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I. Introduction 
In recent years, econometric research started developing estimators for cross-sectional 
models, where the units of observations are allowed to be correlated. A large class of such 
models is referred to as spatial econometric models, where interdependence occurs through 
some ex ante known channel. One possible—yet not necessarily the only plausible—channel 
is geographical distance or space as such. The use of and empirical support for the latter gave 
the corresponding subfield in econometrics its name: spatial econometrics. A majority of 
existing theoretical models and applications follows the general structure introduced by Cliff 
and Ord (1973, 1981): a continuous endogenous variable is specified as a function of a spatial 
lag, i.e., the spatially weighted average of the endogenous variable, a set of exogenous 
explanatory variables, and possibly spatially autocorrelated residuals.1 This framework with 
both a spatial lag and spatial autoregressive disturbances is commonly referred to as SARAR 
model.  
 
Almost all theoretical or applied work assumes that the data-generating SARAR process is of 
first-order, i.e., SARAR(1,1). In principal, this is an unnecessary restriction and it would be 
surprising if it were generally supported with real data.2 However, to date a generalized model 
is not available for a SARAR process including spatial lags up to an order R and spatial 
dependence of the residuals up to an order S, i.e., SARAR(R,S), with fixed R and S. 
 
This paper derives a generalized moments (GM) estimator and two-stages least squares 
estimators (TSLS) for the Cliff and Ord-type, cross-sectional model with a SARAR(R,S) 
structure, generalizing the estimation procedure for a SARAR(1,1) model with 
heteroskedastic innovations by Kelejian and Prucha (2008). We demonstrate consistency of 
the proposed estimators and determine the optimal weighting matrix for the moment 
conditions. Furthermore, we derive the joint asymptotic distribution of the GM estimates of 
the spatial autoregressive parameters of the disturbance process and the feasible (generalized) 
TSLS estimates of the regression parameters of the model. The latter provides the basis for 
Wald statistics which allow the researcher to test the estimated general SARAR(R,S) model 

                                                 
1 Econometric work on Cliff and Ord (1973) models includes Anselin (1988), Baltagi and Li 
(2001), Baltagi, Song, and Koh (2003), Conley (1999), Kelejian and Prucha (1999, 2008), 
Kapoor, Kelejian, and Prucha (2007), Lee (2004, 2007), Pinkse and Slade (1998), Pinkse, 
Slade, and Brett  (2002). 
 Applications of such models are legion, and they include Audretsch and Feldmann (1996), 
Baltagi, Egger and Pfaffermayr (2005), Besley and Case (1995), Case, Hines, and Rosen 
(1993), Cohen and Morrsison Paul (2004), Holtz-Eakin (1994), Shroder (1995), and Topa 
(2001), to mention only a few. 
2 There are a few empirical studies which allow for higher-order spatial processes. Yet, they 
are typically based on either higher-order spatial autoregressive residuals (see Bell and 
Bockstael, 2000; Badinger and Egger, 2008; Cohen and Morrison-Paul, 2007) or higher-order 
spatial lags of the endogenous variable (see Egger and Raff, 2008).  
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against alternatives such as SARAR(1,1), SARAR(0,S), or SARAR(R,0). We illustrate in a set 
of Monte Carlo simulations that the proposed estimators work well, even in small samples.  
 
The remainder of the paper is organized as follows. Section II introduces the model 
specification, some notation, and a set of basic assumptions. Sections III and IV derive the 
GM estimator and generalized two-stages least squares estimators for the SARAR(R,S) 
process, demonstrates consistency and asymptotically normality of the parameter estimates, 
and formulate a consistent estimator for the variance-covariance matrix of the joint 
distribution of all model parameter estimates. Section V summarizes the findings from a 
Monte Carlo simulation exercise with a special emphasis on the point estimates of the spatial 
parameters and the rejection probabilities of Wald tests of the SARAR(R,S) model against 
interesting alternatives such as SARAR(0,S), SARAR(R,0), and the non-spatial model. 
Section VI summarizes the results and concludes. 
 
 
II. Model Specification  
In the following, we generalize the specification by Kelejian and Prucha (2008), allowing  
spatial dependence in the endogenous variable and the disturbances of arbitrary but fixed 
order R and S, respectively, i.e., the structure and strength of the cross-sectional 
interdependence may vary across subsets of the Ni ,...,1= cross-sectional units. In matrix 
notation, the model reads as follows: 
 

 N

R

r
NNrNrNNN uyWβXy ++= ∑

=1
,,λ , or  (1a) 

 NNNN uδZy += ,   (1b) 

 ∑
=

+=
S

m
NNNmNmN

1
,, εuMu ρ , (1c) 

 
where ),...,( ,,1 ′= NNNN yyy  is the N × 1 vector of observations on the dependent variable. The 

regressor matrix NX  is of dimension N × K and contains the observations on the Kk ,...,1=  

(exogenous) explanatory variables, i.e., ),...,( ,,1 NKNN xxX =  with each 1×N  vector Nk ,x  

denoting the observations on the respective explanatory variable. The structure of the spatial 
dependence in Ny  is determined by the NN ×  matrices Nr ,W , Rr ,...,1= , whose elements 

Nrijw ,,  are assumed to be known. The expression NNrNr yWy ,, =  is referred to as the r-th 

spatial lag of Ny .  

 
In equation (1b), the )( RKN +×  matrix ZN is given by ),( NNN YXZ = , with 

),...,( ,,1 NRNN yyY = , and ),( ′′′= NNN λβδ , where the 1×K  parameter vector of the exogenous 
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variables is given by ),...,( ,,1 ′= NKNN βββ  and the 1×R  vector of spatial regressive parameters 

of Ny  is defined as ),...,( ,,1 ′= NRNN λλλ .  

 
The 1×N vector of error terms ),...,( ,,1 ′= NNNN uuu  is assumed to follow a spatial regressive 

process given by (1c). The structure of the spatial dependence in Nu is determined by the 

NN ×  matrices Nm,M , Mm ,...,1= , whose elements Nmijm ,,  are assumed to be known. The 

expression NNmNm uMu ,, =  is referred to as the m-th spatial lag of Nu . The 1×S  vector of the 

spatial regressive parameters of Nu  is defined as .),...,( ,,1 ′= NSNN ρρρ  Finally, the vector 

),...,( ,,1 ′= NNNN εεε contains the innovations of the error process, which are assumed to be 

independently but not necessarily identically distributed, and whose properties will be 
specified in more detail below.  

 
Note that all variables are allowed to depend on sample size N, i.e., to form triangular arrays. 
Such a specification is consistent, for example, with models where the weights matrix is row-
normalized and the number of neighbours of a given cross-sectional unit depends on sample 
size (see Kapoor, Kelejian, and Prucha, 2007, p. 102). Note that XN may also contain spatial 
lags of exogenous variables, since it is allowed to depend on sample size. As a result, the 
model specification in equations (1a)-(1c) is fairly general, allowing for higher-order spatial 
dependence in the dependent variable, the explanatory variables, and the disturbances.  
 
To avoid confusion, a word on notation is in order here. Regarding the spatial lags of the 
dependent variable, we will always use index Rr ,...,1= . However, for reasons that will 
become clear below, we need more than one index to denote the spatial lag of the 
disturbances. In expressions involving sums as equation (1c), we always use index 

Sm ,...,1= . The more natural indexation Ss ,...,1=  is reserved for the moment conditions and 
will also be used when the context is clear and there is no danger of confusion.  
 
The following assumptions are maintained throughout the analysis: 
Assumption 1. 
(a) The diagonal elements of Nr ,W , Rr ,...,1= , and Ns,M , Ss ,...,1= , are zero.  

 
(b)  Restrictions on admissible parameter space.  

 ),(,
rr

NNNr aa λλλ −∈ , with ∞<≤< λλλ aaa rr
NN ,0 , r = 1, …, R,  and ∞<<∑

=
λλ A

R

r
Nr

1
, . 

The first part of Assumption (1b) simply requires the parameters Nr ,λ , r = 1, …, R to be 

finite; we take λa  such that r
NRr

aa ,

,...,1
max λλ

=
=  holds; the expression λa  will be used to denote an 

1×R  vector with elements λa . In the second part of Assumption (1b), the scalar λA  
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generally depends on the properties of the weights matrices Nr ,W . For example, with row-

normalized matrices Nr ,W , Rr ,...,1= , using λA = 1 ensures that )(
1

,,∑
=

−
R

r
NrNr WI λ  is 

invertible, as required in Assumption (1c). If the matrices Nr ,W  are not row-normalized, 

Assumption (1c) is implied by using 
1

,,...,1
max

−

=
⎟
⎠
⎞⎜

⎝
⎛= NrRr

A Wλ for some matrix norm   ⋅  (see 

Horn and Johnson, 1985, p. 301). Analogous assumptions are made for the parameters of the 
spatial regressive error process: 

 ),(,
ss

NNNs aa ρρρ −∈ , with ∞<≤< ρρρ
NNN aaa ss ,0 , s = 1, …, S,  and ∞<<∑

=
ρρ A

R

m
Nm

1
, .  

We take ρa  such that s
NSs

aa ,

,...,1
max ρρ

=
=  holds; the expression ρa  will be used to denote an 1×S  

vector with elements ρ
Na . As above, with row-normalized matrices Ns,M , Ss ,...,1= , the 

second part of this assumption ensures invertibility of )(
1

,,∑
=

−
S

m
NmNm MI ρ  when ρA = 1. If the 

matrices Ns,M  are not row-normalized, Assumption (1c) is implied by using 
1

,,...,1
max

−

=
⎟
⎠
⎞⎜

⎝
⎛= NsSs

A Mρ  for some matrix norm   ⋅ . 

 

(c) The matrices )(
1

,,∑
=

−
R

r
NrNr WI λ  and )(

1
,,∑

=

−
S

m
NmNm MI ρ  are nonsingular for ),( rr

NNr aa λλλ −∈  

and ),( rr
NNs aa ρρρ −∈ . This ensures that Ny and Nu  are uniquely identified by (1a) and (1c) 

through 
 

 N

R

r
NNrNN

R

r
NNrN uWIβXWIy 1

1
,

1

1
, )()( −

=

−

=
∑∑ −+−= λλ , (2a) 

 N

S

s
NmNmN εMIu 1

1
,, )( −

=
∑−= ρ . (2b) 

 
Assumption 2.  
(a) For 1,1 ≥≤≤ NNi  the innovations Ni,ε  are (mutually) independently distributed with 

0)( , =NiE ε  and 2
,

2
, )( NiNiE σε =  , where ∞<≤≤< σσ σ aa Ni

2
,0 , and  ∞<

+

≥≤≤

η
ε

4

,1,1sup NiNNi E  

for some 0>η . Note that the variance-covariance matrix of  Nε   is given by  

 
)()]([][ 2

,1
2
,1, Ni

N
iNi

N
iNNN diagEdiagE σεε == ==′= εεΩ . (3a) 
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In line with Kelejian and Prucha (2008), the innovations are allowed to depend on sample 
size, i.e., to form triangular arrays. Even if the innovations did not depend on N, Ny and 

Nu still would depend on N as can be seen from equations (2a) and (2b).  

 
We assume further that the weighting matrices have the following properties:  
Assumption 3. 
The row and column sums of the matrices Nr ,W , Rr ,...,1= , Ns,M , Ss ,...,1= , 

1

1
, )( −

=
∑−

R

r
NrrN WI λ , and 1

1
, )( −

=
∑−

S

m
NmmN MI ρ  are bounded uniformly in absolute value. (See 

Remark A.1 in Appendix A for a definition of row and column sum boundedness.)  
 
As Kelejian and Prucha (2008, p. 7) point out, Assumption 3 restricts the extent of 
neighborliness of the cross-sectional units on the one hand, and the degree of cross-sectional 
correlation between the model disturbances on the other hand. Such restrictions on the degree 
of permissible correlations are standard in virtually all large sample theory. 
 
In light of equation (2b) and Remark A.1, Assumptions 2 and 3 imply that 0)( =NE u  and that 

the variance-covariance matrix of Nu  is given by  

 

 )(, NNNu E uuΩ ′= ∑∑
=

−

=

− ′−−=
R

s
NmnmN

S

m
NNmNmN

1

1
,,

1
,

1
,, )()( MIΩMI ρρ ε . (3b) 

 
 
III. GM Estimator for S-th Order Spatial Regressive Error Process  
In the following, we extend the GM estimator for the spatial autoregressive parameter in 
Kelejian and Prucha (2008) to the case of an S-th order process. In this subsection, we only 
consider the process in equation (1c) for the disturbances Nu , but not necessarily the one in 

equation (1a) for Ny . We first derive the moment conditions defining the GM estimator of 

Nρ  for the case of heteroskedastic innovations and the optimal weighting of the moment 

conditions. We then prove consistency and derive the asymptotic distribution of the proposed 
GM estimator.  
 
1. Moment Conditions and Definition of a GM Estimator for Nρ  

Kelejian and Prucha (2008) use two moment conditions to derive a generalized moments 
(GM) estimator for a first-order spatial regressive process ( 1=S ). In case of an S-th order 
process, the GM estimators of the parameters NSN ,,1 ,..., ρρ  are obtained by recognizing that – 

under Assumptions 1 and 2 – the moment conditions used by Kelejian and Prucha (2008) hold 
for each matrix Ns,M , Ss ,...,1= . In particular, we define for each matrix Ns,M , Ss ,...,1= , 
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 )(
1

,,,,, ∑
=

−==
S

m
NNmNmNNsNNsNs uMuMεMε ρ . (4) 

 
The moment conditions MC1,s to MC2,s, Ss ,...,1= , associated with matrix Ns,M  through 

equation (4), are given by   
 
MC1,s  0}])]([{)([ ,

2
,1,,,

1 =′−′ =
−

NsNi
N
iNsNsNs εEdiagTrEN MMεε ,  (5a) 

MC2,s  0)( ,
1 =′−

NNsEN εε . (5b) 

 
MC1,s and MC2,s can be written alternatively as  
 
MC1,s  0)( ,1

1 =′−
NNsNEN εAε ,  (6a) 

MC2,s  0)( ,2
1 =′−

NNsNEN εAε , (6b) 

 
where )( ,,.,,.1,,,1 NsiNsi

N
iNsNsNs diag mmMMA ′−′= =  with Nsi ,,.m  denoting the i-th column of 

Ns,M , and NsNs ,,2  MA = . It is readily seen that the main diagonal elements of Ns,1A  and 

Ns,2A  are zero. Also, note that the row and column sums of Ns,1A and Ns,2A  are uniformly 

bounded in absolute value in light of Remark A.1 in Appendix A. 
 
From the specification of the error term in equation (1c), it follows that   
 

 ∑∑
==

−=−=
S

m
NmNmN

S

m
NNmNmNN

1
,,

1
,, uuuMuε ρρ  and (7a) 

 ∑∑
==

−=−==
S

m
NsmNmNs

S

m
NNmNmNNsNsNs

1
,,,

1
,,,,, )( uuuMuMMε ρρε , (7b) 

 
where we use the following definitions: NNsNs uMu ,, = , NmNsNNmNsNsm ,,,,, uMuMMu == . 

 
Substituting (7a) and (7b) into the moment conditions (6a) and (6b), we obtain a S2  equation 
system 
 
 0=− NNN bΓγ ,     (8a) 

 
where Nb  is a [2S + S(S-1)/2 ] × 1 vector, given by 

 
 ),...,,...,,,..., ,,...,( ,,1,,1,2,1

2
,

2
,1,,1 ′= − NSNSNSNNNNSNNSNN ρρρρρρρρρρb ,  
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i.e., Nb  contains S linear terms Nm,ρ  ( Sm ,...,1= ), S quadratic terms 2
, Nmρ  ( Sm ,...,1= ), and 

2/)1( −SS cross products NlNm ,, ρρ  (m = 1, …, S-1, l = m +1, … S).  

 

Nγ  is a 2S × 1 vector with elements )( , Niγ , i = 1, …, 2S, and NΓ  is a 2S × [2S + S(S-1)/2] 

matrix with elements )( ,Nijγ , i = 1, …, 2S, j = 1, …, [2S + S(S-1)/2], whose elements will be 

defined below. The row-index of the elements Nγ  and NΓ  will be chosen such that the 

equation system (8a) has the following order: the first two rows correspond to the moment 
conditions MC1,1 and MC2,1 associated with matrix N,1M  through (4); rows three and four 

correspond to MC1,2 and MC4,2 associated with matrix N,2M , and so forth; rows (2S−1) and 

2S correspond to MC1,S to MC4,S associated with the matrix NS ,M . As a result, the equation 

system can also be written as  
 

 0
Γ

Γ

γ

γ
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

N

NS

N

NS

N

b

,

,1

,

,1

.. , (8b) 

 
where the 2 × 1 vectors Ns ,γ  and the 2 × [2S + S(S-1)/2] matrices Ns,Γ , Ss ,...,1=  are the 

parts of the equation system (8a) associated with matrix Ns,M  (and moment conditions MC1 

and MC2). Note that the first two rows of equation system (8b) correspond to the equation 
system (6) in Kelejian and Prucha (2008), which is a special case of equation (8b) under 

1=S .  
 
The sample analogue of equation system (8a) is given by  

 

 )(~~
NNNNN ρΓγ ϑ=− b , (9) 

 

where Nγ~  and NΓ
~  are equal to Nγ  and NΓ  with the expectations operator suppressed and the 

disturbances Nu  replaced by (consistent) estimates Nu~ ; )( NN ρϑ  can be viewed as a vector of 

regression residuals. 
 

The GM estimates of the parameters ),...,( ,,1 NSN ρρ  are then defined as  

 

 )]((~)([])~~(~)~~[(minarg)~(~~ ρΘρΓγΘΓγΘρρ
aρa

NNNNNNNNNN  ϑϑ
ρρ

′=−′−==
≤≤−

bb ,  (10) 
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i.e., the parameter estimates can be obtained from a (weighted) nonlinear least squares 

regression of Nγ~  on the columns of NΓ
~ . The optimal choice and estimation of the weighting 

matrix NΘ  will be discussed in more detail below.  

 
In the following, we define the elements of Nγ  and NΓ , grouped by the two moment 

conditions. 
 
Moment Condition M1 delivers s = 1, … S equations of equation system (8b), appearing in 
rows 1, 3, …, 2S-1. The corresponding elements of Nγ  and NΓ  are given by 

  
 =+− 1)1(2 sγ  NsNsEN ,,

1 { uu′− − ]})([ ,
2
,1, NsNi

N
iNs udiagTr MM ′= , or  (11) 

 =+− 1)1(2 sγ  )( ,1
1

NNsNEN uAu′− .      

 
 =+− ms ,1)1(2γ ]})([{2 ,,,,1,,,

1
NsNiNim

N
iNsNsNsm uudiagTrEN MMuu ′−′ =

− , or        

 =+− ms ,1)1(2γ )(2 ,1,
1

NNsNmNEN uAMu ′′− , Sm ,...,1= .   

 
Note that Nu  exhibits two subscripts: the first subscript m refers to the matrix by which Nu  is 

premultiplied; the second subscript i refers to the unit of observation.  
 
 =++− mSs ,1)1(2γ ]})([[ ,

2
,,1,,,

1
NsNim

N
iNsNsmNsm udiagTrEN MMuu ′−′− =

− , , or  

 =++− mSs ,1)1(2γ )( ,,1,
1

NNmNsNmNEN uMAMu ′′− − , Sm ,...,1= . 

 
 =−+−−++− mlmmmSs 2/)1()1(,1)1(2γ ]})([{2 ,,,,,1,,,

1
NsNimNil

N
iNsNslNsm uudiagTrEN MMuu ′−′− =

− ,   

 or  
 =−+−−++− mlmmmSs 2/)1()1(,1)1(2γ )(2 ,,1,

1
NNlNsNmNEN uMAMu ′′− − , 1,...,1 −= Sm , Sml ,...,1+=   

 
 
Moment Condition M2 delivers Ss ,...,1=  equations of system (8b), appearing in rows 2, 4, 

…., 2S. The corresponding elements of Nγ  and NΓ  are given by 

 
 =+− 2)1(2 sγ )( ,

1
NsNEN uu′− , or   

 =+− 2)1(2 sγ )( ,2
1

NNsNEN uAu′− .   

     
 =+− ms ,2)1(2γ ][ ,,,

1
NsNmNsmNEN uuuu ′+′− , associated with mρ , or  

 =+− ms ,2)1(2γ ])([ ,2,2,
1

NNsNsNmNEN uAAMu +′′′− , Sm ,...,1= . 
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 =++− mSs ,2)1(2γ ][][ ,,
1

,,
1

NsmNmNmNsm ENEN uuuu ′−=′− −− , or  

 =++− mSs ,2)1(2γ )( ,,2,
1

NNmNsNmNEN uMAMu ′′− − , Sm ,...,1= . 

 
 =−+−−++− mlmmmSs 2/)1()1(,2)1(2γ )( ,,,,

1
NlNsmNmNslEN uuuu ′+′− − , or  

 =−+−−++− mlmmmSs 2/)1()1(,2)1(2γ ])([ ,,2,2,
1

NNmNsNsNlNEN uMAAMu +′′′−= − , 1,...,1 −= Sm , 

 Sml ,...,1+= . 
 

2. Asymptotic Properties of the GM Estimator for Nρ  

2.1 Consistency  
In order to prove consistency, the following additional assumptions are required: 
Assumption 4. 
Let Niu ,

~  denote the i-th element of Nu~ . We then assume that  

 
 NNiNiNi uu Δd .,,,

~ =− ,             

 
where Ni.,d  is an P×1  vector and NΔ  is a P × 1 vector. Let Nijd , be the j-th element of Ni.,d . 

Then we assume that for some 0>δ , ∞<≤
+

dNij cdE
δ2

, , where dc  does not depend on N, 

and that )1(2/1
pN ON =Δ . 

 
Assumption 4 will typically be fulfilled in linear spatial models, where the estimates of Niu ,

~  

are based on 2/1N -consistent estimates of the model parameters. This is not different from the 

first-order case (Kelejian and Prucha, 2008, p.11) and ensures that Nγ~  and NΓ
~  converge in 

probability to Nγ  and NΓ . To be more specific, consider the linear model in equation (1a) 

without endogenous regressors. Then, Ni.,d  is the i-th row of the regressor matrix NX  and 

NΔ  denotes the difference between the parameter estimator and the true parameter values, 

i.e., ( )~
NN ββ − . In that case, consistency of least squares ensures that Assumption 4 holds. As 

stated here, Assumption 4 will also be fulfilled in more general settings, e.g., if model (1a) 
contains endogenous variables (such as spatial lags of y) and is estimated using an 
instrumental variable procedure. Under certain conditions, Assumption 4 will also be satisfied 
if model (1a) involves a nonlinear specification (see Kelejian and Prucha, 2008, p. 12). 
 
