
of least-squares and FGLS parameter estimates supports our specification. 

 
Next, we infer the sensitivity of the results with respect to using alternative weights 

matrices for interdependence in the spatial regressive error process. Column (2) provides 
FGLS estimates based on a maximum-normalized weights matrix ( )mnUD,W . The estimate of 

ρ (with the restriction that ρintra = ρinter = ρ) is 0.806. If we allow the parameters of uW mnUD,
intra  

and uW mnUD,
inter  to differ, the estimate of ρinter turns negative as it is the case in column (4a) of 

Table 1 with row-normalized weights. However, the estimate of ρintra becomes implausibly 
large with a value of 2.033: For shocks occurring in several industries (with sufficiently large 
row sums) this would imply an unstable behavior of the remainder spillover mechanism. This 
result is presumably due to the fact that there is a large difference between the maximum and 
the average row sum of mnUD,

intraW (their ratio is 8.3). Since the GM estimator takes into account 
the average row sum, the large rescaling implied by the division through the maximum row 
sum leads to invalid results with maximum-normalization with the data at hand. The 
qualitative conclusions about the relative magnitude and the change in the parameter 
estimates depending on different specifications of spillovers in the stochastic part of the 
model, however, are consistent with the results obtained under row-normalization. 

                                                 
20 The results for the error term are based on least squares residuals and thus identical to those 

in Column (4c) of Table 1.The same is true, if we use an iterative procedure; convergence 
is extremely fast and the associated results are de facto identical to the one-step estimates, 
which are reported in the Table 2.  
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We next consider results obtained when using delivery rather than use-plus-delivery 

shares in the (row-normalized) weights matrix inD,W  in columns (3a) – 3(c) of Table 2. The 
results shown for the main equation are the full-fledged FGLS estimates, using 

)ˆ)(ˆ/1( intra1
inD,

intraWI ρε −= i
N
idiag as transformation matrix in (14). The coefficients hardly differ 

from the FGLS estimates using )ˆ)(ˆ/1( intra1
inUD,

intraWI ρε −= i
N
idiag as transformation matrix in 

(14), see column (1b). Allowing for parameter heterogeneity between ρintra and ρinter in the 
error process, we can see from column (3a) that the estimate of ρinter is slightly negative, 
whereas the estimate of ρintra is very close to that in column (1a). And as for the specification 
with a weights matrix based on use-plus-delivery of intermediates with ρintra = 0, the estimate 
of ρinter is close to zero and there is no firm evidence of significant remainder interdependence 
left. In contrast, when assuming ρinter = 0, the estimate of ρintra amounts to about 0.5 and all 
tests for spatial autocorrelation reject the null hypothesis (of zero remainder interdependence) 
at a high level of significance. The magnitude of the implied effect is de facto identical to that 
in column (1a), where the weights matrix is based on use-plus-delivery of intermediate goods. 
Again, this supports our view that spillovers primarily take place within the same industry or 
between very similar ones.  

 
We notice that using a weights matrix based on use of intermediate goods only we find 

much weaker evidence for spatial correlation (which often turns out insignificant). We take 
the last set of results as indirect evidence that export related spillovers are important. This is 
in line with recent studies on that matter. Greenaway, Sousa, and Wakelin (2004) find indirect 
productivity spillovers through exports by multinational enterprises to domestic firms in the 
same industry, using UK firm level data. Alvarez and Lopez (2006), using plant-level data 
from Chile, find that exporting by foreign-owned plants generates positive productivity 
spillovers to other plants in the same industry; to a smaller extent this is also true for domestic 
exporters. 

 
As a final robustness analysis, we consider the results when the use-plus-delivery based 

weights matrix in the error process is generated from the predicted values of a gravity model, 
including country-pair dummies, industry-pair dummies, and distance between countries (or 
internal distance for domestic use-plus-delivery intensities) as determinants of use-plus-
delivery intensities across industry-country-pairs. This approach aims at avoiding the 
potential endogeneity of intermediate goods flows, similar to an instrumental variable 
model.21 Appendix A3 gives a more detailed description of the construction of the predicted 
weights matrix, which we refer to as inUD,Ŵ . Column 4 in Table 2 shows the results, using 

inUD,Ŵ  (or, alternatively, inUD,
intraŴ  and inUD,

interŴ ) as weights matrix in the error term. Notice first 
that the FGLS estimates of the systematic part of the model are very close to that using the 
original weights matrix inUD,W , see column (2) of Table 2. For the model assuming ρintra = 
ρinter = ρ, the estimate of the interdependence parameter turns out to be 0.247; allowing for 
interdependence parameter heterogeneity the estimate of ρintra increases to 0.504, whereas that 
of ρinter becomes negative and amounts to -0.120 (see the center panel of column 4). 
Restricting ρintra to be equal to zero, the estimate of ρinter is close to zero (0.047) with much 
                                                 
