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Abstract

A standard election in which each voter chooses a single alternative permits voters little scope to
express the intensity of their preferences. Allowing more complex statements of preferences may
not alleviate the problem if voters behave strategically, as only certain statements are credible. I
consider the implications of allowing voters to burn money as part of the voting procedure. In
an environment with two alternatives and voters with interdependent values, I find necessary and
sufficient conditions for all choice functions that are minimally responsive to voter preferences to
be implementable with money burning. Furthermore, I show that any choice rule that treats ex-
ante identical voters symmetrically can be implemented with an arbitrarily small amount of money
burnt per voter as the set of voters is replicated. Thus, for a large electorate, the informational
gains of money burning can be reaped at virtually no social cost.



1. INTRODUCTION

The appropriate role for money in the realm of public choice is a matter of controversy. In many

political institutions, money is viewed as a factor that may corrupt the process of collective choice

and governance, and alter policy outcomes from what would obtain under some benchmark ideal.

Examples are plentiful. In elections, monetary incentives or influence may affect which candidate

can run a more effective campaign, or even the subset of the electorate that votes. Addressing

the former, campaign finance laws constrain the amount of giving to candidates from individual

sources, with the goal of making the number of donors to a given candidate of greater importance

than the ability to contribute of respective donors. The possible influence of monetary effects on

voter turnout has been highlighted recently by a new law in the state of Georgia requiring voters to

produce photographic identification, the cost of which could be sufficient to make some would-be

voters abstain.

The scope for money to affect governance is also clear. In addition to straightforward quid-

pro-quo corruption, citizens may implicitly purchase access to members of government by making

large donations to campaigns or political committees, with the possibility that the donors could

use the access to influence policy decisions in their own favor. Citizens and corporations may

also employ professional lobbyists who influence the legislative process directly. The theory of

regulatory capture postulates that regulators may act as advocates for the industries they oversee;

a circumstance under which this might arise is when regulators are liable to be hired into the

regulated industry upon departure from government service, and hence have some financial stake

in maintaining the industry’s good will.

In all of these examples, policy outcomes tend to skew in favor of individuals who are most willing

and able to trade off personal wealth for influence. If a society believes in the principle that, say,

collective outcomes are properly determined by the preferences of the numerical majority of the

population, then such effects are necessarily unwelcome. However, in some cases it may be desirable

to take account of varying intensities of preference over policy choices across citizens. This could

be valued for its own sake; it might be allowed that a minority preference should prevail if the

average preference of the minority is sufficiently stronger than that of the majority. It could also be

valuable if citizen preferences are uncertain and positively related, so that one citizen’s preference

for a given outcome strengthens the more intensely that other citizens favor that outcome.

The theme of this paper is that money can have a beneficial role to play in environments of

collective choice as an instrument for eliciting information about citizens’ intensity of preference,
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as referred to above. To realize theoretical benefits from this possibility, the way in which individ-

ual spending by citizens translates into influence over political outcomes must be controlled very

precisely. We examine this by taking a particular mechanism design approach to a simple collec-

tive choice problem with two alternatives over which citizens must choose. In many problems of

mechanism design, an outcome consists of some non-monetary action (e.g., an exchange of goods)

combined with transfers of money between participants. In our environment, the non-monetary

action is the choice of winning alternative, but we take a constrained approach by assuming that

money may only be “burnt,” i.e., any money expended by an individual is lost. We make this

departure to capture the dissipative nature of much influence activity; we could substitute some

notion of costly, nonproductive effort for money in our model and reach identical conclusions. By

assuming that all money expenditures are wasteful, we impose a high standard on the gross benefits

of including money in the collective choice mechanism.

The nature of our results is as follows. First, we explore the degree to which allowing money

burning can sharpen the responsiveness of voting outcomes to agents’ preferences. Specifically, we

ask under what conditions any choice mechanism that is minimally responsive to agent preferences,

in a sense that is made precise, can be effected as an equilibrium of a voting mechanism with money

burning. We find a necessary and sufficient condition for this possibility; roughly, it requires that

an agent’s private information be more important to his preferences over the alternatives than it

is as a signal about other agents’ information.