Assumption 5. 
(a) The smallest eigenvalue of NNΓΓ′  is uniformly bounded away from zero.  

(b) )1(~
pNN o=−ΘΘ , where NΘ  are SS 22 ×  nonstochastic symmetric, positive definite 
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matrices. (c) The largest eigenvalues of NΘ  are uniformly bounded from above, and the 

smallest eigenvalues of NΘ  are uniformly bounded away from zero. 

 
As we will show in Appendix A, Assumption 5 also implies that the smallest eigenvalues of 

NNN ΓΘΓ′  are uniformly bounded away from zero, ensuring that the true parameter vector Nρ  

is identifiable unique. By the equivalence of matrix norms, Assumption 5 also implies that 

NΘ  and 1−
NΘ  are O(1). 

 
Assumptions 1 to 3 (maintained throughout) together with Assumptions 4 and 5 ensure 
consistency of the estimator Nρ~ . We summarize this result in the following Theorem, which 

is proved in the Appendix C. 
 
Theorem 1.3 
Suppose Assumptions 1-5 hold. Then, provided the optimization space contains the parameter 

space, the GM estimators ])~(~),...,~(~[)~(~
,,1 ′= NNSNNNN ρρ ΘΘΘρ  defined by (10) are consistent 

for NSN ,1, ,..., ρρ , i.e.,  

 0  ~ p
s,Ns,N ρρ →−  as ∞→N , Ss ,...,1= . 

 
2.2 Asymptotic Distribution of GM Estimator for Nρ  

To establish asymptotic normality of Nρ~ , we need some additional assumptions. 

 
Let ),...,( .,.,1 ′′′= NNNN ddD , with Ni.,d  defined as in Assumption 4, such that NNNN ΔDuu =−~ .  

Assumption 6. 
For any real NN ×  matrix NA , whose row and column sums are bounded uniformly in 

absolute value, it holds that   
 
 )1()(11

pNNNNNN oENN =′−′ −− uADuAD . 

 
A sufficient condition for Assumption 6 is, e.g., that the columns of ND  are of the form 

NNN εΠπ + , where the elements of Nπ  are uniformly bounded in absolute value and the row 

and column sums of NΠ  are uniformly bounded in absolute value (compare Lemma C.2 in 

Kelejian and Prucha, 2008). This will be the case in many applications, e.g., for the model in 

                                                 
3 It is assumed that Nρ~  exists and measurable. In the present setting, this is ensured, for 

example, by Lemma 2 in Jennrich (1969), which is a special case of Lemma 3.4 in Pötscher 
and Prucha (1997) when the parameter space is a compact subset of the Euclidian space. 
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equations (1) and (2), when ND  equals (the negative of) the matrix NZ  (compare Lemma 1 in 

Section IV). 
 
Assumption 7. 
Let NΔ be defined as in Assumption 4. Then  

 
 )1(2/12/1

pNNN oNN +′= − εTΔ , 

 
where NT  is an PN × -dimensional real nonstochastic matrix whose elements are uniformly 

bounded in absolute value. As remarked above, NΔ  typically denotes the difference between 

the parameter estimates and the true parameter values. Assumption 7 will be satisfied by 
many estimators. In Section IV, we verify that this assumption hold when the model in 
equation (1) is estimated by two-stages least squares (TSLS).  
 
We summarize the results regarding the asymptotic distribution of Nρ~  in the following 

theorem, which is proved in Appendix C.  
 
Theorem 2. (Asymptotic Normality of Nρ~ ) 

Let Nρ~  be the GM estimator defined by (10). Suppose Assumptions 1-7 hold and, 

furthermore, that 0)( *
min >≥ ΨΨ cNλ . Then, provided the optimization space contains the 

parameter space, we have  
 
 )1()()~( 2/112/1

pNNNNNNNNN oN +′′=− − ξΨΘJJΘJρρ , with  

 NNNNN Bb ΓΓ
ρ

J =
′∂

∂
= ,  and 

 ),0( 2
2/1

S
d

NNN N IvΨξ →= − , 

 
where ][ NNN E vvΨ ′=  and ))(( 2/12/1 ′= NNN ΨΨΨ . 

 
Furthermore )1()~(2/1

pNN ON =− ρρ  and 

 
 11

~ )()()( −− ′′′= NNNNNNNNNNNNN
JΘJJΘΨΘJJΘJΘΩρ , 

 
where 

Nρ~Ω  is positive definite. 
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Theorem 2 implies that the difference between the cumulative distribution function of 
)~(2/1

NNN ρρ −  and that of ),( ~
N

N ρΩ0  converges pointwise to zero, which justifies the use of 

the latter as an approximation of the former.4 
 
The elements of Nv  in Theorem 2 are given by  

 

 )(. ,

,

,1

Ns

NS

N

N v
v

v
v =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= Ss ,...,1= , where  (12) 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

Ns

Ns
Ns v

v

,2

,1
,v = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′+′+′

′+′+′
−

])([

])([

,2,2,22
1

,1,1,12
1

2/1

NNsNNsNsN

NNsNNsNsN
N

εaεAAε

εaεAAε
, Ss ,...,1= .  

 
The 1×N  vectors Ns,1a  and Ns ,2a  are defined as  

 
 NsNNs ,1,1 αTa =  (13a) 

 NsNNs ,2,2 αTa = , (13b) 

 
where  
 

 ]))()(([
1

,,,1,1
1

,,
1

,1 N

S

m
NmNmNNsNs

S

m
NmNmNNNs ρρEN uMIAAMIDα ∑∑

==

− −′+′−′=  

 ]))()(([
1

,,,2,2
1

,,
1

,2 N

S

m
NmNmNNsNs

S

m
NmNmNNNs ρρEN uMIAAMIDα ∑∑

==

− −′+′−′= . 

 
The SS 22 ×  (limiting) variance-covariance matrix of Nv , denoted as NΨ , takes the 

following form:  
 
 

 )( NNN E vvΨ ′= = )( ,,

,,,1,

,,1,1,1

NqNp

NSNSNNS

NSNNN

EE vv

vvvv

vvvv

′=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′′

′′

, Sqp ,...,1, = . (14) 

 
It is made up of 2S  submatrices of dimension 22× , defined as  
 

                                                 
4 Compare Corollary F4 in Pötscher and Prucha (1997) (see Appendix B). 
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 ⎥
⎦

⎤
⎢
⎣

⎡
′′
′′

=′
NqNqNqNp

NqNpNqNp
NqNp vvvv

vvvv
EE

,2,2,1,2

,2,1,1,1
,, )( vv . 

 
Hence, NΨ  can also be written as  

 
 NΨ )( , Npqψ= , Sqp ,...,1, = ,  

 
where the 22× elements  
 

 Npq,ψ =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
22

,
21

,

12
,

11
,

NpqNpq

NpqNpq

ψψ
ψψ

 

 
are defined as  
 
  =′= )( ,1,1

11
, NqNpNpq vvEψ  (15a) 

 ∑∑∑
=

−

= =

− +++=
N

i
NiNqiNpi

N

i

N

j
NjNiNqjiNqijNpjiNpij aaNaaaaN

1

2
,,1,,1,

1

1 1

2
,

2
,,1,,1,,1,,1,

1 ))((
2
1 σσσ , 

 
 =′= )( ,2,1

12
, NqNpNpq vvEψ

 ∑∑∑
=

−

= =

− +++=
N

i
NiNqiNpi

N

i

N

j
NjNiNqjiNqijNpjiNpij aaNaaaaN

1

2
,,2,,1,

1

1 1

2
,

2
,,2,,2,,1,,1,

1 ))((
2
1 σσσ , 

 
=′= )( ,1,2

21
, NqNpNpq vvEψ  

 ∑∑∑
=

−

= =

− +++=
N

i
NiNqiNpi

N

i

N

j
NjNiNqjiNqijNpjiNpij aaNaaaaN

1

2
,,1,,2,

1

1 1

2
,

2
,,1,,1,,2,,2,

1 ))((
2
1 σσσ , 

 
 =′= )( ,2,2

22
, NqNpNpq vvEψ  

∑∑∑
=

−

= =

− +++=
N

i
NiNqiNpi

N

i

N

j
NjNiNqjiNqijNpjiNpij aaNaaaaN

1

2
,,2,,2,

1

1 1

2
,

2
,,2,,2,,2,,2,

1 ))((
2
1 σσσ , 

 
or, in matrix notation, 
 

 NqNNpNNqNqNNpNpNpq NTrN ,1,1
1

,1,1,1,1
111

, ])()[(
2
1 aΣaΣAAΣAA ′+′+′+= −−ψ , (15b) 

 NqNNpNNqNqNNpNpNpq NTrN ,2,1
1

,2,2,1,1
112

, ])()[(
2
1 aΣaΣAAΣAA ′+′+′+= −−ψ , 

 NqNNpNNqNqNNpNpNpq NTrN ,1,2
1

,1,1,2,2
121

, ])()[(
2
1 aΣaΣAAΣAA ′+′+′+= −−ψ , 
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 NqNNpNNqNqNNpNpNpq NTrN ,2,2
1

,2,2,2,2
122

, ])()[(
2
1 aΣaΣAAΣAA ′+′+′+= −−ψ . 

 

Note that 111
~ )()( −−− ′= NNNNN

JΨJΨΩρ and )()( 1
~~

−− NN NN
ΨΩΘΩ ρρ  is positive semidefinite. Thus, 

using a consistent estimator of 1−
NΨ  (which will be derived below) as the weighting matrix 

NΘ  leads to the efficient GM estimator. By assumption, 0)( *
min >≥ ΨΨ cNλ . Moreover, the 

elements of NΨ  are uniformly bounded in absolute value, such that ∞<≤ **
max )( ΨΨ cNλ  by 

the equivalence of matrix norms. Hence, 1−
NΨ  automatically satisfies the assumptions made 

with respect to NΘ  in Assumption 5. Note that NΨ  is generally not identical to the variance-

covariance matrix of the moment vector unless Ns,1a  and Ns,2a  are equal to zero.  This is due 

to the fact that the GM estimator is based on estimated rather than the true disturbances and 
the presence of endogenous right-hand side variables included in equation (1). In the absence 
of an endogenous right-hand side variable, 0aa == NsNs ,2,1 . Apart from this fact, the 

variance-covariance matrix of the GM estimator of Nρ  is of the usual ‘sandwich form’. 

 
2.3 Estimation of Variance-Covariance Matrix of Nρ   

In the following we develop a consistent estimator for the variance-covariance matrix of Nρ~ . 

Define   
 

 NNN B~~~ ΓJ = , and (16a) 

 )~(~ 2
,1 Ni

N
iN diag ε==Σ ,  (16b) 

 

where N

S

m
NmNmNN ρ uMIε ~)~(~

1
,,∑

=

−= .   

 
We next specify an estimator for NsNNs ,1,1 αTa =  and NsNNs ,2,2 αTa = . The matrix NT  will in 

many applications be of the form 
 

 NNN PFT =   with N

S

m
NmNmNN ρ HMIF )(

1
,,∑

=

−=  or N

S

m
NmNmNN ρ HMIF 1

1
,, )( −

=
∑ ′−= , (17) 

 
where NH  is a real nonstochastic *PN ×  matrix of instruments, and NP  is a real 

nonstochastic PP ×*  matrix, with P as in Assumption 7.  

 
To be more specific, consider a TSLS estimator of the model in equation (1a). In that case, 

)~( NNN δδΔ −=  and the matrix NP  will be of the structure as defined above and can be 
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estimated consistently by some estimator NP~  (see Section IV). The estimators for NT  are 

defined as  
 

 NNN PFT ~~~
=   with N

S

m
NmNmNN ρ HMIF )~(~

1
,,∑

=

−=  or N

S

m
NmNmNN ρ HMIF +

=
∑ ′−= )~(~

1
,, . (18) 

 
The estimators of NsNNs ,1,1 αTa =  and NsNNs ,2,2 αTa =  are then given by 

 

 NsNNs ,1,1
~~~ αTa =  and  (19a) 

 NsNNs ,2,2
~~~ αTa = ,  (19b) 

 
with  
 

 ]~)~)()(~([~
1

,,,1,1
1

,,
1

,1 N

S

m
NmNmNNsNs

S

m
NmNmNNNs ρρN uMIAAMIDα ∑∑

==

− −′+′−′=  and (20a) 

 ]~)~)()(~([~
1

,,,2,2
1

,,
1

,2 N

S

m
NmNmNNsNs

S

m
NmNmNNNs ρρN uMIAAMIDα ∑∑

==

− −′+′−′= . (20b) 

 

In matrix form, the elements of the estimated SS 22 ×  matrix NΨ~  are defined as:  

 

 NqNNpNNqNqNNpNpNpq NTrN ,1,1
1

,1,1,1,1
111

,
~~~]~)(~)[(

2
1~ aΣaΣAAΣAA ′+′+′+= −−ψ , (21) 

 NqNNpNNqNqNNpNpNpq NTrN ,2,1
1

,2,2,1,1
112

,
~~~]~)(~)[(

2
1~ aΣaΣAAΣAA ′+′+′+= −−ψ , 

 NqNNpNNqNqNNpNpNpq NTrN ,1,2
1

,1,1,2,2
121

,
~~~]~)(~)[(

2
1~ aΣaΣAAΣAA ′+′+′+= −−ψ , 

 NqNNpNNqNqNNpNpNpq NTrN ,2,2
1

,2,2,2,2
122

,
~~~]~)(~)[(

2
1~ aΣaΣAAΣAA ′+′+′+= −−ψ , 

 

for Sqp ,...,1, = . Based on NΨ~ , we can now define the estimator for 
Nρ

Ω~  as  

 

  ++ ′′′= )~~~(~~~~~)~~~()~(~
~ NNNNNNNNNNNNN

JΘJJΘΨΘJJΘJΘΩρ . (22) 

 

The following theorem establishes the consistency of NΨ~  and 
Nρ

Ω~
~ . 

 
Theorem 3. (Variance-Covariance Matrix Estimation). 
Suppose all of the assumptions of Theorem 2, apart from Assumption 5, hold and that 
additionally all of the fourth moments of the elements of ND  are uniformly bounded. Suppose 
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furthermore (a) that the elements of the nonstochastic matrices NH  are uniformly bounded in 

absolute value, (b) 1sup
1

, <∑
=

S

s
NsN ρ  and that the row and column sums of NM  are bounded 

uniformly in absolute value by one and some finite constant, respectively, and  

(c) )1(~
pNN o=− PP  with )1(ON =P . Then,  

 

 )1(~
pNN o=−ΨΨ  and )1(~ 11

pNN o=− −− ΨΨ . 

 
Furthermore, if Assumption 5 holds, then also  
 

 )1(~
~~ po

NN
=− ρρ ΩΩ . 

 
Remark 1. 
As in Kelejian and Prucha (2008, p. 17), Theorem 3 also holds, if Nρ~  is replaced by some 

other estimator )1()(2/1
pNN ON =− ρρ( . In case that ∑

=

−=
S

m
NNmNmNN

1
,, )( HMIF ρ , condition 

(b) can be dropped. The consistency result for 1~ −
NΨ  verifies that this estimator for 1−

NΨ  can 

indeed by used in the formulation of an efficient GM estimator.  
 
3. Joint Distribution of the GM Estimator for Nρ  and Estimators of Other Model 

Parameters  
Note that )~(2/1

NNN ρρ −  depends on a vector of linear quadratic forms in the innovations Nε  

plus a term of order )1(po . By Assumption 7, NN Δ2/1  is asymptotically linear in Nε . Hence, 

the joint distribution of the vector ])~(,[ 2/12/1 ′′−′ NNN NN ρρΔ  can be derived invoking the 

central limit theorem for vectors of quadratic forms by Kelejian and Prucha (2008); see 
Appendix B. 
  
Consider the 1)2( * ×+ SP  vector of linear and linear quadratic forms in Nε :  

 

 ⎥
⎦

⎤
⎢
⎣

⎡ ′
=

−

N

NN
N

N
v

εF
w

2/1

.     (23) 

 
Using Lemma A.1 in Kelejian and Prucha (2008) (see Appendix B), its variance-covariance 
matrix is of dimension )2()2( ** SPSP +×+  and given by 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
′

′′′′
==

−

−−

NNNNN

NNNNNNN
NoN N

NN
EVar

vvFεv
vεFFεεF

Ψw 2/1

2/11

,)( ⎥
⎦

⎤
⎢
⎣

⎡
′

=
Δ

ΔΔΔ

NN

NN

ΨΨ
ΨΨ

,

,,

ρ

ρ  , (24) 
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where  
 

NNNN N FΣFΨ ′= −
ΔΔ

1
,  and  

),,....,,()( ,2,1,21,11
11

, NSNSNNNNNNNN NEN aaaaΣFvεFΨ ′=′′= −−
Δρ , and  

 

NΨ  is defined in equation (14). 

 
As we demonstrate in Appendix C, the matrix No,Ψ  can be estimated consistently by  

 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′
=

Δ

ΔΔΔ

NN

NN
No ΨΨ

ΨΨ
Ψ ~~

~~
~

,

,,
,

ρ

ρ , where  (25) 

 NNNN N FΣFΨ ~~~~ 1
, ′= −

ΔΔ ,  

 )~,~,....,~,~(~~~
,2,1,21,11

1
, NSNSNNNNN N aaaaΣFΨ ′= −

Δρ , and 

 

NΨ~  is defined in equation (21). 

 
Regarding the joint limiting distribution of )~(2/1

NNN ρρ −  and NN Δ2/1 , we now have the 

following result:  
 
Theorem 4. (Joint Distribution of Nρ~  and Other Model Parameters) 

Suppose all assumptions used in Theorem 3 hold and 0)( *
,min >≥

o
cNo ΨΨλ . Then,   

 

 )1(
)()~( ,

2/1
,12/1

2/1

pNoNo
NNNNN

N

NN

N o
N

N
+⎥

⎦

⎤
⎢
⎣

⎡
′′

′
=⎥

⎦

⎤
⎢
⎣

⎡

− − ξΨ
ΘJJΘJ0

0P
ρρ

Δ
, with  (26) 

 ),(),(
2

2/12/1
,, * SP

d
NNNNoNo NN

+
−− →′′′= I0vFεΨξ . 

  
Furthermore, let 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
′⎥

⎦

⎤
⎢
⎣

⎡
′′

′
= −− 1,1, )()( NNNNN

N
No

NNNNN

N
No JΘJJΘ0

0P
Ψ

ΘJJΘJ0
0P

Ω , and (27) 

 

 ⎥
⎦

⎤
⎢
⎣

⎡

′⎥
⎦

⎤
⎢
⎣

⎡

′′
′

=
++ )~~~(~~

~~
~~)~~~(

~~
,,

NNNNN

N
No

NNNNN

N
No JΘJJΘ0

0P
Ψ

ΘJJΘJ0
0P

Ω . (28) 
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Then,  
 

 )1(~
,, pNoNo o=−ΨΨ , )1(~

,, pNoNo o=−ΩΩ , and )1(, ONo =Ψ , )1(, ONo =Ω . 

 
Theorem 4 implies that the difference between the joint cumulative distribution function of 

])~(,[ 2/12/1 ′′−′ NNN NN ρρΔ  and that of ),( ,NoN Ω0  converges pointwise to zero, which justifies 

the use of the latter distribution as an approximation of the former. The theorem also states 

that  No,
~Ω  is a consistent estimator of No,Ω . The proof of Theorem 4 is given in Appendix C.  