21 Our approach is inspired by that of Frankel and Romer (1999), who use the country-specific 

sum of predicted bilateral trade flows from a ‘geographical’ gravity model as an instrument 
in a cross-country regression of per capita income on (endogenous) trade and country size.  
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smaller spatial correlation test statistics, whereas restricting ρinter to be equal to zero results in 
an estimate of ρintra equal to 0.504 with highly significant spatial correlation. These findings 
are qualitatively and quantitatively in line with the results using the original weights matrices 

inUD,
intraW  and inUD,

interW . The same holds true, if the predicted weights matrix is based on 
intermediated goods use or delivery intensities only (rather than the use-plus-delivery 
intensity).  

 
Taking this approach one step further and using a predicted weights matrix for the 

construction of the R&D spillovers terms in the main model as well, the conclusions 
regarding the error process are unchanged. In the systematic part of the model, however, the 
least squares coefficients of both *

intrard and *
interrd  are reduced to -0.054 and 0.118, where 

only the coefficient of *
interrd  remains significant at 5 percent. The most likely explanation for 

this result is that the use of a predicted weights matrix (while mitigating endogeneity 
problems due to reverse causality and omitted variables) introduces measurement error, 
causing attenuation bias in the parameter estimates of *

intrard and *
interrd .   

 

V. Conclusions 
This paper considers the productivity effects of knowledge and other type of spillovers, using 
a cross-section of 13 OECD countries and 15 manufacturing industries. It allows for 
spillovers to cross both national and industrial boundaries and pays specific attention to the 
relative magnitude of intra- versus inter-industry spillovers that are transmitted through input-
output relations. We allow such spillovers to be either related to R&D intensities or other, not 
further specified sources (such as product or factor market characteristics). To account for the 
latter, we adopt a spatial econometric approach.    

 
Focusing on input-output relations and linkage-driven spillovers, we hypothesize that 

spillovers between countries and industries decline with economic (rather than merely 
geographical) distance, which we measure using information on the domestic and 
international use and delivery of intermediate goods between industries.  

 
In our estimation of knowledge spillovers, we extend the empirical analysis by Coe and 

Helpman (1995) along three lines. First, we use industry rather than country data. Second, we 
test for differences in intra- and inter-industry spillovers related to R&D. Third, we allow for 
remainder spillovers beyond those embodied in R&D, which are not further specified but 
hypothesized to be related to input-output linkages as well. For the latter, allowing intra-
industry spillovers to differ from inter-industry spillovers requires a spatially autoregressive 
model for residuals with two rather than a single channel of interdependence. Suitable for our 
dataset with cross-sectional interdependence and pronounced heteroscedasticity, we use the 
heteroscedasticity-robust GM estimator by Kelejian and Prucha (2007) and extend their set of 
moment conditions to cope with two spillover channels and parameters of interdependence 
(intra- and inter-industry spillovers).  

 
The results suggest that there are sizeable knowledge spillover effects on productivity, 

transmitted through both inter-industry and intra-industry use of intermediate goods. The data 
allow us also to estimate both the direct effect of an increase in an industry’s (own) R&D, as 
well as the indirect productivity effect triggered by R&D spillover effects within the 
respective industry. This indirect effect is statistically and also economically significant, 
amplifying the elasticity of productivity with respect to own R&D from 0.043 (the direct 
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effect) to a total of 0.069. The elasticity of productivity with respect to an increase in all other 
industries’ R&D turns out to be 0.081.  

 
There is evidence of remainder spillovers which are not related to knowledge but also 

transmitted by input-output linkages. However, statistically significant remainder spillovers 
are only found within or among very similar industries; there is no evidence of inter-industry 
spillovers unrelated to R&D. Shocks to total factor productivity unrelated to knowledge are 
amplified by roughly a factor of two through intra-industry spillovers and the associated 
repercussions. The results may be interpreted as evidence of an even stronger intra-industry 
spillover mechanism for shocks to total factor productivity which are unrelated to knowledge 
than for ones that are embedded in knowledge. 

