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I. Introduction

In recent years, econometric research started developing estimators for cross-sectional
models, where the units of observations are allowed to be correlated. A large class of such
models is referred to as spatial econometric models, where interdependence occurs through
some ex ante known channel. One possible—yet not necessarily the only plausible—channel
is geographical distance or space as such. The use of and empirical support for the latter gave
the corresponding subfield in econometrics its name: spatial econometrics. A majority of
existing theoretical models and applications follows the general structure introduced by Cliff
and Ord (1973, 1981): a continuous endogenous variable is specified as a function of a spatial
lag, i.e., the spatially weighted average of the endogenous variable, a set of exogenous
explanatory variables, and possibly spatially autocorrelated residuals. This framework with
both a spatial lag and spatial autoregressive disturbances is commonly referred to as SARAR

model.

Almost all theoretical or applied work assumes that the data-generating SARAR process is of

first-order, i.e., SARAR(1,1). In principal, this is an unnecessary restriction and it would be
.. o . 2 .

surprising if it were generally supported with real data.” However, to date a generalized model

is not available for a SARAR process including spatial lags up to an order R and spatial
dependence of the residuals up to an order S, i.e., SARAR(R,S), with fixed R and S.

This paper derives a generalized moments (GM) estimator and two-stages least squares
estimators (TSLS) for the Cliff and Ord-type, cross-sectional model with a SARAR(R,S)
structure, generalizing the estimation procedure for a SARAR(1,1) model with
heteroskedastic innovations by Kelejian and Prucha (2008). We demonstrate consistency of
the proposed estimators and determine the optimal weighting matrix for the moment
conditions. Furthermore, we derive the joint asymptotic distribution of the GM estimates of
the spatial autoregressive parameters of the disturbance process and the feasible (generalized)
TSLS estimates of the regression parameters of the model. The latter provides the basis for
Wald statistics which allow the researcher to test the estimated general SARAR(R,S) model

' Econometric work on Cliff and Ord (1973) models includes Anselin (1988), Baltagi and Li
(2001), Baltagi, Song, and Koh (2003), Conley (1999), Kelejian and Prucha (1999, 2008),
Kapoor, Kelejian, and Prucha (2007), Lee (2004, 2007), Pinkse and Slade (1998), Pinkse,
Slade, and Brett (2002).

Applications of such models are legion, and they include Audretsch and Feldmann (1996),
Baltagi, Egger and Pfaffermayr (2005), Besley and Case (1995), Case, Hines, and Rosen
(1993), Cohen and Morrsison Paul (2004), Holtz-Eakin (1994), Shroder (1995), and Topa
(2001), to mention only a few.

* There are a few empirical studies which allow for higher-order spatial processes. Yet, they
are typically based on either higher-order spatial autoregressive residuals (see Bell and
Bockstael, 2000; Badinger and Egger, 2008; Cohen and Morrison-Paul, 2007) or higher-order
spatial lags of the endogenous variable (see Egger and Raff, 2008).



against alternatives such as SARAR(1,1), SARAR(O0,S), or SARAR(R,0). We illustrate in a set
of Monte Carlo simulations that the proposed estimators work well, even in small samples.

The remainder of the paper is organized as follows. Section II introduces the model
specification, some notation, and a set of basic assumptions. Sections III and IV derive the
GM estimator and generalized two-stages least squares estimators for the SARAR(R,S)
process, demonstrates consistency and asymptotically normality of the parameter estimates,
and formulate a consistent estimator for the variance-covariance matrix of the joint
distribution of all model parameter estimates. Section V summarizes the findings from a
Monte Carlo simulation exercise with a special emphasis on the point estimates of the spatial
parameters and the rejection probabilities of Wald tests of the SARAR(R,S) model against
interesting alternatives such as SARAR(0,S), SARAR(R,0), and the non-spatial model.

Section VI summarizes the results and concludes.

I1. Model Specification

In the following, we generalize the specification by Kelejian and Prucha (2008), allowing
spatial dependence in the endogenous variable and the disturbances of arbitrary but fixed
order R and S, respectively, i.e., the structure and strength of the cross-sectional
interdependence may vary across subsets of the i=1,..., N cross-sectional units. In matrix

notation, the model reads as follows:

R
Yy =XyBy+ zﬂ’r,NWr,NyN +u,, or (la)
r=l1
Yy =2Zydy +uy, (Ib)
s
u, = zpm,NMm,NuN +&y, (Ic)

m=1

where y, = (¥, y»-Vyy) is the N x 1 vector of observations on the dependent variable. The
regressor matrix X, is of dimension N x K and contains the observations on the k =1,...,K
(exogenous) explanatory variables, i.e., X, =(X y,....Xx ) with each Nx1 vector x,

denoting the observations on the respective explanatory variable. The structure of the spatial

dependence in y, is determined by the N x N matrices W, ,, r=1L...,R, whose elements

w,

ij,r,

v are assumed to be known. The expression y, , =W, y, is referred to as the r-th

spatial lag of y, .

In equation (1b), the Nx(K+R) matrix Zy is given by Z, =(X,,Y,), with

Y, = (¥, s ¥rn)» and 8, =(By,1Y)", where the K x1 parameter vector of the exogenous



variables is given by B, =(p, y..... B¢ ) and the Rx1 vector of spatial regressive parameters

of y, isdefinedas &y = (4 y,.... 4 )

The N x1vector of error terms uy = (i y,...,uy ) is assumed to follow a spatial regressive
process given by (1c). The structure of the spatial dependence in u, is determined by the

NxN matrices M, ,, m=1,.,M , whose elements m,  , are assumed to be known. The

ij,m,

expression u,, , =M, yu, is referred to as the m-th spatial lag of u, . The §x1 vector of the
spatial regressive parameters of u, is defined as p, =(p, y,...,05 ). Finally, the vector
gy = (& y»-»€y ) contains the innovations of the error process, which are assumed to be

independently but not necessarily identically distributed, and whose properties will be
specified in more detail below.

Note that all variables are allowed to depend on sample size N, i.e., to form triangular arrays.
Such a specification is consistent, for example, with models where the weights matrix is row-
normalized and the number of neighbours of a given cross-sectional unit depends on sample
size (see Kapoor, Kelejian, and Prucha, 2007, p. 102). Note that Xy may also contain spatial
lags of exogenous variables, since it is allowed to depend on sample size. As a result, the
model specification in equations (1a)-(1¢) is fairly general, allowing for higher-order spatial
dependence in the dependent variable, the explanatory variables, and the disturbances.

To avoid confusion, a word on notation is in order here. Regarding the spatial lags of the
dependent variable, we will always use index r=1,...,R. However, for reasons that will

become clear below, we need more than one index to denote the spatial lag of the
disturbances. In expressions involving sums as equation (lc), we always use index

m =1,...,S . The more natural indexation s =1,...,.S is reserved for the moment conditions and

will also be used when the context is clear and there is no danger of confusion.

The following assumptions are maintained throughout the analysis:
Assumption 1.

(a) The diagonal elements of W, ,, r=1,..,R,and M ,, s=1,...,§, are zero.

(b) Restrictions on admissible parameter space.

V

R
Ay = . Y/ —
Ay €(=ay,ay),with 0<ay,ay <a*<ow,r=1,..,R, and ) ‘l,,N‘<Al<oo.
r=1

The first part of Assumption (1b) simply requires the parameters 4, ,, » =1, ..., R to be

finite; we take a* such that ¢* = max af,”' holds; the expression a” will be used to denote an

r=1,...,.R

Rx1 vector with elements a”. In the second part of Assumption (1b), the scalar 4,



generally depends on the properties of the weights matrices W, , . For example, with row-

R
normalized matrices W, ,, r=L..,R, using A,= 1 ensures that (I—Z/I,,NW,,N) is

r=l1

invertible, as required in Assumption (Ic). If the matrices W, , are not row-normalized,

=l,..,

Horn and Johnson, 1985, p. 301). Analogous assumptions are made for the parameters of the

spatial regressive error process:

R
P,y €(=ay,ay), with 0<ay,ay <ay<o,s=1,...,8, and Z‘pm,,v‘ <A,<o.
m=1
We take a” such that a” = max a}’ holds; the expression a” will be used to denote an § x1
s=1,...,8

vector with elements aj . As above, with row-normalized matrices M_,, s=1,...,S, the

N
second part of this assumption ensures invertibility of (I — z PunM,, ) when 4 = 1.1If the

m=1

matrices M, are not row-normalized, Assumption (lc) is implied by using

-1
A4, = ( max HMS NH) for some matrix norm || . || .
s=1,...,8 ’

R S
(c) The matrices (I—- 2/1,, vW, ) and (I- Z P..vM,, ) are nonsingular for 4, € (—a%,al)

r=1 m=1

and p, € (—aly,ay ). This ensures that y, and u, are uniquely identified by (la) and (1c)

through
< 1 & 1
yy=>I- zﬂ’r,NWN)_ Xy +d- Z;Lr,NWN)_ Uy, (2a)
r=1 r=1
X 1
u, =I-> p, M, ) 'e,. (2b)
s=1

Assumption 2.

(a) For 1<i<N,N =1 the innovations ¢;, are (mutually) independently distributed with

o —0 4
E(¢,,)=0 and E(¢)y) =07, ,where 0<a’ <o;, <a’ <oo,and sup_..y s E‘(‘%,N "<
for some 7 > 0. Note that the variance-covariance matrix of &, is given by
Qg,N = Ele ey ]= diagi]\:/l[E(ng )= diagi]zl(o_fN) . (3a)



In line with Kelejian and Prucha (2008), the innovations are allowed to depend on sample

size, i.e., to form triangular arrays. Even if the innovations did not depend on N, y, and

u,, still would depend on N as can be seen from equations (2a) and (2b).

We assume further that the weighting matrices have the following properties:
Assumption 3.

The row and column sums of the matrices W,,, r=L..,R, M ,, s=L..S,
R S

Iy —ZA,W,, v and (I, —z o.M, v)"' are bounded uniformly in absolute value. (See
r=1 m=1

Remark A.1 in Appendix A for a definition of row and column sum boundedness.)

As Kelejian and Prucha (2008, p. 7) point out, Assumption 3 restricts the extent of
neighborliness of the cross-sectional units on the one hand, and the degree of cross-sectional
correlation between the model disturbances on the other hand. Such restrictions on the degree

of permissible correlations are standard in virtually all large sample theory.

In light of equation (2b) and Remark A.1, Assumptions 2 and 3 imply that E(u,)=0 and that

the variance-covariance matrix of u, is given by

S R
Qu,N = E(uNulN) = (IN - zpm,NMm,N)_lgg,N(IN - me,nM:n,N)_l . (3b)
s=1

m=1

II1. GM Estimator for S-th Order Spatial Regressive Error Process
In the following, we extend the GM estimator for the spatial autoregressive parameter in
Kelejian and Prucha (2008) to the case of an S-th order process. In this subsection, we only

consider the process in equation (1c) for the disturbances u, , but not necessarily the one in
equation (la) for y, . We first derive the moment conditions defining the GM estimator of
p,y for the case of heteroskedastic innovations and the optimal weighting of the moment

conditions. We then prove consistency and derive the asymptotic distribution of the proposed
GM estimator.

1. Moment Conditions and Definition of a GM Estimator for p,

Kelejian and Prucha (2008) use two moment conditions to derive a generalized moments
(GM) estimator for a first-order spatial regressive process (S =1). In case of an S-th order

process, the GM estimators of the parameters p, ..., 05, are obtained by recognizing that —

under Assumptions 1 and 2 — the moment conditions used by Kelejian and Prucha (2008) hold

for each matrix M, s =1,...,§. In particular, we define for each matrix M, s =1,...,§,



s
g yv=M,, &y =M (u, - zpm,NMm,NuN)' 4)

m=1

The moment conditions MC; s to MCy,, s=1,...,§, associated with matrix M|, through

equation (4), are given by

MCi, NT[E(E 8, ,)-TriM, [diag) E(s] )M ,}]1=0, (5a)
MC,, N'E(g ,&,)=0. (5b)

MC, ; and MC; can be written alternatively as

MCs NE(e\A, y&,)=0, (6a)
MC,, N'E(gyA,, y&y)=0, (6b)

_ !
where A, , =M’ M

S

y—diag! (m’, \m, ) with m, , denoting the i-th column of
M, ,,and A, , =M. It is readily seen that the main diagonal elements of A , and

A,, v are zero. Also, note that the row and column sums of A, ,and A, , are uniformly

bounded in absolute value in light of Remark A.1 in Appendix A.

From the specification of the error term in equation (1c¢), it follows that

S S
8N = uN - me,NMm,NuN = uN - me,Nﬁm,N and (73)
m=1 m=1
S S -
ES,N = Ms,Ng = MS,N(uN - zpm,NMm,NuN) = us,N - zpm,Nusm,N s (7b)
m=1 m=1

where we use the following definitions: w_, =M  u,, umy =M M  u, =M ,u ..

Substituting (7a) and (7b) into the moment conditions (6a) and (6b), we obtain a 25 equation
system

vy—T\by =0, (8a)

where b, isa[25+ S(S-1)/2 ] x 1 vector, given by

_ 2 2 '
b, = (Pl,N:---:pS,N: pl,N7""pS,N’pl,sz,Nﬂ"'ﬂpl,NpS,N""’pS—l,NpS,N) ,



ie., b, contains § linear terms p, , (m=1,..,S), S quadratic terms p,i,N (m=1,..,5), and

S(§—1)/2c¢ross products p, vo, vy (m=1,...,8-1,[=m+1,...5).

Yy is @ 28 x 1 vector with elements (y, ), 7 =1, ...,2S,and I’y is a 2§ x [2§ + S(5-1)/2]
matrix with elements (yw)>i=1,..,285j=1,..,[25+ S(S-1)/2], whose elements will be

defined below. The row-index of the elements y, and I', will be chosen such that the

equation system (8a) has the following order: the first two rows correspond to the moment

conditions MC;; and MC,,; associated with matrix M, , through (4); rows three and four
correspond to MC;; and MCy,, associated with matrix M, ,, and so forth; rows (25-1) and
2§ correspond to MCy s to MCy s associated with the matrix Mg , . As a result, the equation

system can also be written as

-| . b, =0, (8b)

where the 2 x 1 vectors y, , and the 2 x [2§ + §(S-1)/2] matrices ', s=1,...,§ are the
parts of the equation system (8a) associated with matrix M, (and moment conditions MC,

and MC,). Note that the first two rows of equation system (8b) correspond to the equation
system (6) in Kelejian and Prucha (2008), which is a special case of equation (8b) under
S=1.

The sample analogue of equation system (8a) is given by
7]\/ _beN ='9N(pN)a ©

where ¥, and r v are equal to v, and I',, with the expectations operator suppressed and the
disturbances u, replaced by (consistent) estimates U, ; $,(p,) can be viewed as a vector of

regression residuals.

The GM estimates of the parameters (p, ,..., 05 ) are then defined as

Py =Py(©,) =argmin [(¥, -T,b)'0, (¥ -T,0)1=[%,(p) O, (I (p)], (10)

-a” <p<a”



1.e., the parameter estimates can be obtained from a (weighted) nonlinear least squares

regression of ¥, on the columns of r v - The optimal choice and estimation of the weighting

matrix @, will be discussed in more detail below.

In the following, we define the elements of y, and I',, grouped by the two moment

conditions.

Moment Condition M; delivers s = 1, ... S equations of equation system (8b), appearing in

rows 1, 3, ..., 25-1. The corresponding elements of vy, and I', are given by

Vos-)+1 = N_IE{EZ,Nﬁ€,N - Tr[Ms,Ndiagi]Zl(uiz,N )M;N]} , Or (11)

Vos-1y+1 = NilE(u’NAls,NuN)'

-1 = - . N — i
Vos—)+i,m = 2N E{usm,Nus,N _TV[MS,Ndlagi:I (um,i,Nui,N)Ms,N]} , Or
—1 [ [
}/Z(S—l)-#l,m = 2N E(“NMm,NAls,NuN) , M= 1""’ S .

Note that u, exhibits two subscripts: the first subscript m refers to the matrix by which u,, is

premultiplied; the second subscript i refers to the unit of observation.

_ —1 — = . N =2 '

Vo(s—04l,8+m — N E[u,, yu, - Tr[Ms,Ndlagi:I (”m,i,N )Ms,N]} 55 OF
_ -1 ' ' _

Vo(s—4l,8+m — N E(uNMm,NAls,NMm,NuN) ,m=1,..,8§.

_ —1 =11 = . N — — !
Y 2(s=1)41,S(m+1)=m(m=1) ) 241=m — 2N E{usm,Nusl,N - T’”[Ms,zvdmgm (ul,i,Num,i,N)Ms,N 1},
or

-1 ’ '
Yot ysr.Smstymmy/2e1-m = — 2N E@ M} A M, ju), m=1,.,8-1,I=m+1,..,§

Moment Condition M, delivers s =1,...,S equations of system (8b), appearing in rows 2, 4,

...., 28. The corresponding elements of y, and I', are given by

-1 ) —
Vo142 = N E(“Nus,zv) » O

Vags-1y42 = NilE(u’NAZS,NuN) .

_ -1 "=
7/2(s—1)+2,m =N E[“Nu

sm,N

= . .
+u, yu, ], associated with p,, , or

Vos—y+2,m = N_IE[u'NM' N(AIZS,N + AZS,N)uN] ,m=1,..,S§.

m,



_ -1 == — _ -1 —-r =
Vo(s—1y+2,5+m — N~ Elu,, yu,  ]=—-N"E[u, ,u, ,],or

_ -1 ' ' _
Vasyizsim =— N E(u,M, A, M, u), m=1..8§.

_ —1 ==y — =7} —
Y 2(s=10)+2,S(m+)=m(m=1)/ 241-m — N E(usl,Num,N + usm,Nul,N) » Or

_ -1 ’ ’ ! _
Y21+ 2.8 ety -m(mty/241-m = =~ E[uW\,M, (A% y + A, M, yuy ], m=1L....5-1,
[=m+1,..,S.

2. Asymptotic Properties of the GM Estimator for p,

2.1 Consistency
In order to prove consistency, the following additional assumptions are required:
Assumption 4.

Let u, ,, denote the i-th element of u, . We then assume that

Uy —u y=d, NAN

-

where d, , is an 1x P vector and A, isa P x 1 vector. Let d , be the j-th element of d, .

‘2+

o
Then we assume that for some 6 >0, E‘dij, vl  <c¢, <o, where ¢, does not depend on N,

and that N'?|A,[=0,(1).