 
Remark 2. 
Theorem 4 can also be used to obtain the joint distribution of )~( NN ρρ −  and some other 

estimator *
NΔ , where )1(*2/1*2/1

pNNN oNN +′= εTΔ , ***
NNN PFT = , *** ~~~

NNN PFT = , assuming that 

analogous assumptions are maintained for this estimator. In particular, the results remain 

valid, but with **1
, NNNN N FΣFΨ ′= −

ΔΔ , ),,....,,( ,2,1,21,11
*1

, NSNSNNNNN N aaaaΣFΨ ′= −
Δρ , 

**1
,

~~~~
NNNN N FΣFΨ ′= −

ΔΔ , 

)~,~,....,~,~(~~~
,2,1,21,11

*1
, NSNSNNNNN N aaaaΣFΨ ′= −

Δρ , and with NN PP ~,  replaced by ** ~, NN PP . 

 
 
IV. Two-Stages Least Squares (TSLS) Estimator for Nδ  

1. Instruments 
It is evident from model (1), that 0)( ≠′NNE uY . In line with Kelejian and Prucha (2008), we 

consider a TSLS procedure to obtain consistent estimates of the parameters Nδ .  

 
The following assumptions are maintained. 
Assumption 8. 
The regressor matrix NX  has full column rank (for N large enough). Furthermore, the 

elements of NX  are uniformly bounded in absolute value. 

 
Assumption 9. 
The instrument matrix NH  has full column rank RKP +≥*  (for N large enough). 

Furthermore, the elements of NH  are uniformly bounded in absolute value.  

 
Assumption 10. 
The instruments NH  satisfy: 

 )(lim 1
NNN N HHQHH ′= −

→∞  is finite and nonsingular. 

 )(plim 1
NNN N ZHQHZ ′= −

∞→  is finite and has full column rank. 
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Regarding the choice of instruments, note that 
 

 ])[()()( 1

1
,,

1
,

1
,

1
, NN

R

r
NrNr

R

r
NrN

R

r
Nr

R

r
NNr EEE βXWIWyWyW −

=′
′′

===
∑∑∑∑ −== λ   

 NN
i

i
R

r
NNrN

R

r
Nr βXWIW ∑ ∑∑

∞

= =′
′

=

+=
1 1

,
1

, ])([ λ , (29) 

 

provided that 1
1

,, <∑
=′

′′

R

r
NrNr Wλ  for some matrix norm   ⋅  (compare Horn and Johnson, 1985, 

p. 301). The instrument matrices NH  are used to instrument ),( NNN YXZ =  in terms of their 

predicted values from a least squares regression on NH , i.e., NN N
ZPZ H=ˆ , where 

NNNNN
HHHHPH ′′= −1)( . In light of (29) it is reasonable to select NH  to include NX  and a 

subset of the linearly independent columns of terms of the sum  
 

 ∑ ∑
= =′

′

Q

i
N

i
R

r
Nr

1 1
, )( XW , (30) 

 
where Q  is some predefined constant. 5 
 
Note that such a choice of NH  implies that Assumption 9 will be fulfilled (by Assumptions 3 

and 8). This choice also ensures that NX  is instrumented by itself.  

 
2. Definition of TSLS Estimator and Asymptotic Results 
As in Kelejian and Prucha (2008), estimation of the model in equation (1) proceeds in three 
steps. In the first step, model (1a) is estimated by TSLS using the instruments NH . In the 

second step, the spatial regressive parameters NSN ,,1 ,..., ρρ  can be estimated using the GM 

estimator defined in Section III, based on consistent estimates of Nu from the first step. In the 

third step, model (1a) is re-estimated by feasible generalized two-stages least squares 
(FGTSLS), which is equivalent to performing a TSLS estimation on a transformed version of 
equation (1). We outline each of these steps in more detail in the following. 
 
The TSLS estimator of model (1a) is defined as  
 

 NNNNN yZZZδ ′′= − ˆ)ˆ(~ 1 , where (31) 

                                                 
5 Kelejian, Prucha, and Yuzefovich (2004) consider alternative sets of instruments in the 
estimation of SARAR(1,1) models. Their Monte Carlo simulation results suggest that 
choosing 2=Q  will be sufficient in many applications.  
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 )ˆ,(ˆ
NNNN N

YXZPZ H ==  and (32a)  

 NN N
YPY H=ˆ . (32b) 

 
In the second step, the parameters Ns,ρ , Ss ,...,1= , are estimated using the GM estimator 

defined in equation (10), based on the first step residuals NNnN δZyu ~~ −= . As above these 

estimators are denoted as Ns,
~ρ , Ss ,...,1= . 

 
Lemma 1 shows that the various assumptions maintained in Section III are automatically 

satisfied by the TSLS estimator Nδ
~  and the corresponding residuals Nu~ . 

Lemma 1.6  
Suppose that Assumptions 1-3 and 8-10 hold, and that ∞<≤ bNN βsup . Let NN ZD −= , 

then, the fourth moments of the elements of ND  are uniformly bounded in absolute value, 

Assumption 6 holds, and  

(a)  )1()~( 2/12/1
pNNNN oNN +′=− − εTδδ  with NNN PFT =  and where  

111 )( −−− ′= HZHHHZHZHH QQQQQPN  and 

N

S

m
NmNmNN ρ HMIF 1

1
,, )( −

=
∑ ′−= ; 

(b) )1(2/1
pNN ON =′− εT ; 

(c) )1(pN O=P  and )1(~
pNN o=− PP  for  

11111111 ])())(()[()(~ −−−−−−−− ′′′′′= NNNNNNNNNNN NNNNN ZHHHHZZHHHP . 

 
The condition ∞<≤ bNN βsup  is trivially satisfied if ββ =N . Note that (a) and (b) together 

imply that Nδ
~  is a 2/1N -consistent estimator of Nδ . 

 
Regarding Assumption 4, we now have NNNN ΔDuu =−~ , where NN ZD −=  and 

NNN δδΔ −=
~ . Lemma 1 shows that under Assumptions 1-3 and 8-10 the TSLS residuals 

automatically satisfy the conditions postulated in Assumptions 4, 6, and 7 with respect to ND , 

NΔ , and NT . Hence, Theorems 1 and 2 apply to the GM estimator Nρ~ , which is based on 

TSLS residuals. The Lemma also establishes that the elements of ND are uniformly bounded 

in absolute value, gives explicit expressions for NP  and NP~ , and verifies that the conditions 

concerning these matrices made in Theorems 3 and 4 are fulfilled. Hence, Theorems 3 and 4 

                                                 
6 The above Lemma corresponds to Lemma 3 in Kelejian and Prucha (2008) and is adapted 
here to apply to the higher-order case.  
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cover the GM estimator Nρ~  and the TSLS estimator Nδ
~ . In particular, Theorem 4 gives the 

joint limiting distribution of )~(2/1
NNN ρρ −  and )~(2/1

NNN δδ − , where NN ZD −= , the 

matrices NNN PFP ~,,  are as in Lemma 1, and N

S

m
NmNmNN ρ HMIF +

=
∑ ′−= )~(~

1
,, . 

 
We now turn to the third step. A Cochrane-Orcutt transformation to (1) is:  
 
 NNNN εδZy += ** ,  where (33) 

 ∑
=

−=
S

m
NNmNmNN

1
,,

* )( yMIy ρ ,  

 ∑
=

−=
S

m
NNmNmNN

1
,,

* )( ZMIZ ρ , and  

 .)(
1

,,
*

N

S

m
NNmNmNN εuMIu =−= ∑

=

ρ  

 

The FGTSLS estimator, denoted as Nδ̂
~ , is then obtained as a two-stages least squares 

estimator applied to the transformed model (33), using the transformed instruments 

∑
=

−=
S

m
NNmNmN

1
,,

* )( HMIH ρ , after replacing Nρ  by Nρ~ , i.e.,  

 

 **1** ~~̂)~~̂(~̂
NNNNN yZZZδ ′′= − , where  (34) 

 *
~

* ~~̂
* NN
N
ZPZ

H
= , with ′′= − *1*** ~)~~(~

NNNNN
HHHHPH  and ∑

=

−=
S

m
NNmNmN

1
,,

* )~(~ HMIH ρ ,  

 ∑
=

−=
S

m
NNmNmNN

1
,,

* )~(~ ZMIZ ρ  with,              

 ∑
=

−=
S

m
NNmNmNN

1
,,

* )~(~ yMIy ρ . 

 
The advantage of this approach as compared to the use of heteroskedasticity-and-
autocorrelation-consistent estimates is that joint hypotheses about Nλ  and Nρ  may be 

formulated and tested. 
 
Kelejian and Prucha (2008) and Arraiz, Drukker, Kelejian and Prucha (2007) use the 
untransformed instrument matrix NH  in the FGTSLS estimation of SARAR(1,1) models. 

While this choice does not affect consistency, it has implications for the efficiency of the 
estimates. In light of (29), the ideal instruments matrix for *YW  in the transformed model is 

given by ∑
=

−=
S

m
NNmNmN

1
,,

* )( HMIH ρ . In fact, the Monte Carlos analysis below suggests that 
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using the estimates of the transformed instruments ∑
=

∗ −=
S

m
NNmNmN

1
,, )~(~ HMIH ρ  instead of 

NH  leads to smaller standard errors and produces slightly better results in small samples, in 

particular, with respect to the size of tests.  
 
Lemma 2 shows that the various assumptions maintained in Section III are automatically 

satisfied by the (feasible) generalized TSLS estimator Nδ̂
~  and the corresponding residuals.  

 
Lemma 2.7   

Suppose the Assumptions of Lemma 1 hold8 and let Nδ̂
(

 be defined as in equation (34), where 

Nρ
(  is any 2/1N -consistent estimator of Nρ  (such as the GM estimator Nρ~  based on TSLS 

residuals). Then  

a)  )1(])(ˆ[ *2/12/1
pNNNNN oNN +′=− − εTδρδ ((

 with ***
NNN PFT =  and where  

1
**

1
******

1
**

* ][ −−− ′= ZHHHZHZHHH QQQQQPN  and **
NN HF = ;   

(b) )1(*2/1
pNN ON =′− εT ; 

(c) )1(* ON =P  and )1(**
pNN o=− PP

(
 for  

1**11**1**1**11**1* )]())([()()( −−−−−−−− ′′′×′′= NNNNNNNNNNN NNNNN ZHHHHZZHHHP
(((((((((((

. 

 
In light of Lemmata 1 and 2 the joint limiting distribution of the (feasible) generalized spatial 

TSLS estimator Nδ̂
(

 and the GM estimator Nρ~  follows from Theorem 4 and the discussion 

thereafter, with NNN δδΔ −= ˆ* (
. The asymptotic variance-covariance matrix and its 

corresponding estimator are given by (27) and (28) with the modifications as described in 
Remark 2 after Theorem 4. 
 

Note that in light of Lemma 2 the residuals ** ˆˆ NNNNNNN ΔDuδZyu +=−=
(

 can be used to 

estimate Nρ  by the GM estimator defined by (10), where the discussion surrounding Lemma 

2 would also apply here. Taking this argument one step further, Nρ  and Nδ  can also be 

estimated by an iterative procedure. 
 

                                                 
7 The above Lemma corresponds to Lemma 4 in Kelejian and Prucha (2008) and is adapted 
here to apply to the higher-order case.  
8 In light of the properties maintained with respect to the matrix ∑

=

−
S

m
NNmNmN

1
,, )( uMI ρ , this 

implies that Assumptions 9 and 10 will be satisfied for the transformed instruments *
NH . 
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As a final point, note that the above theory carries over to cases where the regressor matrix 

NX  includes endogenous variables, provided that suitable instruments are available. To be 

more specific, let ),( NNN EXX =  and ),,( NNNNN YEXZD −=−= , where NX  satisfies 

Assumptions 8-10 with NX  replaced by NX  (including in the formulation of the instruments), 

and where NE  is a matrix of endogenous variables. Then, given the fourth moments of ND  

are  uniformly bounded, and Assumption 6 holds, parts (a), (b), and (c) of Lemma 1 and 2 still 
hold, but with  
 

 ),,(ˆ
NNNN NN

YPEPXZ HH=  and  (35a) 

 **
*

ˆ
NN

N
ZPZ

H
= . (35b) 

  
 
V. Monte Carlo Evidence 
In this section, we consider a Monte Carlos experiment for a SARAR(3,3) specification and 
restricted versions thereof. We assume that NN MW =  and that the matrix X includes two 

explanatory variables.  Hence we have9  
 

 uyWxxy +++= ∑
=

3

1
2211

r
rrββ λ , (36a) 

 εuWu += ∑
=

3

1m
mmρ . (36b) 

 
We consider three sample sizes: 100=N , 250=N , and 500=N . The explanatory variables 

1x  and 2x  are generated as random draws from a standard normal distribution, scaled with a 

factor of five, and treated as fixed in repeated samples. Their parameters 1β  and 2β  are 
assumed to be unity in all Monte Carlo experiments considered.  
 
For our basic setup of the weights matrix, we follow Kelejian and Prucha (1999) and use a 
binary ‘up to 9 ahead and up to 9 behind’ contiguity specification. This means that the 
elements of the time-invariant, raw weights matrix 0W  are defined such that the i-th cross-
section element is related to the 9 elements after it and the 9 elements before it.  

 
The unnormalized NN ×  matrix 0W  is then split up into three NN ×  matrices 0

1W , 0
2W , 

and 0
3W , where 00

3
0
2

0
1 WWWW =++ . The matrices 0

1W , 0
2W , and 0

3W  are specified such 

that they contain the elements of W0 for a different band of neighbours each. Otherwise, they 
have zero elements. We choose a design, where 0

1W corresponds to an ‘up to 3 ahead and up 

                                                 
9 For simplicity of notation, the subscript N  is suppressed in the following.  
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to 3 behind’ specification, 0
2W  corresponds to a ‘4 to 6 ahead and 4 to 6 behind’ specification, 

and 0
3W  corresponds to a ‘7 to 9 ahead and 7 to 9 behind’ specification. 0

1W , 0
2W , and 0

3W  

have typical elements 0
,1 ijw , 0

,2 ijw , and 0
,3 ijw , respectively, where subscripts i  and j  indicate 

that the corresponding element captures the possible contiguity of unit i  with j . 0
,1 ijw , 0

,2 ijw , 

and 0
,3 ijw  are either unity or zero. By design, at most one of the three elements, 0

,1 ijw , 0
,2 ijw , or 

0
,3 ijw , can be unity. The final weights matrices 1W , 2W , and 3W  are obtained by separately 

row-normalizing 0
1W , 0

2W , and 0
3W , that is, by dividing their typical elements 0

,1 ijw , 0
,2 ijw , and 

0
,3 ijw  through the corresponding row sum, respectively.  

 
With three row-normalized matrices 1W , 2W , and 3W , the parameter space for λ  and ρ  

must satisify 10 321 <++≤ λλλ  and 10 321 <++≤ ρρρ . We consider 12 parameter 

constellations, assuming that the spatial regressive parameters are non-increasing in the order 
of neighbourhood, i.e., we always have 321 λλλ ≥≥  and 321 ρρρ ≥≥ . In parameter 

constellations (1a) through (2c), we assume that the spatial dependence in the endogenous 
variable y is at least as strong as that in the disturbances u, without loss of generality. We 
consider cases, where we have nonzero spatial dependence in both y and u (parameter 
constellations (1a) through (1c)), as well as ones where spatial dependence shows up 
exclusively in y (parameter constellations (2a) through (2c)) or exclusively in u (parameter 
constellations (3a) through (3c)). This setting should be informative about the performance of 
the GM estimator in discriminating between alternative specifications of the spatial 
dependence. Parameter constellations (3a) through (3c) and (4) consider cases where the 
spatial dependence in the disturbances u is stronger than that in y. Parameter constellation 
(5a) considers zero dependence parameters for all spatial lags in y and u. Finally, 
constellation (5b) assumes homogeneous but nonzero spatial dependence parameters for 
spatial lags in y and u. 
 
Regarding the choice of instruments, we include linearly independent terms of up to the 
second order in equation (30b). In particular, the matrix of untransformed instruments H 
contains 18 columns and is given by  
 

),,,,,,,,( 2312
2
3

2
2

2
1321 XWXWXWXWXWXWXWXWXH = ,   (37) 

where jiij WWW = .   

 
The innovations ε  are assumed to be heteroskedastic and generated as follows. Let iζ  denote 

a draw from a standard normal distribution. The pattern of heteroskedasticity is drawn from a 
uniform distribution with support ]8.1 ,2.0[ . Then, the innovations are generated as 

iii ζσε ε ,= , where 8.12.0 , ≤≤ iεσ . 
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Table 1. Parameter Constellations in Monte Carlo Experiments 

Parameter 
constellation 1λ  2λ  3λ  1ρ  2ρ  3ρ  

(1a) 0.5 0.3 0.1 0.4 0.2 0.2 
(1b) 0.5 0.3 0 0.4 0.2 0 
(1c) 0.5 0 0 0.4 0 0 
(2a) 0.5 0.3 0.1 0 0 0 
(2b) 0.5 0.3 0 0 0 0 
(2c) 0.5 0 0 0 0 0 
(3a) 0 0 0 0.4 0.2 0.2 
(3b) 0 0 0 0.4 0.2 0 
(3c) 0 0 0 0.4 0 0 
(4) 0.2 0.1 0.1 0.5 0.3 0.1 
(5a) 0 0 0 0 0 0 
(5b) 0.2 0.2 0.2 0.2 0.2 0.2 

Note: 121 == ββ  under all parameter constellations. 

 
For each Monte Carlo experiment, we consider 2000 draws. To ensure comparability, the 
same draws of iζ  and i,εσ  are used for each of the 12 parameter constellations. Results for 

the estimates of ,, ,2,1 NN ρρ  and N,3ρ  are obtained by the GM estimator defined in equation 

(10), using the optimal weighting matrix as given in equation (21).10 The estimates reported 
for the regression parameters are FGTSLS estimates, based on the transformed model as 
given by equation (34) using the transformed set of instruments given in (37). For sample 
sizes of 100=N  and 250=N  we also report the results from regressions using the 
untransformed set of instruments H  instead of ∗H  as in Kelejian and Prucha (2008) and 

Arriaz, Drukker, Kelejian, and Prucha (2007). 
 
We calculate the average bias and root mean squared error for each parameter constellation. 
Moreover, based on the estimated approximate joint distribution of the vector of the spatial 

autoregressive and regression parameters, i.e., )~,~,~,~,~,~,~,~(~
32121321 ′= ρρρββλλλq , we report 

rejection probabilities for Wald tests about a set of hypotheses of interest, using a nominal 
significance level of 5 percent.  
 

                                                 
10 We use the identity matrix in an initial step to obtain consistent initial estimates of 

,, ,2,1 NN ρρ  and N,3ρ  and Nε , which are required to calculate the optimal weighting matrix 

NΨ~ . 
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i) For all parameter constellations, we test the hypothesis that each single coefficient is equal 
to the true parameter value (this corresponds to a t-test as in Kelejian and Prucha, 2008). 
Hence, the corresponding rejection rates reflect the size of the test. 
ii) For parameter constellation (1c) we report the test of the SARAR(3,3) against the 
SARAR(1,1) model, using 0: 3232

,*,
0 ==== ρρλλρλH  

iii) For parameter constellations (2a) and (2b), where spatial dependence occurs only in y, we 
test the joint hypothesis 0: 3210 === ρρρρH . Similarly, for parameter constellations (3a) 

and (3b), where spatial dependence occurs only in u, we test the joint hypothesis 
0: 3210 === λλλλH . These tests should be informative about the performance of the 

proposed estimator in discriminating between alternative spatial dependence in the 
endogenous variable versus the disturbances. 
iv) Finally, the joint hypothesis 0: 321321

,
0 ====== ρρρλλλρλH  is also reported for the 

non-spatial model under parameter constellation (5a). 
 
Using Theorem 4, the approximation of the small sample distribution of q~  is given by  

Q)q,q (~~ N , where  

),,,,,,,( 32121321 ′= ρρρββλλλq  and  

)~(qQ Var= ,  

which can be estimated using oN Ω~
~ 1−=Q . 

 
Tests referring to a single parameter are carried out using a standard t-test: 

E.g., 110
~: ρρρ =H  is tested using 

1
~

11
~

~

ρσ
ρρ −

=t , where 
1

~ρσ  is the corresponding main diagonal 

element of Q~ . 
 
Tests regarding joint hypotheses are carried out using Wald tests. Generally, we have (e.g., 
Greene, 2003, pp. 95, 487): 
 
 0=− tRq  :0H  against 0≠− tRq  :1H . 

 
Define the discrepancy vector: tqRm −= ~  . The null hypothesis can the be tested using 
 

 2-1 ~)
~

( GχmRQRm ′′ ,   
 
where G  is the number of restrictions (the number of rows of R ). 
 
In the present context, we have  
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for 0: 3232
,*,

0 ==== ρρλλρλH , ⎥
⎦

⎤
⎢
⎣

⎡
=

2

2

00
00

I0
0I

R  and 4=G ; 

for 0: 3210 === ρρρρH , ),( 3IA=R  where A  is a 53×  matrix of zeros and 3=G ;  

for 0: 3210 === λλλλH , ),( 3 AI=R , where A  is a 53×  matrix of zeros and 3=G ;  

for 0: 321321
,

0 ====== ρρρλλλρλH , ⎥
⎦

⎤
⎢
⎣

⎡
=

3

3

00
00

I0
0I

R  and 6=G ; 

Table 2 to 4 report the results of the Monte Carlo analysis for the three sample sizes 
considered, using the matrix *H . 
 
In terms of bias and RMSE, the estimator performs well, even in the small sample with 

100=N . On average over all parameter constellation the bias and RMSE amount to 0.0052 
and 0.0426 for the estimates of ),...,( 31 ′= λλλ  and to 0.0314 and 0.2017 for the estimates of 

),...,( 31 ′= ρρρ . Regarding the size of the tests, the performance of the GM estimates of ρ  

the disturbances process is quite well. Even for the small sample of 100=N , the size of the 
tests is not too far away from the nominal size. This holds true for the size of the rejections 
rates of the tests involving only 1 parameter (average: 0.0794) and to a smaller extent also for 
tests of the joint tests involving ρ  only (average size: 0.0703). The performance of the 
FGTSLS estimates of λ  is worse, with an average size of 0.0947 for the single tests and an 
average size of 0.1516 for the joint tests (involving λ  only).11  
 
However, performance improves quickly with growing sample size. For 250=N , the 
average bias and RMSE of the estimates of ),...,( 31 ′= λλλ  shrink to 0.0016 and 0.0252, those 

of ),...,( 31 ′= ρρρ  shrink to 0.0153 and 0.1034. Also, the size of the tests improves and 

approaches the nominal size of 5 percent. Regarding the GM estimates of ρ , the average size 
of the tests involving only one parameter amounts to  0.0604, that for the joint tests involving 
ρ  only to 0.0542. For the FGTSLS estimates of λ , the average size is 0.0677 for the single 

tests and 0.0909 for the joint tests (involving λ  only).12  
 

                                                 
11 Results when using the untransformed instrument matrix H  instead of ∗H  are as follows: 

bias of ρ : -0.0308; RMSE of ρ : 0.2112; size of ρ  for single tests: 0.0764; size of ρ  for joint 
tests: 0.1042; bias of λ : 0.0054, RMSE of λ : 0.0416; size of single tests for λ : 0.1021; size 
of joint tests for λ : 0.1738. See Table A.1 in Appendix E for details. 
12 Results when using the untransformed instrument matrix H  instead of ∗H  are as follows: 

bias of ρ : 0.0148; RMSE of ρ : 0.1037; size of ρ  for single tests: 0.0524; size of ρ  for joint 
tests: 0.0577; bias of λ : 0.0026, RMSE of λ : 0.0250; size of single tests for λ : 0.0720; size 
of joint tests for λ : 0.0946. See Table A.2 in Appendix E for details. 
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Table 2. Monte Carlo Results, N = 100, 2000 draws, instrument matrix *H  
Constellation1) (1a) (1b) (1c) (2a) (2b) (2c) (3a) (3b) (3c) (4) (5a) (5b) average 2) 
λ1 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0.2 0 0.2 0.2833 
Bias 0.0044 0.0050 0.0059 0.0030 0.0028 0.0033 0.0165 0.0096 0.0064 0.0367 0.0034 0.0046 0.0085 
RMSE 0.0349 0.0354 0.0388 0.0275 0.0270 0.0289 0.0794 0.0694 0.0570 0.0913 0.0407 0.0421 0.0477 
Rej. Rate 0.0800 0.0825 0.0830 0.0785 0.0740 0.0730 0.1260 0.1075 0.0900 0.2045 0.0715 0.0750 0.0955 
λ2 0.3 0.3 0 0.3 0.3 0 0 0 0 0.1 0 0.2 0.1250 
Bias 0.0001 0.0001 -0.0002 -0.0011 -0.0008 -0.0005 0.0112 0.0045 0.0010 0.0269 0.0001 0.0018 0.0040 
RMSE 0.0292 0.0306 0.0333 0.0269 0.0278 0.0276 0.0644 0.0550 0.0481 0.0715 0.0362 0.0366 0.0406 
Rej. Rate 0.0700 0.0745 0.0845 0.0675 0.0720 0.0785 0.1345 0.1085 0.0965 0.2005 0.0865 0.0905 0.0970 
λ3 0.1 0 0 0.1 0 0 0 0 0 0.1 0 0.2 0.0417 
Bias -0.0021 -0.0027 -0.0027 -0.0024 -0.0022 -0.0017 0.0056 0.0005 -0.0019 0.0155 -0.0016 0.0001 0.0032 
RMSE 0.0358 0.0372 0.0377 0.0284 0.0306 0.0319 0.0495 0.0457 0.0457 0.0533 0.0397 0.0393 0.0396 
Rej. Rate 0.0880 0.0915 0.0890 0.0900 0.0925 0.0875 0.0935 0.0835 0.0855 0.1255 0.0875 0.0840 0.0915 
β1 1 1 1 1 1 1 1 1 1 1 1 1 1.0000 
Bias 0.0000 0.0001 0.0003 -0.0003 -0.0004 -0.0004 0.0021 0.0011 0.0007 0.0051 -0.0001 0.0000 0.0009 
RMSE 0.0193 0.0194 0.0193 0.0199 0.0199 0.0197 0.0224 0.0216 0.0208 0.0233 0.0201 0.0199 0.0205 
Rej. Rate 0.0680 0.0670 0.0685 0.0735 0.0755 0.0715 0.0760 0.0740 0.0695 0.0850 0.0685 0.0665 0.0720 
β2 1 1 1 1 1 1 1 1 1 1 1 1 1.0000 
Bias -0.0007 -0.0006 -0.0004 -0.0008 -0.0009 -0.0010 0.0014 0.0003 -0.0001 0.0040 -0.0007 -0.0006 0.0010 
RMSE 0.0216 0.0215 0.0218 0.0223 0.0223 0.0225 0.0240 0.0232 0.0227 0.0244 0.0224 0.0222 0.0226 
Rej. Rate 0.0665 0.0685 0.0680 0.0685 0.0695 0.0715 0.0660 0.0660 0.0675 0.0680 0.0715 0.0690 0.0684 
ρ1 0.4 0.4 0.4 0 0 0 0.4 0.4 0.4 0.5 0 0.2 0.2583 
Bias -0.0378 -0.0446 -0.0572 -0.0583 -0.0614 -0.0583 -0.0277 -0.0397 -0.0510 -0.0125 -0.0539 -0.0364 0.0449 
RMSE 0.1805 0.1855 0.2142 0.2771 0.2742 0.2647 0.1645 0.1746 0.2016 0.1493 0.2410 0.1881 0.2096 
Rej. Rate 0.0795 0.0835 0.0930 0.0800 0.0810 0.0815 0.0650 0.0800 0.0865 0.0595 0.0690 0.0700 0.0774 