 
Apart from the finding of relatively important non-knowledge spillovers, our results 

indicate that spillovers do not only occur through the use of (domestic or imported) 
intermediate goods. Linkage effects seem to materialize through both the use and the delivery 
of intermediates. The latter finding indicates that specifications restricting spillovers to take 
place only through imports rather than exports and imports may underestimate the importance 
of spillovers and linkage effects as determinants of total factor productivity.  
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Appendix A1. Data and Sample 
 
A1.1 Data Sources 

Our final sample is determined by data availability and comprises 13 countries (CAN, CZE, 
DEU, DNK, ESP, FIN, FRA, GBR, ITA, NLD, NOR, POL, USA) and 15 industries (see 
below). Of the 195 observations, data on investment and R&D expenditures is missing for 
some countries and industries such that 170 observations remain. 20 of the 25 missing 
observations were imputed from higher levels of aggregation; the other missing values were 
approximated, using the ratio of a variable’s value in the particular industry to the average 
value across all available industries. Data on value added (in 1995 prices) and employment 
(hours worked) are taken from the Groningen Growth and Development Center (GGDC). 
Investment data are from the OECD Structural Analysis (STAN) database. Data on R&D 
expenditures are from the OECD’s Analytical Business Enterprise Research and Development 
(ANBERD) database. The cross-section data refer to 1995, a choice dictated by the 
availability of input-output tables, which refer to the period around 1995. Investment- and 
R&D intensities are averages over the longest available time span over the period 1990-2000. 
Data on distances between countries and internal distance within countries are from the CEPII 
database (http://www.cepii.fr/). 
 

Input-output data to construct the weights matrix are from the OECD input-output 
database. International input-output flows by industry are assumed to exhibit the same 
bilateral trade pattern as total trade. Information on the level of imported intermediate goods 
(i.e., international use of intermediates) of industry k from industry l is combined with 
bilateral import shares in total imports of industry k. Exports of intermediate goods (i.e., 
international delivery of intermediates) of industry k to foreign industries l are assumed to be 
symmetric to imports of industry l from foreign industries k and combined with bilateral 
export shares in total exports in industry k.22 The shares of bilateral import and exports in total 
trade at the industry level are calculated from the OECD’s STAN bilateral trade database.  
 
A1.2 List of Industries and Summary Statistics 
 

                                                 
22 The relevance of this approximation is reduced by the fact that all weights matrices based 

on delivery of intermediate goods are row-normalized; as a consequence, the more relevant 
assumption is that bilateral export shares in total exports are equal to bilateral shares in 
intermediate goods exports.  
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Table A1. List of Industries and Summary Statistics 

 
 
 

 VA/ hour Investment
intensity 

R&D 
intensity 

Total use of 
intermediate 

goods 

Inter-
industry use

Domestic 
use 

domestic 
intra-

industry use 

ISIC Rev3 Industry $/hour percent of 
value added 

percent of 
value added 

percent of 
production percent of total use 

15-16 Food products, beverages and tobacco 30.18 17.89 1.05 24.24 31.35 90.35 63.13 
17-19 Textiles, textile products, leather and footwear 18.64 10.81 0.83 29.60 32.38 82.81 55.85 
20 Wood and products of wood and cork 21.45 16.31 1.13 26.28 36.75 86.46 56.14 
21-22 Pulp, paper, paper products, print.and publishing 33.09 19.04 0.55 32.94 24.43 82.21 63.05 
23 Coke, refined petr. products and nuclear fuel 73.66 32.38 1.33 10.93 41.63 85.45 50.82 
24 Chemicals and chemical products 54.01 21.12 10.47 30.64 37.49 70.98 39.41 
25 Rubber and plastics products 28.93 18.45 2.23 33.83 76.26 69.50 18.88 
26 Other non-metallic mineral products 30.47 19.20 1.21 22.56 57.47 83.96 37.40 
27 Basic metals 39.93 20.67 2.18 36.86 35.43 76.58 47.10 
28 Fabricated metal products 24.28 13.66 0.99 34.47 72.81 80.78 24.07 
29 Machinery and equipment, n.e.c. 27.84 11.23 4.51 36.67 67.15 75.03 21.73 
30-33 Electrical and optical equipment 30.71 15.43 13.50 37.09 42.42 66.62 32.73 
34 Motor vehicles, trailers and semi-trailers 31.16 25.77 8.73 50.22 53.10 63.72 25.87 
35 Other transport equipment 26.11 15.11 15.73 40.84 65.95 69.42 19.42 
36-37 Manufacturing n.e.c. 20.17 11.93 0.73 30.96 83.98 84.59 13.03 

 Column averages  32.71 17.93 4.34 31.88 50.57 77.90 37.91 

Notes: Statistics are simple country averages. VA is value added in 1995 prices, 1995 US$. Investment intensity is share of gross fixed capital 
formation in value added in percent. R&D intensity is private and business enterprise R&D expenditures as share of value added. Use of 
intermediate goods corresponds to (average) row sum of unnormalized weights matrix U,0W (including domestic intra-industry use). Inter-industry 
use corresponds to average row sum of U,0

interW . Domestic use corresponds to intra- and inter-industry use from industries of the same country. 
Domestic intra-industry use corresponds to main diagonal elements of U,0W . 
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Appendix A2. GM Estimation of the Spatial Autoregressive Parameter ρ 
 