Our second result addresses the fact that any informational gains from money burning come at

the cost of lost resources. Under a more structured assumption about the environment that allows

well-defined replication, we find that as the number of agents grows, any mechanism that treats

ex-ante identical agents symmetrically must have the property that the expected amount of money

burnt by an agent in any equilibrium converges to zero. That is, the informational benefits of

allowing money burning comes at a vanishing cost per agent as the size of the electorate grows.

This holds because under symmetric treatment, the likelihood that a single agent’s behavior changes

the winning alternative converges to zero as the number of agents grows; thus, no agent will be

willing to burn very much money to try to influence the outcome. However, as long as some money

burning is possible, there is full scope for extracting information about intensity of preferences.

We emphasize that our results do not argue for any of the specific institutions or practices cited

at the beginning of this introduction. Our goal is to show that a carefully designed (and indeed,

potentially highly complex) system for allowing money to influence collective choice outcomes can

have benefits that are purely informational. Unwanted side effects on the equality of representation
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may be probable, or even unavoidable. We do, however, provide an example in which a reasonable

notion of equity may be preserved, in a later section of the paper.

We motivate some of the potential benefits of money burning with the following example. Suppose

there is a group of n voters who will collectively choose one of two social alternatives, A or B.

Every voter’s nonmonetary benefit if B wins is 0. A given voter i’s nonmonetary benefit if A wins

is an amount xi, observed only by voter i. Each type xi is an independent draw from a normal

distribution with mean 0 and variance 1.

A social planner must design a mechanism that elicits information from the voters and chooses a

winning alternative based on their actions. One possibility is to hold a simple vote, in which each

voter takes one of two actions, voting for A or voting for B.1 An election rule would specify which

of the two alternatives wins (or, more generally, with what probability each alternative wins) for

every possible profile of the n votes. A majority rule, for instance, would specify that the alternative

receiving more votes is the winner, along with some probabilities of each alternative winning in the

event of a tie vote.

It can be seen that in any Bayes-Nash equilibrium of any election rule (majority or otherwise), a

given voter i’s optimal vote must be the same for all strictly positive valuations xi for A, and her

optimal vote must be the same for all strictly negative valuations xi for A. This is because, given

strategies of the other players, a player whose xi is positive wishes to take the action maximizing

the probability that A wins, while a player whose xi is negative has the opposite incentive. Thus,

an election rule can elicit information about voters’ ordinal preferences over A and B, but can elicit

no information about their cardinal preferences.2

Consider instead a different mechanism. Each voter i takes an action with two components: she

casts a vote for A or for B, and she burns a nonnegative amount of money ci. Given her action,

the voter’s final utility is xi − ci if A wins the election, −ci if B wins the election. The rule for

determining the winning alternative is as follows. Any voter who votes for A and burns amount of

money c is given a weight α(c), with α(c) solving

c =

√
n − 1
2π

(1 − e−
α(c)2

2(n−1) )

1 Allowing abstention would have no effect in this particular example.

2 This is not strictly accurate, since, if a player is indifferent about which alternative to vote for in an equilibrium,
he may use his value of xi to determine how to vote. However, in such an instance, that player’s indifference implies
that his vote must have no average effect on the outcome, and so the information he reveals about his type plays no
role.
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for c <
√

(n − 1)/2π, α(c) = 0 otherwise. Any voter who votes for B and burns c is given weight

β(c) ≡ −α(c). To determine the winning alternative, the weights of all voters are summed; A

wins if the sum is strictly positive, B wins if the sum is strictly negative, and the winner is chosen

according to some arbitrary but fixed rule if the weights sum to 0. Thus, any voter who votes for

A can increase the probability that A wins by burning a larger quantity of money, and any voter

who votes for B can increase the probability that B wins by burning a larger quantity of money.