ρ2 0.2 0.2 0 0 0 0 0.2 0.2 0 0.3 0 0.2 0.1083 
Bias -0.0303 -0.0312 -0.0076 -0.0443 -0.0446 -0.0307 -0.0156 -0.0194 -0.0063 -0.0355 -0.0348 -0.0334 0.0278 
RMSE 0.1810 0.1855 0.1927 0.2545 0.2493 0.2410 0.1682 0.1813 0.1914 0.1686 0.2247 0.1890 0.2023 
Rej. Rate 0.0755 0.0765 0.0765 0.0735 0.0710 0.0710 0.0650 0.0720 0.0795 0.0620 0.0635 0.0690 0.0713 
ρ3 0.1 0 0 0 0 0 0.2 0 0 0.1 0 0.2 0.0500 
Bias -0.0248 -0.0090 -0.0105 -0.0252 -0.0216 -0.0177 -0.0306 -0.0088 -0.0110 -0.0374 -0.0230 -0.0382 0.0215 
RMSE 0.1783 0.1810 0.1912 0.2224 0.2179 0.2138 0.1737 0.1823 0.1935 0.1659 0.2059 0.1915 0.1931 
Rej. Rate 0.0650 0.0660 0.0620 0.0575 0.0590 0.0570 0.0625 0.0650 0.0670 0.0695 0.0535 0.0615 0.0621 
Joint Tests 3)              
Rej. Rate    0.1230 0.0970 0.0970 0.0985 0.1645 0.1510 0.1510  0.1400  0.1278 

Note: 1) Each column corresponds to one parameter constellation (see Table 1). 2) Average of absolute row values. 3) Rejections rates for the following hypotheses. (1c): 
0: 3232

,*,
0 ==== ρρλλρλH , (2a), (2b), (2c): 0: 3210 === ρρρρH , (3a), (3b), (3c): 0: 3210 === λλλλH , (5a): 0: 321321

,
0 ====== ρρρλλλρλH .   
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Table 3. Monte Carlo Results, N = 250, 2000 draws, instrument matrix *H  
Constellation1) (1a) (1b) (1c) (2a) (2b) (2c) (3a) (3b) (3c) (4) (5a) (5b) average 2) 
λ1 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0.2 0 0.2 0.2833 
Bias 0.0010 0.0012 0.0011 0.0007 0.0006 0.0007 0.0049 0.0029 0.0013 0.0123 0.0003 0.0012 0.0023 
RMSE 0.0183 0.0191 0.0215 0.0156 0.0153 0.0164 0.0428 0.0383 0.0316 0.0487 0.0232 0.0232 0.0262 
Rej. Rate 0.0565 0.0600 0.0675 0.0560 0.0585 0.0640 0.0805 0.0765 0.0690 0.1140 0.0655 0.0585 0.0689 
λ2 0.3 0.3 0 0.3 0.3 0 0 0 0 0.1 0 0.2 0.1250 
Bias 0.0001 0.0003 -0.0002 -0.0005 -0.0004 -0.0004 0.0039 0.0017 0.0003 0.0094 -0.0002 0.0003 0.0015 
RMSE 0.0201 0.0208 0.0220 0.0203 0.0205 0.0196 0.0380 0.0331 0.0292 0.0419 0.0233 0.0234 0.0260 
Rej. Rate 0.0560 0.0570 0.0585 0.0540 0.0565 0.0555 0.0855 0.0745 0.0690 0.1165 0.0590 0.0585 0.0667 
λ3 0.1 0 0 0.1 0 0 0 0 0 0.1 0 0.2 0.0417 
Bias -0.0001 -0.0002 0.0002 -0.0002 -0.0001 0.0004 0.0030 0.0010 -0.0001 0.0065 0.0003 0.0009 0.0011 
RMSE 0.0197 0.0204 0.0217 0.0163 0.0168 0.0183 0.0311 0.0287 0.0270 0.0333 0.0230 0.0234 0.0233 
Rej. Rate 0.0560 0.0565 0.0600 0.0655 0.0655 0.0600 0.0790 0.0760 0.0700 0.0925 0.0605 0.0685 0.0675 
β1 1 1 1 1 1 1 1 1 1 1 1 1 1.0000 
Bias -0.0001 -0.0002 -0.0003 -0.0001 -0.0001 -0.0003 0.0006 0.0001 -0.0001 0.0017 -0.0002 0.0000 0.0003 
RMSE 0.0125 0.0127 0.0128 0.0129 0.0131 0.0129 0.0140 0.0135 0.0131 0.0142 0.0130 0.0128 0.0131 
Rej. Rate 0.0590 0.0625 0.0625 0.0620 0.0610 0.0590 0.0640 0.0600 0.0575 0.0650 0.0630 0.0620 0.0615 
β2 1 1 1 1 1 1 1 1 1 1 1 1 1.0000 
Bias 0.0001 0.0002 0.0001 0.0001 0.0000 0.0001 0.0008 0.0006 0.0003 0.0019 0.0001 0.0002 0.0004 
RMSE 0.0123 0.0124 0.0125 0.0128 0.0129 0.0127 0.0140 0.0135 0.0130 0.0141 0.0127 0.0126 0.0130 
Rej. Rate 0.0545 0.0525 0.0565 0.0545 0.0610 0.0550 0.0595 0.0550 0.0515 0.0585 0.0570 0.0540 0.0558 
ρ1 0.4 0.4 0.4 0 0 0 0.4 0.4 0.4 0.5 0 0.2 0.2583 
Bias -0.0186 -0.0215 -0.0293 -0.0308 -0.0315 -0.0307 -0.0130 -0.0200 -0.0264 -0.0111 -0.0267 -0.0172 0.0231 
RMSE 0.0884 0.0879 0.0957 0.1198 0.1206 0.1196 0.0899 0.0878 0.0946 0.0826 0.1184 0.1000 0.1004 
Rej. Rate 0.0575 0.0590 0.0625 0.0505 0.0565 0.0590 0.0600 0.0585 0.0575 0.0570 0.0570 0.0555 0.0575 
ρ2 0.2 0.2 0 0 0 0 0.2 0.2 0 0.3 0 0.2 0.1083 
Bias -0.0123 -0.0143 -0.0057 -0.0215 -0.0215 -0.0162 -0.0082 -0.0110 -0.0061 -0.0137 -0.0161 -0.0140 0.0134 
RMSE 0.1027 0.1036 0.1023 0.1189 0.1190 0.1180 0.1015 0.1036 0.1026 0.1044 0.1173 0.1062 0.1083 
Rej. Rate 0.0600 0.0590 0.0585 0.0585 0.0570 0.0560 0.0590 0.0585 0.0625 0.0575 0.0555 0.0630 0.0587 
ρ3 0.1 0 0 0 0 0 0.2 0 0 0.1 0 0.2 0.0500 
Bias -0.0101 -0.0048 -0.0059 -0.0114 -0.0097 -0.0084 -0.0140 -0.0045 -0.0052 -0.0144 -0.0078 -0.0157 0.0093 
RMSE 0.0963 0.0954 0.0956 0.1126 0.1123 0.1121 0.0952 0.0945 0.0954 0.0920 0.1119 0.1041 0.1014 
Rej. Rate 0.0510 0.0445 0.0445 0.0415 0.0410 0.0415 0.0535 0.0460 0.0405 0.0660 0.0410 0.0455 0.0464 
Joint Tests 3)              
Rej. Rate    0.0680 0.0490 0.0515 0.0525 0.0990 0.0935 0.0915  0.0795  0.0731 

Note: 1) Each column corresponds to one parameter constellation (see Table 1). 2) Average of absolute row values. 3) Rejections rates for the following hypotheses. (1c): 
0: 3232

,*,
0 ==== ρρλλρλH , (2a), (2b), (2c): 0: 3210 === ρρρρH , (3a), (3b), (3c): 0: 3210 === λλλλH , (5a): 0: 321321

,
0 ====== ρρρλλλρλH .   
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Table 4. Monte Carlo Results, N = 500, 2000 draws, instrument matrix *H  
Constellation1) (1a) (1b) (1c) (2a) (2b) (2c) (3a) (3b) (3c) (4) (5a) (5b) average 2) 
λ1 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0.2 0 0.2 0.2833 
Bias 0.0007 0.0008 0.0008 0.0007 0.0005 0.0006 0.0024 0.0013 0.0011 0.0062 0.0003 0.0007 0.0013 
RMSE 0.0126 0.0130 0.0144 0.0109 0.0107 0.0113 0.0290 0.0259 0.0215 0.0332 0.0157 0.0158 0.0178 
Rej. Rate 0.0515 0.0555 0.0540 0.0555 0.0605 0.0525 0.0685 0.0595 0.0595 0.0885 0.0505 0.0545 0.0592 
λ2 0.3 0.3 0 0.3 0.3 0 0 0 0 0.1 0 0.2 0.1250 
Bias -0.0004 -0.0003 -0.0005 -0.0007 -0.0005 -0.0006 0.0014 0.0001 -0.0006 0.0041 -0.0002 0.0000 0.0008 
RMSE 0.0139 0.0143 0.0152 0.0141 0.0141 0.0134 0.0256 0.0223 0.0200 0.0274 0.0160 0.0162 0.0177 
Rej. Rate 0.0505 0.0560 0.0610 0.0535 0.0530 0.0545 0.0675 0.0600 0.0595 0.0835 0.0555 0.0590 0.0595 
λ3 0.1 0 0 0.1 0 0 0 0 0 0.1 0 0.2 0.0417 
Bias 0.0000 -0.0001 -0.0003 0.0000 -0.0001 0.0000 0.0010 0.0000 -0.0004 0.0030 -0.0004 0.0000 0.0005 
RMSE 0.0140 0.0143 0.0152 0.0112 0.0114 0.0125 0.0215 0.0199 0.0193 0.0228 0.0162 0.0162 0.0162 
Rej. Rate 0.0580 0.0525 0.0555 0.0540 0.0575 0.0575 0.0645 0.0665 0.0700 0.0775 0.0600 0.0550 0.0607 
β1 1 1 1 1 1 1 1 1 1 1 1 1 1.0000 
Bias -0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0004 0.0001 0.0002 0.0011 0.0001 0.0001 0.0002 
RMSE 0.0090 0.0088 0.0089 0.0091 0.0091 0.0092 0.0098 0.0094 0.0092 0.0100 0.0090 0.0090 0.0092 
Rej. Rate 0.0530 0.0475 0.0500 0.0515 0.0500 0.0540 0.0505 0.0450 0.0475 0.0515 0.0525 0.0560 0.0507 
β2 1 1 1 1 1 1 1 1 1 1 1 1 1.0000 
Bias 0.0001 0.0002 0.0001 0.0000 0.0000 0.0000 0.0005 0.0002 0.0001 0.0010 0.0001 0.0000 0.0002 
RMSE 0.0086 0.0087 0.0087 0.0089 0.0089 0.0089 0.0096 0.0093 0.0090 0.0098 0.0088 0.0089 0.0090 
Rej. Rate 0.0480 0.0510 0.0505 0.0490 0.0475 0.0490 0.0530 0.0485 0.0440 0.0535 0.0480 0.0500 0.0493 
ρ1 0.4 0.4 0.4 0 0 0 0.4 0.4 0.4 0.5 0 0.2 0.2583 
Bias -0.0087 -0.0100 -0.0139 -0.0147 -0.0148 -0.0149 -0.0055 -0.0092 -0.0129 -0.0047 -0.0127 -0.0078 0.0108 
RMSE 0.0640 0.0631 0.0676 0.0856 0.0853 0.0850 0.0650 0.0631 0.0673 0.0590 0.0847 0.0720 0.0718 
Rej. Rate 0.0600 0.0660 0.0690 0.0615 0.0610 0.0580 0.0590 0.0630 0.0680 0.0590 0.0590 0.0570 0.0617 
ρ2 0.2 0.2 0 0 0 0 0.2 0.2 0 0.3 0 0.2 0.1083 
Bias -0.0061 -0.0072 -0.0034 -0.0106 -0.0106 -0.0083 -0.0048 -0.0058 -0.0034 -0.0081 -0.0086 -0.0072 0.0070 
RMSE 0.0709 0.0718 0.0703 0.0808 0.0810 0.0804 0.0702 0.0714 0.0702 0.0713 0.0805 0.0726 0.0743 
Rej. Rate 0.0535 0.0565 0.0565 0.0555 0.0565 0.0535 0.0535 0.0530 0.0580 0.0515 0.0535 0.0545 0.0547 
ρ3 0.1 0 0 0 0 0 0.2 0 0 0.1 0 0.2 0.0500 
Bias -0.0053 -0.0024 -0.0025 -0.0052 -0.0044 -0.0036 -0.0073 -0.0021 -0.0025 -0.0082 -0.0035 -0.0074 0.0045 
RMSE 0.0671 0.0670 0.0675 0.0795 0.0793 0.0794 0.0649 0.0661 0.0676 0.0610 0.0797 0.0725 0.0710 
Rej. Rate 0.0510 0.0530 0.0540 0.0465 0.0500 0.0490 0.0535 0.0545 0.0575 0.0615 0.0495 0.0530 0.0527 
Joint Tests 3)              
Rej. Rate    0.0810 0.0725 0.0750 0.0710 0.0855 0.0890 0.0890  0.0785  0.0802 

Note: 1) Each column corresponds to one parameter constellation (see Table 1). 2) Average of absolute row values. 3) Rejections rates for the following hypotheses. (1c): 
0: 3232

,*,
0 ==== ρρλλρλH , (2a), (2b), (2c): 0: 3210 === ρρρρH , (3a), (3b), (3c): 0: 3210 === λλλλH , (5a): 0: 321321

,
0 ====== ρρρλλλρλH .   



For 500=N  we have the following results. Across all parameter constellations, the average 
bias and RMSE amount to 0.0010 and 0.0172, respectively, for the estimates of 

),...,( 31 ′= λλλ and to 0.0075 and 0.0724, respectively, for the estimates of ρ . The 

significance levels of the tests are very similar between the 250=N  and the 500=N  
experiments across all tests. 
 
Overall, the Monte Carlo experiments illustrate that the proposed estimators work reasonably 
well, even in small samples. This is true for both the point estimates and the variance-
covariance matrix of the parameter estimates. The single as well as joint tests are properly 
sized and may be recommended for specification tests about the lag- and error-structure and 
the order of spatial dependence in medium to large samples. 
 
 
VI. Conclusions 
This paper derives generalized moments (GM) and two-stages least squares (TSLS) 
estimators for spatial autoregressive models with spatial regressive disturbances and 
heteroskedastic innovations, allowing for an arbitrary (but finite) order of spatial dependence 
both in the dependent variable and the disturbances. We prove consistency of the proposed 
estimators and derive the (joint) asymptotic distribution of the GM estimates of the spatial 
autoregressive parameters of the disturbance process and the feasible (generalized) TSLS 
estimates of the regression parameters of the model. The variance-covariance matrix of all 
model parameters can be used to formulate joint tests about the form and order of spatial 
dependence, e.g., tests of the general SARAR(R,S) model against interesting alternatives such 
as SARAR(0,S), SARAR(R,0), and the non-spatial model. A comprehensive Monte Carlo 
simulation exercise suggests that the estimators perform reasonably well in terms of bias and 
root means squared errors, even in small samples with 100 observations. The rejection rates of 
the single and joint tests approach the nominal size as the number of observations grows 
larger and can be used for specification tests in medium to large samples in order to 
empirically determine the proper specification and order of spatial dependence.  
 
The SARAR(R,S) framework developed in this paper allows the applied econometrician to 
study the strength of interdependence between cross-sectional units more flexibly than in 
existing SARAR(1,1) models. For instance, with the suggested model one may allow first, 
second, and higher orders of bands of neighbours to exert a different impact on each other, 
allowing a better approximation of the (possibly nonlinear, discontinuous) functional form of 
the decay of spatial interdependence.  
  
Moreover, one may allow for several alternative channels or concepts of interdependence in 
space, which may be non-geographical, and the SARAR(R,S) framework can be readily 
adapted to non-geographical models by replacing the notion of geographical distance with, 
e.g., economic, socio-economic, cultural, or political distance.    
 
 



 70

References  

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Boston: Kluwer, Academic 
Publishers. 

Arraiz, I., Drukker, D.M., Kelejian, H., and Prucha, I. (2007). A spatial Cliff-Ord-type model 
with heteroskedastic innovations: Small and large sample results. Unpublished 
manuscript.  

Audretsch, D.B. and Feldmann, M.P. (1996). R&D spillovers and the geography of 
innovation and production. American Economic Review, 86, 630-640. 

Badinger, H. and Egger, P. (2008). Intra- and inter-industry productivity spillovers in OECD 
manufacturing: A spatial econometric perspective. CESIfo Working Paper, No. 2181. 

Baltagi, B.H. and Li, D. (2001). LM test for functional form and spatial error correlation. 
International Regional Science Review, 24, 194-225. 

Baltagi, B.H., Egger, P., and Pfaffermayr, M. (2005). Estimating models of complex FDI: Are 
there third-country effects? Journal of Econometrics, 127(1), 260-281 

Baltagi, B.H., Song, S.H., and Koh, W. (2003). Testing panel data regression models with 
spatial error correlation. Journal of Econometrics, 117, 123-150. 

Bell, K.P. and Bockstael, N.E. (2000). Applying the generalized-moments estimation 
apporoach to spatial problems involving microlevel data. The Review of Economics and 
Statistics, 82(1), 72–82. 

Besley, T. and Case, A. (1995). Incumbent behavior: Vote-seeking, tax-setting, and yardstick 
competition. American Economic Review, 85, 25-45. 

Case, A., Hines Jr., J. and Rosen, H. (1993). Budget spillovers and fiscal policy 
independence: Evidence from the States. Journal of Public Economics, 52, 285-307. 

Cliff, A. and Ord, J. (1973). Spatial Autocorrelation. London: Pion, 1973. 

Cliff, A. and Ord, J. (1981). Spatial Processes, Models and Applications. London: Pion, 1981. 

Cohen, J.P. and Morrison Paul, C.J. (2004). Public infrastructure investment, interstate spatial 
spillovers, and manufacturing costs. The Review of Economics and Statistics, 86(2),  
551-560. 

Cohen, J.P. and Morrison Paul, C. (2007). The impacts of transportation infrastructure on 
property values: A higher order spatial econometrics approach. Journal of Regional 
Science, 47(3), 457-478. 

Conley, T. (1999). GMM estimation with cross sectional dependence. Journal of 
Econometrics, 92, 1-45. 

Egger, P. and Raff, H. (2008). Tax rate and tax base competition for foreign direct 
investment. Unpublished manuscript, Christian-Albrechts-University of Kiel. 



 71

Greene, W.H. (2003). Econometric Analysis, fifth edition. Pearson, Upper Saddle River, New 
Jersey. 

Holtz-Eakin, D. (1994). Public sector capital and the productivity puzzle. Review of 
Economics and Statistics, 76, 12-21. 

Horn, R.A. and Johnson, C.R. (1985). Matrix Analysis. Cambridge: Cambridge University 
Press, 1985. 

Kapoor, M., Kelejian, H.H., and Prucha, I.R. (2007). Panel data models with spatially 
correlated error components. Journal of Econometrics, 140, 97-130.  

Kelejian, H.H. and Prucha, I.R. (1998). A generalized spatial two-stage least squares 
procedure for estimating a spatial autoregressive model with autoregressive 
disturbances. Journal of Real Estate Finance and Economics, 17, 99-121. 

Kelejian, H.H. and Prucha, I.R. (1999). A generalized moments estimator for the 
autoregresssive parameter in a spatial model. International Economic Review, 40, 509-
533.  

Kelejian, H.H. and Prucha, I.R. (2004). Estimation of simultaneous systems of spatially 
interrelated cross sectional equations. Journal of Econometrics, 118, 27-50.  

Kelejian, H.H. and Prucha, I.R. (2007). HAC estimation in a spatial framework. Journal of 
Econometrics, 140(1), 131-154.  

Kelejian, H.H. and Prucha, I.R. (2008). Specification and estimation of spatial autoregressive 
models with autoregressive and heteroskedastic disturbances. Journal of Econometrics, 
forthcoming. 

Kelejian, H.H., Prucha, I.R. and Yuzefovich, E. (2004). Instrumental variable estimation of a 
spatial autoregressive model with autoregressive disturbances: Large and small sample 
results. In: LeSage, J. and Pace, K. (eds.), Advances in Econometrics: Spatial and 
Spatiotemporal Econometrics. Elsevier, New York, 163-198. 

Lee, L.F. (2004). Asymptotic distributions of maximum likelihood estimators for spatial 
autoregressive models. Econometrica, 72, 1899-1925. 

Lee, L.F. (2007). GMM and 2SLS estimation of mixed regressive, spatial autoregressive 
models. Journal of Econometrics, 137, 489-514. 

Mittelhammer, R.C. (1996). Mathematical Statistics for Economics and Business. New York: 
Springer. 

Pinkse, J. and Slade, M.E. (1998). Contracting in space: An application of spatial statistics to 
discrete-choice models. Journal of Econometrics, 85, 125-154. 

Pinkse, J., Slade, M.E. and Brett, C. (2002). Spatial price competition: A semiparametric 
approach. Econometrica, 70, 1111-1153. 

Pötscher, B.M. and Prucha, I.R. (1997). Dynamic Nonlinear Econometric Models, Asymptotic 
Theory. New York: Springer. 



 72

Rao, C.R. (1973). Linear Statistical Inference and its Applications, 2nd edition. New York: 
Wiley. 

Resnik, S. (1999). A Probability Path. Boston: Birkhäuser.  

Shroder, M. (1995). Games the States don’t play: Welfare benefits and the theory of fiscal 
federalism. Review of Economics and Statistics, 77, 183-191. 

Topa, G. (2001). Social interactions, local spillovers and unemployment. Review of Economic 
Studies, 68, 261-295. 

  



 73

APPENDIX (Not intended for publication in full length.)  

In the following, we give a proof of Theorems 1-4 and state several results that are repeatedly 
used in this paper. The proofs as given here proceed closely along the lines of Kelejian and 
Prucha (2008) for the SARAR(1,1) model and are adapted to apply the more general case of 
an SARAR(R,S) model.  
 
 
APPENDIX A   
Notation 
We adopt the standard convention to refer to matrices and vectors with acronyms in boldface. 
Let NA  denote some matrix. Its elements are referred to as Nija , ; Ni.,a  and Ni,.a  denote the i-

th row and the i-th column of NA  respectively. If NA  is a square matrix, 1−
NA  denotes its 

inverse; if  NA  is singular,  +
NA  denotes its generalized inverse. If NA  is a square, symmetric 

and positive definite matrix, 2/1
NA denotes the unique positive definite square root of NA  and 

2/1−
NA  denotes 2/11)( −

NA . Finally, define the matrix norm 2/1)]([ NNN Tr AAA ′= , where Tr is 

the trace operator.  Note that the norm is submultiplicative, i.e., NNNN BABA  ≤ .  

 
 
Remark A.113 
Let NA , 1≥N , be some sequence of NN ×  matrices. We will then say that the row and 

column sums of the (sequence of) matrices AN are bounded uniformly in absolute value if 
there exists a constant ∞<Ac , which does not depend on N, such that  
 

 A

N

j
NijNi

ca ≤∑
=≤≤ 1

,1
max , and A

N

i
NijNj

ca ≤∑
=

≤≤ 1
,1

max  for all 1≥N .    

 
The following results will be used repeatedly in the proofs:  
 If NA  and NB  are (sequences of) NN × matrices, whose row and column sums are 

bounded uniformly in absolute value (say by Ac  and Bc ), then so are the row and column 

sums of NNBA and NN BA +  by BAcc  and BA cc + , respectively (Kelejian and Prucha, 

1999, p. 526).  
 If ZN is a (sequence of) PN ×  matrices whose elements are uniformly bounded in 

absolute value (say by Zc ), then so are the elements of NN ZA  (by ZAcc ) and 

NNNN ZAZ′−1  (Kelejian and Prucha, 2004, Remark A.1). (This also covers the case 

NNN ZZ′−1  for NN IA = .) 

                                                 
13 Compare Kelejian and Prucha (2008, p. 5). 
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 Suppose that the row and columns sums of the NPNP ×  matrices )( ,NijN a=A  are 

uniformly bounded in absolute value by some finite constant Ac , then q
A

NP

i

q

Nij ca ≤∑
=1

,  for 

1>q  (Kelejian and Prucha, 2008, Remark C.1). 

 Let Nξ  and Nη  be 1×N  random vectors, where, for each N, the elements are 

independently distributed with zero mean and finite variances. Then the elements of 

NNN ξZ′− 2/1  are )1(pO  and NNNN ηAξ′−1  is )1(pO .14  

 Let Nζ  be an 1×N  random vector, where, for each N, the elements are independently 

distributed with zero mean and finite fourth moments. Let Nπ  be some nonstochastic 

1×N  vector, whose elements are uniformly bounded in absolute value and let NΠ  be an 

NN ×  nonstochastic matrix whose row and columns sums are uniformly bounded in 
absolute value.  Define the column vector NNNN ζΠπd += . It follows that the elements 

of Nijd ,  have finite fourth moments. (See Kelejian and Prucha, 2008, Lemma C.2 for the 

proof.)  
 

 
Remark A.2 (Identifiable Uniqueness in Higher-Order Case) 
Assumption 5 states that the smallest eigenvalue of NNΓΓ′  is uniformly bounded away from 

zero. To show what this assumption requires in the higher-order case, write 
  
 ].[ ,,1 ′′′= NSNN ΓΓΓ .  (A.1) 

 
Hence, for any N × 1 vector 0x ≠  
 
 xΓΓΓΓxxΓΓx )...( ,,,1,1 NSNSNNNN ′++′′=′′ .  (A.2) 

 
In light of Rao (1973, p.62),15 we have  
 
 xxΓΓxxΓΓxΓΓxxΓΓx ′′++′′≥′′++′′ )(...)(... ,,min,1,1min,,,1,1 NSNSNNNSNSNN λλ . (A.3) 

 
This expression is strictly larger than zero if 0)( *,,min >≥′ λλ NsNs ΓΓ  for some s, s = 1, …, S.  

 

                                                 
14 Compare Kelejian and Prucha (2004), who consider homoskedastic random variables. It is 
readily observed from the proof that the result also holds under heteroskedasticity, as long as 
the variances of the elements of Nξ  and Nη  are uniformly bounded. 
15 See Remark B.1 in Appendix B.  
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We then have  
 
 0* >′≥′′ xxxΓΓx λNN .   (A.4) 

 
Next, using Rao (1973, p. 62) again  
 

0inf)( *min >≥
′

′′
=′ λλ

xx
xΓΓxΓΓ

x
NN

NN .  (A.5) 

 
As can be seen from (A.5), Assumption 5 in the higher-order case requires that the 
assumption made by Kelejian and Prucha (2008) for the first-order case is fulfilled for at least 
one subset of moment conditions associated with one of the weights matrices. Note, however, 
that all weighting matrices enter the elements of each Ns,Γ , Ss ,...,1= . If two weights 

matrices are collinear, for example, none of the matrices Ns,Γ  would have a smallest 

eigenvalue that is strictly positive and Assumption 5 would be hurt.  
 
 
APPENDIX B.  
For the convenience of the reader, Appendix B lists some Lemmata and Theorems as used in 
the subsequent proofs. 
 
Remark B.1.  
Let A be a symmetric NN ×  matrix. It holds that (see Rao, 1973, p. 62) 
 

 
xx

AxxA
x

x ′
′

=
≠

∈
0

min)(min nR
λ  and 

xx
AxxA

x
x ′

′
=

≠
∈

0

max)(max nR
λ . 

 
Let A and B be symmetric, positive semidefinite matrices of dimension NN × . Then 

)()()()()( BAABBA TrTrTr LS λλ ≤≤ , where Lλ  and Sλ  denote the largest and smallest 

eigenvalue of A, respectively (Mittelhammer, 1996, p. 254).  
 
 
Lemma A.1 in Kelejian and Prucha (2008) 
Let ε  be a random 1×N  vector with zero mean and positive definite variance-covariance 
matrix Σ , let A  and B  be a symmetric, nonstochastic NN ×  matrices, and let a  and b  be 
real nonstochastic 1×N  vectors. Consider the decomposition SSΣ ′= . Let 

ASSA ′== )( ,*
*

ija  and BSSB ′== )( ,*
*

ijb , and let aSa ′== )( ,*
*

ia  and bSb ′== )( ,*
*

ib . 

Furthermore, let εSη 1−= . Then assuming that the elements of η  are independently 
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distributed with zero mean, unit variances and finite third and fourth moments  )3(3)(
iiE ημη =  

and )4(4 )(
iiE ημη = , we have 

 
)()()( AΣAεaAεε * TrTrE ==′+′  and  

∑∑
==

++−+′+=′+′′+′
N

i
iiiiii

N

i
iiii ii

bababaTrCov
1

)3(
,*,*,*,*

1

)4(
,*,* )(]3[)(2),( ηη μμΣbaΣBAΣεbBεεεaAεε . 

 
Note that when A  and B  have zero main diagonal elements the last two terms of the 
expression for the covariance drop out. 
 
 
Theorem A.1 in Kelejian and Prucha (2008)  
Define the 1×M  vector of quadratic forms )( ,, NNrNNrNN εaεAεx ′+′= , where Nr ,A , 

Mm ,...,1= , are real nonstochastic NN ×  matrices, Nr ,a , Mr ,...,1= , are real nonstochastic 

1×N vectors, and Nε  is a 1×N  random vector. Suppose the following assumptions hold: 

Assumption A.1  
The real valued random variables of the array { }1,1:, ≥≤≤ NNiNiε  satisfy 0)( , =NiE ε . 

Furthermore, for each 1≥N , the random variables NNN ,,1 ,...,εε are totally independent.  

Assumption A.2  
For Mr ,...,1=  

a) the elements of the array of real numbers }1,,1:{ ,, ≥≤≤ NNjia Nrij  satisfy 

NrjiNrij aa ,,,, = and ∞<∑
=

≥≤≤

N

i
NrijNNj a

1
,,1,1sup .  