A2.1 Moment Conditions for First Order Spatial Regressive Error Process  
Consider the model: 
 uXβy += , (A.1a) 
 ε+= Wuu ρ , (A.1b) 
where X is a matrix of explanatory variables and ε  is a stochastic error term. Having obtained 
consistent estimates of u from the main model, the generalized moments (GM) estimator by 
Kelejian and Prucha (2007) can be used to estimate the spatial regressive parameter ρ in 
equation (A1b). It is based on the following moment conditions, which rely on independently 
though not necessarily identically distributed disturbances εi and some restrictions on the 
properties of the weights matrix: 
 0}])][({[ 2

1
1 =′−′ =

− WW i
N
i EdiagTrEn εεε , and  (A.2a) 

 01 =′− εεEn , (A.2b) 
where εε W= ; N is the total number of observations and Tr is the trace operator. 
Under homoskedasticity the moment conditions simplify to (see Kelejian and Prucha (2007, 
p. 11): 
 0)]([ 11 =′′−′ −− WWTrnEn  εεεε  (A.3a) 
 01 =′− εεEn .  (A.3b) 
Substituting for ε = (I–ρW)u yields a two equation system in ρ and ρ2. Its empirical 
counterpart is given by: 
 υαΓγ =− ~~ , (A.4) 
where ],[ 2 ′= ρρα and the elements of the 2×1 vector γ~  and the 2×2 Matrix Γ~  can be 
calculated from the estimates of u and the elements of the weights matrix W; υ can be 
regarded as a vector of regression residuals. The GM estimator of ρ is now defined as 
weighted nonlinear least squares estimator based on (A.4). It is obtained by: 

 )]~~()~~[(~ αΓγΩαΓγ −′−=
ρ

ρ  argmin . (A.5) 

The choice of the weights matrix Ω affects only efficiency. Hence, a feasible approach to 
obtain a consistent estimate of ρ is to use the identity matrix for Ω.    
 
A2.2 Allowing for Parameter Heterogeneity in the Spatial Regressive Process 
Kelejian and Prucha (2007) consider only one homogenous parameter ρ in the spatial 
regressive process. A more general specification allows for M heterogeneous parameters in 
the spatial autoregressive process:  

 ε+= ∑
=

M

m
mm

1

uWρu , (A.6) 

where the matrices Wm have the same dimension as W in (A.1b).23 
 

                                                 
23 A similar extension of the moment conditions, although for the case of homescedasticity as 

in Kelejian and Prucha (1999), is used by Bell and Bockstael (2000) as well as Cohen and 
Morrison Paul (2007). 
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A2.2.1 Moment Conditions for Higher Order Spatial Regressive Error Process 
The generalized GM estimator can be obtained by recognizing that – using the same 
assumptions as in Kelejian and Prucha (2007) – the moment conditions given by (A.3a) and 
(A.3b) must hold for each matrix Wm:  
 }])][({[ 2

1
1

mi
N
immm EdiagTrEn WW ′−′ =

− εεε , and (A.7a) 
 01 =′− εε mEn , (A.7a) 
where εε mm W= . 
In the present study we consider the case of M = 2. The spatial regressive error term then 
given by  
 ε++= uWuWu 2211 ρρ , (A.8)  
Allowing for heteroskedasticity in the error ε, the moment conditions are given by  
 }])][({[ 1

2
1111

1 WW ′−′ =
−

i
N
i EdiagTrEn εεε , (A.9a) 

 01
1 =′− εεEn , (A.9b) 

 }])][({[ 2
2

1222
1 WW ′−′ =

−
i

N
i EdiagTrEn εεε ,   (A.10a) 

 02
1 =′− εεEn , (A.10b) 

where εε 11 W=  and εε 22 W= . 
From the specification of the error term in (A.8) it follows that   
 22112211 uuuuWuWu ρρρρ −−=−−=ε  (A.11a) 
 212111212111111 uuuuWWuWWuWW ρρρρ −−=−−== εε . (A.11b) 
 221212222121222 uuuuWWuWWuWW ρρρρ −−=−−== εε , (A.11c) 
where we use the following definitions: 
 uWu 11 = , uWu 22 = , uWWu 111 = , uWWu 222 = , uWWu 2121 = , uWWu 1212 = . 
Substituting (A.11a)-(A.11c) into the moment conditions (A.9a)-(A.10b) we obtain the 
following four equation system: 
 0=− Γαγ , 
where  ],,,,[ 2

2
2
12121 ′= ρρρρρρα  and the elements of  γ = [γ1,γ2 ,γ3,γ4]′ and Γ = [γi,j]i=1,…4, j=1,…5 

are given by: 
 }])][({[ 1

2
1111

1
1 WWuu ′−′= =

−
i

N
i EudiagTrEnγ  (A.12) 