Assumption 4 will typically be fulfilled in linear spatial models, where the estimates of u,
are based on N''*-consistent estimates of the model parameters. This is not different from the
first-order case (Kelejian and Prucha, 2008, p.11) and ensures that ¥, and r y converge in
probability to v, and I',. To be more specific, consider the linear model in equation (1a)
without endogenous regressors. Then, d, , is the i-th row of the regressor matrix X, and
A, denotes the difference between the parameter estimator and the true parameter values,

ie., (ﬁ v — B ). In that case, consistency of least squares ensures that Assumption 4 holds. As

stated here, Assumption 4 will also be fulfilled in more general settings, e.g., if model (1a)
contains endogenous variables (such as spatial lags of y) and is estimated using an
instrumental variable procedure. Under certain conditions, Assumption 4 will also be satisfied
if model (1a) involves a nonlinear specification (see Kelejian and Prucha, 2008, p. 12).

Assumption 5.

(@) The smallest eigenvalue of I" I, is uniformly bounded away from zero.

(b) 0 v—0Oy=0,(1), where @, are 2§5x2§ nonstochastic symmetric, positive definite

10



matrices. (c) The largest eigenvalues of @, are uniformly bounded from above, and the

smallest eigenvalues of @, are uniformly bounded away from zero.

As we will show in Appendix A, Assumption 5 also implies that the smallest eigenvalues of

I',0,I', are uniformly bounded away from zero, ensuring that the true parameter vector p,

is identifiable unique. By the equivalence of matrix norms, Assumption 5 also implies that
0, and @} are O(1).

Assumptions 1 to 3 (maintained throughout) together with Assumptions 4 and 5 ensure

consistency of the estimator p, . We summarize this result in the following Theorem, which

is proved in the Appendix C.

Theorem 1.
Suppose Assumptions 1-5 hold. Then, provided the optimization space contains the parameter

space, the GM estimators BN(@N) = [/N)LN((:)N),...,/N)S’N((?)N)]' defined by (10) are consistent

for py yseees Ps y » 1€,

ﬁs,N _ps,Ni)O as N_)OO, S:l,...,S.

2.2 Asymptotic Distribution of GM Estimator for p,,

To establish asymptotic normality of p, , we need some additional assumptions.

Let D, =(d{_y....d}, ), with d, , defined as in Assumption 4, such that U, —u, =D A .

Assumption 6.

For any real NxN matrix A, , whose row and column sums are bounded uniformly in

absolute value, it holds that
NTD\Au, - NTED A u,)=0,(1).

A sufficient condition for Assumption 6 is, e.g., that the columns of D, are of the form
n, +1II,¢,, where the elements of @, are uniformly bounded in absolute value and the row
and column sums of II, are uniformly bounded in absolute value (compare Lemma C.2 in

Kelejian and Prucha, 2008). This will be the case in many applications, e.g., for the model in

* It is assumed that p, exists and measurable. In the present setting, this is ensured, for

example, by Lemma 2 in Jennrich (1969), which is a special case of Lemma 3.4 in Potscher
and Prucha (1997) when the parameter space is a compact subset of the Euclidian space.

11



equations (1) and (2), when D, equals (the negative of) the matrix Z, (compare Lemma 1 in

Section 1V).

Assumption 7.
Let A, be defined as in Assumption 4. Then

N'"A, =N""Tg, +0,(1),

where T, is an N x P -dimensional real nonstochastic matrix whose elements are uniformly
bounded in absolute value. As remarked above, A, typically denotes the difference between

the parameter estimates and the true parameter values. Assumption 7 will be satisfied by
many estimators. In Section IV, we verify that this assumption hold when the model in
equation (1) is estimated by two-stages least squares (TSLS).

We summarize the results regarding the asymptotic distribution of p, in the following

theorem, which is proved in Appendix C.

Theorem 2. (Asymptotic Normality of p, )
Let p, be the GM estimator defined by (10). Suppose Assumptions 1-7 hold and,

furthermore, that A

min

(¥,)>cy >0. Then, provided the optimization space contains the

parameter space, we have

NPy —py) = (0, 3) IO, ¥ %8, +0,(1), with
0

Jy=—I,b,=TI,B,, and
op
&y =¥, "vy HN(O,Ly),
where ¥, = E[v,Vv,] and ¥, = (¥, )(P}?) .
Furthermore N"*(p,, —p,) =0, (1) and

QﬁN Oy)= (J'N('BNJNY1 *]’1\76")1\/‘111\7('9NJN(J;v@NJNY1 >

where Q  is positive definite.
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Theorem 2 implies that the difference between the cumulative distribution function of

N"?(py —py) and that of N(0,Q; ) converges pointwise to zero, which justifies the use of

the latter as an approximation of the former.'

The elements of v, in Theorem 2 are given by

Vi
vy=| . |=(v,y)s=L..,5, where (12)

Ven

| o ' i
Vi n s e (A vy T A Ve T 8]
V. y = =N ,s=1..8.
’ v 1. ' 1
N ESN(Azs,N + AZs,N)sN +a, &yl
The N x1 vectors a,, , and a,_, are defined as
a =Te,, (13a)
a y =Ty, v, (13b)

where

S N
o’ls,N = NilE[D’N (IN - zpm,NM;n,N)(Als,N + A;S,N)(IN - me,NMm,N)uN]
m=1

m=1

N N
aZs,N = NilE[D;v (IN - me,NM:n,N )(AZS,N + A;.s,N )(IN - zpm,NMm,N)uN] .
m=1 m=1

The 2§x2S (limiting) variance-covariance matrix of v, , denoted as ¥, , takes the

following form:

Vl,NV;,N VI,NV’S,N
Y, =E(v,Vy,)=E =E(V,\V,n)s P»q=1....8. (14)

’ !
VenVYin VonVsn

It is made up of S* submatrices of dimension 2 x 2, defined as

! Compare Corollary F4 in Potscher and Prucha (1997) (see Appendix B).
13



’ '
) VipnVign — Vip.nVagn

E(Vp,qu,N):E ’ !
2p,NV1q,N VZq,Nv2q,N

Hence, ¥, can also be written as

lIIN = (\Ilpq,N)J p9q =19"'9S3

where the 2 x 2 elements

11 12
_ l//pq,N l//pq,N

‘Ilpq,N - 21 22
qu,N qu,N
are defined as

11
l//pq,N = E(le,Nvllq,N) =
1

i=1 j=1 i=1

12
l//pq,N = E(vlp,NV;q,N) =
1

i=1 j=1 i=1

Wi:],N = E(VZp,Nvllq,N) =
1
2

i1 j=1 im1
22 _ ' _

Vogn = E(v2p,NV2q,N) =
1

i=l j=1 i=1

or, in matrix notation,

Ip,N 1g,N >

1 _ 12 2 - !
V/;;,N = EN ITF[(AIP,N + Alp,N)ZN(Alq,N + Alq,N)ZN] + N la’ ZNa

rq,N

| , ' “l
'/’12 = EN lTr[(Am,N + Alp,N)ZN (AZq,N + A2q,N)ZN] +N lalp,NZNan,N >

21

1 _ ’ ! =147
Vogn = EN 1T’”[(Azp,zv + A2p,N)ZN(A1q,N + Alq,N)ZN] +N 1a2p,N2Nalq,N’

N N N

_ -1 2 2 -1 2

= EN ZZ(%,W,N a0, W agn F Qg )TN0y N Zai,lp,Nai,lq,NGi,N )
N N N

B 1 2 2 4 2

= EN ZZ (@y1pn + @jiip N yagy + Ajing IO Ty + N zai,lp,Nat,Zq,No'i,N )
N N N

B . 2 2 . 2

=N ZZ (@2 T i )Ny agy + i1y N )T Ty + N Zaf,zp,zva,-,lq,w

i,N >

N N N
B .l 2 2 -1 2
= EN ZZ (aij,Zp,N + aji,Zp,N)(aij,Zq,N + aji,Zq,N)o-i,No-j,N +N zai,Zp,Nai,Zq,No-i,N

(15a)

(15b)

14



l/lzz = %NITF[(AZp,N + A’Zp,N)ZN(AZq,N + A'Zq,N)ZN] + Nﬁla;p,NzNan,N .

pq,N

Note that (P.) =¥, J,) " and Q; (0,)-Q; (¥,)) is positive semidefinite. Thus,
using a consistent estimator of ¥, (which will be derived below) as the weighting matrix
O, leads to the efficient GM estimator. By assumption, A_. (¥,)>cy >0. Moreover, the
elements of ¥, are uniformly bounded in absolute value, such that 1 (¥,)<c, <o by
the equivalence of matrix norms. Hence, ¥, automatically satisfies the assumptions made
with respect to ®,, in Assumption 5. Note that ¥, is generally not identical to the variance-
covariance matrix of the moment vector unless a, , and a, , are equal to zero. This is due

to the fact that the GM estimator is based on estimated rather than the true disturbances and
the presence of endogenous right-hand side variables included in equation (1). In the absence

of an endogenous right-hand side variable, a, , =a, , =0. Apart from this fact, the

variance-covariance matrix of the GM estimator of p, is of the usual ‘sandwich form’.

2.3 Estimation of Variance-Covariance Matrix of p,

In the following we develop a consistent estimator for the variance-covariance matrix of p,, .

Define

~

I',B ,,and (16a)
i

Ty
Ly

iag”\(27y) (16b)

S
where €, =(I,, - Zﬁm,NMm,N)ﬁN‘

m=1

We next specify an estimator for a, , =Tye,, , and a, , =Tye,, . The matrix T, will in

many applications be of the form

S s
T, =F,P, with F, = (I, - zpm,NMm,N)HN or Fyy = - zpm,NM’m,N)_lHN , (17)
m=1

m=1

where H, 1is a real nonstochastic N xP. matrix of instruments, and P, is a real

nonstochastic P. x P matrix, with P as in Assumption 7.

To be more specific, consider a TSLS estimator of the model in equation (1a). In that case,

Ay :(EN —90,) and the matrix P, will be of the structure as defined above and can be

15



estimated consistently by some estimator lN’N (see Section IV). The estimators for T, are

defined as

T, =F,P, with F, =, - zpm,NMm,N)HN or Fy =(I, — zpm,NMm,N) H,. (19
m=1

m=1

The estimators of a,, , =T,a,, , and a, , =T,a, , are then given by

~

a, y=Tyo, and

ay v =Ty0, v,

with

S S
als,N = N_I[D’N(IN - Zﬁm,NM:n,N)(AIS,N + A;S,N)(IN - Zﬁm,NMm,N)ﬁN] a'nd
m=1

m=1

S S
aJZS,N = N_I[D;V (IN - Zﬁm,NM:n,N)(AZS,N + A;s,N)(IN - Zﬁm,NMm,N)ﬁN] .

m=1 m=1

In matrix form, the elements of the estimated 2.5 x2S matrix ¥ v are defined as:

pq,N

~ |- ' 3 ' 3 -l 3
‘//11 = EN 1T’”[(Am,z\/ + Alp,N)ZN(Alq,N + Alq,N)ZN] +N lalp,NZNalq,N )
~ | - ' 3 ' 3 —l=r S Y
‘//2,1\/ = EN lTr[(Alp,N + Alp,N)ZN(AZq,N + A2q,N)ZN] +N lalp,NENan,N >

pg;N —

~ |- ' 3 ' 3 11 S
WZI = EN ITV[(Azp,N + A2p,N)ZN(A1q,N + Alq,N)ZN] +N laZp,NZNalq,N’

~

~ | - ' 3 ’ 3 1= 3
l//;j’NZEN lTr[(Azp’N+Azp’]\,)zi\,(Azq,N—i—AijN)EN]—i-N lazijENazq,N,

for p,g=1,...,S. Based on y v » We can now define the estimator for € ~as

~ o~ o~ o~ ~

ﬁaN (@N) = (j;v(?)zvjz\/)+j;v(')NlI’N(')NJN(j;vG)NjN)+ .
The following theorem establishes the consistency of v v and ﬁﬁw .

Theorem 3. (Variance-Covariance Matrix Estimation).

(19a)
(19b)

(20a)

(20b)

21)

(22)

Suppose all of the assumptions of Theorem 2, apart from Assumption 5, hold and that

additionally all of the fourth moments of the elements of D, are uniformly bounded. Suppose

16



furthermore (a) that the elements of the nonstochastic matrices H, are uniformly bounded in

S
absolute value, (b) sup, z

s=1

o, N‘ <1 and that the row and column sums of M, are bounded

uniformly in absolute value by one and some finite constant, respectively, and

(c) P, —P, =o0,(1) with P, =O(1). Then,
¥, -¥,=o0,(1) and ¥, - ¥, =0,(1).
Furthermore, if Assumption 5 holds, then also

Q, —Q; =o,(01).

p

Remark 1.
As in Kelejian and Prucha (2008, p. 17), Theorem 3 also holds, if p, is replaced by some

S

other estimator N'*(p, —p,)=0,(1). In case that F, =(I, - p, M, ,)H, , condition
m=1

(b) can be dropped. The consistency result for W7 verifies that this estimator for ¥ can

indeed by used in the formulation of an efficient GM estimator.

3. Joint Distribution of the GM Estimator for p, and Estimators of Other Model
Parameters
Note that N"*(p, —p,) depends on a vector of linear quadratic forms in the innovations &,

plus a term of order o,(1). By Assumption 7, N Y?A,, is asymptotically linear in &, . Hence,

the joint distribution of the vector [N'°A’,N"*(p, —p,)'] can be derived invoking the

central limit theorem for vectors of quadratic forms by Kelejian and Prucha (2008); see
Appendix B.

Consider the (P, +2S8)x1 vector of linear and linear quadratic forms in € :

N—I/ZFV
W, =[ NSN}. (23)

Yy

Using Lemma A.1 in Kelejian and Prucha (2008) (see Appendix B), its variance-covariance

matrix is of dimension (P. +2S5)x (P. +2S) and given by

24)

Var(wy)=¥, y = E{NIFI,\’SNE,NFN NI/ZFI'VSNv’Ni| _|:‘PAA,N TAp,N:|
N)Z= XN = = ’

-1/2 ' ’
N 7v,e, F, VyVy Yon ¥y

17



where

¥, v =N"F,X.F, and

_ -1 ' ry S nld
‘I’AP,N—N E(Fye,vy)=N FNZN(a”’N,azl,N,....,alS,N,azst),and

¥, is defined in equation (14).

As we demonstrate in Appendix C, the matrix ¥, can be estimated consistently by

~

~ AT S ~ o~
TAp,N =NF X\ (A, yse Apg v, 855 ), and

¥ v 1s defined in equation (21).

(25)

Regarding the joint limiting distribution of N'?(p, —p,) and N"°A,, we now have the

following result:

Theorem 4. (Joint Distribution of p, and Other Model Parameters)

Suppose all assumptions used in Theorem 3 hold and A, (¥, ) 2 c;,U > 0. Then,

N'2A P, 0 _
{ 1/2 ! } :{ ! ' 1y }Pz/zzv o T0,(1), with
N (pN _pN) 0 (JNGNJN) JN®N

&, v =T,V (N "’€\F,, v\ )5 N(0,I

P*+2S)'

Furthermore, let

P, 0 P, 0
QO,N = ’ -1y ‘PU,N ' 1] and
0 (JNGNJN) JN®N 0 QNJN(JNG)NJN)

~ [P 0 ~ [P, 0
Q,y = = = (Yo ST e T v
0 (JNGNJN) JN®N 0 ®NJN(JN®NJN)

(26)

27)

(28)
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Then,
q/’o,N - \PO,N = Op (1) s ﬁo,N - QU,N = Op (1) 9 and ‘PO,N = 0(1) > QU,N = 0(1) .

Theorem 4 implies that the difference between the joint cumulative distribution function of

[N"?A},N"2(py —py)T and that of N(0,2,,) converges pointwise to zero, which justifies
the use of the latter distribution as an approximation of the former. The theorem also states

that ﬁn, v 18 a consistent estimator of €, . The proof of Theorem 4 is given in Appendix C.

Remark 2.

Theorem 4 can also be used to obtain the joint distribution of (p, —p,) and some other
estimator A}, where N'?A} = N”zT;,' gy +o,(0), T, =F,P;,, T, =F,P,, assuming that
analogous assumptions are maintained for this estimator. In particular, the results remain
valid, but with W, =N"FyE,Fy, ¥, =N"FyZ, (2,820
‘TIAA,N = Nﬁli‘;’ iNﬁ;' >

~ _ 1 —~ ~ ~ ~ . ~ *® =%
‘I‘Ap’N =NF, EN(aILN,aZLN,....,aIS‘N,aZS‘N) , and with P, ,P, replaced by P,,P, .

IV. Two-Stages Least Squares (TSLS) Estimator for o,
1. Instruments
It is evident from model (1), that E(Y,u’y)# 0. In line with Kelejian and Prucha (2008), we

consider a TSLS procedure to obtain consistent estimates of the parameters 9, .

The following assumptions are maintained.
Assumption 8.

The regressor matrix X, has full column rank (for N large enough). Furthermore, the

elements of X,, are uniformly bounded in absolute value.

Assumption 9.

The instrument matrix H, has full column rank P >K+R (for N large enough).

Furthermore, the elements of H,, are uniformly bounded in absolute value.

Assumption 10.

The instruments H,, satisfy:
Quu =lim,  (N'H',H,) is finite and nonsingular.

Q,, =plim,__ (N 'H/,Z,) is finite and has full column rank.
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Regarding the choice of instruments, note that

SW. Ly + (34 W) X B (29)

i=l r'=l

R R R R
E(z Wr,NyN) = Z Wr,NE(yN )= Z Wr,NE[(I - Z /,ir',NWr',N )71 XyBy1
r=1 r=1 r=1 r'=1
R
-1 "

r

R

Z //i’r',N Wr',N

r'=1

provided that <1 for some matrix norm || . || (compare Horn and Johnson, 1985,

p. 301). The instrument matrices H, are used to instrument Z, =(X,,Y,) in terms of their

A

predicted values from a least squares regression on H,, ie., Z, =P, Z,, where

P, =H,(H\H,) H) . In light of (29) it is reasonable to select H, to include X, and a

subset of the linearly independent columns of terms of the sum

0 R _
> W, Xy (30)

=l r'=l
. 5
where Q is some predefined constant.

Note that such a choice of H,, implies that Assumption 9 will be fulfilled (by Assumptions 3

and 8). This choice also ensures that X, is instrumented by itself.

2. Definition of TSLS Estimator and Asymptotic Results
As in Kelejian and Prucha (2008), estimation of the model in equation (1) proceeds in three

steps. In the first step, model (1a) is estimated by TSLS using the instruments H, . In the
second step, the spatial regressive parameters p, ,..., 05, can be estimated using the GM
estimator defined in Section III, based on consistent estimates of u, from the first step. In the

third step, model (la) is re-estimated by feasible generalized two-stages least squares
(FGTSLS), which is equivalent to performing a TSLS estimation on a transformed version of
equation (1). We outline each of these steps in more detail in the following.