In this mechanism, it is a Bayes-Nash equilibrium for every voter i to vote for her preferred

alternative, and to burn the amount of money c such that her weight α(c) or β(c) is equal to her

type xi. Note that when the voters behave in this fashion, the mechanism effectively implements as

the winner the alternative that maximizes the sum of the voters’ payoffs, gross of money burnt, an

outcome that is impossible with simple voting. To see that this behavior is an equilibrium, suppose

that all voters other than i act in accordance with the proposed strategies, and that i’s type is

xi > 0; the argument is fully analogous for xi < 0. Clearly, i wishes to vote for A, irrespective

of how much money she burns. If i burns an amount of money that gives her vote weight α̂, the

probability that A will win is the probability that the sum of other voters’ types, which is equal to

the sum of the other voters’ weights under the proposed behavior, is greater than or equal to −α̂.

As each voter’s type is independently distributed as a standard normal, the sum of n − 1 types is

distributed normally with mean 0 and variance n − 1. Thus, the expected payoff to i of inducing

weight α̂ is

xi

∞∫
−α̂

1√
2π(n − 1)

e−
t2

2(n−1) dt −
√

n − 1
2π

(1 − e−
α̂2

2(n−1) )

=
xi

2
+

α̂∫
0

(xi − t)√
2π(n − 1)

e−
t2

2(n−1) dt.

This payoff is maximized at α̂ = xi for all xi > 0, so i best responds by also burning an amount of

money inducing a weight equal to her type xi.

Allowing money burning in this example thus permits the choice of winning alternative to re-

spond to the intensity of voters’ preferences in a way that simple voting does not. However, these

informational gains come at the social cost of the money that is burnt, and whether total welfare is

improved relative to a given simple voting mechanism depends on the magnitude of money burnt.

To check on this, consider the amount of money burnt by a voter whose preference type is x,√
(n − 1)/2π(1−e−

x2
2(n−1) ). Although this expression is not globally decreasing in the total number

of voters n, it does have the property that it converges to zero as n grows unboundedly, for all x.

Furthermore, the ex-ante expected amount of money burnt by a voter who has not yet learned his
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type also vanishes as the number of voters grows. That is, the mechanism induces the voters to

reveal all of their preference information, and makes use of that information, with an efficiency loss

that vanishes when there are many voters.

We expand on this example to generalize its results in the next section.

2. THE MODEL

One of two alternatives, A and B, must be chosen for a society of I agents, indexed by i. Information

in the society is summarized by a vector of agent types x ≡ (x1, x2, . . . , xI), with each xi ∈ �. Agent

i can observe only her own type xi. The benefit to agent i of A being chosen is ui(x), while the

benefit of B being chosen is normalized to zero for all agents. Thus, ui(x) > 0 means that i prefers

alternative A ex-post, other things equal, while ui(x) < 0 means that i prefers B ex-post. ui(·) is

assumed to be continuous and weakly increasing in its arguments, so that higher types mean that A

is relatively better for all agents. At times it will be convenient to write ui(x) as ui(xi, x−i), where

x−i is the vector of types other than i’s. Type vectors x are distributed with a continuous density

function f(·) on �I , where we write f(x−i|xi) for the density of x−i conditional on xi. We also

impose the following condition bounding expected benefits. For any agent i and any vector of types

x, let the indicator function 1i(x) equal 1 if ui(x) > 0, 0 else, and the indicator function 1′i(x) equal

1 if ui(x) < 0, 0 else. We assume that the functions of xi

∫
�I−1 1i(xi, x−i)ui(xi, x−i)f(x−i|xi)dx−i

and
∫
�I−1 1′i(xi, x−i)ui(xi, x−i)f(x−i|xi)dx−i (where we abuse notation in writing x−i as a scalar)

are bounded above and below for all i.3

The mechanism via which an alternative is chosen for the society works as follows. Simultaneously

and independently, each agent i sends a message mi and burns a nonnegative amount of money

ci. In the spirit of direct revelation mechanisms, the space of messages an agent can send is the

space of possible types (the real numbers), augmented by a “null message” m∅. For every type xi

of agent i, there is an associated amount of money ci(xi) that that type is expected to burn. If the

agent announces a type x̂i and burns money equal to ci(x̂i), then the mechanism responds as if the

agent’s type is x̂i; if the agent burns a different amount of money, then the mechanism responds as

if the agent had sent the null message m∅. Formally, an agent’s reported message mi is translated

into a registered message m(mi) according to the function m(mi) = mi if ci = ci(mi), m(mi) = m∅

if ci �= ci(mi). We note in advance that in an equilibrium, each agent will announce his type xi

3 This restriction in fact excludes the specification of the example in the introduction, as benefits are unbounded
there. The conclusions of the general results nevertheless hold for that example, due to properties of the normal
distribution in its tails.
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truthfully and burn money in the amount ci(xi); the null message is included only to ensure that

agents have the opportunity not to participate in the mechanism, and in particular, not to burn

any money.