b) the elements of the array of real numbers }1,1:{ ,, ≥≤ Nia Nri  satisfy 

∞<
+

=

− ∑
12

1
,,

1sup
ηN

i
NriN aN  for some 01 >η .  

Assumption A.3  
For Mr ,...,1= one of the following two conditions holds:  

a) ∞<
+

≥≤≤
22

,1,1sup
η

ε NiNNi E  for some 02 >η  and 0,, =Nriia . 

b) ∞<
+

≥≤≤
24

,1,1sup
η

ε NiNNi E  for some 02 >η  (but possibly 0,, ≠Nriia ).  

 
Denote the expectation of Nx  as )( NN E xμ =  and its variance-covariance matrix as 

)( NNE
N

xxx ′=Σ , which can be derived using Lemma A.1 in Kelejian and Prucha (2008). It 

then follows under Assumptions A.1-A.3, and provided that 0)(min
1 >≥− cN

Nx
Σλ  holds, that 

),0()(2/1
M

d
n NN

IμxΣ xx
→−−  as ∞→N . 
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Lemma F1 in Pötscher and Prucha (1997) 
Let NA and NB be real square random matrices. Let NB  be non-singular with probability 

approaching 1. Let 0BA p
NN →−  as N → ∞ and let the sequences NB  and +

NB  be bounded 

normwise in probability. Then the sequences NA  and +
NA  are bounded normwise in 

probability, NA  is non-singular with probability approaching 1, and 0BA p
NN →− ++  as N → ∞.  

 
 
Corollary F4 in Pötscher and Prucha (1997)  
Assume that Nη  and Nζ  are sequences of random vectors in pR and qR respectively, and let 

NA  be a sequence of bounded non-random qp ×  matrices. Suppose )1(pNNN o+= ζAη  and 

that ),(~ Σμζζ Nd
N →  with Σ  being positive definite. Define NNN ζAξ =  and 

),(~ NNNNNN N AΣAμAζAψ ′= . Let ,, ξη
NN FF and ψ

NF  be the cumulative distribution 

functions of , , NN ξη and Nψ , respectively. ( )(xFN
ψ  is the cdf of a normal distribution with 

mean NNμA  and variance-covariance matrix NN AΣA ′ .) Assume further that  

0)(inflim min >′
∞→ NNN AAλ holds. Then 0)()( →− xFxF NN

ξη  as N → ∞ (i.e., the difference 

between the cdf of Nη  and  Nξ converges to zero at all continuity points of the cdf of Nξ ), 

and 0)()( →− xFxF NN
ψη  as N → ∞. (i.e., the difference between the cdf of Nη  and 

Nψ converges to zero at all continuity points of the cdf of Nψ ).   

 
 
APPENDIX C  
I. Proof of Theorem 1 (Consistency of Nρ~ ) 

As a preliminary step, we now give a version of Lemma C.1 and Remark C.2 in Kelejian and 
Prucha (2008) that is applicable to the higher-order case. 
 
Lemma C.116  
Suppose the row and the column sums of the real nonstochastic N × N matrices NA  are 

bounded uniformly in absolute value. Let Nu  be defined by (1c) and let Nu~  denote a 

predictor for Nu . Suppose Assumptions 1-4 hold. Then  

 
(a) )1(1 OEN NNN =′− uAu  and )1()( 1 oNVar NNN =′− uAu , and 

 )1()()~~( 11
pNNNNNN oENN =′−′ −− uAuuAu .    

 

                                                 
16 Compare Kelejian and Prucha (2008, p. 32). 
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(b) )1(,.
1 OEN NNNj =′− uAd , Pj ,...,1= , where Nj ,.d  is the j-th column of the PN × matrix 

ND , and )1()(~ 11
pNNNNNN oENN =′−′ −− uADuAD . 

 
(c) Furthermore, if Assumption 6 holds, then  

)1(~~ 2/12/12/1
pNNNNNNNN oNNN +′+′=′ −− ΔαuAuuAu  with ])([1

NNNNN EN uAADα ′+′= − .  

In light of (b), we have )1(ON =α  and )1(~)(1
pNNNNN oN =−′+′− αuAAD . 

 
Proof of part (a) 
Let  
 

 NNNN N uAu′= −1ϑ  and NNNN N uAu ~~~ 1 ′= −ϑ  (C.1)   

 
then given (1c), we have NNNN N εBε′= −1ϑ , with17  

 

∑∑
=

−

=

− −′+′−=
S

m
NmNmNNN

S

m
NmNmNN

1

1
,,

1

1
,, ))(())(2/1( MIAAMIB ρρ .       (C.2) 

 
By Assumption 3 and Remark A.1 in Appendix A, the row and column sums of the matrices 

NB  are uniformly bounded in absolute value. Let ),...,( 2
,

2
,11 NNN

N
iN diag σσ==Σ , then given 

Assumption 2 it follows that the row and column sums of the matrices NNNN ΣBΣB  are 

uniformly bounded in absolute value.  
 
In the following let ∞<K  be a common bound for the row and column sums of the absolute 
elements of NB , NΣ , and NNNN ΣBΣB  and of their respective elements. Then, using Lemma 

A.1 in Kelejian and Prucha (2008), we have  
 

 ∑∑
= =

−=
N

i

N

j
NjNiNijN bNEE

1 1
,,,

1 εεϑ  (C.3) 

 ∑∑
= =

−≤
N

i

N

j
NjNiNij EbN

1 1
,,,

1 εε       

 ∑∑
= =

−≤
N

i

N

j
NjNiNijbN

1 1
,,,

1 σσ      

 3K≤ , 
 

                                                 
17 We use the fact that 2/)( NNNNNNNNNN εAAεεAεεAε ′+′=′′=′ , which is a quadratic form in 

the symmetric matrix 2/)( NN AA ′+ . 



 79

where we used Hölder’s inequality in the last step. This proves that NEϑ  is O(1). 

 
Now consider )( NVar ϑ , invoking Lemma A.1 in Kelejian and Prucha (2008): 

 
 ),()( 11

NNNNNNN NNCovVar εBεεBε ′′= −−ϑ  (C.4) 

 ]3)([)(2 4
,

4
,4

,
1

2
,

22 −+= ∑
=

−−

Ni

Ni
Ni

N

i
NiiNNNN EbNTrN

σ
ε

σΣBΣB   

 ]
3)(

[)(2 4
,

4
,

4
,

1

4
,

2
,

22

Ni

NiNi
N

i
NiNiiNNNN

E
bNTrN

σ
σε

σ
−

+= ∑
=

−− ΣBΣB   

 ]3)([)(2 4
,

4
,

1

2
,

22
NiNi

N

i
NiiNNNN EbNTrN σε −+= ∑

=

−− ΣBΣB   

 ]3)([sup2 4
,

4
,,...,1

211
NiNiNi EKNKN σε −+≤ =

−− . 

 
Since the fourth moments of Ni,ε  are uniformly bounded by Assumption 2, it follows that 

both terms converge to zero as N → ∞. This establishes the claims in part (a) of Lemma C.1 

that  0uAuuAu p
NNNNNN ENN →′−′ −− )()( 11 . 

 

We now prove the second part of (a), i.e., 0)()~~( 11 p
NNNNNN ENN →′−′ −− uAuuAu . Since 

)1()( pNN oE =− ϑϑ , it is sufficient to show that )1(~
pNN o=−ϑϑ . By Assumption 4, we have 

NNNN ΔDuu =−~ , where ),...,( .,.,1 ′′′= NNNN ddD . Substituting NNNN ΔDuu +=~  into the 

expression for Nϑ~  in (C.5), we obtain 

 

 NNNNNNNNNNNN NN uAuΔDuADΔu ′−+′′+′=− −− 11 )()(~ ϑϑ  (C.5) 

 )(1
NNNNNNNNNNNNNNNNNNNN uAuΔDADΔΔDAuuADΔuAu ′−′′+′+′′+′= −  

 )(1
NNNNNNNNNNNNNN ΔDADΔΔDAuuADΔ ′′+′+′′= −   

 )(1
NNNNNNNNNNNNNN ΔDADΔuADΔuADΔ ′′+′′′+′′= −   

 ])([1
NNNNNNNNNNN ΔDADΔuAADΔ ′′+′+′′= −  

 NN ψφ += ,  

 
where  
 

 =Nφ ]))(([])([
1

1
,,

11
N

S

m
NmNmNNNNNNNNNN NN εMIAADΔuAADΔ ∑

=

−−− −′+′′=′+′′ ρ , (C.6) 

 )(1
NNNNN εCDΔ ′′= − , where ),..,())(( .,.,1

1

1
,, ′′′=−′+= ∑

=

−
NNN

S

m
NmNmNNNN ccMIAAC ρ  
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and 
 
 =Nψ NNNNNN ΔDADΔ ′′−1 .  (C.7) 

 
By Assumption 3 and Remark A.1, the row and column sums of NC  are uniformly bounded 

in absolute value. Denote by K  the uniform bound for the row and column sums of the 
matrices NA  and NC . We next prove that )1(pN o=φ  and )1(pN o=ψ .  

 
Proof that )1(pN o=φ : 

 

 =Nφ NNNNN εCDΔ ′′−1   (C.8) 

 N

N

i
NiNiNN εcdΔ∑

=

− ′′=
1

.,.,
1           

 ∑
=

− ′′≤
N

i
NNiNiNN

1
.,.,

1   εcdΔ      

 ∑ ∑
= =

− ′′=
N

i

N

j
NjNijNiN cN

1 1
,,.,

1   εdΔ     

 ∑ ∑
= =

− ′′≤
N

i

N

j
NjNijNiN cN

1 1
,,.,

1   εdΔ     

 ∑ ∑
= =

− ′′=
N

i

N

j
NjNijNiN cN

1 1
,,.,

1    εdΔ   

 ∑∑
==

− ′′=
N

i
NijNi

N

j
NjN cN

1
,.,

1
,

1   dΔ ε  

 
qN

i

q

Nij

pN

i

p
Ni

N

j
NjN cN

/1

1
,

/1

1
.,

1
,

1   ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ ′′≤ ∑∑∑
===

− dΔ ε   

 ( )
qN

i

q

Nij

pN

i

p
Ni

N

j
NjN

p cNNNNNNN
/1

1
,

/1

1
.,

1

1
,

12/1/112/11    ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′= ∑∑∑

==

−

=

−−− dΔ ε  

 ( )
qN

i

q

Nij

pN

i

p
Ni

N

j
NjN

p cNNNN
/1

1
,

/1

1
.,

1

1
,

12/12/1/1    ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′= ∑∑∑

==

−

=

−− dΔ ε . 

 

Note that Kc
N

i
Nij ≤⎟

⎠

⎞
⎜
⎝

⎛∑
=1

,  by Assumption. From Remark C.1 in Kelejian and Prucha (2008), 

see Appendix A, it follows that q
N

i

q

Nij Kc ≤⎟
⎠

⎞
⎜
⎝

⎛∑
=1

,  (for 1>q ) and thus 
qN

i

q

Nijc
/1

1
, ⎟

⎠

⎞
⎜
⎝

⎛∑
=

K≤ .  

Factoring K  out of the sum yields the final expression  
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 Nφ ( )
pN

i

p
Ni

N

j
NjN

p NNNNK
/1

1
.,

1

1
,

12/12/1/1  ⎟
⎠

⎞
⎜
⎝

⎛ ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′≤ ∑∑

=

−

=

−− dΔ ε . 

 
This holds for δ+= 2p  for some 0>δ  as in Assumption 4 and 1/1/1 =+ qp . The 

innovations iε  are independent and have bounded second moments by Assumption 2. It 

follows that )1(
1

,
1

p

N

j
Nj ON =∑

=

− ε .  

 

Moreover, it follows from Assumption 4 that ( ) )1(2/1
pN ON =′Δ  and )1( 

/1

1
.,

1
p

pN

i

p
Ni ON =⎟

⎠

⎞
⎜
⎝

⎛ ′∑
=

− d   

for  δ+= 2p  and some 0>δ . Since 02/1/1 →−pN  as ∞→N  it follows that Nφ )1(po= . 

 
Similarly, we have 
 

 =Nψ NNNNNN ΔDADΔ ′′−1 = ∑∑
= =

− ′′′
N

i

N

j
NNjNijNiNiN aN

1 1
.,,.,.,

1 ΔdddΔ  (C.9) 

 Nij

N

i

N

j
NjNiN aN ,

1 1
.,.,

21  ∑ ∑
= =

− ′≤ ddΔ  

 
q

N

j

q

Nij

N

i

p
N

j

p

NjNiN aN
/1

1
,

1

/1

1
.,.,

21  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′≤ ∑∑ ∑

== =

− ddΔ  

 
p

N

j

p

Nj

N

i
NiN

p NNKN
/1

1
.,

1

1
.,

12/1  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ ′≤ ∑∑
=

−

=

− ddΔ  

 ( ) )1( 
/2

1
.,

122/12/12/1/1
p

p
N

j

p

NjN
p oNNKNN =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

−−− dΔ . 

 

Summing up, we have proved that )1(~
pNNNN o=+=− ψφϑϑ . 

 
Proof of part (b) 
Denote by *

, Nsϑ  the s-th element of NNNN uAD′−1 . In light of the discussion after Assumption 

3 and given Assumption 4 there exists a constant ∞<K such that KuE Ni ≤)( 2
,  and 

KdE
p

Nij ≤,  with δ+= 2p  for some 0>δ . Without loss of generality we assume that the 

row and column sums of the matrices NA  are uniformly bounded by ∞<K . Notice first that, 

using the Cauchy-Schwarz and  Lyapunov inequalities, we have  
 

 ( ) ( ) 2/12
,

2/12
,,, NjsNiNjsNi EdEuduE ≤        
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 ( )
pp

NjsNi dEEu
/1

,
2/12

, ⎟
⎠
⎞⎜

⎝
⎛≤                     

 pp KKK /12/1/12/1 +
=≤  with p  as before. 

 
It follows that  
 

 ∑∑
= =

−=
N

i
NjsNi

N

j
NijNs duEaNE

1
,,

1
,

1*
,  ϑ  (C.10) 

 ∞<=≤≤ +−+

= =

−+ ∑∑ pp
N

i

N

j
Nij

p KKNNKaNK /12/31/12/1

1 1
,

1/12/1  ,  

 

which shows that indeed )1(,.
1 ONE NNNs =′− uAd . Of course, the argument also shows that  

 
 )1(])([1 OEN NNNNN =′+′= − uAADα .  

 
Next, observe that  
 
 *11 ~

NNNNNNN NN φ+′=′ −− uADuAD ,                      (C.11) 

 
where NNNNN N ΔDAD′= −1*φ . It now follows from the demonstration of 

=Nφ )1(])([1
pNNNNN oN =′+′′− uAADΔ  that also )1(*

pN o=φ .  

 
Proof of part (c) 
In light of the proof of part (a) and using NNNN ΔDuu +=~ ,  

 
 =′−

NNNN uAu ~~2/1 )()(2/1
NNNNNNNN ΔDuADΔu +′′+′−  (C.12) 

 )1(])([ 2/112/12/1
pNNNNNNNNN oNENNN ++′+′′+′= −− ψuAADΔuAu ,  

 
where )1(2/1

pN oN =ψ , compare (C.9). 

 
In light of (b) and since )1(2/1

pN ON =′Δ  by Assumption 4, we have  

 
 )1(~~ 2/12/12/1

pNNNNNNNN oNNN +′+′=′ −− ΔαuAuuAu . (C.13) 
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Remark C.2.18  
In light of Remark A.1, the constant K used in the proof of Lemma C.1, part (a), can be 
chosen such that ApccK 2= , where pc  and Ac  are the bounds for the row and column sums 

of the matrices 1

1

)( −

=
∑−=

S

m
NmNN MIP ρ  and NA  respectively. Furthermore, notice that 

NPANN cc ςϑϑ 2~
≤−  with )1(pN o=ς . 

 
 
Proof of Theorem 1.  
The objective function of the weighted nonlinear least squares estimator defined by (10) and 
its nonstochastic counterpart are given by  
 

 )~~(~)~~(),( bb NNNNNNR ΓγΘΓγρ −′−=ω  and  (C.14)  

 )()()( bb NNNNNNR ΓγΘΓγρ −′−= . (C.15) 

 
In general, 0)( ≥ρNR  and in light of (8), 0)( =ρNR  for Nρρ = , i.e., the objective function is 

zero when evaluated at the true parameter value.  
 
Using NNN bΓγ = , we obtain  

 
 )()()( ρρρ NNNN RRR =−  (C.16) 

 )()( bbbb NNNNNNN ΓΓΘΓΓ −′−= . 

 )()( bbbb −′′−= NNNNN ΓΘΓ  

 
In light of Rao (1973, p. 62) and Mittelhammer (1996, p. 254)  
 
 ≥− )()( NNN RR ρρ )())((min bbbb −′−′ NNNNN ΓΘΓλ  and  (C.17) 

 )())(()( minmin bbbb −′−′≥ NNNNN ΘΓΓ λλ  

 2
* ρρ −≥ Nλ   

 
for some 0* >λ  by Assumption 5.  
 
Hence, for every 0>ε  and every N  we have   
 

 0inf)]()([inf 2
*

2
*

,,
>=−≥−

≥−≤≤−≥−≤≤−
ελλ

εε ρρρρ
ρρρρ

ρρaρaρρaρa
NNNN

NN

RR , (C.18) 

                                                 
18 Compare (Kelejian and Prucha, 2008, p. 35). 
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which proves that the true parameter vector Nρ  is identifiable unique (compare Lemma 

Lemma 4.1 in Pötscher and Prucha, 1997).  
 

Next, let ),( NNN ΓγΦ −=  and )~,~(~
NNN ΓγΦ −= , then the objective function and its 

nonstochastic counterpart can be written as  
 

 ),1(~~~),1(),( ′′′′= bb NNNNR ΦΘΦρω  and  (C.19) 

 ),1(),1()( ′′′′= bb NNNNR ΦΘΦρ . (C.20) 

 
It follows that  
    

 ),1)(~~~)(,1()(),( ′′′−′′=− bb NNNNNNNN RR ΦΘΦΦΘΦρρω  (C.21) 

),1( ~~~ ),1( ′′′−′′≤ bb NNNNNN ΦΘΦΦΘΦ  

2

),1( ~~~ ′′′−′≤ bNNNNNN ΦΘΦΦΘΦ  

])(
2

)1(2)([1 ~~~ 42 ρρ aSSSaSNNNNNN
−+

++′−′≤ ΦΘΦΦΘΦ . 

 
As can be seen from the right-hand side of (11), the elements of ],[ NNN ΓγΦ −=  are all of the 

form )(1
NNNEN uAu′−  and )~~(1

NNNN uAu′− , where the row and column sums of the matrices 

NA  are bounded uniformly in absolute value (see Remark A.1). It now follows from Lemma 

C.1 that 0ΦΦ p
NN →− ~  as N → ∞, and that the elements of NΦ  and NΦ~  are )1(O  and )1(pO  

respectively. The analogous properties are seen to hold for NΘ  and NΘ~ , i.e., the elements of 

NΘ  and NΘ~  are )1(O  and )1(pO  respectively and 0ΘΘ p
NN →−

~  by Assumption A.5. It 

follows from the above inequality that )(),( ρρ NN RR −ω  converges to zero uniformly over 

the optimization space ρρ aρa ≤≤− , i.e.,   
 

 )(),(sup ρρ
aρa

NN RR −
≤≤−

ω
ρρ

 (C.22) 

 0])(
2

)1(2)([1 ~~~ 42 p
NNNNNN aSSSaS →

−+
++′−′≤ ρρΦΘΦΦΘΦ  as N → ∞,  

 
The consistency of )~,...,~(~

,,1 ′= NSNN ρρρ  now follows directly from Lemma 3.1 in Pötscher and 

Prucha (1997). 
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II. Proof of Theorem 2 (Asymptotic Normality of Nρ~ ) 

The limiting distribution of the GM estimator of Nρ will be seen to depend on (the inverse of) 

NNN JΘJ′  and the variance-covariance matrix of the vector of quadratic forms Nv  as defined 

by (12).  
 
We first consider NJ , the SS ×2  matrix of derivatives of the 12 ×S  vector of moment 

conditions given by (8a):  
 

]
)(

,...,
)(

[)()( .,.,

1

.,.,

S

NNiNiNNiNiNNN
N ρρ ∂

−∂
∂
−∂

=
′∂

−∂
=

bbb ΓγΓγ
ρ
ΓγρJ , (C.23) 

]
)(

[)( .,.,
,

s

NNiNi
Nisj

ρ∂
−∂

==
bΓγ

, Si 2,...,1= , Ss ,...,1= , 

 
where Ni.,γ  and Ni.,Γ  denote the i-th row of Nγ  and NΓ . 

 

Accounting for the fact that 0
ρ
γ

=
′∂

∂ )( N  (and ignoring the negative sign), we have  

 

NNNNN Bb ΓΓ
ρ

ρJ =
′∂

∂
=)( ,   (C.24) 

 
where NB  is a  SSSS ×−+ ]2/)1(2[  matrix, which is defined as follows:  

 
 ),,( ,3,2,1 ′′′′= NNNN BBBB ,  (C.25) 

 
with  
 
 SN I=1B ,  (C.26) 

 )2( ,12 Ns
S
sN diag ρ==B , (C.27) 

 
and ),...,( ,1,3,1,33 ′′′= − NSNN BBB  is an SSS ×− 2/)1(  matrix, consisting of )1( −S  vertically 

arranged blocks Nm,,3B , )1(,...,1 −= Sm , which have the following structure:  

 
 ),,( ,,,,,3 NmNmNmNm EdCB = , where (C.28) 
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Nm,C  is a )1()( −×− mmS  matrix of zeros19 , Nm,d  is a 1)( ×− mS  vector, defined as 

),...,( 1, SmNm ρρ +=d , and mSmNm −= Iρ,E . 

 
For later reference, note that NB  has full column rank (S); as a consequence, the SS × matrix 

NN BB ′ is positive definite (see, e.g., Greene, 2003, p. 835).  

 
Next, define 
 

=),( NNN Δρq

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′
′

′
′

=−

−

−

−

−

NNSN

NNSN

NNN

NNN

NNN

N
N

N
N

uCu
uCu

uCu
uCu

Γγ

~~
~~

.

.

~~
~~

~~

,2
1

,1
1

,21
1

,11
1

b  , (C.29) 

 
where the NN ×  matrices Ns,1C  and Ns,2C , Ss ,...,1=  are defined as follows:  

 

))()((2/1
1

,,,1,1
1

,,,1 ∑∑
==

−′+′−=
S

m
NmNmNNsNs

S

m
NmNmNNs MIAAMIC ρρ , (C.30) 

))()((2/1
1

,,,2,2
1

,,,2 ∑∑
==

−′+′−=
S

m
NmNmNNsNs

S

m
NmNmNNs MIAAMIC ρρ . (C.31) 

 
By the properties of Ns,M  and in light of Remark A.1 in Appendix A, the row and column 

sums of the matrices Ns,1C  and Ns,2C , Ss ,...,1= , are uniformly bounded in absolute value.  

 
In Theorem 1 we showed that the GM estimator Nρ~  defined by (9) is consistent. It follows 

that – apart from a set of the sample space whose probability tends to zero – the estimator 
satisfies the following first-order condition: 
 

0ΔρqΘ
ρ
ΔρqΔρqΘΔρq

ρ
=

∂
∂

=′
∂
∂ ),~(~),~(),~(~),~( NNNN

NNN
NNNNNNN , (C.32)      

 
which is a 1×S  vector, each row s corresponding the partial derivative of the criterion 
function with respect to sρ .20  

                                                 
19 I.e., there is no block N,1C  in the first line.  
20 The leading two and the negative sign are ignored without further consequences for the 
proof.  
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Substituting the mean value theorem expression  
 

)~(
),(

),(),~( NN
NNN

NNNNNN ρρ
ρ

Δρq
ΔρqΔρq −

′∂
∂

+= , (C.33) 

 
where Nρ  is some between value, into the first-order condition yields 

 

),(~),~()~(),(~),~( 2/12/1
NNNN

NNN
NN

NNN
N

NNN NN ΔρqΘ
ρ
Δρqρρ

ρ
ΔρqΘ

ρ
Δρq

∂
∂

−=−
′∂

∂
∂

∂ .  (C.34)  

 

Observe that NN
NN BΓ

ρ
Δρq ~),(

=
′∂

∂  and consider the two SS ×  matrices  

 

NNNNN
NNN

N
NNN

N BB ΓΘΓ
ρ
ΔρqΘ

ρ
ΔρqΞ ~~~~),(~),~(~ ′′=

′∂
∂

∂
∂

= , and   (C.35) 

NNNNNN BB ΓΘΓΞ ′′= , (C.36) 

 

where NB~  and NB  correspond to NB  as defined above with Nρ~  and Nρ  substituted for 

Nρ . Notice that NΞ  is positive definite, since NΓ  and NΘ  are positive definite by assumption 

and the SSSS ×−+ ]2/)1(2[  matrix NB  has full column rank.  

 

In the proof of Theorem 1 (and Lemma C.1) we have demonstrated that 0ΓΓ p
NN →−~  and 

that the elements of NΓ  and NΓ
~  are )1(O  and )1(pO , respectively. By Assumption 5 we have 

)1(~
pNN o=−ΘΘ  and also that the elements of NΘ  and NΘ~  are )1(O  and )1(pO . Since Nρ~  

and Nρ  (and thus also NB~  and NB ) are consistent and bounded in probability, it follows that 

0ΞΞ p
NN →−~  as N → ∞ and furthermore )1(~

pN O=Ξ  and )1(ON =Ξ . Moreover, NΞ  is 

positive definite and thus invertible, and its inverse 1−
NΞ  is also )1(O .  

 

Denote +
NΞ

~  as the generalized inverse of NΞ
~ . It then follows as a special case of Lemma F1 in 

Pötscher and Prucha (1997)  (see Appendix B) that NΞ
~  is non-singular with probability 

approaching 1, that +
NΞ~  is )1(pO , and that 0ΞΞ p

NN →− −+ 1~  as ∞→N . 

 

Premultiplying (C.34) with +
NΞ

~  we obtain, after rearranging terms,      
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),(~),~(~)~()~~()~( 2/12/12/1
NNNN

NNN
NNNNNSNN NNN ΔρqΘ

ρ
Δρq

ΞρρΞΞIρρ
∂

∂
−−−=− ++  (C.37) 

 
In light of the discussion above the first term on the right-hand side is zero on ω-sets of 
probability approaching 1 (compare Pötscher and Prucha, 1997, p. 228ff.). This yields 
 

 )1(),(~),~(~)~( 2/12/1
pNNNN

NNN
NNN oNN +

∂
∂

−=− + ΔρqΘ
ρ
ΔρqΞρρ .       (C.38) 

 
Next observe that 
 

 )1(~),~(~ 1
pNNNNN

NNN
N o=′′−

∂
∂ −+ ΘΓΞΘ

ρ
ΔρqΞ B , since (C.39) 

 )1(~ 1
pNN o=− −+ ΞΞ  and )1(),~(

pNN
NNN o=′′−

∂
∂ Γ

ρ
Δρq B . (C.40) 

 
We next consider the distribution of the vector ),(2/1

NNNN Δρq . In light of (C.29) and 

Lemma C.1 the elements of ),(2/1
NNNN Δρq  can be expressed as  

 

 ),(2/1
NNNN Δρq

⎥
⎥
⎥
⎥
⎥
⎥
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⎦

⎤

⎢
⎢
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⎢
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⎢
⎢
⎢
⎢
⎢

⎣

⎡

+′+′
+′+′

+′+′
+′+′

=

−

−

−

−

)1(
)1(

.

.
)1(
)1(

2/1
,2,2

2/1

2/1
,1,1

2/1

2/1
,21,21

2/1

2/1
,1111

2/1

pNNSNNSN

pNNSNNSN

pNNNNN

pNNNNN

oNN
oNN

oNN
oNN

ΔαuCu
ΔαuCu

ΔαuCu
ΔαuCu

, (C.41)  

 
where  
 
 )(2 ,1

1
,1 NNsNNs EN uCDα ′= −  and )(2 ,2

1
,2 NNsNNs EN uCDα ′= − .  (C.42) 

  
Furthermore, Lemma C.1 implies that the elements of Ns,1α  and Ns,2α  are uniformly bounded 

in absolute value for Ss ,...,1= .  
 

Using the definition of Ns,1C  and Ns,2C  and utilizing N

M

m
NmNmNN εMIu 1

1
,, )( −

=
∑−= ρ , as well as 

Assumption 7, we have 
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 ),(2/1
NNNN Δρq )1(

)(

)(
.
.

)(

)(

,2,2,22
1

,1,1,12
1

,21,21,212
1

,11,11,112
1

2/1
p

NNSNNSNSN

NNSNNSNSN

NNNNNN

NNNNNN

oN +

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′+′+′

′+′+′

′+′+′

′+′+′

= −

εaεAAε

εaεAAε

εaεAAε

εaεAAε

  (C.43) 

 )1()1(*2/1
pNpN ooN +=+= − vv ,   

 
where  
 
 NsNNs ,1,1 αTa =  and NsNNs ,2,2 αTa = . (C.44) 

 
Observe that the elements of Ns,1a  and Ns,2a  are uniformly bounded in absolute value for 

Ss ,...,1=  (by Assumption 7 and Lemma C.1). We define the 12 ×S vector  
 

 )(. ,

,

,1

Ns

NS

N

N v
v

v
v =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= , Ss ,...,1= , where (C.45) 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

Ns

Ns
Ns v

v

,2

,1
,v = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′+′+′

′+′+′

−

−

])([

])([

,2,2,22
12/1

,1,1,12
12/1

NNsNNsNsN

NNsNNsNsN

N

N

εaεAAε

εaεAAε
. 

 
The SS 22 ×  (limiting) variance-covariance matrix of Nv  takes the following form:  

 

 )( NNN E vvΨ ′= = )( ,,

,,,1,

,,1,1,1

NqNp

NSNSNNS

NSNNN

vvEE ′=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′′

′′

vvvv

vvvv

, Sqp ,...,1, = . (C.46) 

 
The elements of NΨ  are defined in main text after (14). To derive the asymptotic distribution 

of Nv  we invoke the central limit theorem for vectors of linear quadratic forms given by 

Kelejian and Prucha (2008, Theorem A.1; see Appendix B). In light of Assumptions 1, 2 and 
7 (and Lemma C.1), the innovations Nε , the matrices )( ,1,1 NsNs AA ′+  and )( ,2,2 NsNs AA ′+ , 

and the vectors Ns,1a  and Ns,2a , Ss ,...,1= , satisfy the assumptions of Theorem A.1 in 

Kelejian and Prucha (2008), such that  
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 ),( 2
2/1*2/12/1*2/1

* S
d

NNNNn N
N

I0vΨvΨvΣ
v

→−=−=− −−−− , (C.47) 

 
since 0)()()( minmin

1
min

1
* >== −−

NNv
NNN

N
ΨΨΣ λλλ  as required in Theorem A.1. 

 
Since the row and column sums of the matrices Ns,1A  and Ns,2A  are uniformly bounded in 

absolute value, and the elements of the vectors Ns,1a  and Ns,2a  and the variances are 

uniformly bounded in absolute value, it follows in light of (15a) that the elements of NΨ  and 

also those of 2/1
NΨ  are uniformly bounded in absolute value.  

 
It now follows from (C.38) and (C.39) and (C.43) that  
 
 )1()()~( 2/12/112/1

pNNNNNNNN oN +−′=− −− vΨΨΘJΞρρ . (C.48) 

 
Since all nonstochastic terms on the right hand side from (C.48) are )1(O  it follows that 

)~(2/1
NNN ρρ −  is )1(pO . To derive the asymptotic distribution of )~(2/1

NNN ρρ − , we invoke 

(part of) Corollary F4 (together with the Assumptions stated in Corollary F3) in Pötscher and 
Prucha (1997) (see Appendix B). In the present context we have  
 

 ),(~ 2
2/1

S
d

NNN N I0ζvΨζ →−= − , and  

  )1()~(2/1
pNNNN oN +=− ζAρρ , where  

 2/11
NNNNN ΨΘJΞA ′= − . 

 
As a final point we demonstrate that 0)(inflim min >′∞→ NNN AAλ  as required in Corollary F4 

in Pötscher and Prucha (1997). Observe that  
 
 =′ )(min NN AAλ )( 11

min
−− ′′ NNNNNNN ΞJΘΨΘJΞλ  (C.49) 

  0)()()()()( minmin
11

minminmin >′′′≥ −−
NNNNNNNNN BBλλλλλ ΓΓΞΞΘΘΨ , 

 
since the matrices involved are all positive definite. 
 
Hence, the expectation of )~(2/1

NNN ρρ −  is zero and its limiting variance-covariance matrix is 

given by  
 
 11

~ )()()( −− ′′′= NNNNNNNNNNNN JΘJJΘΨΘJJΘJΘΩ
Nρ

, (C.50) 

 
where 

Nρ
Ω~  is positive definite.    
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III. Proof of Theorem 3 (Variance-Covariance Estimation) 

As part of proving Theorem 3 it has to be shown that )1(~
pNN o=−ΨΨ . Observe that in light 

of (15), NΨ~ and NΨ  are made of up 2S  blocks of dimension 22× , Npq,
~ψ  and Npq,ψ , whose 

elements can be written as *,*11
,

,*11
,

11
,