 ][ 1
1

2 uu′= − Enγ  
 }])][({[ 2

2
1222

1
3 WWuu ′−′= =

−
i

N
i EudiagTrEnγ   

 ][ 2
1

4 uu′= − Enγ        
 ]})][({[2 111111

1
1,1 WWuu ′−′= =

−
ii

N
i uuEdiagTrEnγ    

 ][ 111
1

1,2 uuuu ′+′= − Enγ       

 ]})][({[2 2112212
1

1,3 WWuu ′−′= =
−
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N
i uuEdiagTrEnγ    

 ][ 1212
1

1,4 uuuu ′+′= − Enγ     

 ]})][({[2 1211121
1

2,1 WWuu ′−′= =
−

ii
N
i uuEdiagTrEnγ    

 ][ 2121
1

2,2 uuuu ′+′= − Enγ       

 ]})][({[2 221222
1

2,3 WWuu ′−′= =
−

ii
N
i uuEdiagTrEnγ    
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Under homoskedasticity, the moment conditions are derived the same way and simplify to 
(A.12), where each expression involving the trace operator is replaced by its counterpart 
under homoskedasticity, e.g. the element ]))((  [2 11111

1
1,1 WWuu ′−′= −

iiuudiagTrEnγ  becomes 

])([2 11
1

111
1 WWuuuu ′′−′ −− TrnEn ; analogously for all other expressions where the trace operator 

appears; the other elements are not affected.  

The GM estimates of ρ1 and ρ2 are obtained by solving the nonlinear optimization problem 

 )]~~()~~[(]~ ~[
21 ,

21 αΓγΩαΓγ −′−=
ρρ

ρρ  argmin , (A.13) 

where Γγ ~ and ~ are the estimates of γ and Γ, whose elements are obtained from (A.12) by 
suppressing the expectations operator and replacing the disturbances u by their estimates. The 
identity matrix can be used as weights matrix Ω to obtain consistent estimates of ρ1 and ρ2. 
 
A2.2.2 Some Monte Carlo Evidence 
In this section we assess the small sample performance of the GM estimator (A.13) for ρ1 and 
ρ2, considering the spatial regressive error process (A.8). We use three sample sizes: N = 100, 
N = 250, and N = 500 observations. 

 
For our basic setup of the weights matrix we follow Kelejian and Prucha (1999) and use 

a binary “5 ahead and 5 behind specification”. This means that the elements of the raw 
weights matrix W0 are defined such that the i-th element of u is related to the five elements 
after it and the five elements before it. In line with Kelejian and Prucha (2007) we modify the 
inner third of W0 such that each element has only two neighbours, one before and one behind. 
This introduces some variation in the row sums.  

 
The novel feature of this Monte Carlos study is that the matrix W0 is then split up into 

two matrices 0
1W and 0

2W , where 00
2

0
1 WWW =+ . The elements of 0

1W are chosen such that 
its columns 0

,.1 jw  are equal to that of W for j = 1, …, 5; 11, …, 15; 21, …, 25, etc., i.e.,  
0
.

0
,.1 jj ww = , for j = 1+10s, 2+10s, 3+10s, 4+10s, 5+10s; s = 0, 1, 2, ….S (where S depends on 

the sample size) and 00
,.1 =jw  otherwise. Accordingly, 0

.
0

,.2 jj ww = , for j = 6+10s, 7+10s, 

8+10s, 9+10s, 10+10s; s = 0, 1, 2, ….S and 00
,.2 =jw  otherwise. The final weights matrices 
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W1 and W2 are obtained by separately row-normalizing 0
1W and 0

2W , that is by dividing their 
elements 0

,1 ijw  and 0
,2 ijw  through the row sums d1,i and d2,i respectively.  

 
For two row-normalized matrices W1 and W2 the parameter space for ρ1 and ρ2 must 

satisfy 0 ≤ |ρ1| + |ρ2| < 1 for (I – ρ1W1 – ρ2W2) to be invertible (Lee and Xiaodong, 2006). 
The values of the true parameters ρ1 and ρ2 are chosen to range from –0.4 to + 0.4, with 
increments of 0.2. Hence, we have 25 possible parameter combinations {(ρ1, ρ2)⏐ρ1, ρ2 ∈ (–
0.4, –0.2, 0, 0.2, 0.4)}.  

 
Regarding the properties of the error term ε we consider both homo- and 

heteroskedasticity. Let ξi  denote a draw from a standard normal distribution. In line with 
Kelejian and Prucha (2007) the innovations were generated as εi = σ ξi  with σ 2 = 2 under 
homoskedasticity and εi =  as σiξi  with 4/2

ii d=σ  under heteroskedasticity, where di denotes 
the i-th row sum of the unnormalized matrix. For each Monte Carlo experiment we 
considered 2000 draws. To improve comparability, the same draw of ξ was used for both 
homo- and heteroskedasticity and for each of the 25 possible combinations of ρ1 and ρ2.  