The TSLS estimator of model (1a) is defined as

gN = (Z’]\/ZN)_IZ;VyN , Where (31

’ Kelejian, Prucha, and Yuzefovich (2004) consider alternative sets of instruments in the
estimation of SARAR(1,1) models. Their Monte Carlo simulation results suggest that
choosing O =2 will be sufficient in many applications.
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Z,=P, Z,=(X,.Y,) and (32a)

P

v =Py Yy (32b)

In the second step, the parameters p, ,, s=1,...,§, are estimated using the GM estimator

defined in equation (10), based on the first step residuals &, =y, —Z,8, . As above these

estimators are denoted as p, ,,, s =1...,S.

Lemma 1 shows that the various assumptions maintained in Section III are automatically

satisfied by the TSLS estimator gN and the corresponding residuals u, .

Lemma 1.°

Suppose that Assumptions 1-3 and 8-10 hold, and that supN||BN|| <b<ow.Let D,=-Z,,

then, the fourth moments of the elements of D, are uniformly bounded in absolute value,
Assumption 6 holds, and
(@) N'"’(®, -8,)=N""Tye, +o,(1) with T, =F,P, and where

P, :Q;-IIHQHZ(er-le;-lll-lQl-IZy1 and

s
F, =, - me,NM:n,N)_lHN 5

m=1

(b) N"Te, =0,(1);
() P, =0,(1) and P, P, =0, (1) for
P, = (N 'H,H,) (N'H,Z )(N"'Z\H, (N 'H H,) " (N'HZ,)T".

The condition sup N”[i N” <b < is trivially satisfied if B, =P . Note that (a) and (b) together

imply that gN isa N'?-consistent estimator of 3, .

Regarding Assumption 4, we now have u,-u,=D,A,, where D, =-Z, and
Ay =3N -9, . Lemma 1 shows that under Assumptions 1-3 and 8-10 the TSLS residuals
automatically satisfy the conditions postulated in Assumptions 4, 6, and 7 with respect to D,
A, and T,. Hence, Theorems 1 and 2 apply to the GM estimator p,, which is based on
TSLS residuals. The Lemma also establishes that the elements of D, are uniformly bounded

in absolute value, gives explicit expressions for P,, and IN’N , and verifies that the conditions

concerning these matrices made in Theorems 3 and 4 are fulfilled. Hence, Theorems 3 and 4

° The above Lemma corresponds to Lemma 3 in Kelejian and Prucha (2008) and is adapted
here to apply to the higher-order case.
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cover the GM estimator p, and the TSLS estimator gN. In particular, Theorem 4 gives the

joint limiting distribution of N'2(p, —p,) and N"*(5, —d,), where D, =-Z,, the

S
matrices P, F,,P, are as in Lemma 1, and F, =(1, - > 5, M., ) H,.
m=1

We now turn to the third step. A Cochrane-Orcutt transformation to (1) is:

yy=2Z,8, +¢,, where 33
N NYN N

s
yy =, - me,NMm,N)yN >

m=1

s
Z,=1,- me,NMm,N)ZN , and

m=l1

s
u, =, - me,NMm,N)uN =&y.
m=1

A

The FGTSLS estimator, denoted as gN, is then obtained as a two-stages least squares

estimator applied to the transformed model (33), using the transformed instruments

S
H, =1- me,NMm,N)HN , after replacing p, by p,,i.e.,

m=1

A A

5, =(Z 7'y 75, , where (34)

A S
Z,=P.Z, with P, =H,(H H,)"H and H, =(1-> 5,,M, ,)H,,

m=1

S
ZN = (IN _25m,NMm,N)ZN Wlth’

m=1

s
Yy =0, - Z,Bm,NMm,N)YN .
m=l1

The advantage of this approach as compared to the use of heteroskedasticity-and-

autocorrelation-consistent estimates is that joint hypotheses about A, and p, may be

formulated and tested.

Kelejian and Prucha (2008) and Arraiz, Drukker, Kelejian and Prucha (2007) use the
untransformed instrument matrix H, in the FGTSLS estimation of SARAR(1,1) models.
While this choice does not affect consistency, it has implications for the efficiency of the

estimates. In light of (29), the ideal instruments matrix for WY in the transformed model is

S
given by H}, = (I - Z P M, v )H, . In fact, the Monte Carlos analysis below suggests that

m=1
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S
using the estimates of the transformed instruments H), = (I—Z P, vM,, y)H, instead of

m=1

H, leads to smaller standard errors and produces slightly better results in small samples, in

particular, with respect to the size of tests.

Lemma 2 shows that the various assumptions maintained in Section III are automatically

satisfied by the (feasible) generalized TSLS estimator 5,\, and the corresponding residuals.

Lemma 2.’
Suppose the Assumptions of Lemma 1 hold" and let & v be defined as in equation (34), where

p, is any N'’-consistent estimator of p, (such as the GM estimator p, based on TSLS
residuals). Then

a) N'"’[6,(py)—8y]1=N""Tye, +o,(1) with Ty =F P, and where

P = Que Qe [Qiprz- Qe Qupez- ] and Fy = H
(b) N'°Te, =0,(D);

(c) P, =0(1) and P, =P}, =0,(1) for

P, = (NHYHY) ! (NTHY Z))x[(NZy Hy)(V'HY H) (N THYZ)T

In light of Lemmata 1 and 2 the joint limiting distribution of the (feasible) generalized spatial

TSLS estimator & v and the GM estimator p, follows from Theorem 4 and the discussion

thereafter, with A} =8, -&,. The asymptotic variance-covariance matrix and its

corresponding estimator are given by (27) and (28) with the modifications as described in
Remark 2 after Theorem 4.

Note that in light of Lemma 2 the residuals @}, =y, —Z,8, =u, + D, A}, can be used to
estimate p, by the GM estimator defined by (10), where the discussion surrounding Lemma
2 would also apply here. Taking this argument one step further, p, and &, can also be

estimated by an iterative procedure.

" The above Lemma corresponds to Lemma 4 in Kelejian and Prucha (2008) and is adapted
here to apply to the higher-order case.

N
"In light of the properties maintained with respect to the matrix (I, — z PuxM,, yu,, , this

m=1

implies that Assumptions 9 and 10 will be satisfied for the transformed instruments H, .
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As a final point, note that the above theory carries over to cases where the regressor matrix

X, includes endogenous variables, provided that suitable instruments are available. To be
more specific, let X, =(X,,E,) and D, =-Z, =—(X,.E,,Y,), where X, satisfies
Assumptions 8-10 with X, replaced by X, (including in the formulation of the instruments),
and where E, is a matrix of endogenous variables. Then, given the fourth moments of D,

are uniformly bounded, and Assumption 6 holds, parts (a), (b), and (c) of Lemma 1 and 2 still
hold, but with

Z,= (Xy.Py E,.P; Y,) and (35a)

Z,=P.7,. (35b)

V. Monte Carlo Evidence
In this section, we consider a Monte Carlos experiment for a SARAR(3,3) specification and

restricted versions thereof. We assume that W,, =M, and that the matrix X includes two

explanatory variables. Hence we have’

3
Yy=X5+X,5,+ Z/lrwry +u, (36a)

r=1

u=

M

£, Wu+eg. (36b)

m=1

We consider three sample sizes: N =100, N =250, and N =500 . The explanatory variables
x, and x, are generated as random draws from a standard normal distribution, scaled with a
factor of five, and treated as fixed in repeated samples. Their parameters S, and p, are

assumed to be unity in all Monte Carlo experiments considered.

For our basic setup of the weights matrix, we follow Kelejian and Prucha (1999) and use a

binary ‘up to 9 ahead and up to 9 behind’ contiguity specification. This means that the

elements of the time-invariant, raw weights matrix W’ are defined such that the i-th cross-

section element is related to the 9 elements after it and the 9 elements before it.

The unnormalized N x N matrix W is then split up into three N x N matrices W, , W, ,
and W3°, where W10 + Wz0 + W3° =W'. The matrices WIO, W20 , and W30 are specified such
that they contain the elements of W for a different band of neighbours each. Otherwise, they

have zero elements. We choose a design, where W, corresponds to an ‘up to 3 ahead and up

’ For simplicity of notation, the subscript N is suppressed in the following.
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to 3 behind’ specification, W, corresponds to a ‘4 to 6 ahead and 4 to 6 behind’ specification,

and W, corresponds to a ‘7 to 9 ahead and 7 to 9 behind’ specification. W, W,', and W,
have typical elements w;;, wy,, and wy,, respectively, where subscripts i and j indicate
that the corresponding element captures the possible contiguity of unit i with ;. wl(f i WSU ,
and WSO,U are either unity or zero. By design, at most one of the three elements, wlojy. , ngy. , Or
wé),[j, can be unity. The final weights matrices W, , W, , and W, are obtained by separately
row-normalizing Wl0 , W20 , and W30 , that is, by dividing their typical elements wﬁ i wg’l.j , and

WSO,!.]. through the corresponding row sum, respectively.

With three row-normalized matrices W, , W, , and W, , the parameter space for A and p
must satisify O£|/11|+|/12|+|23|<1 and 0£|p1|+|p2|+|,03|<1. We consider 12 parameter

constellations, assuming that the spatial regressive parameters are non-increasing in the order

of neighbourhood, i.e., we always have A4 >4,>24, and p 2p, 2> p,. In parameter

constellations (1a) through (2c), we assume that the spatial dependence in the endogenous
variable y is at least as strong as that in the disturbances u, without loss of generality. We
consider cases, where we have nonzero spatial dependence in both y and u (parameter
constellations (1a) through (Ic)), as well as ones where spatial dependence shows up
exclusively in y (parameter constellations (2a) through (2¢)) or exclusively in u (parameter
constellations (3a) through (3c)). This setting should be informative about the performance of
the GM estimator in discriminating between alternative specifications of the spatial
dependence. Parameter constellations (3a) through (3c¢) and (4) consider cases where the
spatial dependence in the disturbances u is stronger than that in y. Parameter constellation
(5a) considers zero dependence parameters for all spatial lags in y and u. Finally,
constellation (5b) assumes homogeneous but nonzero spatial dependence parameters for
spatial lags in y and u.

Regarding the choice of instruments, we include linearly independent terms of up to the
second order in equation (30b). In particular, the matrix of untransformed instruments H
contains 18 columns and is given by

H=(X,WX,W,X, W.X, WX, WX, WX, W, X, W,.X), (37)
where W, = WW,.

The innovations € are assumed to be heteroskedastic and generated as follows. Let £, denote

a draw from a standard normal distribution. The pattern of heteroskedasticity is drawn from a
uniform distribution with support [0.2,1.8]. Then, the innovations are generated as

& =0,.(,,where V0.2 <o, <+1.8.
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Table 1. Parameter Constellations in Monte Carlo Experiments

P

coi?erﬁzf[iegn A A % P P> Ps
(1a) 0.5 0.3 0.1 04 0.2 0.2
(1b) 0.5 0.3 0 0.4 0.2 0
(1¢) 0.5 0 0 0.4 0 0
(2a) 0.5 0.3 0.1 0 0 0
(2b) 0.5 0.3 0 0 0 0
(2¢) 0.5 0 0 0 0 0
(3a) 0 0 0 0.4 0.2 0.2
(3b) 0 0 0 0.4 0.2 0
3¢) 0 0 0 0.4 0 0
“) 0.2 0.1 0.1 0.5 0.3 0.1
(5a) 0 0 0 0 0 0
(5b) 0.2 0.2 0.2 0.2 0.2 0.2

Note: S, = B, =1 under all parameter constellations.

For each Monte Carlo experiment, we consider 2000 draws. To ensure comparability, the

same draws of ¢; and o, are used for each of the 12 parameter constellations. Results for

l

the estimates of p, ,,p, y, and p;, are obtained by the GM estimator defined in equation

(10), using the optimal weighting matrix as given in equation (21).10 The estimates reported
for the regression parameters are FGTSLS estimates, based on the transformed model as
given by equation (34) using the transformed set of instruments given in (37). For sample

sizes of N=100 and N =250 we also report the results from regressions using the

untransformed set of instruments H instead of H® as in Kelejian and Prucha (2008) and

Arriaz, Drukker, Kelejian, and Prucha (2007).

We calculate the average bias and root mean squared error for each parameter constellation.
Moreover, based on the estimated approximate joint distribution of the vector of the spatial

~ o~ o~ o~ o~

autoregressive and regression parameters, i.e., §=(4,4,,4,08,0,0,0,.0;), we report

rejection probabilities for Wald tests about a set of hypotheses of interest, using a nominal
significance level of 5 percent.

" We use the identity matrix in an initial step to obtain consistent initial estimates of

PiysPrys and p; . and g, which are required to calculate the optimal weighting matrix

¥,
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1) For all parameter constellations, we test the hypothesis that each single coefficient is equal
to the true parameter value (this corresponds to a t-test as in Kelejian and Prucha, 2008).
Hence, the corresponding rejection rates reflect the size of the test.

i1) For parameter constellation (Ic) we report the test of the SARAR(3,3) against the

SARAR(1,1) model, using H*" : 4, =, =p,=p, =0

1i1) For parameter constellations (2a) and (2b), where spatial dependence occurs only in y, we
test the joint hypothesis H} : p, = p, = p, =0. Similarly, for parameter constellations (3a)
and (3b), where spatial dependence occurs only in u, we test the joint hypothesis
H}:2,=2,=2,=0. These tests should be informative about the performance of the

proposed estimator in discriminating between alternative spatial dependence in the
endogenous variable versus the disturbances.

iv) Finally, the joint hypothesis H;”: 4, =1, =4, = p, = p, = p, =0 is also reported for the

non-spatial model under parameter constellation (5a).

Using Theorem 4, the approximation of the small sample distribution of § is given by
g ~ N(q,Q) , where

q= (44,4, 5.5, p: P, p3) and

Q =Var(@),

which can be estimated using (3 =N ‘lﬁo .

Tests referring to a single parameter are carried out using a standard t-test:

E.g., H) : p, = p, is tested using ¢ = PP , where o is the corresponding main diagonal

05
element of (3 .

Tests regarding joint hypotheses are carried out using Wald tests. Generally, we have (e.g.,
Greene, 2003, pp. 95, 487):

H,: Rq —t =0 against H,: Rq -t #0.

Define the discrepancy vector: m = R § —t . The null hypothesis can the be tested using
M'RQR)'M~ %,

where G is the number of restrictions (the number of rows of R ).

In the present context, we have
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01, 0 0

for H*" L, =4 =p,=p,=0, R =
0 A=k=p,=p; {0 0 0 I,

} and G =4;

for H :p,=p,=p,; =0, R =(A,I,) where A isa 3x5 matrix of zeros and G =3
for H(f:ﬂ1 =4 =4,=0, R =(;,A), where A isa 3x5 matrix of zeros and G =3;

I, 00 0

forH(f’”:%#z:ﬂfpl:pz:pg:o,R:{0 001
3

} and G =6;

Table 2 to 4 report the results of the Monte Carlo analysis for the three sample sizes

considered, using the matrix H".

In terms of bias and RMSE, the estimator performs well, even in the small sample with
N =100. On average over all parameter constellation the bias and RMSE amount to 0.0052
and 0.0426 for the estimates of A =(4,,...,4;)" and to 0.0314 and 0.2017 for the estimates of
p=(p,..p;) . Regarding the size of the tests, the performance of the GM estimates of p

the disturbances process is quite well. Even for the small sample of N =100, the size of the
tests is not too far away from the nominal size. This holds true for the size of the rejections
rates of the tests involving only 1 parameter (average: 0.0794) and to a smaller extent also for

tests of the joint tests involving p only (average size: 0.0703). The performance of the
FGTSLS estimates of A is worse, with an average size of 0.0947 for the single tests and an

average size of 0.1516 for the joint tests (involving A only).11

However, performance improves quickly with growing sample size. For N =250, the
average bias and RMSE of the estimates of A = (4,,...,4,)" shrink to 0.0016 and 0.0252, those

of p=(p,,....,0;)" shrink to 0.0153 and 0.1034. Also, the size of the tests improves and

approaches the nominal size of 5 percent. Regarding the GM estimates of p, the average size

of the tests involving only one parameter amounts to 0.0604, that for the joint tests involving
p only to 0.0542. For the FGTSLS estimates of A, the average size is 0.0677 for the single

tests and 0.0909 for the joint tests (involving A only).12

" Results when using the untransformed instrument matrix H instead of H" are as follows:

bias of p:-0.0308; RMSE of p:0.2112; size of p for single tests: 0.0764; size of p for joint

tests: 0.1042; bias of A: 0.0054, RMSE of A: 0.0416; size of single tests for A: 0.1021; size
of joint tests for A: 0.1738. See Table A.1 in Appendix E for details.

