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Abstract The shape of a probability distribution is often summarized by
the distribution’s skewness and kurtosis. Starting from a symmetric ”par-
ent” density f on the real line, we can modify its shape (i.e. introduce skew-
ness and in-/decrease kurtosis) if f is appropriately weighted. In particular,
every density w on the interval (0, 1) is a specific weighting function. Within
this work, we follow up a proposal of Jones (2004) and choose the Beta dis-
tribution as underlying weighting function w. ”Parent” distributions like
the Student-t, the logistic and the normal distribution have already been
investigated in the literature. Based on the assumption that f is the den-
sity of a hyperbolic secant distribution, we introduce the Beta-hyperbolic
secant (BHS) distribution. In contrast to the Beta-normal distribution and
the to Beta-Student-t distribution, BHS densities are always unimodal and
all moments exist. In contrast to the Beta-logistic distribution, the BHS
distribution is more flexible regarding the range of skewness and leptokur-
tosis combinations. Moreover, we propose a generalization which nests both
the Beta-logistic and the BHS distribution. Finally, the goodness-of-fit be-
tween all above-mentioned distributions is compared for glass fibre data and
aluminium returns.

1 Introduction

Several techniques can be applied to symmetric distributions in order to
generate asymmetric ones with possibly lighter or heavier tails. In terms of
density functions — provided their existence — most of these methods can
be represented by

g(x; θ) = f(x)w(F (x); θ), (1)

where g denotes the transformed density, f and F the (symmetric) pdf and
cdf, respectively, of the original (”parent”) distribution and w is an appro-
priate weighting function on the interval (0, 1) with parameter vector θ (see,
for instance, Ferreira and Steel, 2004). Choosing w(u;λ) = 2F (λF−1(u)),
the skewing mechanism of Azzalini (1985, 1986) is recovered. Similarly, us-
ing

w(u; λ) =
2

λ + 1
λ

f(λsign(0.5−u)F−1(u))
f(F−1(u))

(2)

corresponds to applying different parameters of scale to the positive and the
negative part of a symmetric density (see, for example, Fernández, Osiewal-
ski and Steel, 1995 and Theodossiou, 1998).

In particular, every probability density on (0, 1) which is not uniform
can be used either to introduce skewness and/or to modify the kurtosis of
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the parent distribution. A very attractive choice (due to its flexibility) is
the density of a Beta distribution, i.e.

w(x; β1, β2) =
1

B(β1, β2)
xβ1−1(1− x)β2−1, β1, β2 > 0, (3)

where B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt denotes the Beta function (cf. Jones,

2004). Examples where (3) has been used in the literature are the following:

– Aroian (1941), Prentice (1975): Beta-logistic distribution (which is also
termed as exponential generalized beta of the second kind or EGB2
distribution, or log F distribution),

– Eugene et al. (2002): Beta-normal (BN) distribution,
– Jones and Faddy (2003): Beta-Student-t distribution.

Within this work we introduce the BHS (Beta-hyperbolic secant) distrib-
ution as a weighted hyperbolic secant distribution with weights from (3).
The hyperbolic secant distribution itself dates back to Perks (1932). It is
symmetric, more leptokurtic than the normal, even more than the logistic
distribution but still with existing moments. Both the cumulative distribu-
tion function and the inverse cumulative distribution function are given in
closed form. Despite its interesting properties, the hyperbolic secant distri-
bution has not received sufficient attention in the literature so far.

Whereas both Beta-normal and Beta-Student-t distribution do not guar-
antee unimodality — except for a special parameterization given in Ferreira
and Steel (2004) — the BHS distribution does. In contrast to the Beta-
Student-t distribution, all moments of the BHS distribution exist. Although
the Beta-logistic and the BHS distribution are very similar, the BHS dis-
tribution will be seen to be more flexible regarding skew and leptokurtic
data. In order to discriminate between both distribution models, a gener-
alized Beta-GSH model — based on Vaughan’s (2002) generalized secant
hyperbolic (GSH) distribution — is proposed that includes both candidate
distributions as special case.