 
Tables A2.1 to A2.3 report the results for the three different sample sizes both under 

homo- and heteroskedasticity. The results suggest that the estimator performs reasonably 
well, even in small samples. As can be seen from Table A2.1, which is based on a sample size 
of 100 observations, the bias over all parameter constellations is fairly small, with an average 
absolute bias of 0.023 under homoskedasticity and one of 0.036 under heteroskedasticity. 
This is less than 10 and 15 percent, respectively, in relative terms. Moreover, the results 
suggest that the parameter estimates tend to be downward biased, in particular for true values 
around zero, where the estimates are slightly negative. Increasing the sample size to 250 (500) 
observations the average bias is reduced to 0.010 (0.004) under homoscedasticity and 0.013 
(0.008) under heteroscedasticity, corresponding to 4.167 (1.750) and 5.417 (3.333) percent, 
respectively, in relative terms.  
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Table A2.1 Monte Carlo Results, N = 100, 2000 draws 

   Homoskedasticity  Heteroskedasticity 
True Parameters  Bias RMSE  Bias RMSE 
ρ1 ρ2  1ρ̂  2ρ̂  1ρ̂  2ρ̂   1ρ̂  2ρ̂  1ρ̂  2ρ̂  

-0.4 -0.4 0.004 -0.002 0.107 0.108 0.010 0.011 0.132 0.135 
-0.4 -0.2 0.015 -0.038 0.116 0.158 0.017 -0.042 0.138 0.194 
-0.4 0 0.019 -0.045 0.121 0.172 0.019 -0.059 0.141 0.217 
-0.4 0.2 0.022 -0.044 0.123 0.166 0.020 -0.058 0.143 0.208 
-0.4 0.4 0.025 -0.042 0.126 0.147 0.023 -0.055 0.145 0.181 
-0.2 -0.4 -0.029 0.010 0.153 0.117 -0.039 0.018 0.187 0.142 
-0.2 -0.2 -0.018 -0.027 0.157 0.162 -0.033 -0.036 0.190 0.197 
-0.2 0 -0.015 -0.034 0.158 0.174 -0.031 -0.051 0.192 0.218 
-0.2 0.2 -0.012 -0.033 0.159 0.166 -0.031 -0.048 0.193 0.208 
-0.2 0.4 -0.007 -0.029 0.158 0.144 -0.028 -0.042 0.192 0.178 

0 -0.4 -0.037 0.015 0.167 0.123 -0.052 0.020 0.205 0.145 
0 -0.2 -0.027 -0.022 0.168 0.164 -0.044 -0.035 0.205 0.199 
0 0 -0.023 -0.030 0.168 0.174 -0.041 -0.049 0.207 0.219 
0 0.2 -0.020 -0.028 0.167 0.164 -0.042 -0.045 0.208 0.207 
0 0.4 -0.014 -0.024 0.162 0.140 -0.037 -0.037 0.201 0.175 

0.2 -0.4 -0.038 0.018 0.161 0.126 -0.052 0.021 0.196 0.147 
0.2 -0.2 -0.027 -0.018 0.161 0.165 -0.040 -0.035 0.195 0.199 
0.2 0 -0.023 -0.026 0.159 0.174 -0.036 -0.049 0.195 0.219 
0.2 0.2 -0.020 -0.025 0.156 0.163 -0.035 -0.044 0.194 0.205 
0.2 0.4 -0.014 -0.021 0.147 0.136 -0.029 -0.034 0.180 0.170 
0.4 -0.4 -0.037 0.024 0.146 0.130 -0.051 0.024 0.175 0.149 
0.4 -0.2 -0.025 -0.011 0.143 0.165 -0.036 -0.030 0.170 0.197 
0.4 0 -0.020 -0.019 0.139 0.170 -0.030 -0.041 0.167 0.208 
0.4 0.2 -0.018 -0.017 0.133 0.155 -0.027 -0.034 0.162 0.188 
0.4 0.4 -0.010 -0.013 0.120 0.126 -0.019 -0.024 0.142 0.150 

0.24 0.24 0.021 0.025 0.147 0.152 0.033 0.038 0.178 0.186 

 Note: Last row shows average value of absolute values in the respective column. RMSE denotes root mean squared error. 
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Table A2.2 Monte Carlo Results, N = 250, 2000 draws  
   Homoskedasticity  Heteroskedasticity 