A choice rule π : (� × {m∅})I → [0, 1] determines the winning outcome from the registered

messages; π(m) is the probability that A is selected when the set of registered messages is m,

while B is implicitly selected with probability 1 − π(m). A mechanism is characterized by the

functions {π(·), (ci(·)
)I

i=1
}. Only certain choice rules can be part of mechanisms that properly

induce agents to reveal all information. We focus on mechanisms (π(·), (ci(·))I
i=1) that are Bayesian

incentive compatible, or for which it is a Bayes-Nash equilibrium for all agents to register their types

truthfully. The incentive compatibility condition for type xi of agent i is

xi ∈ argmax
x̂i∈�∪{m∅}

∫
�I−1

π(x̂i, x−i)ui(xi, x−i)f(x−i|xi)dx−i − ci(x̂i),

where we take ci(m∅) = 0 for all i; this is without loss of generality given agent incentives, as re-

porting the null message and burning a positive amount of money is strictly dominated by reporting

the null message and burning no money, for every type of agent. Incentive compatibility must hold

for every xi ∈ � and for every i for the mechanism to implement its choice rule. We say that a

choice rule π(·) is implementable with money burning if there is some mechanism (π(·), (ci(·))I
i=1)

that is Bayesian incentive compatible.

We are interested in the implementability of a particular class of choice rules that have some

desirable welfare properties. We define a choice rule π(x) as monotonic if it is weakly increasing in

its arguments on the domain in which no agent sends the null message. Given the assumption that

each agent’s benefit from alternative A, ui(x), is weakly increasing in all types, a choice rule that

increases the probability of selecting A as types increase may be considered minimally responsive

to social preferences.

As the example in the previous section demonstrates, it may not be possible to implement some

choice rules, even if they are monotonic, when the only instrument available for the expression

of preferences is a costless report. When the selection mechanism may be augmented with money

burning, the set of choice rules that can be implemented must weakly expand. Our first main result

provides the exact conditions under which any monotonic choice rule may be implemented with

money burning.

Proposition 1: Every monotonic choice rule π(·) is implementable with money burning if and

only if for every agent i, every profile of types of other agents x−i, and every pair of types xi and

x′
i for i such that xi ≥ x′

i, ui(xi, x−i)f(x−i|xi) ≥ ui(x′
i, x−i)f(x−i|x′

i).
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Proof: See appendix.

We comment on the significance of the necessary and sufficient condition in Proposition 1. The

condition is that the function ui(xi, x−i)f(x−i|xi) be nondecreasing in xi, for every x−i. This func-

tion is agent i’s ex-post payoff from A winning the election under a given profile of types, weighted

by the probability of that realization of types given i’s own type. By assumption, ui(xi, x−i) is

increasing in xi, so a corollary of Proposition 1 is that all monotonic choice rules are implementable

with money burning when agents’ types are statistically independent. More generally, the condi-

tion requires that the conditional density f(x−i|xi) not vary more, in a particular direction, than

does ui(xi, x−i). Restricting the condition to two signals for i, xi ≥ x′
i, when ui(xi, x−i) ≥ 0 and

ui(x′
i, x−i) ≤ 0, the condition is satisfied for any specification of f(·). However, if ui(xi, x−i) and

ui(x′
i, x−i) are both negative, then the ratio f(x−i|xi)/f(x−i|x′

i) must lie below the upper bound

ui(x′
i, x−i)/ui(xi, x−i) ≥ 1, and if ui(xi, x−i) and ui(x′

i, x−i) are both positive, then the ratio

f(x−i|xi)/f(x−i|x′
i) must lie above the lower bound ui(x′

i, x−i)/ui(xi, x−i) ≤ 1. Roughly speaking,

the condition requires that an agent’s type be of greater importance to that agent’s preferences

over the alternatives A and B, than to that agent’s assessment of what types other agents are likely

to be.

