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Abstract

We present a new theory of decision under risk called third-generation prospect theory.  A

novel feature of our version of prospect theory is that, by allowing reference points to be

uncertain, it is able to accommodate the phenomenon of preference reversal. While several

previous theories of preference reversal have been proposed, thus far it has resisted

explanation via any empirically plausible model of preferences. We investigate whether our

explanation is empirically plausible. We find that the standard patterns of preference reversal

are predicted for typical parameterisations of prospect theory already established in the

empirical literature.  Consequently we suggest that our model constitutes a best buy theory: it

offers the predictive power of previous variants of prospect theory and adds to that an

explanation of preference reversal.  The latter comes ‘free of charge’ since it involves no extra

parameters and no re-parameterisation.
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1. Introduction

In this paper we present a new theory of decision under risk: third-generation prospect theory

(PT3 for short).  The motivation for the theory is empirical: our model is presented as a

descriptive theory intended to outperform the current ‘best buys’ in the literature.  PT3 has

three key features: reference dependence, decision weights and uncertain reference points

(i.e. reference points that can be lotteries).  The first two features are the common

characteristics of different versions of prospect theory including the original version

(Kahneman and Tversky, 1979) and the later second-generation versions featuring cumulative

decision weights (e.g. Starmer and Sugden, 1989; Tversky and Kahneman, 1992).  Variants of

second-generation prospect theory are increasingly widely applied in both theoretical and

empirical work and some have argued that such theories may be serious contenders for

replacing expected utility theory at least for specific purposes (see Camerer, 1989).  No doubt

this is partly because there is considerable empirical support for both reference-dependence

and decision weights (see Starmer, 2000).

While second-generation prospect theory has been relatively successful in organising a

range of experimental and field data, no variant to date has been able to explain an apparently

robust and especially troubling failure of expected utility theory: the so-called preference

reversal phenomenon (PR for short).  By allowing reference points to be lotteries, our variant

is also able to accommodate PR.  This explanation of PR is highly parsimonious in the sense

that, relative to other variants, it requires no extra parameters.

We should emphasise that our purpose is not merely to present another possible

preference based explanation of PR; we seek to evaluate whether our explanation is

empirically plausible.  To investigate this, we explore the incidence and pattern of PR

predicted by our theory given alternative parameterisations.  We find that the standard

patterns of PR are predicted for typical parameterisations of prospect theory already

established in the empirical literature.  Consequently we suggest that our model constitutes a

best buy theory: it offers the predictive power of previous variants of prospect theory and adds

to that an explanation of PR.  The latter comes ‘free of charge’ since it involves no extra

parameters and no re-parameterisation.

2.  Existing Explanations of Preference Reversal
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PR is one of the most notorious anomalies in individual decision making, but despite the large

volume of literature it has generated, no satisfactory preference-based account of it has thus

far been produced (see Cubitt, Munro and Starmer, 2004).  The classic instances of PR

involve decisions relating to pairs of gambles.  In the simplest cases, gambles are binary

lotteries with just one positive outcome (the prize); the other outcome is zero. One of the

lotteries, usually called the ‘P bet’, gives the better chance of winning a prize while the other,

the ‘$ bet’ – has the larger prize.  In a typical experiment investigating PR, agents’ preference

orderings over pairs of such bets are elicited in two ways: in a pairwise choice task, and by

comparing willingness-to-accept (WTA) valuations of lotteries elicited separately for P and $

bets.  PR is a widely observed tendency for agents to reveal a preference for the P bet in

choice but the $ bet in valuation. We will call this pattern standard PR.  Such inconsistencies

between choice and valuation might arise through chance or error.  But the opposite

inconsistency, in which the $ bet is chosen but the P bet is given a higher value (non-standard

PR), is much less frequently observed.  It is this asymmetry between the two types of reversal

which constitutes the puzzle of PR.

In the psychology literature it has been common to interpret PR as evidence that

preferences do not satisfy procedural invariance but, instead, depend upon the method used to

elicit them.  On this view, if preferences are to be invoked at all in explaining PR, those

preferences must be context-sensitive: that is, they must allow different preferences to govern

decisions in choice and valuation tasks.  We have no quarrel with the claim that in general

behaviour is context sensitive and that specific forms of context sensitivity, such as the scale

compatibility effect or the prominence effect, contribute to a full explanation of PR (Slovic,

Griffin and Tversky, 1990).  Our interest lies in exploring whether stable and context-

independent features of agents’ preferences also play an important explanatory role.

We will treat the use of WTA valuations as one of the defining characteristics of a PR

experiment.  In fact, there have been surprisingly few experiments in which willingness-to-

pay (WTP) valuations of P and $ bets have been used.  Such experiments have produced

mixed results, but asymmetric PR is generally less pronounced than in WTA experiments, and

sometimes is not present at all.  It seems that WTP treatments tend to reduce the frequency of

standard reversals and to increase the frequency of non-standard ones (Lichtenstein and

Slovic, 1971; Knez and Smith, 1987; Casey, 1991).  These findings are compatible with the

hypothesis that PR is the product of several causal mechanisms, at least one of which is in

some way linked to WTA valuations.  We suggest that our model captures a mechanism of the
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latter kind.  In it, loss aversion imparts a tendency for PR that is specific to the case of WTA

valuations.