” Results when using the untransformed instrument matrix H instead of H" are as follows:
bias of p: 0.0148; RMSE of p: 0.1037; size of p for single tests: 0.0524; size of p for joint
tests: 0.0577; bias of A: 0.0026, RMSE of A : 0.0250; size of single tests for A: 0.0720; size
of joint tests for A : 0.0946. See Table A.2 in Appendix E for details.
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Table 2. Monte Carlo Results, N =100, 2000 draws, instrument matrix H"

Constellation" (1a) (1b) (1c) (2a) (2b) (2¢) (3a) (3b) (3¢) “ (5a) (5b) average )
A 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0.2 0 0.2 0.2833
Bias 0.0044 0.0050 0.0059 0.0030 0.0028 0.0033 0.0165 0.0096 0.0064 0.0367 0.0034 0.0046 0.0085
RMSE 0.0349 0.0354 0.0388 0.0275 0.0270 0.0289 0.0794 0.0694 0.0570 0.0913 0.0407 0.0421 0.0477
Rej. Rate 0.0800 0.0825 0.0830 0.0785 0.0740 0.0730 0.1260 0.1075 0.0900 0.2045 0.0715 0.0750 0.0955
A 0.3 0.3 0 0.3 0.3 0 0 0 0 0.1 0 0.2 0.1250
Bias 0.0001 0.0001 -0.0002 -0.0011 -0.0008 -0.0005 0.0112 0.0045 0.0010 0.0269 0.0001 0.0018 0.0040
RMSE 0.0292 0.0306 0.0333 0.0269 0.0278 0.0276 0.0644 0.0550 0.0481 0.0715 0.0362 0.0366 0.0406
Rej. Rate 0.0700 0.0745 0.0845 0.0675 0.0720 0.0785 0.1345 0.1085 0.0965 0.2005 0.0865 0.0905 0.0970
A3 0.1 0 0 0.1 0 0 0 0 0 0.1 0 0.2 0.0417
Bias -0.0021 -0.0027 -0.0027 -0.0024 -0.0022 -0.0017 0.0056 0.0005 -0.0019 0.0155 -0.0016 0.0001 0.0032
RMSE 0.0358 0.0372 0.0377 0.0284 0.0306 0.0319 0.0495 0.0457 0.0457 0.0533 0.0397 0.0393 0.0396
Rej. Rate 0.0880 0.0915 0.0890 0.0900 0.0925 0.0875 0.0935 0.0835 0.0855 0.1255 0.0875 0.0840 0.0915
B 1 1 1 1 1 1 1 1 1 1 1 1 1.0000
Bias 0.0000 0.0001 0.0003 -0.0003 -0.0004 -0.0004 0.0021 0.0011 0.0007 0.0051 -0.0001 0.0000 0.0009
RMSE 0.0193 0.0194 0.0193 0.0199 0.0199 0.0197 0.0224 0.0216 0.0208 0.0233 0.0201 0.0199 0.0205
Rej. Rate 0.0680 0.0670 0.0685 0.0735 0.0755 0.0715 0.0760 0.0740 0.0695 0.0850 0.0685 0.0665 0.0720
)i 1 1 1 1 1 1 1 1 1 1 1 1 1.0000
Bias -0.0007 -0.0006 -0.0004 -0.0008 -0.0009 -0.0010 0.0014 0.0003 -0.0001 0.0040 -0.0007 -0.0006 0.0010
RMSE 0.0216 0.0215 0.0218 0.0223 0.0223 0.0225 0.0240 0.0232 0.0227 0.0244 0.0224 0.0222 0.0226
Rej. Rate 0.0665 0.0685 0.0680 0.0685 0.0695 0.0715 0.0660 0.0660 0.0675 0.0680 0.0715 0.0690 0.0684
o) 0.4 0.4 0.4 0 0 0 0.4 0.4 0.4 0.5 0 0.2 0.2583
Bias -0.0378 -0.0446 -0.0572 -0.0583 -0.0614 -0.0583 -0.0277 -0.0397 -0.0510 -0.0125 -0.0539 -0.0364 0.0449
RMSE 0.1805 0.1855 0.2142 0.2771 0.2742 0.2647 0.1645 0.1746 0.2016 0.1493 0.2410 0.1881 0.2096
Rej. Rate 0.0795 0.0835 0.0930 0.0800 0.0810 0.0815 0.0650 0.0800 0.0865 0.0595 0.0690 0.0700 0.0774
Je) 0.2 0.2 0 0 0 0 0.2 0.2 0 0.3 0 0.2 0.1083
Bias -0.0303 -0.0312 -0.0076 -0.0443 -0.0446 -0.0307 -0.0156 -0.0194 -0.0063 -0.0355 -0.0348 -0.0334 0.0278
RMSE 0.1810 0.1855 0.1927 0.2545 0.2493 0.2410 0.1682 0.1813 0.1914 0.1686 0.2247 0.1890 0.2023
Rej. Rate 0.0755 0.0765 0.0765 0.0735 0.0710 0.0710 0.0650 0.0720 0.0795 0.0620 0.0635 0.0690 0.0713
ol 0.1 0 0 0 0 0 0.2 0 0 0.1 0 0.2 0.0500
Bias -0.0248 -0.0090 -0.0105 -0.0252 -0.0216 -0.0177 -0.0306 -0.0088 -0.0110 -0.0374 -0.0230 -0.0382 0.0215
RMSE 0.1783 0.1810 0.1912 0.2224 0.2179 0.2138 0.1737 0.1823 0.1935 0.1659 0.2059 0.1915 0.1931
Rej. Rate 0.0650 0.0660 0.0620 0.0575 0.0590 0.0570 0.0625 0.0650 0.0670 0.0695 0.0535 0.0615 0.0621
Joint Tests

Rej. Rate 0.1230 0.0970 0.0970 0.0985 0.1645 0.1510 0.1510 0.1400 0.1278

Note: " Each column corresponds to one parameter constellation (see Table 1). 2 Average of absolute row values.  Rejections rates for the following hypotheses. (1¢):
HPP 2y = Jy = py = py =0, (22), (2b). Q) HY : py = p, = py =0, (32). (b), () Hf 1 4y =2 = 2 =0 (5a): H}? - Ay =hy = Ay = p, = p, = p, =0.
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Table 3. Monte Carlo Results, N = 250, 2000 draws, instrument matrix H

Constellation” (1a) (1b) (1¢) (2a) (2b) (2¢) (3a) (3b) (3¢) (4) (5a) (5b) average
A 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0.2 0 0.2 0.2833
Bias 0.0010 0.0012 0.0011 0.0007 0.0006 0.0007 0.0049 0.0029 0.0013 0.0123 0.0003 0.0012 0.0023
RMSE 0.0183 0.0191 0.0215 0.0156 0.0153 0.0164 0.0428 0.0383 0.0316 0.0487 0.0232 0.0232 0.0262
Rej. Rate 0.0565 0.0600 0.0675 0.0560 0.0585 0.0640 0.0805 0.0765 0.0690 0.1140 0.0655 0.0585 0.0689
ys 0.3 0.3 0 0.3 0.3 0 0 0 0 0.1 0 0.2 0.1250
Bias 0.0001 0.0003 -0.0002  -0.0005  -0.0004  -0.0004  0.0039 0.0017 0.0003 0.0094 -0.0002  0.0003 0.0015
RMSE 0.0201 0.0208 0.0220 0.0203 0.0205 0.0196 0.0380 0.0331 0.0292 0.0419 0.0233 0.0234 0.0260
Rej. Rate 0.0560 0.0570 0.0585 0.0540 0.0565 0.0555 0.0855 0.0745 0.0690 0.1165 0.0590 0.0585 0.0667
A3 0.1 0 0 0.1 0 0 0 0 0 0.1 0 0.2 0.0417
Bias -0.0001  -0.0002  0.0002 -0.0002  -0.0001  0.0004 0.0030 0.0010 -0.0001  0.0065 0.0003 0.0009 0.0011
RMSE 0.0197 0.0204 0.0217 0.0163 0.0168 0.0183 0.0311 0.0287 0.0270 0.0333 0.0230 0.0234 0.0233
Rej. Rate 0.0560 0.0565 0.0600 0.0655 0.0655 0.0600 0.0790 0.0760 0.0700 0.0925 0.0605 0.0685 0.0675
Y] 1 1 1 1 1 1 1 1 1 1 1 1 1.0000
Bias -0.0001  -0.0002  -0.0003  -0.0001  -0.0001  -0.0003  0.0006 0.0001 -0.0001  0.0017 -0.0002  0.0000 0.0003
RMSE 0.0125 0.0127 0.0128 0.0129 0.0131 0.0129 0.0140 0.0135 0.0131 0.0142 0.0130 0.0128 0.0131
Rej. Rate 0.0590 0.0625 0.0625 0.0620 0.0610 0.0590 0.0640 0.0600 0.0575 0.0650 0.0630 0.0620 0.0615
5 1 1 1 1 1 1 1 1 1 1 1 1 1.0000
Bias 0.0001 0.0002 0.0001 0.0001 0.0000 0.0001 0.0008 0.0006 0.0003 0.0019 0.0001 0.0002 0.0004
RMSE 0.0123 0.0124 0.0125 0.0128 0.0129 0.0127 0.0140 0.0135 0.0130 0.0141 0.0127 0.0126 0.0130
Rej. Rate 0.0545 0.0525 0.0565 0.0545 0.0610 0.0550 0.0595 0.0550 0.0515 0.0585 0.0570 0.0540 0.0558
D 0.4 0.4 0.4 0 0 0 0.4 0.4 0.4 0.5 0 0.2 0.2583
Bias -0.0186  -0.0215  -0.0293  -0.0308  -0.0315  -0.0307  -0.0130  -0.0200  -0.0264  -0.0111  -0.0267  -0.0172  0.0231
RMSE 0.0884 0.0879 0.0957 0.1198 0.1206 0.1196 0.0899 0.0878 0.0946 0.0826 0.1184 0.1000 0.1004
Rej. Rate 0.0575 0.0590 0.0625 0.0505 0.0565 0.0590 0.0600 0.0585 0.0575 0.0570 0.0570 0.0555 0.0575
» 0.2 0.2 0 0 0 0 0.2 0.2 0 0.3 0 0.2 0.1083
Bias -0.0123  -0.0143  -0.0057  -0.0215  -0.0215  -0.0162  -0.0082  -0.0110  -0.0061  -0.0137  -0.0161  -0.0140  0.0134
RMSE 0.1027 0.1036 0.1023 0.1189 0.1190 0.1180 0.1015 0.1036 0.1026 0.1044 0.1173 0.1062 0.1083
Rej. Rate 0.0600 0.0590 0.0585 0.0585 0.0570 0.0560 0.0590 0.0585 0.0625 0.0575 0.0555 0.0630 0.0587
o 0.1 0 0 0 0 0 0.2 0 0 0.1 0 0.2 0.0500
Bias -0.0101  -0.0048  -0.0059  -0.0114  -0.0097  -0.0084  -0.0140  -0.0045  -0.0052  -0.0144  -0.0078  -0.0157  0.0093
RMSE 0.0963 0.0954 0.0956 0.1126 0.1123 0.1121 0.0952 0.0945 0.0954 0.0920 0.1119 0.1041 0.1014
Rej. Rate 0.0510 0.0445 0.0445 0.0415 0.0410 0.0415 0.0535 0.0460 0.0405 0.0660 0.0410 0.0455 0.0464
Joint Tests >

Rej. Rate 0.0680 0.0490 0.0515 0.0525 0.0990 0.0935 0.0915 0.0795 0.0731

Note: " Each column corresponds to one parameter constellation (see Table 1). ? Average of absolute row values. * Rejections rates for the following hypotheses. (1¢):
HP 3y =2y = py= py =0, (20), (2b), (2¢): HY : py = p, = py =0, (3), (3b), B): H 2= 2y =2, =0, (5a): H}P 2y =2y = A= py = p, = p, = 0.
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Table 4. Monte Carlo Results, N = 500, 2000 draws, instrument matrix H

Constellation" (1a) (1b) (1¢) (2a) (2b) (2¢) (3a) (3b) (3¢) (4) (5a) (5b) average *
A 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0.2 0 0.2 0.2833
Bias 0.0007 0.0008 0.0008 0.0007 0.0005 0.0006 0.0024 0.0013 0.0011 0.0062 0.0003 0.0007 0.0013
RMSE 0.0126 0.0130 0.0144 0.0109 0.0107 0.0113 0.0290 0.0259 0.0215 0.0332 0.0157 0.0158 0.0178
Rej. Rate 0.0515 0.0555 0.0540 0.0555 0.0605 0.0525 0.0685 0.0595 0.0595 0.0885 0.0505 0.0545 0.0592
A 0.3 0.3 0 0.3 0.3 0 0 0 0 0.1 0 0.2 0.1250
Bias -0.0004  -0.0003  -0.0005  -0.0007  -0.0005  -0.0006  0.0014 0.0001 -0.0006  0.0041 -0.0002  0.0000 0.0008
RMSE 0.0139 0.0143 0.0152 0.0141 0.0141 0.0134 0.0256 0.0223 0.0200 0.0274 0.0160 0.0162 0.0177
Rej. Rate 0.0505 0.0560 0.0610 0.0535 0.0530 0.0545 0.0675 0.0600 0.0595 0.0835 0.0555 0.0590 0.0595
A3 0.1 0 0 0.1 0 0 0 0 0 0.1 0 0.2 0.0417
Bias 0.0000 -0.0001  -0.0003  0.0000 -0.0001  0.0000 0.0010 0.0000 -0.0004  0.0030 -0.0004  0.0000 0.0005
RMSE 0.0140 0.0143 0.0152 0.0112 0.0114 0.0125 0.0215 0.0199 0.0193 0.0228 0.0162 0.0162 0.0162
Rej. Rate 0.0580 0.0525 0.0555 0.0540 0.0575 0.0575 0.0645 0.0665 0.0700 0.0775 0.0600 0.0550 0.0607
B 1 1 1 1 1 1 1 1 1 1 1 1 1.0000
Bias -0.0001  0.0001 0.0001 0.0001 0.0001 0.0000 0.0004 0.0001 0.0002 0.0011 0.0001 0.0001 0.0002
RMSE 0.0090 0.0088 0.0089 0.0091 0.0091 0.0092 0.0098 0.0094 0.0092 0.0100 0.0090 0.0090 0.0092
Rej. Rate 0.0530 0.0475 0.0500 0.0515 0.0500 0.0540 0.0505 0.0450 0.0475 0.0515 0.0525 0.0560 0.0507
B 1 1 1 1 1 1 1 1 1 1 1 1 1.0000
Bias 0.0001 0.0002 0.0001 0.0000 0.0000 0.0000 0.0005 0.0002 0.0001 0.0010 0.0001 0.0000 0.0002
RMSE 0.0086 0.0087 0.0087 0.0089 0.0089 0.0089 0.0096 0.0093 0.0090 0.0098 0.0088 0.0089 0.0090
Rej. Rate 0.0480 0.0510 0.0505 0.0490 0.0475 0.0490 0.0530 0.0485 0.0440 0.0535 0.0480 0.0500 0.0493
D 0.4 0.4 0.4 0 0 0 0.4 0.4 0.4 0.5 0 0.2 0.2583
Bias -0.0087  -0.0100  -0.0139  -0.0147  -0.0148  -0.0149  -0.0055  -0.0092  -0.0129  -0.0047  -0.0127  -0.0078  0.0108
RMSE 0.0640 0.0631 0.0676 0.0856 0.0853 0.0850 0.0650 0.0631 0.0673 0.0590 0.0847 0.0720 0.0718
Rej. Rate 0.0600 0.0660 0.0690 0.0615 0.0610 0.0580 0.0590 0.0630 0.0680 0.0590 0.0590 0.0570 0.0617
» 0.2 0.2 0 0 0 0 0.2 0.2 0 0.3 0 0.2 0.1083
Bias -0.0061  -0.0072  -0.0034  -0.0106  -0.0106  -0.0083  -0.0048  -0.0058  -0.0034  -0.0081  -0.0086  -0.0072  0.0070
RMSE 0.0709 0.0718 0.0703 0.0808 0.0810 0.0804 0.0702 0.0714 0.0702 0.0713 0.0805 0.0726 0.0743
Rej. Rate 0.0535 0.0565 0.0565 0.0555 0.0565 0.0535 0.0535 0.0530 0.0580 0.0515 0.0535 0.0545 0.0547
e 0.1 0 0 0 0 0 0.2 0 0 0.1 0 0.2 0.0500
Bias -0.0053  -0.0024  -0.0025  -0.0052  -0.0044  -0.0036  -0.0073  -0.0021  -0.0025  -0.0082  -0.0035  -0.0074  0.0045
RMSE 0.0671 0.0670 0.0675 0.0795 0.0793 0.0794 0.0649 0.0661 0.0676 0.0610 0.0797 0.0725 0.0710
Rej. Rate 0.0510 0.0530 0.0540 0.0465 0.0500 0.0490 0.0535 0.0545 0.0575 0.0615 0.0495 0.0530 0.0527
Joint Tests >

Rej. Rate 0.0810 0.0725 0.0750 0.0710 0.0855 0.0890 0.0890 0.0785 0.0802

Note: " Each column corresponds to one parameter constellation (see Table 1). ? Average of absolute row values. * Rejections rates for the following hypotheses. (1¢):
HP 3y =2y = py= py =0, (20), (2b), (2¢): HY : py = p, = py =0, (3), (3b), B): H 2= 2y =2, =0, (5a): H}P 2y =2y = A= py = p, = p, = 0.
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For N =500 we have the following results. Across all parameter constellations, the average
bias and RMSE amount to 0.0010 and 0.0172, respectively, for the estimates of
r=(4,.,4;) and to 0.0075 and 0.0724, respectively, for the estimates of p. The

significance levels of the tests are very similar between the N =250 and the N =500

experiments across all tests.

Overall, the Monte Carlo experiments illustrate that the proposed estimators work reasonably
well, even in small samples. This is true for both the point estimates and the variance-
covariance matrix of the parameter estimates. The single as well as joint tests are properly
sized and may be recommended for specification tests about the lag- and error-structure and
the order of spatial dependence in medium to large samples.

VI. Conclusions

This paper derives generalized moments (GM) and two-stages least squares (TSLS)
estimators for spatial autoregressive models with spatial regressive disturbances and
heteroskedastic innovations, allowing for an arbitrary (but finite) order of spatial dependence
both in the dependent variable and the disturbances. We prove consistency of the proposed
estimators and derive the (joint) asymptotic distribution of the GM estimates of the spatial
autoregressive parameters of the disturbance process and the feasible (generalized) TSLS
estimates of the regression parameters of the model. The variance-covariance matrix of all
model parameters can be used to formulate joint tests about the form and order of spatial
dependence, e.g., tests of the general SARAR(R,S) model against interesting alternatives such
as SARAR(0,S), SARAR(R,0), and the non-spatial model. A comprehensive Monte Carlo
simulation exercise suggests that the estimators perform reasonably well in terms of bias and
root means squared errors, even in small samples with 100 observations. The rejection rates of
the single and joint tests approach the nominal size as the number of observations grows
larger and can be used for specification tests in medium to large samples in order to
empirically determine the proper specification and order of spatial dependence.

The SARAR(R,S) framework developed in this paper allows the applied econometrician to
study the strength of interdependence between cross-sectional units more flexibly than in
existing SARAR(1,1) models. For instance, with the suggested model one may allow first,
second, and higher orders of bands of neighbours to exert a different impact on each other,
allowing a better approximation of the (possibly nonlinear, discontinuous) functional form of
the decay of spatial interdependence.

Moreover, one may allow for several alternative channels or concepts of interdependence in
space, which may be non-geographical, and the SARAR(R,S) framework can be readily
adapted to non-geographical models by replacing the notion of geographical distance with,
e.g., economic, socio-economic, cultural, or political distance.
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APPENDIX (Not intended for publication in full length.)

In the following, we give a proof of Theorems 1-4 and state several results that are repeatedly
used in this paper. The proofs as given here proceed closely along the lines of Kelejian and
Prucha (2008) for the SARAR(1,1) model and are adapted to apply the more general case of
an SARAR(R,S) model.

APPENDIX A
Notation
We adopt the standard convention to refer to matrices and vectors with acronyms in boldface.