The paper is structured as follows: The BHS distribution and some fun-
damental properties are introduced in section 2. Section 3 is devoted to the
parameter estimation of the BHS distribution. A generalization of both the
Beta-logistic distribution and the BHS distribution is proposed in section 4.
In section 5, the BHS distribution is compared with its competitors derived
from alternative parent distributions.
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2 Definition and Properties

2.1 Definition of the Beta-Hyperbolic Secant Distribution

The probability density function of a standardized (i.e. zero mean and unit
variance) hyperbolic secant distribution is given by

f(x) =
1

π cosh(x)
=

2
π(ex + e−x)

, x ∈ R. (4)

It is symmetric and the corresponding cumulative distribution function is

F (x) =
2 arctan(ex)

π
. (5)

The inverse cumulative distribution function is F−1(u) = log(tan(πu
2 )).

Combining (1), (3), (4) and (5), the density of the Beta-hyperbolic secant
(BHS) distribution is defined by

g(x;β1, β2) =
B(β1, β2)−1

π cosh(x)

[
2
π arctan(exp(x))

]β1−1

[
1− 2

π arctan(exp(x))
]1−β2

, (6)

where β1 > 0 and β2 > 0 determine the shape of the density. The corre-
sponding cumulative distribution function is

G(x;β1, β2) =
BF−1(x)(β1, β2)

B(β1, β2)
with Bu(p, q) =

∫ u

0

tp−1(1− t)q−1dt.

Introducing a location parameter µ ∈ R and a scale parameter σ > 0, the
BHS density from (6) generalizes to

g(x) =
B(β1, β2)−1

σπ cosh(x−µ
σ )

[
2
π

arctan(e
x−µ

σ )
]β1−1 [

1− 2
π

arctan(e
x−µ

σ )
]β2−1

.

Different densities and their corresponding log-densities with µ = 0, σ = 1
and varying β1, β2 are plotted in figure 1.
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Fig. 1. Density and log-density for β1 = 1

Define θ ≡ β1−β2
2 and β ≡ β1+β2

2 > 0. Then β + θ = β1 and β− θ = β2, and
equation (3) can be rewritten as

w(x; β, θ) =
1

B(β + θ, β − θ)
xβ+θ−1(1− x)β−θ−1

= C(β, θ) · xβ−1(1− x)β−1

B(β, β)
· sin(πθ)xθ(1− x)−θ

πθ
, (7)

where C(β, θ) = 1 only if β = 1. Thus, the weighting density can be par-
titioned into two parts, where the first part essentially governs the amount
of kurtosis and the second part the amount of skewness (see figure 2, where
both parts are plotted separately). Consequently, a second parameterization
of BHS density is given by

g(x) =
1

π cosh(x)

B(β + θ, β − θ)

[
2 arctan(ex)

π

]β+θ−1 [
1− 2 arctan(ex)

π

]β−θ−1

,

where symmetry corresponds to θ = 0.
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(a) Kurtosis part (b) Skewness part

Fig. 2. Decomposition of the weighting density

In order to ensure the existence of the Beta function in the last equation,
both β + θ and β − θ have to be positive. Hence, it is required that |θ| < β,
i.e. highly leptokurtic data (that means small β) induce higher restrictions
on θ. It also becomes obvious from the above parameterization that β1 and
β2 commonly determine skewness and kurtosis (measured by the third and
fourth standardized moment within this work).

2.2 Properties of the BHS distribution

Lemma 1 (Asymmetry and kurtosis). The BHS distribution with pa-
rameters µ, σ, β1, β2 is symmetric about µ for β ≡ β1 = β2. Moreover, it is
skewed to the right for β1 > β2 and skewed to the left for β1 < β2. Assume
that β1 = β2 ≡ β. Then, kurtosis increases if β decreases and vice versa.

Lemma 2 (Tail behavior). The BHS distribution has exponentially de-
caying tails. In particular, the log-density is asymptotically linear with slope
determined by β1 and β2, respectively.