Economists have suggested several models of context-free preferences as possible

accounts of PR.  All of them relax at least one of the axioms of expected utility theory.  One

subset of them retains transitivity and relaxes the independence and/or reduction axioms

(Holt, 1986; Karni and Safra, 1987; Segal, 1988).  Recent studies, however, continue to

generate strong PR in experimental designs implementing controls for the explanations

postulated in these theories (Tversky, Slovic and Kahneman, 1990; Cubitt, Munro and

Starmer, 2004).  Another possible explanation is that PR arises as a consequence of context-

free, but non-transitive preferences.  Persistent non-transitive cycles of choice analogous to

PR have been observed in experimental studies (Loomes, Starmer and Sugden, 1989, 1991;

Humphrey 2001), but the only preference theory that has been put forward to explain such

behaviour is regret theory (Loomes and Sugden, 1983), which has failed other tests (Starmer

and Sugden 1998).

A new preference-based explanation for PR is provided by Sugden’s (2003) model of

reference-dependent subjective expected utility (RDSEU).  This model predicts PR when

preferences are loss averse.  The key novel feature of the theory is that, in contrast to previous

reference-dependent theories, agents’ reference points need not be constant but may be state-

dependent, i.e. the reference point may be given by an act or lottery1.  But although this model

has the merit of explaining PR, it has a serious weakness as a potential ‘best buy’ for general

use.  Specifically, because it is linear in probabilities, it cannot accommodate other well-

documented departures from expected utility theory, such as the Allais Paradox.  Our model

generalises Sugden’s theory to allow non-linear probability weighting.  The resulting model,

PT3, has the explanatory capacity of other variants of prospect theory, plus the added ability to

explain PR.

3. Theory

In this section we introduce PT3. In this theory, preferences are defined over (Savage) acts.

Consider a finite state space S, consisting of the states si, i = 1, …, n, and a set of

consequences X given by an interval of the real line.  Each state si has a probability πi ≥ 0,

with ∑i πi = 1.  ‘Probability’ may be interpreted either subjectively or objectively; for

convenience in this paper, we will use the objective interpretation.  F is the set of all acts.  A
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particular act f ∈ F is a function from S to X, i.e. an act f specifies for each state si the

resulting consequence f(si) ∈ X.

A key feature of our model is that preferences over acts are reference dependent.  We

formalise this following the approach of RDSEU.  For any two acts f and g, f f� h g means that

f is weakly preferred to g viewed from act h, the reference act.  For present purposes the

reference act can be interpreted as the status quo position.  While reference dependence is one

defining characteristic of prospect theory, in first and second-generation variants the point of

reference is always a sure outcome (or in the current context, h is restricted to be a constant

act).  We relax this restriction by adopting a key innovation of RDSEU.

Sugden’s axiom system implies maximisation of the function:

(1) V(f, h) = Σi v(f(si), h(si))πi

In this expression, v(f(si), h(si)) is a relative value function.  It can be interpreted as the

desirability of the consequence of act f in state si relative to the consequence of a reference act

h in the same state.  This function is increasing in its first argument; v(f(si), h(si)) = 0 when

f(si) = h(si).  The function V(f, h) is the expectation of relative value.  It assigns a real value to

any act f ∈ F viewed from any reference act h ∈ F (i.e. V: F × F→ R ).  It is a preference

representation in the sense that, for all f, h, g in F, f f� h g ⇔ V(f, h) ≥ V(g, h).

Notice, however, that the preference representation in (1) is linear in probabilties.  PT3

relaxes this restriction of RDSEU by generalising (1) to:

(2) V(f, h) = Σi v(f(si), h(si))W(si ; f, h)

where W(si; f, h) is the decision weight assigned to state si when f is being evaluated from h.

In principle, decision weights could be determined by a simple transformation of state

probabilities (i.e. W(si; f, h) = w(πi)) as in Handa (1977).  In the contemporary literature on

prospect theory it has become conventional to construct decision weights cumulatively using

a rank-dependent transformation (Quiggin, 1982; Tversky and Kahneman, 1992).  One of the

key theoretical rationales for the cumulative construction is that, unlike the first-generation

approach, it results in monotonic preferences.  In PT3 we retain the rank-dependent approach,

but reconfigure it to work with statewise reference dependence.2
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In order to construct cumulative weights for a given f, h pair, states must be ordered

according to the ‘attractiveness’ of f’s consequences in each state.  This is because, in a

cumulative construction, the weight attached to a given state depends not only on the

probability of that state but also on the position of its consequence in the ranking of all

consequences associated with f.  In PT3 the attractiveness of the consequence in each state of

a given act depends on the corresponding consequence of the reference act.  Hence, in

general, the ordering of consequences must be constructed separately for each f, h pair.