Let A, denote some matrix. Its elements are referred to as a; ,; a, \ and a,, denote the i-
th row and the i-th column of A, respectively. If A, is a square matrix, A, denotes its
inverse; if A, is singular, A} denotes its generalized inverse. If A, is a square, symmetric
and positive definite matrix, A'/*denotes the unique positive definite square root of A, and
A;"? denotes (A})"?. Finally, define the matrix norm ||AN|| =[Tr(AA)]"?, where Tr is

the trace operator. Note that the norm is submultiplicative, i.e.,

ABy[ <A, [[By]-

Remark A.l13

Let A,, N2>1, be some sequence of NxN matrices. We will then say that the row and

column sums of the (sequence of) matrices Ay are bounded uniformly in absolute value if

there exists a constant ¢, < oo, which does not depend on N, such that

N

N

1< z o< >

rlggle‘,‘%,zv‘—cp and max 1‘ay’N‘_cA forall N >1.
J= i=

The following results will be used repeatedly in the proofs:

= If A, and B, are (sequences of) N x N matrices, whose row and column sums are
bounded uniformly in absolute value (say by ¢, and c, ), then so are the row and column

sums of A, B,and A, +B, by c,c, and c, +c,, respectively (Kelejian and Prucha,

1999, p. 526).
= If Zy is a (sequence of) N x P matrices whose elements are uniformly bounded in

absolute value (say by c¢,), then so are the elements of A,Z, (byc,,) and
N'Z/,A,Z, (Kelejian and Prucha, 2004, Remark A.l). (This also covers the case
N'Z\Z, for A, =1,.)

B Compare Kelejian and Prucha (2008, p. 5).
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* Suppose that the row and columns sums of the NPx NP matrices A, =(q;,) are

NP
uniformly bounded in absolute value by some finite constant c,, then Z‘a% N‘q <c? for
i=1

q >1 (Kelejian and Prucha, 2008, Remark C.1).

* Let &, and m, be Nx1 random vectors, where, for each N, the elements are
independently distributed with zero mean and finite variances. Then the elements of
N'?Z&, are O,(1) and N"&,A,m, is O,(1)."

= Let {, be an Nx1 random vector, where, for each N, the elements are independently
distributed with zero mean and finite fourth moments. Let @, be some nonstochastic
N x1 vector, whose elements are uniformly bounded in absolute value and let II,, be an
N x N nonstochastic matrix whose row and columns sums are uniformly bounded in
absolute value. Define the column vector d,, =m, +II,§, . It follows that the elements

of dg, v have finite fourth moments. (See Kelejian and Prucha, 2008, Lemma C.2 for the

proof.)

Remark A.2 (Identifiable Uniqueness in Higher-Order Case)

Assumption 5 states that the smallest eigenvalue of I'\,I',, is uniformly bounded away from

zero. To show what this assumption requires in the higher-order case, write

FN = [r;,N . FS,N]' . (A-l)
Hence, for any N x 1 vector x # 0

XTI yx=x'(T} 'y +..+T T )X, (A2)

In light of Rao (1973, p.62),” we have

Y’ A mld
XTI yx+ o+ xXT g x> A

(C T XX+ + 4

min

(Fg,NFS,N)x'x . (A.3)

This expression is strictly larger than zero if 4_

(T’

S

A y)2 A >0 forsomes,s=1,..., 8.

* Compare Kelejian and Prucha (2004), who consider homoskedastic random variables. It is
readily observed from the proof that the result also holds under heteroskedasticity, as long as

the variances of the elements of §, and n, are uniformly bounded.

" See Remark B.1 in Appendix B.
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We then have
xT\ x> A4xx>0. (A4)

Next, using Rao (1973, p. 62) again
A (O, =inf XX 5 5 oo, (A.5)

x xX'x
As can be seen from (A.5), Assumption 5 in the higher-order case requires that the
assumption made by Kelejian and Prucha (2008) for the first-order case is fulfilled for at least
one subset of moment conditions associated with one of the weights matrices. Note, however,

that all weighting matrices enter the elements of each I'; ,, s=L..,§. If two weights
matrices are collinear, for example, none of the matrices I', , would have a smallest

eigenvalue that is strictly positive and Assumption 5 would be hurt.

APPENDIX B.
For the convenience of the reader, Appendix B lists some Lemmata and Theorems as used in

the subsequent proofs.

Remark B.1.
Let A be a symmetric N x N matrix. It holds that (see Rao, 1973, p. 62)

!

2 (A) =min 2 and 2 (A) = max 22X

xeR" XX
x#0

, .

xeR" XX
x#0

Let A and B be symmetric, positive semidefinite matrices of dimension N x N . Then
Ag(A)Tr(B)<Tr(AB)< A4, (A)Ir(B), where A, and A; denote the largest and smallest

eigenvalue of A, respectively (Mittelhammer, 1996, p. 254).

Lemma A.1 in Kelejian and Prucha (2008)
Let € be a random N x1 vector with zero mean and positive definite variance-covariance
matrix X, let A and B be a symmetric, nonstochastic N x N matrices, and let a and b be

real nonstochastic N x1 vectors. Consider the decomposition X =SS'. Let
A" =(a;.)=S'AS and B =(b,,)=S'BS, and let a" =(q,.)=Sa and b =(b.)=Sb.

Furthermore, let m=S"'e. Then assuming that the elements of m are independently
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distributed with zero mean, unit variances and finite third and fourth moments E(7)) = u.”

and E(n) =", we have

E(€Ag+a'e)=Tr(A")=Tr(AX) and

N N
Cov(e'As+a'e,eBe+b'e) = 2Tr(AXBX) +a’Xb + Z a,.b, [ =3] +Z (a,.b,. +a,.b.)u .
i=1

7; i
i=1

Note that when A and B have zero main diagonal elements the last two terms of the
expression for the covariance drop out.

Theorem A.1 in Kelejian and Prucha (2008)
Define the M x1 vector of quadratic forms x, =(g\A, y&, +a)  &,), where A, ,,

m=1,...,.M , are real nonstochastic N x N matrices, a, ,, » =1,...,M , are real nonstochastic

N x1vectors, and €, isa N x1 random vector. Suppose the following assumptions hold:

Assumption A.1
The real valued random variables of the array {gi’N 1<i<N,N 21} satisfy E(e, y)=0.

Furthermore, for each N >1, the random variables ¢, ...,  are totally independent.

Assumption A.2
For r=1,... M

a) the elements of the array of real numbers {a;,,:1<i,j<N,N=1} satisfy

N
T and SUP ¢ jcn N1 z‘aij,r,N‘ <.

i=l1
b) the elements of the array of real numbers {a,,,:1<i,N>1} satisfy

N 2+
-1
supy, N Z‘aim’N‘ < oo for some 77, >0.
i=1

Assumption A.3

For r =1,..., M one of the following two conditions holds:

‘2+77

2
a) SUP ey ys1 E‘gl.,N <oo forsome 77, >0 and q,, , =0.

‘4% <oo for some 77, >0 (but possibly a;, \ #0).

b) SUP i<, N2t E‘gi,N

Denote the expectation of x, as p, =FE(x,) and its variance-covariance matrix as

I, =E(xyx}), which can be derived using Lemma A.1 in Kelejian and Prucha (2008). It
then follows under Assumptions A.1-A.3, and provided that N™'4,_, (X, )2c¢>0 holds, that

X2 (x, -1, )5(0,1,) as N —>oo.

Xy

76



Lemma F1 in Potscher and Prucha (1997)

LetA,and B, be real square random matrices. Let B, be non-singular with probability

approaching 1. Let A, —B, 50 as N — oo and let the sequences B, and B, be bounded

normwise in probability. Then the sequences A, and A} are bounded normwise in

probability, A, is non-singular with probability approaching 1, and A}, —B}, &0 as N — .

Corollary F4 in Potscher and Prucha (1997)

Assume that n, and {, are sequences of random vectors in R”and R7respectively, and let

A, be a sequence of bounded non-random pxgq matrices. Suppose n, = A&, +o,(1) and

that ¢, S~ N(u,X) with X being positive definite. Define &, =A,{, and
v, =AL~NAn,,AZA,). Let F!,F;,and F! be the cumulative distribution
functions of n,,&,,and vy, , respectively. (F) (x) is the cdf of a normal distribution with
mean A,p, and variance-covariance matrix A, XA’ .) Assume further that
liminf, A, (A A} )>0holds. Then FJ(x)—F;(x)—>0 as N — o (i.e., the difference
between the cdf of n, and &, converges to zero at all continuity points of the cdf of &, ),

and F)(x)-Fy(x)—>0 as N — oo. (i.e., the difference between the cdf of m, and

Yy, converges to zero at all continuity points of the cdf of vy, ).

APPENDIX C
I. Proof of Theorem 1 (Consistency of p, )

As a preliminary step, we now give a version of Lemma C.1 and Remark C.2 in Kelejian and
Prucha (2008) that is applicable to the higher-order case.

Lemma C.l16

Suppose the row and the column sums of the real nonstochastic N x N matrices A, are
bounded uniformly in absolute value. Let u, be defined by (lc) and let u, denote a

predictor for u, . Suppose Assumptions 1-4 hold. Then

(a) N"'Eju A u,|=0(1) and Var(N"'wyAu,)=0(1), and
N7 (WA i) - N"E\Ayu,)=0,01).

. Compare Kelejian and Prucha (2008, p. 32).
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(b) N'E

d_’j,NANuN‘ =0(l), j=L..,P, where d, is the j-th column of the N x P matrix

D, ,and N'D\A i, - N"'E(DAu,)=0,(1).

(c) Furthermore, if Assumption 6 holds, then
N A, = NPy Ay, +ayN'?Ay+o, (1) with @, = NTE[D) (A, +A))u,].

In light of (b), we have @, = O(1) and N"'D/, (A, + AU, —a,= o,(1).

Proof of part (a)
Let

9, =N"w,Au, and 9, = N, A i, (C.1)

then given (1c), we have &, = N'¢\ B¢, , with~

S S
B, =1/2)1, =Y poxM, D (AL + ATy =D 0, M, )7 (C.2)
m=1

m=1

By Assumption 3 and Remark A.1 in Appendix A, the row and column sums of the matrices

B, are uniformly bounded in absolute value. Let X, =diag," (o} y,....Oy ), then given

Assumption 2 it follows that the row and column sums of the matrices B,X,B,X, are

uniformly bounded in absolute value.

In the following let K <o be a common bound for the row and column sums of the absolute

elements of B, ,X,, and B, X ,B,X, and of their respective elements. Then, using Lemma

A.1 in Kelejian and Prucha (2008), we have

F9,|=E (C3)

N N
-1
N Z Z by nEinE N

" We use the fact that £\, A &, =€\, A’ &, =&\ (Ay+A' )€, /2, which is a quadratic form in

the symmetric matrix (A ,+A',)/2.
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where we used Holder’s inequality in the last step. This proves that £ |9N| is O(1).
Now consider Var(:9,), invoking Lemma A.1 in Kelejian and Prucha (2008):

Var(9,) = Cov(N'¢\,B,&,,N '¢\,B,&,) (C.4)
N et
=2NTr(B B, X))+ N7 b o/ [E(—) - 3]

i=1 i,N

Yy E(e'))-30!
CONCTHBLE,BLE, )+ N Y B o [ T

i=1 Oin

N
=2N7Tr(ByZ B, X))+ N2> b [E(g)y)-30)]

i=l1

.....

Since the fourth moments of ¢; , are uniformly bounded by Assumption 2, it follows that

both terms converge to zero as N — . This establishes the claims in part (a) of Lemma C.1

that N'(u,A,u,)-N"E@/ A u,)50.

We now prove the second part of (a), i.e, N (W, A,u,)-N"'E@,A,u,)20. Since
Gy —E(Sy)=0,(1), it is sufficient to show that §N -3y =0,(1). By Assumption 4, we have

uy,-u, =D,A,, where D, =(d],,..d} ). Substituting u,=u,+D,A, into the

expression for §N in (C.5), we obtain

9, -9, =N, +A\, DA, (u, +D,A,)—N"u\ A u, (C.5)
=N"'(u,Au, +A D\ A u, +u,A,DA, +A DA ,DA, —u\A u,)
=N"'(A,D A u, +u,A,D A, +A' D' A D,A,)

=N"'(A\D A u, +A\ D\ A\u, +A, D\ A, D,A,)

=NA\D (A, +A))u, +A DA, DA, ]

=Py + ¥y,

where
S
gy = N'[AYDV (A, +A))u, 1= NT[A D (A, +A)), —me,NMm,N)’leN], (C.6)
m=l1
1 s 1
=N"'(A,D),C,¢&,), where C, =(A, + A\, - Z LM, ) =(C €y )
m=1
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and
wy=N'ADADA,. (C.7)

By Assumption 3 and Remark A.1, the row and column sums of C,, are uniformly bounded

in absolute value. Denote by K the uniform bound for the row and column sums of the
matrices A and C,. We next prove that ¢, =o,(1) and y,, =0,(1) .

Proof that ¢, =0,(1):

gy|= [N 7ALDLC ey | (C.8)

NS AL e e
i=1
N
< NAY] | o] e vEn ]
i=l
N N
=N~ IIA'NIIZ Hd;.,NH ZC;,-,N?/,N
i=1 =]
N N
<N _l”A'N”Z Hd;NH ZHQ/’,N‘ELNH
=1 =1
N N
= N7 ALY s ] 2lesn] le ]
i=1 j=1
| N N
= N7 AL [ 2 ] eyl
=1 i=1
N N , 1/p N . 1/q
<N Rl | (2l
=1 i=1 i=1
N N 1/p N 1/¢q
SR ORI ) S ) (o TN
j=1 i=1 1

1

1/ p-1/2 1/2 1N 1N p Iy q_l/q
S U T 0 Y] O TR M Do I
j=1 i=1 i=1

N
Note that [z ‘cij, NU <K by Assumption. From Remark C.1 in Kelejian and Prucha (2008),
i=1

1/q

see Appendix A, it follows that [ﬁ: ‘cij,N‘qj <K? (for ¢ >1) and thus [ﬁ: HcyNqu <K.
i=1 i=l

Factoring K out of the sum yields the final expression
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jl/p

This holds for p=2+¢6 for some 6 >0 as in Assumption 4 and 1/p+1/g=1. The

|¢N| < RNV P- 1/2(N1/2|A ”{N Z‘ jNU(N Z

'
le

innovations ¢, are independent and have bounded second moments by Assumption 2. It

follows that N~ ﬁ“\gw\ =0,(1).
j=1

Moreover, it follows from Assumption 4 that (N Y 2||A ||) O,() and [N Z Hd H j =0,

for p=2+¢ andsome 6 >0. Since N''”™"'> >0 as N — oo it follows that |¢,|=0,(1).

Similarly, we have

(C.9)

Mz

VYA

i=1

| = ‘N‘IA’ND’NANDNAN‘ . Avd, d) a,,d Ay

1

~.
Il

N N
AN T SO
i=1 j=1
N N 1/p N 1/q
_ 2
NS Shal | (S
i=1 j=1 j=1

v 1/p
Sl v S
= Jj=1

2/p
_ N1/p—1/2N—1/2E(N1/2”AN”)Z (N_liudj.,NHpJ =o,(1).
=1

< N”"I?”AN”Z(

Summing up, we have proved that §N -9y =9y +tyy=o0,01).

Proof of part (b)
Denote by &, the s-th element of N™'D,A yu, . In light of the discussion after Assumption

3 and given Assumption 4 there exists a constant K <owsuch that E (uf ) S K and
E‘dﬁ’ N‘p <K with p=2+0 for some 6 >0. Without loss of generality we assume that the

row and column sums of the matrices A, are uniformly bounded by K <oo. Notice first that,
using the Cauchy-Schwarz and Lyapunov inequalities, we have

1/2 /2
<(&y )" (Ed},)

E‘u.N d

Js,N|—
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< (EuI%N)l/z(E‘djs,N‘pjl/P

— — = 1/ .
<KV :K1/2+ p with p as before.

It follows that

N N
_ -1
=N Z Z‘GU,N‘ E ‘”i,NHd_/s,N

(C.10)

N N
=1/r+l/p  _ = _ = =
< KV N 122‘%1\[‘ < KVpN-INE = K32 <,

which shows that indeed E ‘N “d Au N‘ =O(1) . Of course, the argument also shows that
o, = N"E[D\ (A, +Al)u,]=0().
Next, observe that
N'D\ A, =N"'D\A u, +4,, (C.11)

where ¢, =N"'D\ A ,D,A,. It now follows from the demonstration of

¢y = N[AYD} (A, +A))u,]=0,(1) thatalso g, =o,(1).

Proof of part (¢)

In light of the proof of part (a) and using u, =u, + D,A,,

NP A T, = NP (uly + A DA (u, + DA, (C.12)
=N uy A u, + N2AYUNTEDL (A, +A)uy ]+ Ny +0,(1),

where Ny, =0, (1), compare (C.9).
In light of (b) and since N'’A, =0, (1) by Assumption 4, we have

N A, = N PuA e, + N 2al A +0,(1). (C.13)
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Remark C.2."
In light of Remark A.1, the constant K used in the proof of Lemma C.1, part (a), can be

chosen such that K = 2¢,c,, where ¢, and c, are the bounds for the row and column sums

S
of the matrices P, :(IN—Z o,M,)" and A, respectively. Furthermore, notice that
m=1

19, - 9| < 26,056, with 5, =0,(1).

Proof of Theorem 1.
The objective function of the weighted nonlinear least squares estimator defined by (10) and
its nonstochastic counterpart are given by
Ry(@,p)= (¥ T bY@, (¥, ~T,b) and (C.14)
EN(p) = (YN _rNb)’(aN(YN _rNb)' (C.15)

In general, R, (p)>0 and in light of (8), R, (p)=0 for p=p,, i.c., the objective function is

zero when evaluated at the true parameter value.

Using vy, =TI',b, , we obtain

Ry(p)—Ry(py)=Ry(p) (C.16)
=('yb, -T\b)®, (b, -Tb).
= (b, -b)T,©,T, (b, —b)

In light of Rao (1973, p. 62) and Mittelhammer (1996, p. 254)

Ry(p)— EN Py) 2 A4, (0, )b, —b) (b, —b) and (C.17)
2 /Imin (r’NrN )/Imin (®N )(bN - b)l(bN - b)

> 2o — ol
for some A, >0 by Assumption 5.

Hence, for every £ >0 and every N we have

inf  [Ry(p)-Ry(py)]=  inf  Alpy—p[ =4s >0, (C.18)

—a”<p<a’ |py-p|ze -a”<p<a’ |py—p|ze

" Compare (Kelejian and Prucha, 2008, p. 35).
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which proves that the true parameter vector p, is identifiable unique (compare Lemma

Lemma 4.1 in Potscher and Prucha, 1997).