Proof. Assume µ = 0, σ = 1 and focus on the right tail of the BHS distrib-
ution. From

lim
x→∞

(
1

cosh(x)
− 2 exp(−x)

)
= 0, lim

x→∞

[
2
π

arctan(ex)
]β1−1

= 1,

and [
1− 2

π
arctan(ex)

]β2−1

∼ C exp((1− β2)x)
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we conclude that for large x

g(x; β1, β2) ∼ C exp(−x) exp((1− β2)x) = C exp(−β2x), C =
(2/π)β2

B(β1, β2)
.

In particular, β2 < 1 corresponds to distributions with heavier than plain
exponential tails, β2 > 1 distributions with lighter than plain exponential
tails. The same argument is true for the left tail.

Additionally, the score function for the BHS distribution is derived which
plays an important role in the theory of rank test (see, e.g. Kravchuk, 2005,
for β1 = β2 = 1)

Lemma 3 (Score function). With ζ(x) ≡ arctan (ex) the score function
of a BHS variable is given by

ψ(x; β1, β2) = −g′(x; β1, β2)
g(x;β1, β2)

=
tanh (x) ζ(x)(e2 x + 1)(2ζ(x)− π) + exβ1(π − 2ζ(x))

(1 + e2 x) ζ(x) (2 ζ(x)− π)

− exπ − 2exζ(x)(2− β2)
(1 + e2 x) ζ(x) (2 ζ(x)− π)

.

Setting β1 = β2 = 1, the last equation reduces to ψ(x; 1, 1) = tanh(x).

Finally, it can be shown (see Appendix A for a detailed proof) that BHS
densities are unimodal for all β1, β2 > 0. This is not valid for the Beta-
normal and the Beta-Student-t distribution, in general.

Lemma 4 (Unimodality). The BHS distribution is unimodal for β1, β2 >
0.

2.3 Special and limiting cases

First of all, for β1 = β2 = 1 the hyperbolic secant distribution is recovered.
Setting β2 = 1 or β1 = 1, skew hyperbolic secant distributions can be
obtained. A generalized symmetric family of hyperbolic secant distributions
is achieved for β1 = β2 = β, where β governs the amount of kurtosis. Like
the Beta-logistic distribution and the Beta-normal distribution, the BHS
distribution converges to the normal distribution for β1, β2 →∞.
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2.4 Moments of the BHS distribution

Obviously, the exponential tail behaviour of the BHS distribution guaran-
tees the existence of all moments. In particular, the mth non-central moment
of a BHS density is given by

E(Xm) =
1

B(β1, β2)

∫ 1

0

lnm(tan(
π

2
u))uβ1−1(1− u)β2−1du.

From Gradshteyn and Ryhzik (1994), formula 1.518.3 and 9.616 we can
write

tan(
π

2
u) = ln(

π

2
u) +

∞∑

k=1

(22k−1 − 1)ζ(2k)
k22k−1

u2k = ln(
π

2
u) + u2

∞∑

k=0

aku2k

with the usual Riemann zeta function

ζ(2k) =
∞∑

l=1

1
l2k

and ak =
(22k+1 − 1)ζ(2k + 2)

(k + 1)22k+1
. (8)

Using the notation

∂v

∂pv
B(p, q) ≡ Bv,0(p, q), B0,0(p, q) = B(p, q),

the following lemma can be derived.

Lemma 5 (Moments of the BHS distribution). Assume that m > 0.

E(Xm) =
1

B(β1, β2)




m∑

j=0

(
m
j

)
lnm−j(

π

2
)Bj,0(β1, β2)+

+
∞∑

k=0

m∑

j=1

(
m
j

)
a
(j)
k

m−j∑

i=0

(
m− j

i

)
lnm−j−i(

π

2
)Bi,0(2k + 2j + β1, β2)


 ,

where

a
(j)
0 = aj

0, a
(j)
k =

1
ka0

k∑

i=1

(ij − k + i)aia
(j)
k−i, k ≥ 1.

In particular, the mean of the BHS distribution is given by

E(X) = ln(
π

2
) + ψ(β1)− ψ(β1 + β2) +

∞∑

k=0

ak
B(2k + 2 + β1, β2)

B(β1, β2)
. (9)
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with ak from (8). Note that ψ denotes the digamma function in the last
equation. In contrast to (9), the corresponding formula for the Beta-logistic
distribution is given by

E(X) = ψ(β1)− ψ(β2).