Consider any f, h pair.  Relative to that pair, there is a weak gain in a state si if v(f(si),

h(si)) ≥ 0, and a strict loss if v(f(si), h(si)) < 0.  Let m+ be the number of states in which there

are weak gains and let m– = n – m+, be the number of states in which there are strict losses.

We re-assign subscripts so that, for all subscripts i, j, we have i > j if and only if v(f(si), h(si))

≥ v(f(sj), h(sj)), and so that the states with weak gains are indexed m+, ..., 1 and the states with

strict losses are indexed –1, ..., – m–.3

Cumulative decision weights are then defined as follows:

W(si; f, h) =

w+(πi)    if i = m+ ,

(3) w+( ∑(j ≥ i)  πj) – w+( ∑(j > i)  πj)  if 1 ≤  i  ≤  m+ – 1,

w–( ∑(j ≤ i)  πj) – w–( ∑(j < i)  πj) if  –m– + 1 ≤  i ≤ –1,

w–(πi) if i = –m–,

where w+ and w– are, respectively, probability weighting functions for the gain and loss

domains (w+, w– are strictly increasing mappings from [0, 1] onto [0, 1]).

PT3 straightforwardly captures several models as special cases.  RDSEU is the special

case in which decision weights are untransformed state probabilities (i.e. w+(πi) = w-(πi) = πi

for all i).  Cumulative (or second-generation) prospect theory is the special case in which the

relative value function takes the form v(f(si), h(si)) =  u(f(si) – h(si)), where u(.) is a ‘value’

function, and in which reference acts are constrained to be certainties (i.e. h(si) = h(sj) for all i,

j).  Expected utility theory is the special case in which decision weights are untransformed

state probabilities, as in RDSEU, and relative value is independent of the reference outcome

(i.e. v(f(si), h(si)) =  u(f(si)) where u(.) is a von Neumann-Morgenstern utility function).
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4.  Preference Reversal in PT3: The General Case

Consider two acts with the basic structure of P-and $-bets.  Specifically, let fP represent an act

giving an increment of wealth x with probability p and a zero increment otherwise, and let f$

be an act giving an increment of wealth y with probability q and a zero increment otherwise,

with y > x > 0 and 1 > p > q > 0.  Standard PR is observed when (i) fP is revealed preferred to

f$ in a straight choice between the two gambles and (ii) f$ has a higher WTA valuation than fP.

Given PT3, the condition for (i) is straightforward.  As a normalisation, we define

consequences as increments or decrements of wealth relative to the agent’s wealth (treated as

a certainty) prior to the PR experiment.  Taking the agent’s reference act to be her pre-

experiment wealth, we may write:4

(4) fP f� h f$  ⇔  w+(p) v(x, 0) – w+(q) v(y, 0)  ≥  0.

Now consider (ii).  Given PT3, we can define willingness to accept (WTA) as follows.

Consider an agent selling a P-bet.  Her situation is depicted as follows:

p 1-p

hP x 0

kP WTAP WTAP

In this case, the agent’s reference act, denoted hP, is the P bet.  Her WTA valuation of this bet,

denoted WTAP, is the increment of wealth such that she is indifferent between retaining hP or

giving up hP in exchange for the certainty of that increment.  Hence, we define WTAP as the

sure payoff of some constant act kP defined such that V(kP, hP) = 0.  With WTA$ defined in an

analogous way, the values of WTAP and WTA$ are then determined, respectively, by the

solutions to equations (5) and (6):

(5) w– (p) v(WTAP, x)  +  w+(1 – p) v(WTAP, 0)  =  0

(6) w–(q) v(WTA$, y)  +  w+(1 – q) v(WTA$, 0)  =  0.

Standard preference reversal is implied by the model when w+(p) v(x, 0) > w+(q) v(y, 0) and

WTA$ > WTAP.  The fact that none of the terms in expression (4) features in either of

expressions (5) or (6) provides a clue to the fact that, under certain conditions, PT3 predicts

standard PR.  In fact, as we demonstrate below, both standard and non-standard PR can occur
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as a consequence of either loss aversion or probability weighting or both.  However, our

objective is to do significantly more than show that our model can accommodate PR in

principle.  Our aim is to explore whether PT3 provides an empirically convincing account of

observed instances of PR.  To this end, we undertake calibration exercises designed to assess

the empirical plausibility of our model’s explanation of PR.

5.  A Parameterised Form of PT3

For the purpose of the calibrations it is necessary to adopt specific functional forms for our

general model.  In selecting these we are guided by three criteria.  First, we seek a model

flexible enough to allow us to investigate how the predicted incidence of PR varies with three

key aspects of the agent’s preferences: attitudes to consequences, attitudes to probability, and

attitudes to gain and loss.  Second, subject to that constraint, we seek to use the simplest

model possible – that is, a model with just one parameter for each of the three attitudes we

consider.  Third, for comparability with existing evidence, we use wherever possible the

functional forms that are most common in previously published research.  By constraining

ourselves to simple and widely used functional forms, we make the calibrations tougher and

more meaningful tests of our model’s explanation of PR.