~~~
NpqNpqNpq ψψψ +=  and *,*11

,
,*11
,

11
, NpqNpqNpq ψψψ += , where  

 

=,*11
,

~
Npqψ ∑∑

= =

−
N

i

N

j
NjNiNqpijaN

1 1

2
,

2
,,1,1,

1 ~~
2
1 εε , where ))(( ,1,,1,,1,,1,,1,1, NqjiNqijNpjiNpijNqpij aaaaa ++= , (C.51) 

=*,*11
,

~
Npqψ NqNNNNNNpN ,1,1

1 ~~~~~~~ αPFΣFPα ′′′− , (C.52) 

,*11
,Npqψ ∑∑

= =

−=
N

i

N

j
NjNiNqpijaN

1 1

2
,

2
,,1,1,

1

2
1 σσ , where ))(( ,1,,1,,1,,1,,1,1, NqjiNqijNpjiNpijNqpij aaaaa ++= , (C.53) 

=*,*11
, Npqψ NqNNNNNNpN ,1,1

1 αPFΣFPα ′′′= −  (C.54) 

 
Analogous definitions apply to the other three elements 12

, Npqψ , 21
, Npqψ , and 22

, Npqψ . In the 

subsequent proof, we consider element 11
, Npqψ , but it is readily observed that the same 

reasoning applies to 12
, Npqψ , 21

, Npqψ , and 22
, Npqψ  as well.  