Next, let ®, =(y,,-I'y) and ® N = (7N,—f v), then the objective function and its

nonstochastic counterpart can be written as

R, (w,p)=(1,b)®,0,®,(1,b') and (C.19)
R, (p)=(1,b)®,0,®,(1b). (C.20)
It follows that

(Lb')®,0,0, -®,0,®,)(1Lb)

Ry (@,p)-R y(p)| =

(C.21)

< (1,b’)H 6.6,8, -0,0,0,]

0

2

IN

‘&);V(T)N(BN - (I);VG)N(I)NH (l’b')'

IA

(a”)*].

©,0,8, - ©,0,0,[[1+5@) + w

As can be seen from the right-hand side of (11), the elements of ®, =[y,,—I',] are all of the
form N'E(u),A,u,) and N '(u,A,u,), where the row and column sums of the matrices

A, are bounded uniformly in absolute value (see Remark A.1). It now follows from Lemma

C.1 that ®, —®, 20 as N — oo, and that the elements of ®,, and @, are O(l) and o,()

respectively. The analogous properties are seen to hold for ®, and e v 1.€., the elements of

®, and @)N are O(1) and O, (1) respectively and @ —(:)NJ”—H) by Assumption A.5. It
follows from the above inequality that ‘RN (0,p)-R (p)‘ converges to zero uniformly over

the optimization space —a” <p<a”,i.e.,

sup

—a” <p<a”

Ry(w.p)—Ry(p)| (C.22)

285 +S(S-1)

5 (a”)*150 as N - oo,

<|®,0,®, -@,0,®,[[1+5") +

The consistency of py = (p; y,-.., ps ) now follows directly from Lemma 3.1 in Pétscher and

Prucha (1997).
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IL. Proof of Theorem 2 (Asymptotic Normality of p, )

The limiting distribution of the GM estimator of p, will be seen to depend on (the inverse of)

J,0,J, and the variance-covariance matrix of the vector of quadratic forms v, as defined

by (12).

We first consider J,, the 2§xS matrix of derivatives of the 25 x1 vector of moment

conditions given by (8a):

6(’YN - rNbN) _ [a(yl‘.,zv - rlx,NbN) 6(7[.,N B ri.,NbN)]
op’ Py 9ps
a(Yi.,N - Fi.,NbN)
op

Jy(p)=

= (jis,N) = [

l,i=1..2S,s=1..S,

N

where vy, , and I'; ,, denote the i-th row of v, and T .

Accounting for the fact that

_8(\(]:, ) =0 (and ignoring the negative sign), we have

0
Jy(p) :6_[),FNbN =I'\B y,

where B , isa [25+S(S —1)/2]x S matrix, which is defined as follows:
B N =B ;,N ,B '2,N ,B ;,N ),
with

B lN:IS9

B,y= diagsszl (Zps,N) >

(C.23)

(C.24)

(C.25)

(C.26)
(C.27)

and B ;, =B}, ,..B 5 y) is an S(§-1)/2x S matrix, consisting of (S —1) vertically

arranged blocks B, ,, m=1,...,(§ —1), which have the following structure:

B 3,mN — (CM,N’dm,N’Em,N) N where

(C.28)
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C,vy is a (S—m)x(m—1) matrix of zeros d,y is a (§—-m)x1l vector, defined as

dm,N = (IOm+l""’pS)’ a’nd Em,N = IOmIS—m *

For later reference, note that B ,, has full column rank (S); as a consequence, the S x .S matrix

B ,B ,is positive definite (see, e.g., Greene, 2003, p. 835).

Next, define
- -
N “NCH,NuN
—l~r ~
N uNCZI,NuN

~

qy(py.Ay)= ?JN -I'yby = . ) (C.29)

e~ ~
N7u,C yuy

1~y ~
N\ Gy yuy |

where the N x N matrices C,, , and C,, ,, s =1...,S are defined as follows:

s s
C,v= 1/2(I, - zpm,NM’m,N)(Als,N + A;S,N)(IN - zpm,NMm,N) 5 (C.30)
m=1

m=1

S S
CZS,N = 1/2(IN - me,NM:n,N)(AZS,N + AlZS,N)(IN - zpm,NMm,N) . (C-31)
m=1

m=1

By the properties of M, , and in light of Remark A.1 in Appendix A, the row and column

sums of the matrices C,, , and C, ,, s =1,...,§, are uniformly bounded in absolute value.

In Theorem 1 we showed that the GM estimator p, defined by (9) is consistent. It follows

that — apart from a set of the sample space whose probability tends to zero — the estimator
satisfies the following first-order condition:

0 - ~ - oqy(pyv,Ay) ~ —~
a_qu(pN’AN) G)NqN(pN’AN) = %QN(}N(‘)N’AN) =0, (C-32)

which is a §x1 vector, each row s corresponding the partial derivative of the criterion

function with respect to p, .

” Le., there is no block C, y in the first line.

* The leading two and the negative sign are ignored without further consequences for the
proof.
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Substituting the mean value theorem expression

oqy (Py,Ay)

qQy(Py.Ay)=ay(py,Ay)+ o Py —Py)> (C.33)

where p, is some between value, into the first-order condition yields

an(pNaAN)(:)N an(pN’AN)Nl/Z(BN _pN) — _ME)NNUZ(]N([)N,AN). (C.34)

op op’ op
Observe that w =T ,B , and consider the two S x S matrices
p
§N = an(g;\;’AN) @N an(g;)v,’AN) = BN ;v f‘;\/(:)Nf‘NB_N , and (C35)
E,=B,Ir,e,r.B,, (C.36)

where B, and B, correspond to B , as defined above with p, and p, substituted for
p, - Notice that = is positive definite, since I', and @, are positive definite by assumption

and the [25 +S(S —1)/2]x S matrix B ,, has full column rank.

In the proof of Theorem 1 (and Lemma C.1) we have demonstrated that r v—Ty 50 and
that the elements of I',, and r y are O(1) and O, (1), respectively. By Assumption 5 we have
@N -0, =0,(1) and also that the elements of ®, and @N are O(1) and O,(1). Since p,
and p, (and thus also B v and B ) are consistent and bounded in probability, it follows that
EN —-E,50 as N - o and furthermore §N =0,(1) and E, =0(1). Moreover, &) is

positive definite and thus invertible, and its inverse Z, is also O(1).

Denote E, as the generalized inverse of Z, . It then follows as a special case of Lemma F1 in
Potscher and Prucha (1997) (see Appendix B) that EN is non-singular with probability

_ 1

approaching 1, that Z) is O, (1), and that Eﬁv —-E, B0 as N —>oo.

Premultiplying (C.34) with ijv we obtain, after rearranging terms,
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~ =+ = ~ =+ 0 p ’A ~
Nl/z(pzv _pN) = (IS _'='N'=‘N)N1/2(pN _pN)_Nlu:‘N %QNqN(pNaAN) (C-37)

In light of the discussion above the first term on the right-hand side is zero on ®-sets of
probability approaching 1 (compare Potscher and Prucha, 1997, p. 228ff.). This yields

~ ~. oqy(py,Ay) ~
Ny —py) = —m%’v)@]w”z%(pm%) +0,(1). (C.38)
Next observe that

=z WG)N ~EB IO, =o,(1), since (C.39)
p

=, -2, =o,(l) and —an(gN,AN) —B Ty =0,(1). (C.40)
p

We next consider the distribution of the vector N'’q,(p,,A,). In light of (C.29) and

Lemma C.1 the elements of N'*q, (p,,A,) can be expressed as

[N | [ NGy el (NTPA o (1) ]
N_l/zﬁ;VCZI,NﬁN Nﬁl/zu;vczl,NuN + a;l,NNl/zAN+0p D
Nl/qu(pN>AN): . = ‘ > (C-41)
N_l/zﬁ;\/CIS,NﬁN Nﬁl/zu;vcls,zvuzv + (”;S,NNI/ZAN-"_Op ¢y
_Nil/zﬁ;vczs,NﬁN_ _N_l/zu’zvczs,zvuzv + alzs,NNl/zAN""Op (1)_
where
O Ny = 2N_1E(D;VC1S,NuN) and Oy v = 2N_1E(DINC2S,NuN) . (C.42)

Furthermore, Lemma C.1 implies that the elements of a,, , and a,, , are uniformly bounded

in absolute value for s =1,...,5.

M
Using the definition of C,, , and C,_ , and utilizing u, = (I, — Z P M, y )'e, , as well as

m=1

Assumption 7, we have
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%8;\/ (AII,N + A;I,N)SN + ah,zvazv
%8;\7 (AZI,N + A;1,N)£N + a;l,NgN
N"qy(py,Ay) =N ' +0,(1) (C43)

1 of ’ i
ESN(Als,N + Al ey T+ A5 vEy

1 of [ '
28N (AZS,N + A2S,N)£N tass ey

=N""vi+o0,()=v,+0,01),
where

Ay = LyOyg y and Ay = Lyl - (C.44)

Observe that the elements of a, , and a, , are uniformly bounded in absolute value for

s =1,...,S (by Assumption 7 and Lemma C.1). We define the 25 x 1 vector

Vin

vy=| . [=(v,y),s=1..5, where (C.45)

Vs

s,N
Vas.N

SU2p1 , ,
{Vls N} N e (A y A )Ey a8y ]
A4 = ’ =

-1/2 ' ' '
N %EN(AZS,N +AL Ve +a) 8y ]
The 25 x2S (limiting) variance-covariance matrix of v, takes the following form:

! !
VinYin VinYs.n

Y, =EWV,V\)=E =EW,\Vyn)s Ps4=1L...,S. (C.406)

! !
VsnVin VenVsn

The elements of ¥, are defined in main text after (14). To derive the asymptotic distribution

of v, we invoke the central limit theorem for vectors of linear quadratic forms given by

Kelejian and Prucha (2008, Theorem A.1; see Appendix B). In light of Assumptions 1, 2 and

7 (and Lemma C.1), the innovations &, the matrices (A , +Aj ) and (A, , +A} ),
and the vectors a, , and a, ,, s=1,..,S, satisfy the assumptions of Theorem A.l in

Kelejian and Prucha (2008), such that
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-z Py =-NTPW Py =Py, D(0,1,), (C.47)

since N4, (Z.)=N"'4

i (NY,) = (¥,) >0 asrequired in Theorem A.1.

min ml[l

Since the row and column sums of the matrices A, , and A, , are uniformly bounded in
absolute value, and the elements of the vectors a, , and a, , and the variances are
uniformly bounded in absolute value, it follows in light of (15a) that the elements of ¥, and

also those of W!,* are uniformly bounded in absolute value.

It now follows from (C.38) and (C.39) and (C.43) that
N2y —py) =BT, 0, ¥ (P v ) 4o, (). (C.48)

Since all nonstochastic terms on the right hand side from (C.48) are O(1) it follows that
N"(Py—py) is O,(1). To derive the asymptotic distribution of N'*(p, —p,), we invoke

(part of) Corollary F4 (together with the Assumptions stated in Corollary F3) in Potscher and
Prucha (1997) (see Appendix B). In the present context we have

Ly =YV, HE~N(0,I), and
N2 (py —py)=ALy +0,(1) , where
A, =EJ,0, %"

As a final point we demonstrate that liminf,

in Potscher and Prucha (1997). Observe that

(AyA’) >0 as required in Corollary F4

—>0 mm

mln(A A ) 2’mm("‘;\JIJlN('DNlPN(D’ JNE‘;\/I) (C49)
- ﬂ’mm (‘PN)ﬂ’mm (® @ )ﬂ’mln ('-'l\ll:l\ll)ﬂ’mm (F 1—‘N)ﬂ’mm(B B N) > 0 >

since the matrices involved are all positive definite.

Hence, the expectation of N'*(p, —p,) is zero and its limiting variance-covariance matrix is

given by
QﬁN 0,)= (J’NGNJN)A J;VGNTN(DNJN(J;V@NJN)% > (C.50)

where € is positive definite.
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I11. Proof of Theorem 3 (Variance-Covariance Estimation)
As part of proving Theorem 3 it has to be shown that ¥ v — ¥y =0,(1). Observe that in light
of (15), ‘T’N and ¥, are made of up S° blocks of dimension 2x 2, W,en and v, ., whose

* *3k
elements can be written as qu N =W +1//pq . and l//pq v y/;;’N + V/;);,N’ where

1 N N

Nll * l
l//qu EN zzay 1p.lq, Ngl Ng/N ’Where aylpqu (ayle+ajlle)(al/qu+ajlqu) (CSI)
i=1 j=1
N O T
v = N0, PR EF PG, (C.52)
1% _lN—lﬁ h N N (C.53)
Vg N = 5 i 1p.14, NO-, NG/ o wherea, ., v (azj,lp,N aji,lp,N)(aij,lq,N aji,lq,N)’ .
i=1 j=1
1, -1 o
Woon ==N 0o, JPF,E F P, (C.54)

Analogous definitions apply to the other three elements . .,y , and y>. . In the
subsequent proof, we consider element 1//11,;,,\,, but it is readily observed that the same

reasoning applies to l//pq N,l//pq v»and l//f);N as well.

Two Lemmata (C.3 and C.4) will be used to show that ", =", =0,(1). Two Lemmata

(C.5 and C.6) will be used to show that ,.", w7 =0,(1).

paN qu

Lemma C.3"

Suppose Assumptions 1-3 hold. Let A,=N"6% A,6% and A,=N"¢ed A with
=(0}ysOyy) and &, =(&y,...ey ) and where the N x N matrices A, are real,

nonstochastic, and symmetric. Suppose further that the diagonal elements of the matrices A

are zero and that their row and column sums are uniformly bounded in absolute value. Then

EA,=A,=0() and Var(A,)=o(1), and hence A, -A,50 as N >, and

Ay =0,0).

Lemma C.3 as used here is exactly equal to Lemma C.3 in Kelejian and Prucha (2008, p. 40)
in the first-order case, where the reader is referred to for a proof.

" Compare Kelejian and Prucha (2008, p. 401f.).
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Lemma C.422

S
Suppose  Assumptions  1-4  hold. Let g, =(I, - z PuM, yuy and  let

m=1

S
g =y-> p,M, )i, with iy=u,+DyA, and D, =(d ,,....d), ), and where the

m=1

Sx1 vector P, can be any estimator that satisfies N'*(p, —p,)= O,(1). Define
A, =N'(E)A,ED), Ay =N"(&)A, (&) with T =& by and
€y = (& yséyy) . and where the NxN matrices A, are real, nonstochastic, and
symmetric. Suppose further that the diagonal elements of the matrices A, are zero and that

their row and column sums are uniformly bounded in absolute value, and that

EleSK <oo.Then, Ay —Ay 20 as N »>o0,and A, =0,().

Proof.
Observe that
Ay-Ry=N [ZZGI,N(%N%N &ver )] (C.55)

i=l j=1

which can be written as Ay - A, =@,y + ¢, y + @, , Where

N N
= N_lzzatj N(gt N T t,N)gjz',N H (C56)
i=1 j=1
o 2 =2 2
Oy =N Zzazj,N‘gi,N (5j,N _8j,N) 5 (C.57)
=l j=1
I ~2 2
Py =N X a,n (Ey — el EN — ). (C.58)

i=l j=1

We next show that ¢, , @, , and ¢, , areall o,(1). Observe that

s s
g, = I, - Zﬁm,NMm,N)ﬁN =, - Zﬁm,NMm,N)(uN +DyAy) (C.59)

m=1 m=1

s
=[Iy - Z(IOm,N + /5m,N = Pun )M,y I(uy +DA)

m=1

s s
=, - zpm,NMm,N u, — [z (/5mN =P )M, 0y
m=1 m=1

” Compare Kelejian and Prucha (2008, p. 411f.).
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s s
+y - me,NMm,N DAy _[Z(IBmN = Pux )M, v IDy A
m=l1

m=1

=&y tNy,

where

S S N
Ny = (IN - zpm,NMm,N)DNAN + [Z (pm,N - 5m,N)Mm,N (IN - zpm,NMm,N)_lsN]
m=l1

m=1 m=1

S
+[Z(pm,N _5m,N)Mm,N]DNAN' (C60)
m=1

This can also be written as

ny =Ry, (C.61)

where

R, =[R,y,R, Ry, ] with

S
Rl,N = (IN _me,NMm,N)DN’

m=l1

s s
R,y =M, @, - meMm,N)_lgN""’MS,N(IN - me,NMm,N)_ISN] )
m=1

m=1

R;,=[M,,D,,..Mg,D,],and

Ay
gy = Py —Py)
(% _BN) ®Ay

In light of Assumption 3 and since the elements of D, =(d; ,,...d), ) and €, have
bounded fourth moments, each column of the matrix R, is of the form =, +1II,&, , where
the elements of the N x1 vector @, are uniformly bounded in absolute value by some finite
constant, the row and column sums of the Nx N matrix II, are uniformly bounded in
absolute value by some finite constant, and the fourth moments of the elements of &, are
bounded by some finite constant. It follows that the fourth moments of the elements of R,

are also bounded by some finite constant by Lemma C.2 in Kelejian and Prucha, 2008 (see
also Remark A.1 in Appendix A). As a consequence,

[l <R [lg- (C.62)
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or for the i-th element of the N x1vector n:

M| ST ]| = 9| [Ty :aNﬂi,N’ (C.63)
0 < e [l = o

where r, , denotes the i-th row of R, and « :||gN|| and g, =Hri-=NH with E(B\) <K, <o.

Without loss of generality we can select K ; such that E(f/,) < K, for y <4.

Note that N, = O,(1). Given Assumption 2, we have E‘gijN‘y <K, <o, y<4+n (for

some 77 >0) and some K, . By the Assumption of Lemma C.4, the row and column sums of

N
A, are uniformly bounded in absolute value, i.e., Z‘aU’N‘ <K, <oo. In the following let
i=1

K =max(l,K,;,K,,K,). In light of Remark C.1 in Kelejian and Prucha (2008) (see Appendix

A) it follows that i\amr <K’.
=1

From (C.59) and (C.63) we have:

~2 2 2 2 2 2 2
Ein T 8[,N‘ = ‘(Si,zv + 775,1\/) e ‘ = ‘(‘%‘,N + 28[,N77i,N + 771‘,1\/)_ & ‘ (C-64)

2
= ‘2gi,N77i,N + Ui,N‘
2
< ‘251‘,1\}771',1\/‘ + ‘771',1\1‘
=2le +n?
N |Tin| T

2 2
< 2aNIBi,N‘gi,N‘ +ayfiy -

Taking the norm of (C.56) we have

N N
‘¢1,N‘:N lzz yN(gzN_ 1N)€/N (C.65)

i=l j=

= 2
Z‘ ij H(gzN IN)ng,N‘

i‘ i ‘(2aNﬂzN‘ IN‘_'—aNﬂzN)‘ JN‘

N
Al 2 1.2 2 2
=N 20‘Nzﬁi,1v‘gi,fv‘2‘aw‘“%ﬂv‘+N “NZ@,NZ“’@/,NHQ,N‘
i=1 j=1 i=l1 Jj=l1
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* £
SOy +0,ys

with

N
Sy = 2K]V2/(4+n)_1/2(N1/2aN)gN(N_IZﬂi,N‘gi,N‘ J , (C.66)

i=1

N
5 =KN”‘””>I(N“aNMN[NIZ/%?N J (©on

i=l1

N 2/(4+m)
- 4+
where ¢, :{N IZ‘%,N J :
I

+ il +
Next note that E‘gj’Nr "<K and thus N’IZ‘gj,Nr " O,(1) and also &, =0,(1).
j=1

Moreover, N'’a,, =0 (1).