From the first four moments we can deduce the skewness and kurtosis co-
efficients M3 and M4 (i.e the third and fourth standardized moments) for
different parameter combinations of the BHS distribution.

2.5 Moment ratio diagrams

Moment ratio diagrams have been introduced for Pearson-type distributions
by Elderton and Johnson (1969) in order to provide a useful visual assess-
ment of skewness and kurtosis. The classical moment ratio plot consists of
all possible pairs (M3,M4) that can be obtained through different combi-
nations of the shape parameters of the underlying distributions. In general,
the relation M2

3 < M4− 1 for M4 > 0 holds, i.e. for a given level of kurtosis
only a finite range of skewness may be spanned.

Due to the bi-modality of the Beta-normal distribution and the non-
existence of some moments for the Beta-Student-t distribution we only
compare the BHS distribution with the Beta-logistic (EGB2) distribution
in figure 3, below.

(a) EGB2 distribution
(b) BHS distribution

Fig. 3. Moment ratio diagrams

The possible combinations of skewness and kurtosis (for a given dis-
tribution) are indicated by the black area which was generated using a



10 Matthias J. Fischer, David Vaughan

large number of random numbers from the domain of the shape parameters
(β1, β2). The dashed line (encompassing the black area) corresponds to the
boundary mentioned above. Note that we plotted the exponentiated kurtosis
against the skewness in order to highlight the differences between EGB2 dis-
tribution and BHS distribution. It then becomes visible that the achievable
area of the BHS distribution includes that of the EGB2 distribution.

3 Parameter estimation using maximum likelihood

Suppose that X1, . . . , Xn are an iid random sample from a BHS distribution.
Introducing a scale parameter σ > 0 and a location parameter µ ∈ R, the
log-likelihood function is given by

`(θ) = n log
(

(2/π)β1+β2−2

B(β1, β2)πσ

)
+

n∑

i=1

{(β1 − 1) log(arctan(exp(x∗i )))

+(β2 − 1) log
(π

2
− arctan(exp(x∗i ))

)
− log(cosh(x∗i ))

}
.

where x∗i = (xi − µ)/σ and θ = (µ, σ, β1, β2). Taking the partial derivative
of the log-likelihood with respect to the parameters µ, σ, β1, β2 we obtain

0 =
∂`

∂µ
=

1
σ

n∑

i=1

(
tanh(x∗i ) +

(1− β1) exp(x∗i )
(1 + e2x∗i ) arctan(ex∗i )

+
(β2 − 1) exp(x∗i )

(1 + e2x∗i )(π/2− arctan(ex∗i ))

)
,

0 =
∂`

∂σ
= −

(
(2/π)b1+b2−2

B (β1, β2)πσ

)n
n

σ

+
1
σ2

n∑

i=1

(xi − µ)
(

tanh(x∗i ) +
(1− β1) exp(x∗i )

(1 + e2x∗i ) arctan(ex∗i )

+
(β2 − 1) exp(x∗i )

(1 + e2x∗i )(π/2− arctan(ex∗i ))

)

0 =
∂`

∂β1
=

n

4n

((
2
π

)β1+β2
π

B(β1, β2)σ

)n (
log

(
2
π

)
− B(1,0)(β1, β2)

B(β1, β2)

)

+
n∑

i=1

log(arctan(exp(x∗i ))),
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0 =
∂`

∂β2
=

n

4n

((
2
π

)β1+β2
π

B(β1, β2)σ

)n (
log

(
2
π

)
− B(0,1)(β1, β2)

B(β1, β2)

)

+
n∑

i=1

log(π/2− arctan(exp(x∗i ))).

We solve the equations above iteratively to obtain β̂1, β̂2, µ̂, σ̂.