 
Two Lemmata (C.3 and C.4) will be used to show that )1(~ ,*11

,
,*11
, pNpqNpq o=−ψψ . Two Lemmata 

(C.5 and C.6) will be used to show that )1(~ *,*11
,

*,*11
, pNpqNpq o=−ψψ .  

 
 
Lemma C.321  

Suppose Assumptions 1-3 hold. Let 221
NNNN N σAσ ′=Λ −  and 221

NNNN N εAε ′=Λ −  with 

),...,( 2
,

2
,1

2 ′= NNNN σσσ  and ),...,( 2
,

2
,1

2 ′= NNNN εεε  and where the NN × matrices NA  are real, 

nonstochastic, and symmetric. Suppose further that the diagonal elements of the matrices NA  

are zero and that their row and column sums are uniformly bounded in absolute value. Then 

)1(OE NN =Λ=Λ  and )1()( oVar N =Λ , and hence 0p
NN →Λ−Λ  as ∞→N , and 

)1(pN O=Λ . 

 
Lemma C.3 as used here is exactly equal to Lemma C.3 in Kelejian and Prucha (2008, p. 40) 
in the first-order case, where the reader is referred to for a proof.  
 
 

                                                 
21 Compare Kelejian and Prucha (2008, p. 40ff.). 
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Lemma C.422  

Suppose Assumptions 1-4 hold. Let ∑
=

−=
S

m
NNmNmNN

1
,, )( uMIε ρ  and let 

∑
=

−=
S

m
NNmmNN

1
,

~)~(~ uMIε ρ  with NNNN ΔDuu +=~  and ),...,( .,.,1 ′′′= NNNN ddD , and where the 

1×S  vector Nρ~  can be any estimator that satisfies )1()~(2/1
pNN ON =− ρρ . Define 

)~()~(Λ~ 221
NNNN N εAε ′= − , )()(Λ 221

NNNN N εAε ′= −  with )~,...,~(~ 2
,

2
,1

2 ′= NNNN εεε  and 

),...,( 2
,

2
,1

2 ′= NNNN εεε , and where the NN ×  matrices NA  are real, nonstochastic, and 

symmetric. Suppose further that the diagonal elements of the matrices NA  are zero and that 

their row and column sums are uniformly bounded in absolute value, and that 

∞<≤ dNij KEd 4
, . Then, 0ΛΛ~ p

NN →−  as ∞→N , and )1(~
pN O=Λ . 

 
Proof. 
Observe that  
 

 )]~~([ΛΛ~ 2
,

2
,

1

2
,

2
,

1
,

1
NjNi

N

i
NjNi

N

j
NijNN aN εεεε −=− ∑∑

= =

− , (C.55) 

 

which can be written as NNNNN ,3,2,1
~ ϕϕϕ ++=− ΛΛ , where  
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2
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1

2
,

1
,

1
,1 )~( NjNi

N

i
Ni

N

j
NijN aN εεεϕ −= ∑∑
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1

2
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2
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1
,

1
,2 Nj

N

i
NjNi

N

j
NijN aN εεεϕ −= ∑∑
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 )~)(~( 2
,

2
,

2
,

1

2
,

1
,

1
,3 NiNiNj

N

i
Nj

N

j
NijN aN εεεεϕ −−= ∑∑

= =

− .  (C.58) 

 
We next show that N,1ϕ , N,2ϕ , and N,3ϕ  are all )1(po . Observe that 

 

))(~(~)~(~
1

,,
1

,, ∑∑
==

+−=−=
S

m
NNNNmNmN

S

m
NNmNmNN ΔDuMIuMIε ρρ    (C.59) 

 )]()~([
1

,,,, NNN

S

m
NmNmNmNmN ΔDuMI +−+−= ∑

=

ρρρ  

 N

S

m

S

m
NmNmNmNNmNmN uMuMI ∑ ∑

= =

−−−=
1 1

,,,,, ])~([)( ρρρ  

                                                 
22 Compare Kelejian and Prucha (2008, p. 41ff.). 



 93

 NN

S

m

S

m
NmNmNmNNNmNmN ΔDMΔDMI ∑ ∑
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1 1

,,,,, ])~([)( ρρρ  

 NN ηε += ,  

 
where    
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= =

−

=

−−+−=
S

m
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m
N

S

m
NmNmNNmNmNmNNNmNmNN
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1

1
,,,,,,, ])()~([)( εMIMΔDMIη ρρρρ  

  NN

S

m
NmNmNm ΔDM∑

=

−+
1

,,, ])~([ ρρ . (C.60) 

 
This can also be written as 
 
 NNN gRη = ,  (C.61) 

 
where 
 
 ],,[ ,3,2,1 NNNN RRRR =  with 

 N,1R ∑
=

−=
S

m
NNmNmN

1
,, ,)( DMI ρ  

 ])(,...,)([ 1

1
,,,

1

1
,,1,2 N

S
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NmNmNNSN

S

m
NmmNNN εMIMεMIMR −
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−
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⎢
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Δρρ
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Δ

)~(
)~(g . 

 
In light of Assumption 3 and since the elements of ),...,( .,.,1 ′′′= NNNN ddD  and Nε  have 

bounded fourth moments, each column of the matrix NR  is of the form NNN ξΠπ + , where 

the elements of the 1×N  vector Nπ  are uniformly bounded in absolute value by some finite 

constant, the row and column sums of the NN ×  matrix NΠ  are uniformly bounded in 

absolute value by some finite constant, and the fourth moments of the elements of Nξ  are 

bounded by some finite constant. It follows that the fourth moments of the elements of NR  

are also bounded by some finite constant by Lemma C.2 in Kelejian and Prucha, 2008 (see 
also Remark A.1 in Appendix A). As a consequence,  
 
 NNN gRη ≤ ,  (C.62) 
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or for the i-th element of the 1×N vector Nη : 

 

 NiNNiNNNiNi ,.,.,,    βαη ==≤ rr gg ,  (C.63) 

 

where Ni.,r  denotes the i-th row of NR , and   NN g=α  and NiNi .,,  r=β  with ∞<≤ ββ KE Ni )( 4
, .  

Without loss of generality we can select βK  such that β
γβ KE Ni ≤)( , for 4≤γ .  

 

Note that )1(2/1
pN ON =α . Given Assumption 2, we have ∞<≤ ε

γ
ε KE Ni, , ηγ +≤ 4  (for 

some 0>η ) and some εK . By the Assumption of Lemma C.4, the row and column sums of 

NA  are uniformly bounded in absolute value, i.e., ∞<≤∑
=

a

N

i
Nij Ka

1
, . In the following let 

),,,1max( aKKKK εβ= . In light of Remark C.1 in Kelejian and Prucha (2008) (see Appendix 

A) it follows that γγ
Ka

N

l
Nil ≤∑

=1
, . 

 
From (C.59) and (C.63) we have: 
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Taking the norm of (C.56) we have  
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NijNiNNiNiN aN εβαεβα∑ ∑

= =

− +=   

 ∑ ∑∑∑
= ==

−

=

− +=
N

i
Nj

N

j
Nij

N

i
NiNNj

N

j
NijNiNiN aNaN

1

2
,

1
,

1

2
,

212
,

1
,,,

1   2 εβαεεβα  
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 **
,1

*
,1 NN δδ +≤ ,  

 
with  
 

 ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

−−+
N

i
NiNiNNN NNKN

1
,,

12/12/1)4/(2*
,1  )(2 εβζαδ η , (C.66) 

 ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

−−+
N

i
NiNNN NNKN

1

2
,

12/11)4/(2**
,1  )( βζαδ η , (C.67) 

 

where 
)4/(2

1

4

,
1

η
η

εζ
+

=

+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

N

j
NjN N . 

 

Next note that KE Nj ≤
+η

ε
4

,  and thus )1(
1

4

,
1

p

N

j
Nj ON =∑

=

+− η
ε  and also )1(pN O=ζ . 

Moreover, )1(2/1
pN ON =α . 

 

Since KEEE NiNiNiNi ≤⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛=

2/12

,

2/12

,,, ) ( εβεβ  it follows that )1( 
1

,,
1

p

N

i
NiNi ON =∑

=

− εβ . 

Since KE Ni ≤)( 2
,β  it follows that )1( 

1
,

1
p

N

i
Ni ON =∑

=

− β . Finally, )1(2/1)4/(2 oN =−+η  and 

)1(1)4/(2 oN =−+η . It follows that )1(**
,1

*
,1 pNN o== δδ  and thus )1(,1 pN o=ϕ . 

 
Because of symmetry )1(,1 pN o=ϕ  implies that )1(,2 pN o=ϕ . 

 
Now consider N,3ϕ : 

 

 )~)(~( 2
,

2
,

2
,

1

2
,

1
,

1
,3 NiNiNj

N

i
Nj

N

j
NijN aN εεεεϕ −−= ∑∑

= =

−  (C.68) 

 NjNj

N

i

N

j
NijNiNiN aN ,,

1 1
,,,

12  4 εβεβα ∑ ∑
= =

−=  

 2
,

1 1
,,,

13
,,

1 1
,

2
,

13  2 2 Nj

N

i

N

j
NijNiNiNNjNj

N

i

N

j
NijNiN aNaN βεβαεββα ∑ ∑∑ ∑

= =

−

= =

− ++  

 ***
,3

**
,3

*
,3

2
,

1 1
,

2
,

14
NNNNj

N

i

N

j
NijNiN aN δδδββα ++≤+ ∑ ∑

= =

− , 

 
with 
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 ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

−−
N

i
NiNiNNN NNKN

1
,,

122/12/1*
,3  )(4 εβζαδ , (C.69) 

 ∑
=

−−=
N

i
NiNiNNN NNKN

1
,,

132/11**
,3 )()(4 εβζαδ , (C.70) 

 ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

−−
N

i
NiNNN NKNN

1

2
,

142/12/3***
,3 )( βζαδ , (C.71) 

 

where 
2/1

1

2

,
2
,

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

−
N

j
NjNjN N εβζ and 

2/1

1

4
,

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

−
N

j
NjN N βζ .   

 

Next note that ( ) KEEE NjNjNjNj ≤⎟
⎠
⎞⎜

⎝
⎛≤

2/14

,
2/14

,

2

,
2
, )( εβεβ  and thus )1(

1

2

,
2
,

1
p

N

j
NjNj ON =∑

=

− εβ  

and also )1(pN O=ζ . Then KE Nj ≤)( 4
,β and thus )1(

2/1

1

4
,

1
p

N

j
Nj ON =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑

=

− β  and also 

)1(pN O=ζ .  

 

Moreover, ( ) KEEE NjNjNjNj ≤⎟
⎠
⎞⎜

⎝
⎛≤

2/12

,
2/12

,,, )( εβεβ  and thus )1(
1

,,
1

p

N

j
NjNj ON =∑

=

− εβ . We also  

have that KE Nj ≤)( 2
,β  and thus )1(

1

2
,

1
p

N

j
Nj ON =∑

=

− β  and )1(2/1
pN ON =α . 

 
Since )1(oN =−δ  for any 0>δ  it follows that )1(***

,3
**
,3

*
,3 pNNN o=== δδδ  and thus 

)1(,3 pN o=ϕ . Taking stock, we have proofed that )1(,3,2,1 pNNN o=== ϕϕϕ .  

 
 
Lemma C.523  

Suppose Assumptions 1-4 hold. Let N

S

m
NmNmNN uMIε )(

1
,,∑

=

−= ρ , and let 

N

S

m
NmNmNN uMIε ~)~(~

1
,,∑

=

−= ρ  with NNNN ΔDuu =~  and ),...,( .,.,1 ′′′= NNNN ddD , and where the 

1×S  vector Nρ~  can be any estimator that satisfies )1()~( pNN o=− ρρ . Let Na  and Nb be 

1×N  vectors, whose elements are uniformly bounded in absolute value by ∞<c  and let 

)( 2
,...,1 iNiN diag σ==Σ  and )~(~ 2

,...,1 iNiN diag ε==Σ . Then:  

(a) )1(~ 11
pNNNNNN oNN =′−′ −− bΣabΣa  and )1(1 ON NNN =′− bΣa . 

                                                 
23 Compare Kelejian and Prucha (2008, p. 43ff.) 
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(b) There exist random variables Nς  that do not depend on Na  and Nb  such that 

)1)((~ 11
NNNNNNN cKNN ς+≤′−′ −− bΣabΣa  

with )1(pN o=ς  and where ∞<)(cK  is a constant that depends monotonically on c (as well 

as on some other bounds maintained in the assumptions).  
 
Proof. 

Let NNNN N bΣa ~~ 1 ′= −τ , NNNN N bΣa′= −1τ , and NNNN N bΣa′= −1τ , where 

)( 2
,,...,1 NiNiN diag ε==Σ . It follows from the triangle inequality that 

 
 NN ττ −~

NNNN ττττ −+−≤ ~ . (C.72) 

 
By the weak law of large numbers for i.d. variables (see, e.g., White, 2001, p. 35), observing 
that the fourth moments of iε are uniformly bounded by Assumption 2, we have   

 
 =− NN ττ NNNNNNNNNN NN bΣΣabΣabΣa )()( 11 −′=′−′ −−  (C.73) 

 )1()(
1

,
2
,

2
,,

1
p

N

i
NiNiNiNi obaN =−= ∑

=

− σε . 

 
We thus also have )1(pNN o=−ττ . Next let  

 

 ∑
=

− −−−=
N

i
NiNiNiNiN EN

1

2
,

2
,

2
,

2
,

1
,1  )( σεσεζ  (C.74) 

 
and *c  be such that *

2
, cNi ≤σ .  

 

Note that )1()(
1

2
,

2
,

2
,

2
,

1
,1 p

N

i
NiNiNiNiN oEN =−−−= ∑

=

− σεσεζ . It then follows that  

 

 ∑
=

− −=−
N

i
NiNiNiNiNN baN

1
,

2
,

2
,,

1 )( σεττ  (C.75) 

 ])([ 2
,

2
,

2
,

2
,

1

2
,

2
,,,

1
NiNiNiNi

N

i
NiNiNiNi EEbaN σεσεσε −+−−−= ∑

=

−  

 *
2

,1
2

1
*

12
,1

2

1
*

12
,1

2 222 ccccNcccNcc N

N

i
N

N

i
N +=+=+≤ ∑∑

=

−

=

− ζζζ .  
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Next rewrite 
 

 Ni

N

i
NiNiNi

N

i
NiNiNiNNNN baNbaNN ,

1
,,,

1

1
,

2
,,

11 ~~~~~ εεετ ∑∑
=

−

=

−− ==′= bΣa  (C.76) 

 NNNN εCε ~~1 ′= − ,  

 
where )( ,,,...,1 NiNiNiN badiag ==C  and NNNN N εCε′= −1τ .  

 

Using N

S

m
NmNmNN uMIε )(

1
,,∑

=

−= ρ , we have 

 

  N

S

m
NmNmNN

S

m
NmNmNNNNNN NN uMICMIuεCε ~)~()~(~~~~

1
,,

1
,,

11 ∑∑
==

−− −′−′=′= ρρτ  (C.77) 

 N

S

m

S

l
NlNNmNlNmNN

S

m
NNmNmNNNNN uMCMuuCMuuCu ~~~~~~~2~~

1 1
,,,,

1
,,

1 ⎟
⎠

⎞
⎜
⎝

⎛ ′′+⎟
⎠

⎞
⎜
⎝

⎛ ′′−′= ∑∑∑
= ==

− ρρρ , 

 
and 
 
 NNNN N εCε′= −1τ   (C.78) 

 NNlN

S

m

S

l
NmNlNmNN

S

m
NNmNmNNNNN uMCMuuCMuuCu ⎟

⎠

⎞
⎜
⎝

⎛ ′′+⎟
⎠

⎞
⎜
⎝

⎛ ′′−′= ∑∑∑
= ==

−
,

1 1
,,,

1
,,

1 2 ρρρ . 

 
By the properties of the matrices NC  and Nm,M , Sm ,...,1=  and in light of Remark A.1 these 

are all quadratic forms in matrices whose row and column sums are uniformly bounded in 
absolute value by some constants that depend monotonically on c as well as on other bounds 
maintained in the assumptions. 
 
Using the triangle inequality, it follows that  
 

NNNNNNNN NN uCuuCu ′−′≤− −− 11 ~~~ ττ   (C.79) 

 )~~)(~(2 ,1,1,1,1
1

NNNNNNNNNNN uCMuuCMu ′′−′′−+ − ρρ  + ….  

 )~~)(~( ,,1,,1
2
,1

2
,1

1
NNSNNNNNSNNNNNN uMCMuuMCMu ′′−′′−+ − ρρ  + … 

 )~~)(~~( ,,1,,1,2,1,2,1
1

NNSNNNNNSNNNNNNNN uMCMuuMCMu ′′−′′−+ − ρρρρ + … 

NNNNNN NN uCuuCu ′−′≤ −− 11 ~~  +  

)~~(2 ~
,1,1

1
,1,1 NNNNNNNNNN N uCMuuCMu ′′−′′−+ −ρρ  + ….  

 )~~( ~
,,1,,1

12
,1

2
,1 NNSNNNNNSNNNNN N uMCMuuMCMu ′′−′′−+ −ρρ  + … 
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 )~~( ~~
,,1,,1

1
,2,1,2,1 NNSNNNNNSNNNNNNN N uMCMuuMCMu ′′−′′−+ −ρρρρ + … 

 
Then Remark C.2 in Kelejian and Prucha (2008) (see Appendix C in the present paper for the 
higher-order case) can be applied, observing that )1()~( ,, pNsNs oρρ =− , Ss ,...,1= . Factoring 

out the )1(po  terms, we obtain  

 
 NNN ck ,2)(~ ζττ ≤− ,  (C.80) 

 
where )1(,2 pN o=ζ  and does not depend on Na  and Nb  and the constant )(ck  depends 

monotonically on c and other bounds maintained in the assumptions. 
 
The first claim of part (a) of Lemma C.5 now follows from (C.73) and (C.80). The second 
claim follows from  
 

 ∞<≤==′= ∑∑
=

−

=

−−
*

2

1

2
,,,

1

1
,

2
,,

11 ccbaNbaNN
N

i
NiNiNi

N

i
NiNiNiNNNN σστ bΣa . (C.81) 

 
Part (b) of the Lemma follows from (C.72), (C.75), and (C.80), noting that N,1ζ , N,2ζ  are 

nonnegative: 
 
 ≤− NN ττ~ Nckccc ς)](2[ *

22 ++  where )1( NN ζς += . 

 
Lemma C.624 

Suppose Assumptions 1-4 hold. Furthermore, assume that 1sup
1

, <∑
=

S

m
NmN ρ , and that the row 

and column sums of Nm,M , Sm ,...,1=  are uniformly bounded in absolute value by 1 and 

some finite constant respectively. Let N

S

m
NmNmNN uMIε )(

1
,,∑

=

−= ρ , and let 

N

S

m
NmNmNN uMIε ~)~(~

1
,,∑

=

−= ρ  with NNNN ΔDuu =~  and ),...,( .,.,1 ′′′= NNNN ddD . The 1×S  vector 

Nρ~  can be any estimator that satisfies )1()~( pNN o=− ρρ .  

Let )(
1

,,∑
=

−=
S

m
NmNmNN MIF ρ , N

S

m
NmNmNN HMIF )~(~

1
,,∑

=

−= ρ  or N

S

m
NmNmNN HMIF 1

1
,, )( −

=
∑−= ρ , 

N

S

m
NmNmNN HMIF +

=
∑−= )~(~

1
,,ρ , where NH  is an *PN ×  matrix whose elements are uniformly 

                                                 
24 Compare Kelejian and Prucha (2008, p. 45ff.) 
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bounded in absolute value by some constant ∞<c , let )( 2
,...,1 iNiN diag σ==Σ  and 

)~(~ 2
,...,1 iNiN diag ε==Σ . Then,  )1(~~~ 11

pNNNNNN oNN =′−′ −− FΣFFΣF  and )1(1 ON NNN =′− FΣF . 

 
Proof. 
The subsequent proof will focus on the more general case, where 

N

S

m
NmNmNN HMIF 1

1
,, )( −

=
∑−= ρ  and N

S

m
NmNmNN HMIF +

=
∑−= )~(~

1
,,ρ ; it is readily observed from 

the proof that this also covers the case where N

S

m
NmNmNN HMIF )(

1
,,∑

=

−= ρ  and 

N

S

m
NmNmNN HMIF )~(~

1
,,∑

=

−= ρ .  

 

Under the maintained assumptions there exists a *ρ  with 1sup *
1

, <<∑
=

ρρ
S

m
Nm . It follows 

immediately by the properties of the matrices Nm,M  that the row and column sums of 

Nm,*Mρ , Sm ,...,1=  are uniformly bounded in absolute value by 1 and some finite constant 

respectively. For later reference, also note that the elements of the vector Ns
k
N

k
,.* hMρ  are also 

uniformly bounded in absolute value by c. 
 