 In order to operationalise the model, we need to specify the form of reference

dependence.  We impose the restriction that the relative value function takes the form v(f(si),

h(si)) = u(z), where z = (f(si) – h(si)).  When h is a constant act, this special case of statewise

reference dependence is then equivalent to that built into earlier generations of prospect

theory; u(.) is the counterpart of the value function in those theories.

Next we specify the class of value functions to be used in the calibration exercise. We

adopt the power function which has been widely used in recent empirical literature (see

Starmer 2000).  Specifically,

  zα  if z ≥ 0

(7) u(z) =

  – λzα  if  z  < 0.

The parameters α and λ are required to be strictly positive.  The first of these parameters

controls the curvature of the value function.  If α < 1, this function is concave in the domain

of gains and convex in the domain of losses (the property of diminishing sensitivity).



9

Diminishing sensitivity imparts a tendency for risk aversion with respect to gains and risk-

loving with respect to losses.  While the empirical literature has suggested some differences in

the exponents of the value function between the domains of gains and losses, in the interests

of parsimony we will we apply the same exponent in both domains.  The parameter λ controls

attitudes to gain and loss.  With λ = 1 there is loss neutrality.  For λ values above unity, there

is loss aversion: losses are weighted more heavily than gains.  For values below unity, the

opposite is the case.

We model decision weights via a single-parameter probability weighting function.

Again, for reasons of parsimony we impose the restriction of identical weighting functions for

gains and losses (i.e. w+(π) = w-(π)).  Hence for the purpose of the calibration exercise the

probability weighting function is denoted simply by w(π); it takes the form

(8) w(π) = πβ/ (πβ + (1 – π)β)1/β

with β > 0.  This type of weighting function has been discussed by Tversky and Kahneman

(1992) and Prelec (1998); variants of it have been widely used in the empirical literature.

With β = 1, decision weights are linear (i.e. w(π) = π) but with 0.4 ≤ β < 1 the function

generates an inverse-S pattern of weights with over-weighting (under-weighting) of

probabilities below (above) some critical probability π*.  Inverse-S weighting has been

reported across a wide range of empirical studies (Starmer, 2000).

That completes the specification of the generic model to be used in the calibrations.

We will refer to this specification as parameterised PT3.

Notice that, when applied to cases in which reference acts are certainties,

parameterised PT3 can also be interpreted as a parameterisation of cumulative prospect theory.

In fact, models of this kind have already been estimated using experimental data (e.g. Tversky

and Kahaneman, 1992; Loomes, Moffatt and Sugden, 2002).  But because cumulative

prospect theory does not allow reference acts to be lotteries, these estimations have not used

data from PR experiments.  Thus, parameter values from these estimations are applicable to

our model, while it remains a genuine test of that model to ask whether, given those parameter

values, it predicts observed patterns of PR.

We take the following to be relatively well-established stylised facts concerning the

median values of the three parameters for experimental subjects.  First, many studies suggest

the existence of loss aversion, while its opposite is almost unknown; values of the loss

aversion parameter in the range 1 ≤ λ ≤  2.5 would capture a reasonably wide range of
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evidence.  Studies fitting variants of prospect theory with power utility almost invariably find

diminishing sensitivity.  Although some studies have found values of α as low as 0.22

(Loomes, Moffatt and Sugden, 2002, note 17), values in the range 0.5 ≤ α ≤  1 are typical.

Inverse-S probability weighting, while not universal, is a very common finding; it would be

reasonable to expect values of β in the range 0.5 ≤ β ≤ 1.  These ranges of values will be the

focus for evaluating the predictions of our model.

6.  Parameterised PT3 and Preference Reversal

For simplicity, we restrict attention to P and $ bets which give either a positive payoff or zero.

This case has been widely studied in the empirical literature.  A feature of the power utility

function is that model predictions are unchanged if all outcomes are multiplied by any

positive constant.  Exploiting this property, we may normalise the expected value of the P-bet

to unity by setting its payoff x = 1/p.  Given this normalisation, we can characterise any pair

of P and $ bets by a three-parameter vector (p, q, r), where p is the probability of winning the

prize in the P bet, q is the corresponding probability for the $ bet, and r is the expected value

of the $ bet as a ratio of the expected value of the P bet (implying that the positive payoff of

the $ bet is y = r/q).  Notice that the condition y > x (i.e. the $ bet has the higher prize) implies

rp > q.

Substituting the functional form (7) into (4), the agent’s choice between the two bets is

determined by:

(9) fP f� h f$  ⇔  w(p)/ w(q)  ≥  (pr/ q)α,

or, equivalently:

(10) fP f� h f$  ⇔  α  ≤   log[w(p)/ w(q)] / log(rp/ q).