True Parameters  Bias RMSE  Bias RMSE 
ρ1 ρ2  1ρ̂  2ρ̂  1ρ̂  2ρ̂   1ρ̂  2ρ̂  1ρ̂  2ρ̂  

-0.4 -0.4 -0.005 -0.004 0.079 0.078 0.006 0.006 0.102 0.100 
-0.4 -0.2 -0.001 -0.016 0.082 0.101 0.010 -0.017 0.105 0.132 
-0.4 0 0.001 -0.017 0.083 0.101 0.010 -0.019 0.107 0.129 
-0.4 0.2 0.002 -0.015 0.085 0.095 0.011 -0.018 0.108 0.117 
-0.4 0.4 0.003 -0.013 0.086 0.085 0.012 -0.017 0.110 0.103 
-0.2 -0.4 -0.018 0.000 0.103 0.081 -0.017 0.010 0.133 0.103 
-0.2 -0.2 -0.015 -0.013 0.105 0.102 -0.014 -0.015 0.135 0.134 
-0.2 0 -0.014 -0.013 0.105 0.102 -0.014 -0.015 0.136 0.130 
-0.2 0.2 -0.013 -0.011 0.105 0.095 -0.015 -0.012 0.137 0.117 
-0.2 0.4 -0.012 -0.008 0.106 0.084 -0.015 -0.009 0.138 0.103 

0 -0.4 -0.019 0.001 0.104 0.082 -0.018 0.010 0.130 0.105 
0 -0.2 -0.016 -0.012 0.104 0.103 -0.015 -0.015 0.131 0.135 
0 0 -0.015 -0.012 0.104 0.101 -0.015 -0.015 0.131 0.130 
0 0.2 -0.014 -0.010 0.103 0.094 -0.015 -0.012 0.131 0.116 
0 0.4 -0.013 -0.007 0.102 0.082 -0.015 -0.008 0.129 0.100 

0.2 -0.4 -0.018 0.002 0.098 0.084 -0.018 0.011 0.119 0.106 
0.2 -0.2 -0.014 -0.011 0.097 0.104 -0.012 -0.015 0.119 0.136 
0.2 0 -0.013 -0.011 0.096 0.101 -0.012 -0.015 0.117 0.130 
0.2 0.2 -0.012 -0.010 0.094 0.092 -0.012 -0.012 0.115 0.115 
0.2 0.4 -0.011 -0.006 0.091 0.079 -0.012 -0.008 0.111 0.097 
0.4 -0.4 -0.016 0.004 0.087 0.085 -0.017 0.012 0.105 0.108 
0.4 -0.2 -0.011 -0.010 0.086 0.105 -0.009 -0.015 0.104 0.138 
0.4 0 -0.010 -0.010 0.084 0.100 -0.008 -0.015 0.101 0.129 
0.4 0.2 -0.009 -0.009 0.081 0.089 -0.008 -0.011 0.097 0.111 
0.4 0.4 -0.007 -0.005 0.075 0.074 -0.007 -0.006 0.090 0.091 

0.24 0.24 0.011 0.009 0.094 0.092 0.013 0.013 0.118 0.117 

Note: See Table A2.1. 
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Table A2.3 Monte Carlo Results, N = 500, 2000 draws 
   Homoskedasticity  Heteroskedasticity 

True Parameters  Bias RMSE  Bias RMSE 
ρ1 ρ2  1ρ̂  2ρ̂  1ρ̂  2ρ̂   1ρ̂  2ρ̂  1ρ̂  2ρ̂  

-0.4 -0.4  -0.003 -0.003 0.062 0.062 -0.002 -0.002 0.080 0.080 
-0.4 -0.2  -0.002 -0.002 0.064 0.064 0.000 0.000 0.082 0.082 
-0.4 0  -0.001 -0.001 0.065 0.065 0.000 0.000 0.083 0.083 
-0.4 0.2  0.000 0.000 0.066 0.066 0.000 0.000 0.084 0.084 
-0.4 0.4  0.000 0.000 0.067 0.067 0.001 0.001 0.085 0.085 
-0.2 -0.4  -0.007 -0.007 0.072 0.072 -0.012 -0.012 0.095 0.095 
-0.2 -0.2  -0.006 -0.006 0.073 0.073 -0.011 -0.011 0.096 0.096 
-0.2 0  -0.006 -0.006 0.074 0.074 -0.012 -0.012 0.097 0.097 
-0.2 0.2  -0.005 -0.005 0.075 0.075 -0.012 -0.012 0.099 0.099 
-0.2 0.4  -0.005 -0.005 0.075 0.075 -0.013 -0.013 0.100 0.100 