In many models of agents with ordered types, it is assumed that the types are statistically affili-

ated. In auction models, for instance, assuming affiliation may simplify construction of equilibrium

bids. Here, the standard is higher, in that we require our condition to guarantee implementability

of a large class of choice rules, rather than equilibrium of a specific game. Technically, our condition

guarantees satisfaction of a single-crossing property, which is that under any monotonic mechanism,

the gain of reporting a higher type rather than a lower type is greater (gross of any money burnt)

to a higher type of agent than to a lower type of agent. This may not hold if two types prefer the

same alternative, but the type who has a weaker (i.e., closer in absolute value to 0) preference has

a substantially greater potential to pivot the winning outcome via her report; affiliation does not

rule out this possibility. Although distributions f(·) that satisfy our condition for a given set of

ui(·) will typically include some that do not satisfy affiliation, so that our condition is not stronger

per se, affiliation is usually invoked only as a sufficient condition, and one that has the desirable

property of not depending on agents’ preferences.4

The preceding sections highlight the potential value of money as an instrument to elicit informa-

tion about agent preferences. Balancing this value is the resource cost of burnt money, which we

4 We suspect that our condition would also be necessary and sufficient for incentive compatibility in an all-pay
auction environment of all selling rules in which the probability of winning is increasing in own type.

7



must account in the assessment of any decision mechanism. In addition, fairness or equity concerns

may make important how the costs of the mechanism are distributed across the population, and

whether some agents are systematically favored by a system in which money has a role.

To explore these issues, we construct a small extension of our model. In addition to a private

signal xi, each agent i is assumed to have a public type θi from a set Θ. Each agent i’s θi is

assumed to be common knowledge among all agents, as well as observable to the social planner

who implements a decision mechanism. When two agents have the same public type, they have

symmetric benefit functions, and their private signals enter all benefit functions and the joint

distribution f(·) symmetrically. Formally, referring to any two agents i and j, write a profile

of private signals x as (xi, xj , x−ij). Our assumption is that if θi = θj , xi = x′, and xj = x̂,

then ui(x′, x̂, x−ij) = uj(x̂, x′, x−ij) for all x′, x̂, and x−ij ; uk(x′, x̂, x−ij) = uk(x̂, x′, x−ij) for all

k /∈ {i, j}, x′, x̂, and x−ij; and f((x′, x̂, x−ij) = f(x̂, x′, x−ij) for all x′, x̂, and x−ij . Two agents

with the same public type can have different incentives, due to different private signals, but they

are ex-ante identical, and their private information affects all other agents in a symmetric fashion.

Our second main result considers money burning mechanisms for a large number of agents. To

allow for some agent heterogeneity (ex ante) while performing a well-defined comparative static,

we make a simplification to the environment for the purpose of exploring this result. We assume

specifically that there is an underlying state of the world ω, chosen randomly from a finite set Ω.

The agents and mechanism designer cannot observe the realized ω, but it is common knowledge that

ω is drawn according to probabilities p(ω). Agent i’s ex-post benefit from alternative A winning

depends only on i’s private signal, her public type θi, and the realized state, ũ(xi, θi, ω) ≡ ũi(xi, ω).

In addition, agents’ private signals are assumed to be determined independently conditional on the

realization of ω, and are identically distributed for two agents with the same public type. Thus,

agent i’s benefit function ui(xi, x−i) is the conditional expectation

∑
ω∈Ω

ũi(xi, ω)
∏
j

f(xj |ω, θj)p(ω)
∑

ω∈Ω

∏
j

f(xj |ω, θj)p(ω)
,

and the joint distribution of private signals f(x) is

∑
ω

∏
j

f(xj |ω, θj)p(ω).