(For the moment, it is more convenient not to substitute in the parameterisation of the

probability weighting function.)  The following property of the model is an immediate

implication of (10):

Property 1:  The choice between P and $ is independent of the value of λ.  For any

given value of β, there is a critical value of α at which the two bets are indifferent.  At

lower values of α, P is chosen; at higher values, $ is chosen.
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This property reflects the fact that, in the choice task, all consequences are positive or zero.

Because the negative domain of the value function is not relevant for this task, diminishing

sensitivity (i.e. α < 1) plays essentially the same role in PT3 as diminishing marginal utility

does in expected utility theory: the lower the value of α, the greater the attractiveness of the

safer P bet relative to the riskier $ bet.

Substituting (7) and (8) into (5) and (6) and then rearranging, we arrive at the

following formulae for the valuations of the two bets:

(11) WTAP  =  (1/ p) / [((1 – p)/ p)β/α (1/ λ)1/α + 1]   and

(12) WTA$  =  (r/ q) / [((1 – q)/ q)β/α (1/ λ)1/α + 1].

Thus:

(13) WTAP/ WTA$  =  q[((1 – q)/ q)β/α (1/ λ)1/α + 1] / rp[((1 – p)/ p)β/α (1/ λ)1/α + 1].

Examination of (13) yields:

Property 2: As λ increases, the value of WTAP/ WTA$  falls; in the limit, as λ → ∞,

this value tends to q/ rp, where q/ rp < 1.

In other words, increases in the loss aversion parameter λ increase WTA$ relative to WTAP; at

sufficiently high values of λ, we have WTA$ > WTAP.  Intuitively, this is because the act of

selling a bet carries the risk of losing the prize of that bet in the state in which the bet wins;

since the $ bet has the higher prize, the potential for loss in selling it is greater.  Thus, loss

aversion induces reluctance to sell low-probability high-prize bets.

Properties 1 and 2 are enough to give a preliminary sense of some of the combinations

of parameter values that will induce PR.  In order for the P bet to be selected in the choice

task, α must be lower than some critical value.  Given any such value of α, the $ bet will have

the higher WTA valuation if the value of λ is sufficiently high.  Thus, standard PR is induced

by the combination of sufficiently low α and sufficiently high λ.

It is convenient to explore the implications of the model graphically in (α, λ) space.

This space is divided into quadrants by the lines α = 1 and λ = 1.  The stylised facts presented

in Section 4 suggest that we should focus on the north-west quadrant, in which the value

function is either linear or exhibits diminishing sensitivity (i.e. α ≤ 1) and in which there is

either loss neutrality or loss aversion (i.e. λ ≥ 1).  We call this the empirically plausible

quadrant.
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For any given pair of bets and any given value of the decision weight parameter β, (α,

λ) space can be divided into four regions by identifying two boundaries.  One boundary – the

choice boundary – identifies the locus of (α, λ) pairs along which the P and $ bets are

indifferent in choice (i.e. fP ~h f$).  We know from Property 1 that the choice boundary is a

vertical line; P is chosen to the left of this line and $ is chosen to the right.  A second

boundary – the valuation boundary – is the locus of (α, λ) pairs along which the P and $ bets

have equal WTA valuations.  We know from Property 2 that P has the higher valuation below

this boundary and $ has the higher valuation above it.

Figure 1 plots these two boundaries for a typical pair of bets, defined by (p, q, r) =

(0.8, 0.2, 1), with β = 1.  This particular combination of parameters will be called the

benchmark case.  Standard PR occurs in the region above the valuation boundary and to the

left of the choice boundary; non-standard PR occurs in the region below the valuation

boundary and to the right of the choice boundary.  The two boundaries intersect at (1, 1).

(This reflects the fact that, when α = 1, λ = 1 and β = 1, our model reduces to the

maximisation of expected value; since the two bets have equal expected value, they are

equally preferred and have equal valuations.)  In this benchmark case, the empirically

plausible quadrant is made up of two sub-regions, separated by the valuation boundary.

Above this boundary there is standard PR.  Below it, the P bet is both preferred in the straight

choice and valued more highly.  Thus, our model predicts the classic asymmetry between

standard and non-standard reversals: the former occur at parameter values within the

empirically plausible quadrant, while the latter do not.

We now investigate the implications of moving away from the benchmark case. We

begin by deriving some further general properties of parameterised PT3 in relation to PR.

First, we note that the benchmark case has the mathematically convenient property that p = 1

– q; pairs of bets with this property will be called symmetrical.

The following property of the valuation boundary can be derived by substituting λ = 1

and α = β into (11) and (12):

Property 3:   If α = β and λ = 1, then WTAP = 1 and WTA$ = r, i.e. the valuation of

each bet is equal to its expected value.