4 Generalizations: EGB2 versus BHS distribution

In order to discriminate between Beta-logistic (EGB2) and BHS distribu-
tion we can plug a parent distribution into (3) which includes both logistic
distribution and hyperbolic secant distribution. A promising choice is the
GSH distribution of Vaughan (2002) with kurtosis parameter t and density

fGSH(x; t) = c1(t) · exp(x)
exp(2x) + 2a(t) exp(x) + 1

, x ∈ R (10)

with

{
a(t) = cos(t), c1(t) = sin(t)

t for − π < t ≤ 0,

a(t) = cosh(t), c1(t) = sinh(t)
t for t > 0

.

The GSH distribution includes the logistic distribution (t = 0) and the hy-
perbolic secant distribution (t = −π/2) as special cases and has cumulative
distribution function given by

FGSH(x; t) =





1 + 1
t arccot

(
− exp(x)+cos(t)

sin(t)

)
for t ∈ (−π, 0),

exp(πx/
√

3)

1+exp(πx/
√

3)
for t = 0,

1− 1
t arccoth

(
exp(x)+cosh(t)

sinh(t)

)
for t > 0.

Thus, we can apply a simple likelihood ratio test to the hypothesis

H0 : t = 0 (EGB2) against H0 : t = −π/2 (BHS) .
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5 Applications

5.1 Strength of glass fibre

Our first example corresponds to that of Jones and Faddy (2003) who ana-
lyzed the strengths of glass fibre. This data set is ’sample 1’ of Smith and
Naylor (1987) and deals with the breaking strength of n = 63 glass fibres of
length 1.5 cm, originally obtained by workers at the UK National Physical
Laboratory. Due the apparent skewness in the data set (see figure 4(a) for
a histogram of the data), Jones and Faddy (2003) fitted a Beta-Student-t
distribution – using a reparameterized version – to the data, estimating the
unknown parameters by means of maximum likelihood.

(a) Histogram (b) Fitted densities

Fig. 4. Strength of glass fibre

Additionally, we fitted a Beta-normal, a Beta-logistic (EGB2), a Beta-
hyperbolic secant (BHS) and a Beta-GSH distribution to the data. The
estimation results are summarized in table 1, below. Graphs of the fitted
densities are provided by figure 4(b).

Regarding the log-likelihood value L, the Beta-normal distribution seems
to fit worse. Both Beta-logistic and Beta-hyperbolic secant distribution
outperform the Beta-Student-t distribution, in particular, if we account
for the number of parameters k and focus on the criterion of Akaike, i.e.
AIC = −2L + 2k. Moreover, the log-likelihood value of the BHS distribu-
tion is higher than that of the EGB2 distribution. Finally, the Beta-GSH
distribution provides evidence in favor of the BHS distribution against the
EGB2 distribution.
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Table 1. Estimation results for the glass fibre data set

.

Distribution bµ bσ bβ1
bβ2 bν/bt L AIC

Normal 1.51
[0.0409]

0.322
[0.0287]

- - - −17.91 39.82

Beta-Normal 2.60
[0.2005]

0.475
[0.1558]

0.5946
[0.37]

23.66
[4.7340]

- −14.06 36.11

Beta-Logistic 1.67
[0.0460]

0.041
[0.0393]

0.1450
[0.14]

0.31
[0.3085]

- −10.49 28.99

BHS 1.65
[0.0400]

0.043
[0.0662]

0.1451
[0.23]

0.28
[0.4638]

- − 10 .02 28 .03

Beta-Student-t 1.70
[0.0695]

0.621
[0.2099]

49.345
[43.4]

56.83
[46.484]

0.12
[0.0688]

−11.41 32.82

Beta-Student-t2 1.70
[0.0763]

0.226
[0.0958]

1.1073
[0.60]

2.08
[1.1947]

−11.93 33.86

Beta-GSH 1.65
[0.0383]

0.071
[0.0861]

0.2270
[0.26]

0.43
[0.4761]

−2.00
[0.5939]

−9.90 29.80

Concerning the estimation results of the Student-t, the parameters β1, β2, ν
seem to be poorly identified. We therefore fix the number of degrees at 2 as
in Jones and Faddy (2003). Note that the 6th column of table 1 contains
the estimated shape parameter beyond β̂1 and β̂2, i.e. the estimated degrees
of freedom ν̂ for a Beta-Student-t distribution and the estimated t of the
Beta-GSH distribution, respectively.