) 1/2 ) 1/2 N
Since E(p, N‘ ,N‘) (E‘,BLN‘ ] [E‘gi,N‘ ] <K it follows that N’IZ,H[,N‘gi,N‘ =0,().
i=1

N
Since E(B}y)<K it follows that N') B, =0,(1). Finally, N**""2=0o(1) and

i=l1

N> = o(1) . 1t follows that &, y =&, =0,(1) and thus ¢, =0,(1).
Because of symmetry ¢, , =o,(1) implies that ¢, , =o0,(1).

Now consider ¢, ,:

Mz

N
‘%,N‘ =|N" 12

i=l j

_4aN ﬂlN‘ IN‘Z‘ UNWJ N‘ jN‘

i=1

N N
3 -1 2 3 -1 2
+2ayN Zﬁw Z‘aij,NL&/,N‘gj,N‘JrzaNN > @,N‘gi,N‘Z‘aif,NWj,N
il = ) =]

+aNN ZﬂzNZ‘ UNWJN—53N+53N 5;,*1:29

zj,N(EﬁN - ‘9,2N)(512N - SI%N) (C.68)

Il
—_

with
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_ N
53*,N _ 4KN_1/2(N1/2aN)2§N(N_1Zﬂi,N‘gi,N‘ j, (C.69)

i=1

— N
8y = N4K (N, Y S (N B e - (C.70)
i=1

_ N
Sy =N_3/2(N1/20!N)4K§N(N_1Zﬂfzvja (C.71)

i=1

=

N

1/2 1/2
where ¢, :(N’lzﬁfﬂ‘ejwr] and Z, :[N_IZﬂij :

j=1 j=1
Next note that E(ﬂf,N‘gj’Nr) < (Eﬂ;‘,N)/Z(E‘gj,Nmm <K and thus Nliﬂf,N‘gj,N‘z =0,()
j=1

B N 1/2
and also ¢, =0,(1). Then E(B/,)<Kand thus (NIZﬂiN] =0,(1) and also
71

cv=0,0).

1/2

Moreover, E(ﬂj’N‘gj,N‘) < (Eﬂf’N) (E‘gj’Nr)m < K and thus N‘liﬁm‘gw‘ =0,(1). We also
j=1

N
have that E(ﬁij) <K and thus N‘IZﬁf’N =0,(1) and N"a, = o,1).

J=1

sk

Since N =o0(1) for any &§>0 it follows that &, =06;, =05, =0,(1) and thus

@,y =0,(1). Taking stock, we have proofed that ¢, , =@, y =@, , =0,(1).

Lemma C.S23

S
Suppose  Assumptions  1-4  hold. Let ¢,=(, - z PuxM, uy, and et
m=1

S
(3 =(IN—Z,5m7NMm7N)ﬁN with u, =u,D,A, and D, =(d; ,.....d}, )", and where the

m=1

§x1 vector p, can be any estimator that satisfies (py —p,)=0,(1). Let a, and b, be

N x1 vectors, whose elements are uniformly bounded in absolute value by ¢ <o and let

,,,,,,,,,,

(a) N'a\Z,b, - N'a\,Z b, =0,(1) and N"'a}\E,b, =0(l).

“ Compare Kelejian and Prucha (2008, p. 43ff.)
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(b) There exist random variables ¢, that do not depend on a, and b, such that
N-alE b, — N2\ 2\b,| <K(e)1+5y)
with ¢, =0,(1) and where K(c) <oo is a constant that depends monotonically on ¢ (as well

as on some other bounds maintained in the assumptions).

Proof.
Let F,=N"'a\Z,b,, r,=N"a\X,b,, and r,=N"a, X .b,,  where
X, =diag, , (). It follows from the triangle inequality that

Ty — 7| S|7y — 7|+ [Ty — T (C.72)

By the weak law of large numbers for i.d. variables (see, e.g., White, 2001, p. 35), observing

that the fourth moments of &, are uniformly bounded by Assumption 2, we have

Ty =Ty = Nﬁl(a,NENbN - a;VENbN) = Nﬁla’N (EN —Xy )bN (C.73)

N
= N_lzai,zv (giz,N - UiZ,N)bi,N =0, @.
P

We thus also have |fN - z'N| =o0,(1). Next let

;1,1v =N" ) (‘9i2,N - O-zN) - E‘giN - GfN‘ ‘ (C.74)

i=1

and ¢, be such that o, <c,.

N
Note that ¢,y = N>’ (‘82N —~ afN‘ —~ E‘ng — afN‘) =0, (1). It then follows that
i=1

: (C.75)

2 2
a;, y(& y =0\ )b,
i1

|z'N —rN| =N

N
_ar-l 2 2 2 2 2 2
=N z[ai,Nbi,N (Si,N - Gi,N) - E‘gi,N - O-i,N‘ + E‘gi,N - O-i,N‘]

i=l1

N
= czgl,N +czN_lz2c* = czé'l,N +2c%. .

i=1

N
Z 2c,

i=1

< czé'l’N +c*N™!
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Next rewrite

- N N
Ty=N"a\X,b, =N">a & b ,=N"DE, (C.76)
i=1 i=1
=N"g,C,%,,
where C,, =diag, | ,(a,\b,,) and T, = N"'¢\,C ¢, .
S
Using €, =, — me’NMm’N)uN , we have
=~ 13 ~ 1~ J ~ ~
2-N = N7 SIIVCNS ’ meN mN)C (I me,NMm,N)uN (C77)
m=1
" N
:N ’C uN 2uN(meN m,N NjuN-"_u (zz mNplN mNC MleuN’
m=1 m=1[=1
and
=N"'¢,C,zt, (C.78)

s s S
= N_lu’NCNuN - 2“;V[zpm,NM:n,NCN}uN + u’N(zzpm,Npl,NM:n,NCNMI,N )uN .

m=1 m=l [=1

By the properties of the matrices C,, and M, ,, m=1,...,S and in light of Remark A.1 these

are all quadratic forms in matrices whose row and column sums are uniformly bounded in
absolute value by some constants that depend monotonically on ¢ as well as on other bounds
maintained in the assumptions.

Using the triangle inequality, it follows that

7, - 7| <[V W,Cl - N Cu, (C.79)
+RNT (B pL)EM (CTy —uy M, Cou)| +
HNT@BE - pLOEMI L C M T —u ML C M )
NP B = P2 JAME L, C M Ty —u M (C Mg )| .
‘N W, C NuN—N_lu’NCNuN‘ +
+ [P = oy | PN @M (€T —ul M Cuy )+

~2 2 =1 = ’ ~ ’ ’
+ ‘pl,N _pl,N‘ ‘N (uwyM; ,C M yuy, — uNMl,NCNMS,NuN)‘ T
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~ = =1~ ’ ~ ’ '
+ ‘pl,NpZ,N - pl,sz,N‘ ‘N (uyM; ,C M u, _uNMl,NCNMS,NuN)‘+

Then Remark C.2 in Kelejian and Prucha (2008) (see Appendix C in the present paper for the
higher-order case) can be applied, observing that (p, , —p, y)=0,(1), s=1,...,S. Factoring

out the o, (1) terms, we obtain

7y = 0| S KOSy (C.80)

where ¢, =o0,(1) and does not depend on a, and b, and the constant k(c) depends

monotonically on ¢ and other bounds maintained in the assumptions.

The first claim of part (a) of Lemma C.5 now follows from (C.73) and (C.80). The second

claim follows from
N N
—1_r -1 2 -1 2 2
ry=N"a\ X, b, =N Z‘ai’NHq,NHbﬁN‘:N Z‘ai,N”bﬁN“Ui’N‘Sc Ci <0, (C.81)
i=1 i=1

Part (b) of the Lemma follows from (C.72), (C.75), and (C.80), noting that ¢, ,, &, , are

nonnegative:

|?N - z'N| <[c® +2c%c, +k(c)]g, where ¢, =(1+¢,).

Lemma C.624

S

Suppose Assumptions 1-4 hold. Furthermore, assume that sup, Z‘ Lo, N‘ <1, and that the row
m=1

and column sums of M, ,, m=1,...,§ are uniformly bounded in absolute value by 1 and

S
some finite constant respectively. Let g, =1, — Z PuxM, yuy, and et
m=1

S
[ =(IN—Z,5m,NMm,N)ﬁN with W, =u,D A, and D, =(d; y,...d}, ). The §x1 vector

m=1

p, can be any estimator that satisfies (p, —p,)=0,(1).

s - s s
Let Fy = (IN - me,NMm,N) JFy = (IN - me,NMm,N)HN or K, = (IN - an1,Nan,N)71HN >
m=1

m=1 m=1

_ S
F, =1, - Z PuyM, y) H,, where H, is an N x P, matrix whose elements are uniformly

m=1

* Compare Kelejian and Prucha (2008, p. 45ft.)
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.....

Proof.

The subsequent proof will focus on the more general case, where

s - s
F, =1, - me,NMm,N)‘lHN and F, =(I, — Zﬁm,NMm,NYHN; it is readily observed from

m=1 m=1

S
the proof that this also covers the case where FN:(IN—Z PuxM,, v )H, and
m=1

s
F, = (IN - Zﬁm,NMm,N)HN .
m=1

S
Under the maintained assumptions there exists a p, with supZ‘pm’ N‘< p. <1. It follows

m=1

immediately by the properties of the matrices M, , that the row and column sums of
oM, , m=1,.,S are uniformly bounded in absolute value by 1 and some finite constant

respectively. For later reference, also note that the elements of the vector pMjh  , are also

uniformly bounded in absolute value by c.

Denote the (r,s)-th element of the difference N"'F,X F, ~N'F X F, as v,, which is

given by

Vy = N_l(f;,zvizvfs,/v £ EM ), rs=1..P, (C.83)

which can be written as v, = 27:1/1., v » Where
v =NTE -1 )V E )T, -1, (C.84)
von =Ny =1, )V E T f,
Vi =N (B -2, 1)
Vo =N (Zy —Z0f,
iy =N 1, VI, — 1, )
iy =N =, VN,

Van = N_lf.’r,NZN(fe,N - f.s,N) .
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S
Next note that £, = (I, - mejNMm’N)‘lh_st and thus

m=1
N S - S |
f.s,N - fS,N = [(IN - Z/)m,NMm,N)+ - (IN - Z pm,NMm,N)7 ]h.S,N (CSS)
m=1 m=1

We next demonstrate that f_s’N —f,y=0,(1) by showing that each summand v, , =o0,(1),

i=1..7.

To do so we invoke the following theorem (see, e.g., Resnik, 1999, p. 171): Let

(X,X,,N=1) be real valued random variables. Then, X, %X if and only if each

subsequence X, contains a further subsequence X . that converges almost surely to X .

As we show below we will be confronted with terms of the form:
N = N pl AN VL E M, - N MYE, M, (C.56)

where M), is a matrix, whose row and column sums are uniformly bounded in absolute value

by some constant ¢ . It follows that the absolute values of the elements of the vector
M h , (and also that of p‘Myh,, ) are uniformly bounded in absolute value by some

finite constant c. = cc (and c.. = picc). (See Remark A.1 in Appendix A.)

Hence, Lemma C.5 applies and it follows that N =o (1) and that there exist random

variables ¢, =o0,(1) such that ‘Ng\’,"”‘ <K()(1+gy).

Now, let the index N, denote some subsequence. In light of the aforementioned equivalence,
there exists a subsequence of this subsequence (N, ) such that for events we 4, with

P(A°) =0, it holds that

k,l
N[>0,

Q‘N;‘_ﬂ):

ﬁm,N; _pm,N;‘_)()’ mzlv"'aS (C87)

and that for some N’ > N,

(o4

Sy (a))‘ <1, and thus

NG (@) < K(e) (1 +[gy, ) 2K (@), (C.88)
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and finally

S
SUpy 2|0, + -

ZS:‘T)m,N}, (a))\s p.., where p.. = =1 . <1. (C.89)
m=1

S
In the following, assume that N’ > N_. Since z
m=1

Pt (a))‘<l, it follows from Horn and

S
Johnson (1985, p. 301) that (I, — Z'Bm,NJ, (M, )" is invertible and that

m=1
£ —fy =[0, me Vv (@M, Zp,,, v M, ) "Th, (C.90)

0 S S !
- Z |:(z ﬁm,N"] (a))Mm,N;, J - (Z pm,N;Mm,N,’Z j :|h.s,N1’, .
m=1
Substituting into the expression for v, ,. given by (C.84) yields
Vin, = N;_l(fr,N; - fr,zv; ),(iN[‘ - EN; )(fq,zv; - f.s,N; ) (C.91)
N ! s !
r=ly 1
=N, h Z{[Z N;j _[me,N;Mm,N;j ]
m=1 m=1
X(Zy, — Iy,

o0
k=1

m=1

m=1

L S N 1 s / N S N k S k
Nr; hrr,N", (me,N‘;Mm,N; j _(me,N; Mm,N;j ZN", (Z m,N;Mm,Nl'I j _(me,N; Mm,N;j hAs,N"7
m=1 m=1 m=1 m=1

s s ! s kors k
=1y s ~
- Na h.r,N; |:(Z m N, Mm N, j (me N, M j :l Z'N' li(zpm,N; Mm,M, j - ( IOm,Nl'J Mm,N; j :|h.s,N; .
m=1 m=l1 m=l1 =1

(C.92)

3
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Next note that for any valued of p,, and any p,. (@) there exist matrices M v and M N

whose row and column sums are uniformly bounded in absolute value, such that:
s o s s _
zpm,N,;Mm,N,; = zpm,zv,; M, and zpm,N;Mm,N; = zpm,zv; M, . (C.93)
m=1 m=1 m=1

MN;’ and ﬁN; can thus be factored out of the sum, yielding

s L s L
m=1 m=1

m=1 m=1

S S
By the same reasoning, for any values of (Z Pun: (a))] and (Z P J , there exists a matrix

M, , whose row and column sums are uniformly bounded in absolute value, such that:

{(zﬁm,ﬂ |50 Md . {(Zﬁm,m @] (oo }WN; ~(©99)

m=1

Substituting M, into the expression for v, ., , we obtain

(C.127)

!

0 o s I /s o s ks
Vl,N"z = N;_l zzh.’r,N; |:[25m,N; (w)j - (Z/)m,N:, ) jl M;\l/; ENI', li[Zﬁm,N; (w)) - (z/)m,N;,
m=1 m=1 m=1

k=1 [=1 m=1

=

Nk
}MN; hAs,N;

!

00

0 S ! S ! S ‘ \ ‘
- N:J_l zzh.,r,N!, li(zﬁm,l\/; (a))J - (me,]\/,; j :l 1\_/[;\21 ZN:, |:[zﬁm,1\’; (a))) - [zpm,N; j 1\_/[]];1" h‘S’N‘; ’
m=1 m=1 m=1

k=1 =1 m=1

Hence, we can then write

Vo = XD, (C.96)

k=1 I=1

where X0 = gkDNED with

(Ene) (88 ) 5]

o ol

(kD) _
ay"’ =

and (C.97)
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k) _ ap-ldvkpr A Sk S lkpr Nl Nk
Ny =N"p. h.r,N,;MN;, ZN;MN;,h.s,N;,_N D+ h.r,N",MNZ’,ZN",MNhAS,N",' (C.98)

'
a

Note that ‘afj‘r”‘—)O in light of the aforementioned results. It follows that ‘Xﬁ,’f’”‘—)O.

Moreover,

s ! s Lrs ! s k
( ﬁm,N;J _(zpm,zv,;j (ZEm,N;J _(me,zv;]
m=1 m=1 m=1 m=1 (C99)

‘aN; ‘ = i x

p: P

i k I+k
Sz(&] 2(&] :4(&j
O O O

for N> N,

Ng\'f;’”(a))‘ <2K(c), such that we have

I+k I+k
‘X](vlz,z)‘ < gb — 2K(c)4[%] = 81{@)(&} _ (C.100)

*

Hence, there exists a dominating function B“* for all values of /. Moreover, since

(&J <1 by construction, we also have that
Pu

0

> > |B|= S B <o (C.101)
k=1 1=1

k=1 I=1
i.e., the dominating function is integrable (summable).
It follows from dominated convergence that

limy, , v,y =0. (C.102)

The same holds for the v, ., i=2,...,7. It follows that v, . — 0 as N, and in light of Resnik
(1999, p. 171) that v, —>0,(1).

Thus, N'F,E,F,-N"'F,E,F,=0,(). That N'F,E,F,=0(1) follows from the

S
properties maintained for the row and column sums of (I, — z o.M, +) " and the elements

m=1

of X, and H, .
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Proof of Theorem 3.

To show that Q 5~ QEN =0, (1), we first prove that ¥ v—¥y=o0, (1), using the expressions
for ¥ v and ¥, as given by (C.51)—(C.54). By assumption the row and columns sums of the
matrices A, , and A, ,, s=L..,S, are uniformly bounded in absolute value, and hence so
are the row and column sums of the matrices (A, , +Aj ) and (A, , +A} ) as well as
products of them (see Remark A.1 in Appendix A). It follows from Lemma C.3 and C.4 that

~ll* Nll*

7 t//ll);’ x=0,), l//pq v =00), v, v =0,(). It is readily observed that the same holds

~12* ~22*
true for ;//pq v=0,0, ¥, x> V,n-

Next observe that the row and columns sums of the matrices

s s
I, - zpm,NM:n,N)(Als,N + A VI - me,NMm,N) and (C.103)
m=1

m=1

N S
(IN - me,NM:n,N)(AZS,N + A,ZS,N)(IN - zpm,NMm,N) (C-104)

m=1 m=1

are bounded uniformly in absolute value. It follows from Lemma C.1 that @, y —a,, , =0,(1)
and @, -0, = o,(), a,,=001, a,,=0(1), and thus GIS’N =0,(), and
a2.5-,N = Op 1.