Denote the (r,s)-th element of  the difference NNNNNN NN FΣFFΣF 11 ~~~ −− −′  as Nν , which is 

given by 
 

 )~~~( ,.,.,.,.
1

NsNNrNsNNrN N fΣffΣf ′−′= −ν , Psr ,...,1, = , (C.83) 

 

which can be written as ∑
=

=
7

1
,

i
NiN νν ,  where  

 

 )~)(~()~( ,.,.,.,.
1

,1 NsNsNNNrNrN N ffΣΣff −−′−= −ν  (C.84) 

 NsNNNrNrN N ,.,.,.
1

,2 )~()~( fΣΣff −′−= −ν  

 )~)(~( ,.,.,.
1

,3 NsNsNNNrN N ffΣΣf −−′= −ν  

 NsNNNrN N ,.,.
1

,4 )~( fΣΣf −′= −ν  

 )~()~( ,.,.,.,.
1

,5 NsNsNNrNrN N ffΣff −′−= −ν  

 NsNNrNrN N ,.,.,.
1

,6 )~( fΣff ′−= −ν  

 )~( ,.,.,.
1

,7 NsNsNNrN N ffΣf −′= −ν . 

 



 101

Next note that Ns

S

m
NmNmNNs ,.

1

1
,,,. )( hMIf −

=
∑−= ρ  and thus  

 

 Ns

S

m
NmNmN

S

m
NmNmNNsNs ,.

1

1
,,

1
,,,.,. ])()~[(~ hMIMIff −

=

+

=
∑∑ −−−=− ρρ  (C.85) 

 

We next demonstrate that )1(~
,.,. pNsNs o=− ff  by showing that each summand )1(, pNi o=ν , 

7,...,1=i . 
 
To do so we invoke the following theorem (see, e.g., Resnik, 1999, p. 171): Let 

1,,( ≥NXX N ) be real valued random variables. Then, XX p
N →  if and only if each 

subsequence aNX  contains a further subsequence aNX ′  that converges almost surely to X .  

 
As we show below we will be confronted with terms of the form:  
 

 Ns
k
NN

l
NNr

kl
Ns

k
NN

l
NNr

kllk
N pNpN ,.,.*

1
,.,.*

1),( ~ hMΣMhhMΣMh ′′−′′′=ℵ +−
′

+− . (C.86) 

 
where l

NM  is a matrix, whose row and column sums are uniformly bounded in absolute value 

by some constant 
M

c . It follows that the absolute values of the elements of the vector 

Ns
k
N ,.hM  (and also that of Ns

k
N

k
,.* hMρ ) are uniformly bounded in absolute value by some 

finite constant ccc =*  (and ccc k
*** ρ= ). (See Remark A.1 in Appendix A.) 

 
Hence, Lemma C.5 applies and it follows that )1(),(

p
lk

N o=ℵ  and that there exist random 

variables )1(pN o=ς  such that )1)(( *
),(

N
lk

N cK ς+≤ℵ . 

 
Now, let the index aN  denote some subsequence. In light of the aforementioned equivalence, 

there exists a subsequence of this subsequence ( aN ′ ) such that for events A∈ω , with 

0)( =CAP , it holds that  
 

 0),( →ℵ ′
lk

N a
, 0→′aNς , 0~

,, →− ′′ aa NmNm ρρ , Sm ,...,1=    (C.87) 

 

and that for some ωNNa ≥′ , 1)( ≤′ ως
aN , and thus  

 

 )(2)1)(()( *
),( cKcK

aa N
lk

N ≤+≤ℵ ′′ ςω ,  (C.88) 
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and finally   
 

 ∑
=

′ ≤
S

m
Nm pρ

a
1

**, )(~ ω ,  where 1
2

sup *
1

,

** <
+

=
∑

=

p
p

S

m
NmN ρ

. (C.89) 

 

In the following, assume that ωNNa ≥′ . Since 1)(~
1

, <∑
=

′

S

m
Nm a

ωρ , it follows from Horn and 

Johnson (1985, p. 301) that +

=
′′∑− ))(~(

1
,,

S

m
NmNmN aa

MI ωρ  is invertible and that  

 

 
aaaaaaa Ns

S

m
NmNmN

S

m
NmNmNNsNs ′

−

=
′′

−

=
′′′′ ∑∑ −−−=− ,.

1

1
,,

1

1
,,,.,. ])())(~[(~ hMIMIff ρωρ  (C.90) 

 
aaaaa Ns

l

lS

m
NmNm

lS

m
NmNm ′

∞

= =
′′

=
′′∑ ∑∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−⎟

⎠

⎞
⎜
⎝

⎛
= ,.

1 1
,,

1
,, )(~ hMM ρωρ . 

 
Substituting into the expression for 

aN ′,1ν  given by (C.84) yields  

 

)~)(~()~( ,.,.,.,.
1

,1 aaaaaaa NsNsNNNrNraN N ′′′′′′
−

′ −−′−′= ffΣΣffν  (C.91) 

aaaaaaa

aaaaa

Ns
k

kS

m
NmNm

kS

m
NmNmNN

l

lS

m
NmNm

lS

m
NmNmNraN

′

∞

= =
′′

=
′′′′

∞

= =
′′

=
′′′

−

∑ ∑∑

∑ ∑∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−⎟

⎠

⎞
⎜
⎝

⎛
−×

′

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−⎟

⎠

⎞
⎜
⎝

⎛′′=

,.
1 1

,,
1

,,

1 1
,,

1
,,,.

1

~)~(

~

hMMΣΣ

MMh

ρρ

ρρ
 

∑ ∑∑∑ ∑∑
∞

=
′

=
′′

=
′′′

∞

= =
′′

=
′′′

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−⎟

⎠

⎞
⎜
⎝

⎛
′

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−⎟

⎠

⎞
⎜
⎝

⎛′′=
1

,.
1

,,
1

,,
1 1

,,
1

,,,.
1 ~~~

k
Ns

kS

m
NmNm

kS

m
NmNmN

l

lS

m
NmNm

lS

m
NmNmNra aaaaaaaaaaa

N hMMΣMMh ρρρρ

∑ ∑∑∑ ∑∑
∞

=
′

=
′′

=
′′′

∞

= =
′′

=
′′′

−

⎥
⎥
⎦

⎤

⎢
⎢
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⎟
⎠
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−⎟
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⎞
⎜
⎝

⎛
′
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⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−⎟

⎠

⎞
⎜
⎝

⎛′′−
1

,.
1

,,
1

,,
1 1

,,
1

,,,.
1 ~~

k
Ns

kS

m
NmNm

kS

m
NmNmN

l

lS

m
NmNm
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A single element with index (k,l) of this infinite double sum over k and l is given by  
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Next note that for any valued of 
aN ′ρ  and any )(~ ω

aN ′ρ  there exist matrices 
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aN ′M  and 
aN ′M  can thus be factored out of the sum, yielding 
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Substituting 

aN ′M  into the expression for 
aN ′,1ν , we obtain  

   (C.127) 
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Hence, we can then write  
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Hence, there exists a dominating function ),( klB  for all values of k,l. Moreover, since 
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i.e., the dominating function is integrable (summable). 
 
It follows from dominated convergence that  
 
 =′∞→′ aa NN ,1lim ν 0 . (C.102) 

 
The same holds for the 

aNi ′,ν , 7,...,2=i . It follows that 0, →′aNiν  as aN ′  and in light of Resnik 

(1999, p. 171)  that )1(pN o→ν .  

 

Thus, )1(~~~ 11
pNNNNNN oNN =′−′ −− FΣFFΣF . That )1(1 ON NNN =′− FΣF  follows from the 
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=

−−
S

m
NmmN

1

1
, )( MI ρ and the elements 
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Proof of Theorem 3. 

To show that )1(~
~~ po

NN
=− ρρ ΩΩ , we first prove that  )1(~

pNN o=−ΨΨ , using the expressions 

for NΨ~  and NΨ  as given by (C.51)–(C.54). By assumption the row and columns sums of the 

matrices Ns,1A  and Ns,2A , Ss ,...,1= , are uniformly bounded in absolute value, and hence so 
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are bounded uniformly in absolute value. It follows from Lemma C.1 that )1(~
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By Assumption 5, we have )1(~
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Let  
 

 NNNNNNNN BB ΓΘΓΘJJΞ ′′=′=   and (C.105) 

 NNNNNNNN BB ~~~~~~~~~ ΓΘΓJΘJΞ ′′=′= .25  (C.106) 

                                                 
25 There is a slight discrepancy to the definition of NΞ

~  in Theorem 2: Here NB~  is used rather 

than NB , which does not affect the proof, however, noting that both Nρ~  and Nρ  are 

consistent. 
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In Theorem 2, we showed that )1(~
pN O=J , )1(ON =J , and )1(~
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IV. Proof of Theorem 4 (Joint Distribution of Nρ~  and Other Model Parameters) 
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Since the row and columns sums of 1
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value and since the elements of the matrix NH  are uniformly bounded in absolute value, it 

follows that the elements of  NF  are also uniformly bounded in absolute value. Hence, the 

linear form NNεF′  also fulfils the assumptions of Theorem A.1. As a consequence, 
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In the proofs of Theorems 2 and 3, we showed that )1(~
pNN o=−ΨΨ , )1(ON =Ψ , and 
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pN O=Ψ . By analogous arguments, this also holds for the submatrices N,ΔΔΨ  and N,ρΔΨ . 

Hence, )1(~
,, pNoNo o=−ΨΨ ,  )1(, ONo =Ψ  and thus )1(~

, pNo O=Ψ . 
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and )1()~~~( pNNN O=′ +JΘJ . It now follows that )1(~
,, pNoNo o=−ΩΩ  and )1(, ONo =Ω  and thus 

)1(~
, pNo O=Ω .  

 
 
Appendix D.  
Proof of Lemma 1. 
In light of equation (2a) and (2b), Assumptions 3 and 8, as well as ∞<≤ bNN βsup  it 

follows that all columns of  ),( NNN YXZ =  are of the form NNNN εΠπ +=ϑ , where the 

elements of the vector Nπ  and the row and column sums of the matrix NΠ are uniformly 

bounded in absolute value (see Remark A.1 in Appendix A). It follows from Lemma C.2 in 
Kelejian and Prucha (2008) that the fourth moments of the elements of the matrix NN ZD −=  

are uniformly bounded by some finite constant and that Assumption 6 holds. 
 
Next, note that  
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It follows from Chebychev’s inequality that )1(2/1
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Proof of Lemma 2. 
Note from (1b) and (1c) that  
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It follows that  
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It follows further that )1(**
pNN o=− PP

(
 and )1(* ON =P  with *

NP  defined in the Lemma. By 

arguments analoguous to the proof of Lemma 1 it follows that )1(*2/1
pNN ON =′− εF , 
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observing again that )1()( pNN o=−ρρ( . This completes the proof, recalling that ***
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APPENDIX E 
Tables A.1 and A.2 show the Monte Carlos results for sample size 100=N  and 250=N , 
when the untransformed instruments matrix H  is used in the FGTSLS estimation.  
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Table A1. Monte Carlo Results, N = 100, 2000 draws, instrument matrix H  
Constellation1) (1a) (1b) (1c) (2a) (2b) (2c) (3a) (3b) (3c) (4) (5a) (5b) average 2) 
λ1 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0.2 0 0.2 0.2833 
Bias 0.0027 0.0027 0.0032 0.0010 0.0011 0.0015 0.0158 0.0074 0.0039 0.0377 0.0013 0.0033 0.0068 
RMSE 0.0278 0.0289 0.0330 0.0241 0.0234 0.0261 0.0677 0.0595 0.0491 0.0792 0.0358 0.0359 0.0409 
Rej. Rate 0.0755 0.0800 0.0920 0.0810 0.0820 0.0845 0.1560 0.1280 0.1105 0.2365 0.0830 0.0880 0.1081 
λ2 0.3 0.3 0 0.3 0.3 0 0 0 0 0.1 0 0.2 0.1250 
Bias 0.0003 0.0004 -0.0009 -0.0012 -0.0011 -0.0012 0.0135 0.0051 0.0006 0.0332 -0.0004 0.0018 0.0042 
RMSE 0.0359 0.0367 0.0392 0.0359 0.0359 0.0357 0.0679 0.0589 0.0513 0.0756 0.0414 0.0418 0.0464 
Rej. Rate 0.0740 0.0795 0.0875 0.0790 0.0795 0.0800 0.1500 0.1225 0.0985 0.2250 0.0855 0.0820 0.1036 
λ3 0.1 0 0 0.1 0 0 0 0 0 0.1 0 0.2 0.0417 
Bias 0.0017 0.0015 0.0021 0.0006 0.0010 0.0016 0.0131 0.0048 0.0019 0.0279 0.0016 0.0039 0.0051 
RMSE 0.0289 0.0300 0.0326 0.0249 0.0253 0.0269 0.0561 0.0485 0.0437 0.0621 0.0349 0.0356 0.0375 
Rej. Rate 0.0695 0.0710 0.0805 0.0775 0.0780 0.0775 0.1310 0.1050 0.0880 0.1965 0.0790 0.0810 0.0945 
β1 1 1 1 1 1 1 1 1 1 1 1 1 1.0000 
Bias 0.0004 0.0004 0.0004 0.0002 0.0002 0.0002 0.0032 0.0014 0.0008 0.0066 0.0004 0.0007 0.0013 
RMSE 0.0204 0.0205 0.0206 0.0214 0.0214 0.0214 0.0233 0.0222 0.0214 0.0239 0.0211 0.0208 0.0215 
Rej. Rate 0.0760 0.0780 0.0780 0.0775 0.0770 0.0795 0.0840 0.0730 0.0765 0.1000 0.0780 0.0740 0.0793 
β2 1 1 1 1 1 1 1 1 1 1 1 1 1.0000 
Bias 0.0006 0.0005 0.0006 0.0004 0.0004 0.0004 0.0031 0.0015 0.0009 0.0064 0.0006 0.0008 0.0014 
RMSE 0.0202 0.0203 0.0204 0.0212 0.0212 0.0212 0.0227 0.0220 0.0211 0.0233 0.0210 0.0207 0.0213 
Rej. Rate 0.0700 0.0705 0.0710 0.0705 0.0730 0.0705 0.0850 0.0775 0.0730 0.0890 0.0745 0.0715 0.0747 
ρ1 0.4 0.4 0.4 0 0 0 0.4 0.4 0.4 0.5 0 0.2 0.2583 
Bias -0.0452 -0.0469 -0.0582 -0.0604 -0.0647 -0.0644 -0.0349 -0.0449 -0.0559 -0.0296 -0.0655 -0.0466 -0.0514 
RMSE 0.1748 0.1897 0.2269 0.2871 0.2883 0.2840 0.1687 0.1821 0.2122 0.1496 0.2556 0.2005 0.2183 
Rej. Rate 0.0745 0.0900 0.1105 0.0795 0.0840 0.0905 0.0630 0.0835 0.0995 0.0600 0.0755 0.0720 0.0819 
ρ2 0.2 0.2 0 0 0 0 0.2 0.2 0 0.3 0 0.2 0.1083 
Bias -0.0260 -0.0317 -0.0124 -0.0433 -0.0477 -0.0374 -0.0217 -0.0257 -0.0137 -0.0274 -0.0448 -0.0377 -0.0308 
RMSE 0.1807 0.1948 0.2030 0.2662 0.2613 0.2567 0.1740 0.1915 0.2003 0.1692 0.2322 0.1969 0.2106 
Rej. Rate 0.0775 0.0830 0.0945 0.0875 0.0975 0.0945 0.0700 0.0795 0.0920 0.0650 0.0780 0.0835 0.0835 
ρ3 0.1 0 0 0 0 0 0.2 0 0 0.1 0 0.2 0.0500 
Bias -0.0106 -0.0004 -0.0018 -0.0075 -0.0087 -0.0070 -0.0221 0.0008 -0.0009 -0.0294 -0.0107 -0.0255 -0.0103 
RMSE 0.1778 0.1944 0.2073 0.2488 0.2401 0.2387 0.1781 0.1937 0.1997 0.1729 0.2199 0.2037 0.2063 
Rej. Rate 0.0615 0.0645 0.0665 0.0635 0.0615 0.0590 0.0680 0.0650 0.0670 0.0780 0.0490 0.0605 0.0637 
Joint Tests 3)              
Rej. Rate    0.1370 0.0990 0.1055 0.1080 0.1925 0.1755 0.1645  0.1625  0.1431 

Note: 1) Each colmn corresponds to one parameter constellation (see Table 1). 2) Average of absolute row values. 3) Rejections rates for the following hypotheses. (1c): 
0: 3232

,*,
0 ==== ρρλλρλH , (2a), (2b), (2c): 0: 3210 === ρρρρH , (3a), (3b), (3c): 0: 3210 === λλλλH , (5a): 0: 321321

,
0 ====== ρρρλλλρλH .   
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Table A2. Monte Carlo Results, N = 250, 2000 draws, instrument matrix H  
Constellation1) (1a) (1b) (1c) (2a) (2b) (2c) (3a) (3b) (3c) (4) (5a) (5b) average 2) 
λ1 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0.2 0 0.2 0.2833 
Bias 0.0017 0.0021 0.0022 0.0009 0.0010 0.0009 0.0084 0.0048 0.0025 0.0188 0.0008 0.0022 0.0039 
RMSE 0.0179 0.0184 0.0204 0.0155 0.0150 0.0160 0.0420 0.0366 0.0301 0.0497 0.0222 0.0224 0.0255 
Rej. Rate 0.0645 0.0640 0.0620 0.0620 0.0640 0.0620 0.0845 0.0770 0.0585 0.1310 0.0620 0.0645 0.0713 
λ2 0.3 0.3 0 0.3 0.3 0 0 0 0 0.1 0 0.2 0.1250 
Bias 0.0005 0.0005 0.0003 -0.0001 -0.0003 0.0000 0.0064 0.0028 0.0007 0.0146 0.0001 0.0014 0.0023 
RMSE 0.0205 0.0209 0.0220 0.0204 0.0205 0.0198 0.0379 0.0329 0.0291 0.0428 0.0235 0.0235 0.0261 
Rej. Rate 0.0625 0.0645 0.0685 0.0590 0.0605 0.0700 0.0840 0.0725 0.0670 0.1375 0.0680 0.0680 0.0735 
λ3 0.1 0 0 0.1 0 0 0 0 0 0.1 0 0.2 0.0417 
Bias -0.0008 -0.0008 -0.0006 -0.0008 -0.0007 -0.0007 0.0039 0.0011 -0.0006 0.0095 -0.0005 0.0004 0.0017 
RMSE 0.0198 0.0205 0.0219 0.0165 0.0168 0.0183 0.0313 0.0284 0.0273 0.0342 0.0232 0.0234 0.0235 
Rej. Rate 0.0655 0.0665 0.0660 0.0645 0.0655 0.0680 0.0780 0.0730 0.0630 0.1090 0.0645 0.0705 0.0712 
β1 1 1 1 1 1 1 1 1 1 1 1 1 1.0000 
Bias 0.0000 0.0001 -0.0001 -0.0001 -0.0001 -0.0001 0.0013 0.0006 0.0002 0.0028 -0.0001 0.0001 0.0005 
RMSE 0.0124 0.0125 0.0126 0.0130 0.0129 0.0129 0.0139 0.0135 0.0129 0.0145 0.0127 0.0127 0.0130 
Rej. Rate 0.0585 0.0590 0.0575 0.0620 0.0600 0.0565 0.0550 0.0585 0.0555 0.0630 0.0585 0.0545 0.0582 
β2 1 1 1 1 1 1 1 1 1 1 1 1 1.0000 
Bias 0.0007 0.0005 0.0004 0.0004 0.0003 0.0000 0.0015 0.0008 0.0005 0.0031 0.0005 0.0007 0.0008 
RMSE 0.0127 0.0128 0.0128 0.0131 0.0131 0.0131 0.0140 0.0136 0.0132 0.0147 0.0129 0.0130 0.0133 
Rej. Rate 0.0665 0.0675 0.0665 0.0660 0.0650 0.0665 0.0645 0.0615 0.0645 0.0725 0.0650 0.0720 0.0665 
ρ1 0.4 0.4 0.4 0 0 0 0.4 0.4 0.4 0.5 0 0.2 0.2583 
Bias -0.0198 -0.0227 -0.0300 -0.0303 -0.0309 -0.0306 -0.0143 -0.0211 -0.0271 -0.0127 -0.0263 -0.0179 0.0236 
RMSE 0.0907 0.0899 0.0983 0.1244 0.1242 0.1237 0.0903 0.0896 0.0970 0.0824 0.1222 0.1020 0.1029 
Rej. Rate 0.0580 0.0580 0.0615 0.0605 0.0580 0.0570 0.0565 0.0610 0.0595 0.0580 0.0590 0.0540 0.0584 
ρ2 0.2 0.2 0 0 0 0 0.2 0.2 0 0.3 0 0.2 0.1083 
Bias -0.0078 -0.0103 -0.0030 -0.0178 -0.0172 -0.0131 -0.0050 -0.0073 -0.0029 -0.0100 -0.0123 -0.0111 0.0098 
RMSE 0.1008 0.1018 0.1001 0.1164 0.1160 0.1158 0.0996 0.1014 0.1002 0.1012 0.1152 0.1039 0.1060 
Rej. Rate 0.0560 0.0580 0.0555 0.0505 0.0470 0.0485 0.0620 0.0560 0.0540 0.0585 0.0490 0.0560 0.0542 
ρ3 0.1 0 0 0 0 0 0.2 0 0 0.1 0 0.2 0.0500 
Bias -0.0112 -0.0068 -0.0070 -0.0127 -0.0106 -0.0095 -0.0158 -0.0064 -0.0067 -0.0173 -0.0094 -0.0173 0.0109 
RMSE 0.0962 0.0962 0.0972 0.1142 0.1143 0.1138 0.0941 0.0947 0.0969 0.0911 0.1136 0.1048 0.1023 
Rej. Rate 0.0455 0.0415 0.0455 0.0410 0.0415 0.0415 0.0465 0.0400 0.0480 0.0620 0.0400 0.0420 0.0446 
Joint Tests 3)              
Rej. Rate    0.0640 0.0585 0.0570 0.0575 0.1035 0.0965 0.0930  0.0855  0.0769 

Note: 1) Each column corresponds to one parameter constellation (see Table 1). 2) Average of absolute row values. 3) Rejections rates for the following hypotheses. (1c): 
0: 3232

,*,
0 ==== ρρλλρλH , (2a), (2b), (2c): 0: 3210 === ρρρρH , (3a), (3b), (3c): 0: 3210 === λλλλH , (5a): 0: 321321

,
0 ====== ρρρλλλρλH .   
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