0 -0.4  -0.008 -0.008 0.072 0.072 -0.012 -0.012 0.090 0.090 
0 -0.2  -0.006 -0.006 0.072 0.072 -0.010 -0.010 0.090 0.090 
0 0  -0.006 -0.006 0.072 0.072 -0.010 -0.010 0.090 0.090 
0 0.2  -0.005 -0.005 0.072 0.072 -0.011 -0.011 0.090 0.090 
0 0.4  -0.005 -0.005 0.071 0.071 -0.011 -0.011 0.090 0.090 

0.2 -0.4  -0.007 -0.007 0.067 0.067 -0.011 -0.011 0.082 0.082 
0.2 -0.2  -0.005 -0.005 0.067 0.067 -0.009 -0.009 0.081 0.081 
0.2 0  -0.005 -0.005 0.066 0.066 -0.009 -0.009 0.080 0.080 
0.2 0.2  -0.005 -0.005 0.065 0.065 -0.009 -0.009 0.079 0.079 
0.2 0.4  -0.004 -0.004 0.063 0.063 -0.009 -0.009 0.077 0.077 
0.4 -0.4  -0.006 -0.006 0.060 0.060 -0.010 -0.010 0.072 0.072 
0.4 -0.2  -0.004 -0.004 0.060 0.060 -0.007 -0.007 0.072 0.072 
0.4 0  -0.003 -0.003 0.058 0.058 -0.006 -0.006 0.070 0.070 
0.4 0.2  -0.003 -0.003 0.056 0.056 -0.006 -0.006 0.067 0.067 
0.4 0.4  -0.002 -0.002 0.052 0.052 -0.006 -0.006 0.062 0.062 

0.24 0.24  0.004 0.004 0.067 0.067 0.008 0.008 0.084 0.084 

Note: See Table A2.1. 
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Appendix A3. Construction of Predicted Weights Matrices  
The construction of the predicted weights matrix inUD,Ŵ  proceeds as flows. In a first step, the 
following gravity type model is estimated:  

 
 jlikkiljljkijlik DISTw ,,,,,

0
, lnln ωγηκ +++= ,  (A.14) 

 
where 0

, jlikw  is the use-plus-delivery intensity as defined in equation (5), κi,k is a set of 
country-pair dummies (i,k = 1, …, 13) and ηj,l is a set of industry-pair dummies (j,l = 1, …, 
15). DISTi,k denotes average distance between countries i and k (or, for i = k, internal distance 
defined as DISTi,i = 0.67 π/iAREA ); its parameter is allowed to vary across industry-pairs.  
The data source for distance kiDIST ,  is the CEPII database (see Mayer and Zignago, 2006).   
 

The model in (A.14) has potentially 619 parameters. For use-plus-delivery intensities, 
there are 37094 non-zero observations (of potentially 195×195 = 38025). One could avoid 
losing observations by employing a Poisson quasi-maximum likelihood model as suggested 
by Santos Silva and Tenreyro (2006). However, the latter obtains very similar effects in our 
case. Results indicate that the model performs reasonably well in predicting input-output 
flows. With an R2 of 0.809 the model explains a substantial part of the variation in use-plus-
delivery intensity across countries and industries. Hence, model (A.14) serves our purpose 
well, given our goal to generate exogenous weights from predicted values. 

 
The parameter estimates of model (A.14) are then used to generate the predicted 

weights matrix as follows: 
 

 )lnˆˆˆexp(ˆ ,,,,
0

, kiljljkijlik DISTw γηκ ++= .24 (A.15) 
 
For observations with a zero entry, the predictions are set to zero as well. The predicted 
values 0

,ˆ jlikw  are used to set up the unnormalized predicted weights matrix ]ˆ[ˆ 0
,klijw=UD,0W , 

which is row-normalized to obtain the final predicted weights matrix inUD,Ŵ .  
 

The construction of the predicted weights matrices reflecting intra- and inter-industry 
use-plus-delivery intensities inUD,

intraŴ  and inUD,
interŴ  proceeds the same way as for the original 

weights matrix (see subsection 2 in section III). Finally, if 0
, jlikw  in (A.14) is defined as use or 

delivery intensity (rather than use-plus-delivery intensity), the same procedure can be applied 
to obtain the predicted weights matrices based on use ( inU,Ŵ ) or delivery intensity ( inD,Ŵ ). 
 

                                                 
24 The conditional expectation of w is equal to )lnˆˆˆexp( ,,,, kiljljki DISTγηκ ++  times 

)][exp( , jlikE ω  (see Frankel and Romer, 1999, p. 384). Under normality 

)][exp( , jlikE ω = ])2/exp[( 2
, jlikσ , where 2

, jlikσ  is the variance of jlik ,ω . Since ω is modelled as 
homoskedastic, this correction factor is the same for all observations and can be dropped 
without consequences for the results regarding the final row-standardized weights matrix. 
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