5.2 Returns aluminium

Secondly, we focus on the series of the daily aluminium prices (in US-
Dollar/Tonne) from January 1999 to September 2002 (N = 1195 obser-
vations) which can be obtained from the LME (London Metal Exchange).1

The series of prices and corresponding log-returns (i.e. difference of consec-
utive log-prices) are displayed in figure 5.
The (sample) mean of the log-returns is −0.0139 with a (sample) standard
deviation of 1.0560. Moreover, there seems to be a certain amount of skew-
ness in the data set (the skewness coefficient – measured by the third stan-
dardized moments – is given by by 0.2398), whereas the kurtosis coefficient
– in terms of the fourth standardized moments – is 4.4250, reflecting the
leptokurtosis of the data. The results of a maximum likelihood estimation
are summarized in table 2, below.

1 Download under http://www.lme.co.uk.
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(a) Prices (b) Log-returns

Fig. 5. Prices and log-returns of aluminium 05/01/98 to 30/09/02

Table 2. Unconditional fit to the aluminium returns

Distribution bµ bσ bβ1
bβ2 bν/bt L AIC

Normal −0.014
[0.031]

1.056
[0.022]

- - - −1758.8 3521.5

Beta-Normal −1.218
[0.697]

1.728
[0.586]

3.980
[3.058]

1.520
[0.792]

- −1753.0 3514.0

Beta-Logistic −0.248
[0.087]

0.497
[0.091]

0.932
[0.243]

0.719
[0.182]

- −1733.6 3475.2

BHS −0.282
[0.099]

0.921
[0.156]

1.738
[0.445]

1.355
[0.336]

- −1733.5 3474.9

Beta-Student-t −0.331
[0.167]

3.874
[3.310]

49.65
[128.1]

47.013
[126.384]

0.26
[0.473]

−1734.0 3478.0

Beta-Student-t2 −0.294
[0.285]

1.643
[0.563]

3.804
[3.013]

3.146
[2.171]

−1734.3 3478.7

Beta-GHS −0.286
[0.089]

0.966
[0.895]

1.819
[1.517]

1.419
[1.285]

−1.63
[1.026]

−1733.5 3476.9

Though this data set is totally different to the glass fibre data, the
results are nearly identical (concerning the order of the log-likelihood val-
ues). Again, the Beta-GSH distribution favors the BHS distribution against
the Beta-Logistic distribution with t̂ = −1.63, both of which outperform
Beta-normal and Beta-Student-t. Again, the shape parameters of the Beta-
Student-t seem to be unidentified.
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6 Summary

A new class of probability densities (the so-called BHS-distribution family)
is introduced which arises as special case from the general family explored
by Jones (2004) if the hyperbolic secant distribution is chosen as ”parent
distribution”. It exhibits similar behavior and properties like the log-F or
EGB2 distribution. In particular, the range of possible skewness and kur-
tosis combinations of the BHS distribution includes that of the EGB2 dis-
tribution. Moreover, a generalized distribution model is introduced which
includes both EGB2 and BHS distribution. Application to glass fibre data
and aluminium returns provides empirical evidence in favor of the BHS
distribution.
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7 Appendix: Proof of uni-modality

In the Jones and Faddy formulation, the density function for a family of
Skew Generalized Secant Hyperbolic Distributions is given by

g(x) =
1

B(β1, β2)
f(x)[F (x)]a[1− F (x)]b

where f(x) = 1
π cosh(x) so that F (x) = 2/π arctan(exp(x)), and we assume

a, b > −1. We want to show this density is unimodal for all choices of
a and b. Since the functions are all continuous and continuously differen-
tiable, the only critical points for the function g satisfy g′(x) = 0. Thus we
want to prove that this has exactly one root, and that this yields a relative
maximum. Since limx→±∞ g(x) = 0, then if there is one critical point, it
must yield the absolute maximum, so we need to prove there is exactly one
root to the derivative equation. After simplification, this can be seen to be
equivalent to proving

− sin h(x) +
a

2 tan−1(exp(x))
− b

π(1− 2
π tan−1(exp(x))