Notice that Property 3 implies that, if r = 1, the valuation boundary passes through the point

(β, 1) in (α, λ) space.  With rather more manipulation (see Appendix), it is also possible to

prove:
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Property 4:  If the P and $ bets are symmetrical and if λ = 1 and β = 1, WTAP = WTA$

when α = log(p/ q) / log(rp/ q).

Given that the probability weighting function is specified by (8), symmetry has the convenient

implication that w(p) / w(q) = (p/ q)β.  Substituting this equality into (10), we arrive at:

Property 5:  If the P and $ bets are symmetrical, the choice boundary is the vertical

line α = β log(p/ q) / log(rp/ q).

Notice that Property 5 implies that if r = 1, the choice boundary is α = β.  The following

additional properties are derived in the Appendix:

Property 6:  If β < 1 and r = 1, the choice boundary lies to the right of (respectively

passes through, lies to the left of) the point (β, 1) if p + q is greater than (equal to, less

than) 1.

Property 7:  As p, q → 0, WTAP / WTA$ → (1/ r)(q/ p)1 – β/α.  Thus, if r = 1, for any

given α, β with α < β (respectively α = β, α < β), WTAP > WTA$ (respectively WTAP

= WTA$, WTAP < WTA$) for values of p and q sufficiently close to zero.

Property 8:  If q = 0.5, WTA$ > r ⇔ λ > 1.

Property 7 tells us that, if r = 1, then as p and q approach zero, the valuation boundary

approaches the vertical line α = β.  Since WTAP → 1 as p → 1, it is an implication of

Property 8 that, if r = 1 and q = 0.5, the valuation boundary converges to the horizontal line λ

= 1 as p approaches unity.

Using Properties 1 to 8, we investigate configurations of choice and valuation

boundaries as we move away from the benchmark case.

First, we maintain the benchmark assumptions r = 1 and β = 1, and consider the effects

of variations in the values of p and q.  As in the benchmark case, the choice and valuation

boundaries intersect at (1, 1).  We know from Property 7 that as p and q approach zero, the

valuation boundary converges to the vertical line α = 1, which is also the choice boundary;

thus, in this limit, the region of standard preference reversal disappears.  Now consider

another limiting case, defined by q = 0.5 and p → 1.  We know from Property 8 that the

valuation boundary converges to the horizontal line λ = 1; in this limit, the region of standard

preference reversal takes up the whole of the empirically plausible quadrant.  Figures 2a, 2b,

3a and 3b show the position of the valuation boundary for different values of p and q between

these two limiting cases.  Figures 2a and 2b show the effects of varying p, holding q constant



14

at 0.1 (Figure 2a) and 0.4 (Figure 2b).  Figures 3a and 3b show the effects of varying q,

holding p constant at 0.9 (Figure 3a) and 0.7 (Figure 3b).  Together, these figures reveal a

tendency for the region of standard PR to expand as a consequence of increases in either p or

q.  In all cases, however, standard PR occurs in some part of the empirically plausible

quadrant while non-standard PR occurs only outside this quadrant.

Next, maintaining the benchmark assumptions of symmetry and β = 1, we consider the

effect of variations in the value of r.  It follows from Properties 4 and 5 that the choice and

valuation boundaries intersect at (α*, 1), where α* = log(p/q) / log(rp/q).  As r increases, α*

falls, expanding the regions in which the $ bet is favoured.  The intuition for this is

straightforward: an increase in r increases the $-bet prize relative to the P-bet prize, and so

makes the $-bet relatively more attractive.  Notice that if r > 1, the empirically plausible

quadrant is made up of three sub-regions.  Below the valuation boundary, the P bet is

favoured in both choice and valuation.  To the right of the choice boundary, the $ bet is

favoured in both choice and valuation.  Above the valuation boundary and to the left of the

choice boundary, there is standard PR.  Non-standard PR occurs only outside the empirically

plausible quadrant.  Figure 4 shows the configurations of choice and valuation boundaries for

r = 0.8, r = 1.2 and r = 1.4 when the other parameters take their benchmark values (i.e. p =

0.8, q = 0.2, β = 1).

In the cases we have considered so far, our model has consistently predicted the

classic asymmetry between standard and non-standard PR in the empirically plausible

quadrant.  However, it has failed to predict another stylised fact about PR experiments: that,

even when the two bets have equal expected value, a significant proportion of subjects not

only value the $ bet more highly but also choose it in preference to the P bet.  Because of the

role of diminishing sensitivity in choice, our model predicts that P will be chosen whenever r

= 1, α < 1, and β = 1.  To show that this is not a problem for our approach, we note that the

benchmark assumption β = 1 is an extreme case – the case in which the probability weighting

function is linear.  We now consider the implications of assuming  lower values of β, that is,

an inverse-S function.