By assumption f’N—PN =o0,(), Py=0(), and IN’N:0P(1). By Lemma C.6 we have
N7F,Z,F, -N'F,L,F, =o,(1), N'F,Z,F, =0(1), and N"'F,E,F, =0,(1). It follows
Nll**

that 1/711,; v 1//pq xy=0,(), =0, ¥,y =0,(). It is readily observed that the same

pq,N

holds true for 2", ", w2 Hence, ‘I’N -¥,=0,(), ¥,=0(), and ‘T’N =0,().

rg,N> ¥ pq,N> 7 pg,N
By Assumption 5, we have @)N -0, =0,71), ®,=0(1) and (:)N =0,().
Let

=,=J,0J,=B,I,0,IB , and (C.105)

(C.106)

® There is a slight discrepancy to the definition of = v 1n Theorem 2: Here B v 1s used rather
than B ,, which does not affect the proof, however, noting that both p, and p, are

consistent.
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In Theorem 2, we showed that jN:0p(1), J,=0(1), and jN—JNzop(l) and that

2, =0,(1), E/ =0, (1) and that E}, ~E,' =0, (1). It now follows that Q, —Q, =0 (1).

IV. Proof of Theorem 4 (Joint Distribution of p, and Other Model Parameters)

S
The subsequent proof will focus on the case F,, =, — Z PuxM,, ) 'H,,, since this covers
m=1

S
also the case where F, =(I, —Z pPuxM, H, . The first line in (26) holds in light of

m=l

Assumption 7 and Theorem 2 .We next prove that § -5 N(0,I ) by verifying that the

P 4258
assumptions of the central limit theorem A.1 by Kelejian and Prucha (2008) are fulfilled. Note
that A

min

¥,y 2 cy >0 by assumption. In Theorem 2, we verified that the innovations &,
and the elements of a ,, a, , and A, ,, A, , appearing in v, satisfy all assumptions

stated in Theorem A.1.

Next, consider

s
F, =1, - zpm,NM:n,N)_lHN . (C.107)
m=1

S
Since the row and columns sums of (I, — Z punM,, )" are uniformly bounded in absolute
m=1

value and since the elements of the matrix H, are uniformly bounded in absolute value, it
follows that the elements of F, are also uniformly bounded in absolute value. Hence, the

linear form Fyg, also fulfils the assumptions of Theorem A.l. As a consequence,

&, v ->N(O,I

P*+2S) :

In the proofs of Theorems 2 and 3, we showed that ‘T’N -¥y=0,1), ¥,=0(), and
v, = O,(1). By analogous arguments, this also holds for the submatrices ¥,, , and ¥, .

Hence, ¥, ~'¥, , =0,(1), ¥, =0(1) and thus ¥, , =0 (1).

~ ~

By assumption P, -P, =0, (), Py=0(), and IN’N =0,(1) as well as ©, -0, =0,(1),
0, =0() and (:)N =0,(1). In the proof of Theorem 2 we showed that jN -Jy=0,01),
J,=0(),and J, =0,(1), and that (J\,©,J,)" -(J,0,J,)" =0,(1), (J,0,J,)" =0(1),
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and (J,0,J,)" =0, (). It now follows that Q,, -, =0 (1) and Q,, =0(1) and thus

~

Q,,=0,01).

Appendix D.
Proof of Lemma 1.

In light of equation (2a) and (2b), Assumptions 3 and 8, as well as sup [B,[ <5 <o it

follows that all columns of Z, =(X,,Y,) are of the form &, ==, +II,g, , where the
elements of the vector @, and the row and column sums of the matrix II are uniformly

bounded in absolute value (see Remark A.1 in Appendix A). It follows from Lemma C.2 in
Kelejian and Prucha (2008) that the fourth moments of the elements of the matrix D, =-Z,

are uniformly bounded by some finite constant and that Assumption 6 holds.

Next, note that

N'"?%, -6,)=P,N"’Fig,, (D.1)

- S
where P, is defined in the Lemma and F,, = (I, - Z PunM., )" H, . In light of Assumption
m=1

10, IN’N -Py=0,(1) and P, =0O(1), with P, as defined in the Lemma. By Assumption 3 and
Assumption 9, the elements of F, are uniformly bounded in absolute value. By Assumption
2, E(e,) =0 and its diagonal variance-covariance matrix has uniformly bounded elements.
Thus, E(N"°F},g,)=0 and the elements of the variance-covariance matrix of N™"°Fjg,,
ie, N'F,X,F, are uniformly bounded in absolute value (see Remark A.1 in Appendix A).
It follows from Chebychev’s inequality that N~"°Fye, =0,(1), and consequently
N2, —-6,)=P,N""*Fle, + 0,() and P,N""?Fyg, =0,(1). This completes the proof,
recalling that T, = F,/P, .

Proof of Lemma 2.
Note from (1b) and (1c) that

s S -
Yy =2Z,0, +g&, - Z(PN —py)M,, yuy, . (D.2)

m=1

It follows that
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< Sl = _ o S -
N1/2(6N _8N) = (N_1ZNZN ) IN 1/ZZN [8N _z(pN _pN)Mm,N“N]

m=1

S !
=Py [N_I/ZFN €y — Z(Ibm,zv - pm,N)N_l/zFN gyl

m=1

where Py is defined as in the Lemma,

s
F, =F, +z (IBm,N “Pun M, H,,

m=1

and M, is a matrix, whose row and column sums are uniformly bounded in absolute value,

S S
Satleylng Z(ﬁm,]\/ - me)Mm,N = Z(ﬁm,]\/ - pm,N)MN . Moreover)

m=1 m=1

S S
FN = FN + Z(ﬁm,N - pm,N)(IN - zpm,NM:n,N )71M;\/MN HN .
s=1

m=1

Hence, we have

2 — ! S - A
N'"@y =8y) =Py AN"*Fyey +> (B,x =Py )N "M H,g, +
m=1

S

s . s ) o
_Z(Ibm,N _pm,N)Nil/ZFN €y _[Z(pm,N _pm,N)]zN 1/2([N _me,NMn,N) IMNMNHNsN} ,

m=1 m=1 s=1

S S
with F}, as defined in Lemma 2 and F,, = (I - me,NMin,N)_IM;V I, —mejNMm’N]HN.
m=1

s=1
In light of Assumption 12 and since p , is N'?-consistent it follows that

#f = % 1

NZVZL = Qly Qs Qg = 0,(1). (D.4)

Assumption 12 implies we also have  Q}u.,.Qpys Qpezs =0(1)  and  thus
(QlezsQrpers Quezs) = 0(1). Tt follows as a special case of Pdtscher and Prucha (1997,

Lemma F1) that

(N'ZYZ3) " = Qi Quienss Queez) ' =0, (D). (D.5)
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It follows further that Py — Py =o0,(1) and Py =O(l) with P, defined in the Lemma. By

arguments analoguous to the proof of Lemma 1 it follows that N'*Fye, =0,(1),

skl

N7"’F g, =0,(1), and also that N*M,H &, =0,(1) and
S

Nﬁl/z[(IN - zpm,NM:n,N)il]M;\/MNHNSN =0,().
s=1

As a consequence, N'?(8,-8,)=PyN"’Fye, +o,() and PN 'F e, =0,(),

observing again that (p,, —p,) =0, (1). This completes the proof, recalling that T, = F, P, .

APPENDIX E
Tables A.1 and A.2 show the Monte Carlos results for sample size N =100 and N =250,
when the untransformed instruments matrix H is used in the FGTSLS estimation.
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Table A1. Monte Carlo Results, N =100, 2000 draws, instrument matrix H

Constellation" (1a) (1b) (1c) (2a) (2b) (2¢) (3a) (3b) (3¢) (4) (5a) (5b) average >
A 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0.2 0 0.2 0.2833
Bias 0.0027 0.0027 0.0032 0.0010 0.0011 0.0015 0.0158 0.0074 0.0039 0.0377 0.0013 0.0033 0.0068
RMSE 0.0278 0.0289 0.0330 0.0241 0.0234 0.0261 0.0677 0.0595 0.0491 0.0792 0.0358 0.0359 0.0409
Rej. Rate 0.0755 0.0800 0.0920 0.0810 0.0820 0.0845 0.1560 0.1280 0.1105 0.2365 0.0830 0.0880 0.1081
A 0.3 0.3 0 0.3 0.3 0 0 0 0 0.1 0 0.2 0.1250
Bias 0.0003 0.0004 -0.0009 -0.0012 -0.0011 -0.0012 0.0135 0.0051 0.0006 0.0332 -0.0004 0.0018 0.0042
RMSE 0.0359 0.0367 0.0392 0.0359 0.0359 0.0357 0.0679 0.0589 0.0513 0.0756 0.0414 0.0418 0.0464
Rej. Rate 0.0740 0.0795 0.0875 0.0790 0.0795 0.0800 0.1500 0.1225 0.0985 0.2250 0.0855 0.0820 0.1036
A3 0.1 0 0 0.1 0 0 0 0 0 0.1 0 0.2 0.0417
Bias 0.0017 0.0015 0.0021 0.0006 0.0010 0.0016 0.0131 0.0048 0.0019 0.0279 0.0016 0.0039 0.0051
RMSE 0.0289 0.0300 0.0326 0.0249 0.0253 0.0269 0.0561 0.0485 0.0437 0.0621 0.0349 0.0356 0.0375
Rej. Rate 0.0695 0.0710 0.0805 0.0775 0.0780 0.0775 0.1310 0.1050 0.0880 0.1965 0.0790 0.0810 0.0945
B 1 1 1 1 1 1 1 1 1 1 1 1 1.0000
Bias 0.0004 0.0004 0.0004 0.0002 0.0002 0.0002 0.0032 0.0014 0.0008 0.0066 0.0004 0.0007 0.0013
RMSE 0.0204 0.0205 0.0206 0.0214 0.0214 0.0214 0.0233 0.0222 0.0214 0.0239 0.0211 0.0208 0.0215
Rej. Rate 0.0760 0.0780 0.0780 0.0775 0.0770 0.0795 0.0840 0.0730 0.0765 0.1000 0.0780 0.0740 0.0793
5 1 1 1 1 1 1 1 1 1 1 1 1 1.0000
Bias 0.0006 0.0005 0.0006 0.0004 0.0004 0.0004 0.0031 0.0015 0.0009 0.0064 0.0006 0.0008 0.0014
RMSE 0.0202 0.0203 0.0204 0.0212 0.0212 0.0212 0.0227 0.0220 0.0211 0.0233 0.0210 0.0207 0.0213
Rej. Rate 0.0700 0.0705 0.0710 0.0705 0.0730 0.0705 0.0850 0.0775 0.0730 0.0890 0.0745 0.0715 0.0747
o) 0.4 0.4 0.4 0 0 0 0.4 0.4 0.4 0.5 0 0.2 0.2583
Bias -0.0452 -0.0469 -0.0582 -0.0604 -0.0647 -0.0644 -0.0349 -0.0449 -0.0559 -0.0296 -0.0655 -0.0466 -0.0514
RMSE 0.1748 0.1897 0.2269 0.2871 0.2883 0.2840 0.1687 0.1821 0.2122 0.1496 0.2556 0.2005 0.2183
Rej. Rate 0.0745 0.0900 0.1105 0.0795 0.0840 0.0905 0.0630 0.0835 0.0995 0.0600 0.0755 0.0720 0.0819
o 0.2 0.2 0 0 0 0 0.2 0.2 0 0.3 0 0.2 0.1083
Bias -0.0260 -0.0317 -0.0124 -0.0433 -0.0477 -0.0374 -0.0217 -0.0257 -0.0137 -0.0274 -0.0448 -0.0377 -0.0308
RMSE 0.1807 0.1948 0.2030 0.2662 0.2613 0.2567 0.1740 0.1915 0.2003 0.1692 0.2322 0.1969 0.2106
Rej. Rate 0.0775 0.0830 0.0945 0.0875 0.0975 0.0945 0.0700 0.0795 0.0920 0.0650 0.0780 0.0835 0.0835
e 0.1 0 0 0 0 0 0.2 0 0 0.1 0 0.2 0.0500
Bias -0.0106 -0.0004 -0.0018 -0.0075 -0.0087 -0.0070 -0.0221 0.0008 -0.0009 -0.0294 -0.0107 -0.0255 -0.0103
RMSE 0.1778 0.1944 0.2073 0.2488 0.2401 0.2387 0.1781 0.1937 0.1997 0.1729 0.2199 0.2037 0.2063
Rej. Rate 0.0615 0.0645 0.0665 0.0635 0.0615 0.0590 0.0680 0.0650 0.0670 0.0780 0.0490 0.0605 0.0637
Joint Tests ¥

Rej. Rate 0.1370 0.0990 0.1055 0.1080 0.1925 0.1755 0.1645 0.1625 0.1431

Note: " Each colmn corresponds to one parameter constellation (see Table 1). ? Average of absolute row values. 3 Rejections rates for the following hypotheses. (1¢):
H(;hp,*:lz :ﬂg =,02 :p3 =O,(2a),(2b),(20)1 Hé) 3p1 :P2 :P3 :0’(33)’(3b)’ (30): H(;{ :/’Ll :]’2 :ﬂ’s :0,(53): H(;LP :ﬂ’l :lz :/13 :pl :pz :p3 :0'
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Table A2. Monte Carlo Results, N =250, 2000 draws, instrument matrix H

Constellation” (1a) (1b) (1c) (2a) (2b) (2¢) (3a) (3b) (3¢) (4) (5a) (5b) average >
A 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0.2 0 0.2 0.2833
Bias 0.0017 0.0021 0.0022 0.0009 0.0010 0.0009 0.0084 0.0048 0.0025 0.0188 0.0008 0.0022 0.0039
RMSE 0.0179 0.0184 0.0204 0.0155 0.0150 0.0160 0.0420 0.0366 0.0301 0.0497 0.0222 0.0224 0.0255
Rej. Rate 0.0645 0.0640 0.0620 0.0620 0.0640 0.0620 0.0845 0.0770 0.0585 0.1310 0.0620 0.0645 0.0713
A 0.3 0.3 0 0.3 0.3 0 0 0 0 0.1 0 0.2 0.1250
Bias 0.0005 0.0005 0.0003 -0.0001 -0.0003 0.0000 0.0064 0.0028 0.0007 0.0146 0.0001 0.0014 0.0023
RMSE 0.0205 0.0209 0.0220 0.0204 0.0205 0.0198 0.0379 0.0329 0.0291 0.0428 0.0235 0.0235 0.0261
Rej. Rate 0.0625 0.0645 0.0685 0.0590 0.0605 0.0700 0.0840 0.0725 0.0670 0.1375 0.0680 0.0680 0.0735
A3 0.1 0 0 0.1 0 0 0 0 0 0.1 0 0.2 0.0417
Bias -0.0008 -0.0008 -0.0006 -0.0008 -0.0007 -0.0007 0.0039 0.0011 -0.0006 0.0095 -0.0005 0.0004 0.0017
RMSE 0.0198 0.0205 0.0219 0.0165 0.0168 0.0183 0.0313 0.0284 0.0273 0.0342 0.0232 0.0234 0.0235
Rej. Rate 0.0655 0.0665 0.0660 0.0645 0.0655 0.0680 0.0780 0.0730 0.0630 0.1090 0.0645 0.0705 0.0712
B 1 1 1 1 1 1 1 1 1 1 1 1 1.0000
Bias 0.0000 0.0001 -0.0001 -0.0001 -0.0001 -0.0001 0.0013 0.0006 0.0002 0.0028 -0.0001 0.0001 0.0005
RMSE 0.0124 0.0125 0.0126 0.0130 0.0129 0.0129 0.0139 0.0135 0.0129 0.0145 0.0127 0.0127 0.0130
Rej. Rate 0.0585 0.0590 0.0575 0.0620 0.0600 0.0565 0.0550 0.0585 0.0555 0.0630 0.0585 0.0545 0.0582
5 1 1 1 1 1 1 1 1 1 1 1 1 1.0000
Bias 0.0007 0.0005 0.0004 0.0004 0.0003 0.0000 0.0015 0.0008 0.0005 0.0031 0.0005 0.0007 0.0008
RMSE 0.0127 0.0128 0.0128 0.0131 0.0131 0.0131 0.0140 0.0136 0.0132 0.0147 0.0129 0.0130 0.0133
Rej. Rate 0.0665 0.0675 0.0665 0.0660 0.0650 0.0665 0.0645 0.0615 0.0645 0.0725 0.0650 0.0720 0.0665
yo) 0.4 0.4 0.4 0 0 0 0.4 0.4 0.4 0.5 0 0.2 0.2583
Bias -0.0198 -0.0227 -0.0300 -0.0303 -0.0309 -0.0306 -0.0143 -0.0211 -0.0271 -0.0127 -0.0263 -0.0179 0.0236
RMSE 0.0907 0.0899 0.0983 0.1244 0.1242 0.1237 0.0903 0.0896 0.0970 0.0824 0.1222 0.1020 0.1029
Rej. Rate 0.0580 0.0580 0.0615 0.0605 0.0580 0.0570 0.0565 0.0610 0.0595 0.0580 0.0590 0.0540 0.0584
o 0.2 0.2 0 0 0 0 0.2 0.2 0 0.3 0 0.2 0.1083
Bias -0.0078 -0.0103 -0.0030 -0.0178 -0.0172 -0.0131 -0.0050 -0.0073 -0.0029 -0.0100 -0.0123 -0.0111 0.0098
RMSE 0.1008 0.1018 0.1001 0.1164 0.1160 0.1158 0.0996 0.1014 0.1002 0.1012 0.1152 0.1039 0.1060
Rej. Rate 0.0560 0.0580 0.0555 0.0505 0.0470 0.0485 0.0620 0.0560 0.0540 0.0585 0.0490 0.0560 0.0542
o 0.1 0 0 0 0 0 0.2 0 0 0.1 0 0.2 0.0500
Bias -0.0112 -0.0068 -0.0070 -0.0127 -0.0106 -0.0095 -0.0158 -0.0064 -0.0067 -0.0173 -0.0094 -0.0173 0.0109
RMSE 0.0962 0.0962 0.0972 0.1142 0.1143 0.1138 0.0941 0.0947 0.0969 0.0911 0.1136 0.1048 0.1023
Rej. Rate 0.0455 0.0415 0.0455 0.0410 0.0415 0.0415 0.0465 0.0400 0.0480 0.0620 0.0400 0.0420 0.0446
Joint Tests ¥

Rej. Rate 0.0640 0.0585 0.0570 0.0575 0.1035 0.0965 0.0930 0.0855 0.0769

Note: " Each column corresponds to one parameter constellation (see Table 1). ? Average of absolute row values. * Rejections rates for the following hypotheses. (1¢):
HP? 2y = 2= p, = py =0, (20), 20), Qo) HY 2 py = p, = p, =0, (30), (Bb), Go): Hf 1Ay =y =4, =0, (5): H”: 4=l =k = p,= p, = p, =0,
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