= 0

has exactly one root. Note that if we set u = tan−1(exp(x)), the last state-
ment is equivalent to showing

−(tan(u)− cot(u))u(π/2− u) = −πa

2
+ (a + b)u

has exactly one root in (0, π/2). Define

h(u) = −(tan(u)− cot(u))u(π/2− u)

on (0, π/2). Note that h(u + π/4) is odd on (−π/4, π/4). Also, h(π/4) = 0
and we set h(0) = limu→0+ h(u) = π/2, and h(π/2) = limu→(π/2)− h(u) =
−π/2. Note that

h′(u) = − u(π/2− u)
sin2(u) cos2(u)

− (tan(u)− cot(u))(π/2− 2u)

and

h′′(u) =
4

sin3(2u)
[4 cos(2u)u(π/2−u)−2 sin(2u)(π/2−2u)−cos(2u) sin2(2u)].

We want to prove that h is concave down on (0, π/4) and concave up on
(π/4, π/2). The second fact will follow from the first, and the symmetry
property of h noted earlier. Thus, we want to prove that h′′(u) < 0 on
(0, π/4). By using trigonometric identities, we can show this is equivalent to
proving the function k(v) = v(π−v) cos v−2(π/2−v) sin v−cos v sin2 v < 0
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on (0, π/2). Now k(0) = 0, k(π/2) = 0. Note that k′(v) = sin v[v2 − πv +
3 sin2(v)].

Set z(v) = 3 sin2 v + v2 − πv, and note that z(0) = 0 and z(π/2) =
3− π2/4 > 0. We have z′(v) = 3 sin(2v) + 2v− π and z′′(v) = 6 cos(2v) + 2.
Clearly, z′′ > 0 if cos(2v) > −1/3 and z′′ < 0 if cos(2v) < −1/3. In the
interval (0, π/2) there is a unique value, say α0 so that cos(2α0) = −1/3 and
hence on (0, α0), z′′(v) > 0 and on (α0, π/2), z′′(v) < 0. Because z′(0) = −π
and z′(π/2) = 0, there is a unique value α1 ∈ (0, α0) for which z′(α1) = 0.
We then have z′(v) < 0 on (0, α1) and z′(v) > 0 on (α1, π/2). From the
values z(0) = 0 and z(π/2) > 0, and the properties of z′, there is a unique
value α2 ∈ (0, π/2) for which z(α2) = 0.

The above shows that k′ has exactly one root in (0, π/2), call it β0. It
is clear that k′(v) < 0 on (0, β0), and k′(v) > 0 on (β0, π/2). This in turn
implies k(v) < 0 on (0, π/2), since k(0) = 0 = k(π/2).

The above argument establishes that h′′(u) < 0 on (0, π/4), and there-
fore h is concave down on (0, π/4) and concave up on (π/4, π/2). Set
w(u) = −πa

2 + (a + b)u on (0, π/2). Since w(0) = −πa
2 < h(0) = π/2

and w(π/2) = πb
2 > h(π/2) = π/2, then w and h intersect. If these curves

intersect on (0, π/4), they cannot intersect a second time on (0, π/4) (oth-
erwise, since h is concave down, the line through the intersection points
cannot intersect h a third time on this interval. This means the vertical axis
intercept for the line is > π/2, and this is not possible, given the line must
intersect the vertical axis at (0,−πa

2 )). Further, the line w cannot intersect
h on (π/4, π/2) in this case, since w’s slope is greater than −2, and −2 is
the slope of the line y = π/2 − 2u joining the points (0, π/2), (π/4, 0) and
(π/2,−π/2) on h. Hence w and y have a unique intersection point, so that
if w intersects h on (π/4, π/2), this will force w and y to intersect again,
a contradiction. A similar analysis shows that if w and h do intersect on
(π/4, π/2), they do so uniquely, and do not intersect on (0, π/4).

Altogether, this means that g′ has exactly one root in (−∞,∞). It then
also follows this yields a relative maximum (and hence absolute maximum)
since g′ is positive to the left of the root, and negative to the right. 2
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