So, maintaining the benchmark assumptions of symmetry and r = 1, we investigate the

effect of variations in β.  It follows from Properties 3 and 5 that the choice and valuation

boundaries intersect at (β, 1).  Figure 5 plots these boundaries for the benchmark pair of bets

(0.8, 0.2, 1) for three empirically plausible values of β, namely 0.9, 0.75 and 0.6.  Essentially,

the effect of reducing the value of β is to shift both boundaries to the left, expanding the
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regions in which the $ bet is favoured.  The intuition for this is that, as the value of β falls,

small probabilities (such as 0.2, the probability that the $ bet wins) are increasingly

overweighted while large probabilities (such as 0.8, the probability that the P bet wins) are

increasingly underweighted.  The resulting configurations of choice and valuation boundaries

are similar to those generated by setting r > 1.  Again, the empirically plausible quadrant of

(α, λ) space is made up of three sub-regions.  In one, the P bet is favoured in both choice and

valuation; in another, the $ bet is favoured in both choice and valuation; in the third, there is

standard PR.

All the diagrams we have presented so far have the common feature that standard PR

occurs only when λ > 1, and non-standard PR occurs only when λ < 1.  The reader should not

infer from this that loss aversion is essential if PT3 is to predict PR.  To the contrary, both

standard and non-standard PR are compatible with λ = 1 for some pairs of bets.  That this is

the case follows from Properties 3 and 6.  Let β < 1, and r = 1.  Property 3 tells us that the

valuation boundary passes through the point (β, 1).  Let α* be the value of α at which the

choice boundary crosses the line λ = 1.  Property 6 tells us that if p + q > 1, then α* > α.  In

other words, for values of α in the range β < α < α*, standard PR occurs with λ = 1.

Conversely, if p + q < 1, then α* < α; for values of α in the range α* < α < β,  non-standard

PR occurs with λ = 1.  Figures 6a and 6b illustrate these possibilities for, respectively, the

pairs of bets (0.8, 0.4, 1) and (0.6, 0.2, 1) with β = 0.7.

In principle, then, our model can predict PR in the absence of loss aversion.  It can

also predict PR in cases in which the model differs from expected utility theory only in

respect of loss aversion.  (Consider the case in which p = 0.8, q = 0.2, r = 0.8 and β = 1,

shown in Figure 4.  Notice that standard PR occurs at some points in (α, λ) space at which α

= 1 and λ > 1.)  But these cases depend on special assumptions about the characteristics of the

two bets.  In contrast, the classic PR phenomenon occurs across a wide range of values of p, q

and r.  In particular, it occurs with p + q < 1, and it occurs with r = 1.  It is a merit of our

model that it explains PR across the range in which it has been observed.

The conclusion we wish to emphasise is this.  Our model predicts the stylised facts of

PR experiments on the assumption that subjects’ values of the parameters α, λ and β are

distributed over ranges that correspond with estimates derived from non-PR experiments –

namely, values of α somewhat less than 1, values of λ somewhat greater than 1, and values of
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β somewhat less than 1.  Loss aversion, diminishing sensitivity and inverse-S probability

weighting are all implicated in our explanation of PR.

7.  Conclusions

In recent decades economists and psychologists have made considerable advances in

understanding risky choice behaviour, prompted by anomalies relative to expected utility

theory such as the Allais paradoxes.  These developments have led economists to identify

important new explanatory factors in decision making such as loss aversion and probability

weighting.  Moroever, theorists have found sophisticated ways of representing these factors in

compact and tractable preference models.  Explaining preference reversal (PR), however, has

been a persistent stumbling block.  While PR has long been recognised as an important

departure from standard theory, and many theorists have attempted to provide preference-

based explanations, we contend that no previous preference model has achieved this in an

empirically satisfactory way.

          We have presented a new model of risk preference: third generation prospect theory

(PT3).  Our theory retains the empirically grounded features of prospect theory (loss aversion,

diminishing sensitivity and non-linear probability weighting), but extends the model by

allowing reference points to be lotteries.  The resulting model retains all the predictive power

of previous variants of prospect theory, but in addition provides a framework for determining

the money valuation that an agent places on a lottery.  Exploiting this feature of the model, we

have shown that PR is consistent with PT3.  More significantly, when PT3 is made operational

by using simple functional forms with parameter values derived from existing experimental

evidence, it predicts observed patterns of PR across a wide range of specifications of P and $

bets, consistent with the range in which PR has in fact been observed.

          We do not claim that PT3 provides a complete explanation of PR.  We recognise that

psychologists have proposed credible non-preference mechanisms of context-sensitive choice

and valuation behaviour that are consistent with observations of PR.  Predictions based on

those mechanisms have been tested and confirmed in experimental tasks other than PR and, in

some cases, outside the domain of theories of choice under uncertainty.  This evidence clearly

suggests that non-preference mechanisms contribute to PR.  We assert only that PT3 has a

similar claim to be a model of mechanisms which contribute to that phenomenon.  It too is

based on psychologically credible hypotheses – loss aversion, diminishing sensitivity, the

overweighting of small probabilities and the underweighting of large ones.  It too is consistent
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with observations of PR.  It too has been tested and confirmed in experimental tasks other

than PR – namely, pairwise choices between lotteries involving gains and losses.  If one

accepts prospect theory as an explanation of observed regularities in choice among lotteries, it

seems reasonable to conclude that the mechanisms modelled by PT3 play a significant role in

the explanation of PR.

          More generally, we offer PT3 as a flexible and parsimonious model of choice under

uncertainty which organises a large body of experimental evidence.  We hope that it will find

fruitful applications in future work.

Appendix:  Derivations of Properties 4, 6, 7 and 8

Property 4:  Substituting λ = 1 and β = 1 into (11) and (12) gives WTAP = (1/p) / [((1 –

p)/p)1/α + 1] = (1/p) / [((1 – p)1/α + p1/α)/p1/α] and WTA$  = (r/q) / [((1 – q)/q)1/α + 1] = (r/q) /

[((1 – q)1/α + q1/α)/q1/α].  But by symmetry, (1 – p)1/α + p1/α = (1 – q)1/α + q1/α.  Thus

WTAP/WTA$ = (q/rp)(p/q)1/α and so WTAP = WTA$ ⇔ rp/q = (p/q)1/α, i.e. WTAP = WTA$

⇔ α = log(p/q)/log(rp/q).

Property 6:  Substituting α = β, r = 1 and (8) into (9) and rearranging, we arrive at fP f� h f$  ⇔

[qβ + (1 – q)β]1/β ≥ [pβ + (1 – p)β]1/β.  Since 0 < p, q < 1 and β ≤ 1, this implies fP f� h f$  ⇔ qβ +

(1 – q)β ≥  pβ + (1 – p)β.  If β < 1, the function φ(π) = πβ + (1 – π)β has an inverse U-shape,

symmetrical around a maximum at π = 0.5.  Thus, the P bet is chosen (respectively: the two

bets are indifferent, the $ bet is chosen) if q is closer than (respectively: equally close as, less

close than) p to 0.5, i.e. if p + q is greater than (respectively: equal to, less than) 1.

Property 7:  From (13), as p, q → 0, WTAP / WTA$  → (1/ r) [q1 – β/α (1/ λ)1/α + q] / [p1 – β/α

(1/ λ)1/α + p].  Since 0 < p, q < 1 and 1 – β/α < 1, (p1 – β/α/ p) → ∞ as p → 0, and (q1 – β/α/ q) →

∞ as q → 0.  Thus, WTAP / WTA$  → (1/ r) [q1 – β/α (1/ λ)1/α ]/ [q1 – β/α (1/ λ)1/α ], i.e. WTAP /

WTA$  → (1/ r) (q/ p)1 – β/α.

Property 8:  Substituting q = 0.5 into (12) gives WTA$ =  2r/ [(1/λ)1/α + 1].  Thus WTA$ > r

⇔ (1/λ)1/α < 1.  Since α > 0, (1/λ)1/α < 1 ⇔ λ > 1.
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Notes
                                                     
1 A related theory is proposed by Koszegi and Rabin (2004) who present a version of prospect theory
in which reference points are expectations about outcomes.  Koszegi and Rabin define preferences
over prospects (i.e. probability distributions over outcomes) rather than acts.  In terms of our
framework, this approach can be thought of as assuming that the act being evaluated is stochastically
independent of the reference act.
2 Our analysis of PR does not depend on the cumulative transformation of probabilities. The acts that
we analyse have no more than one strictly positive consequence and no more than one strictly negative
one.  For such acts, the cumulative transformation is observationally equivalent to Handa’s simple
transformation.
3 If there are distinct states si, sj such that v(f(si), h(si)) = v(f(sj), h(sj)), there may be more than one way
of re-assigning subscripts consistently with these conditions.  However, all permissible re-assignments
generate the same value of V(f, h).
4 In addition, fP ~h f$   ⇔ w+(p) v(x, 0) – w+(q) v(y, 0)  = 0.  From now on, to avoid cluttering the
exposition, we will not state conditions for indifference explicitly.  In all cases, the condition for
indifference can be constructed from the condition for weak preference by substituting an equality for
a weak inequality.



Figure 1: The Choice and Valuation Boundaries
(p=0.8, q=0.2, r =1, beta=1)  
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Figure 2a: Variation in P bet
(q=0.1, r=1, beta=1)
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Figure 2b: Variation in P bet
(q=0.4, r=1, beta=1)
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Figure 3a: Variation in $ bet
(p=0.9, r=1, beta=1)
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Figure 3b: Variation in $ bet
(p=0.7,  r=1, beta=1)
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Figure 4: variation in r
 (p=0.8, q=0.2, beta = 1)
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Figure 5: Variation in beta
(p=0.8, q=0.2, r=1)
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Figure 6b: bets (0.6, 0.2, 1) with beta = 0.7
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Figure 6a: bets (0.8, 0.4, 1) with beta = 0.7
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