To generate a large population of agents that preserves certain size-independent characteristics,

we use replication. Given an environment with n agents having public types (θ1, θ2, . . . , θn), benefit
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function ũ(·), and signal distribution f(·|ω, θ), the T -fold replication of this environment is an

environment with the same benefit and conditional signal distribution functions, and T agents of

public type θ1, T of public type θ2, etc.

We prove our result for a particular class of mechanisms with money burning. A choice function

π(·) is said to be anonymous up to public type if it is symmetric for any two agents who have the

same public type. Formally, if θi = θj , then π(x̃, x′, x−ij) = π(x′, x̃, x−ij) for all i, j, x̃, x′, and

x−ij . Choice functions in this class treat all agents with the same public type equally, in the sense

that it responds only to the entire profile of signals reported by a given class of agent, and not to

which agent within that class makes which report. Such a choice function may differentiate across

agents with different public types.

Our result is a statement about the amount of money that can be burnt in an equilibrium that

implements such a choice function:

Proposition 2: For any n agent environment and any ε > 0, there exists T such that in any

T -fold replication with T > T , any choice function that is anonymous up to public type, and

implementable with money burning, may be implemented such that the money burnt by every type

of every agent is less than ε.

This result states that any choice function that is anonymous up to public type can be imple-

mented with vanishing burnt money in the limit. Thus, in a large society, it is possible to reap

all of the potential informational gains associated with money burning with negligible inefficiency.

The combination of replication and anonymity up to public type ensure that in the relevant limit,

the report made by any one agent must have a vanishing effect on the outcome. Thus, no agent

will find it in her interest to burn more than a very small amount of money; however, the amount

of money she would be willing to burn in principle to affect the outcome is always positive, so the

value of money burning as an instrument does not diminish.

Proposition 2 characterizes a limiting property of incentive compatible mechanisms, but is silent

on how these mechanisms change as a class under replication. For instance, we may inquire whether

the necessary and sufficient condition for implementability with money burning of all monotonic

choice mechanisms found in Proposition 1 is robust to replication in the environment constructed

for Proposition 2. Letting p(ω|x, θ) be the posterior probability of state ω to an agent of private

type x and public type θ, the condition of Proposition 1 is necessarily satisfied, for any replication,

if the product u(x, θ, ω)p(ω|x, θ) is increasing in x for all ω and θ. Like the original condition, this

restricts type x to contain more information about private preferences than about the realization
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of other payoff-relevant variables. We note that this condition precludes a “pure common value”

environment, in which u(x, θ, ω) does not depend on x.

3. DISCUSSION

As discussed in the introduction, there are many possible concerns about a system of public choice

that explicitly or implicitly allows money a role in determining outcomes. The issue of corruption

or purchased influence is outside the scope of our model, as we assume the alternatives from which

voters choose to be fixed, and in particular independent of the flow of money. More relevant are

issues of equal representation arising from the direct effect of spending on electoral outcomes. In

general, a system in which a voter’s say increases in the money she expends may be expected to

result in the relative overrepresentation of those best able to pay.

What mitigates these concerns is that we are considering an environment in which the particular

influence of money can be controlled precisely, as formalized by the specification of the voting

mechanism. That is, while a given reduced-form mechanism that maps money burnt (or money

contributed, e.g., in some models of lobbying) can have undesirable properties with respect to

equity, the scope to choose the mechanism may allow one to adjust for these problems.

As an example, consider the following environment. Invoking the semi-symmetric model estab-

lished in the previous section for the statement of Proposition 2, let voter i’s public characteristic

θi be a strictly positive real number, entering her benefit function u(xi, x−i, θi) as (1/θi)u(xi, x−i).

Her payoff in an election from burning c dollars is therefore (1/θi)u(xi, x−i)− c if A wins, −c if B

wins. By an affine transformation, these are the same preferences she would have if her payoff were

u(xi, x−i) − θic if A wins, −θic if B wins. Thus, we may interpret θi as voter i’s marginal utility

of income. Assume also that the joint distribution of private types (x1, . . . , xn) is symmetric; by

the symmetry assumptions on u(·), voters are thus distinguished ex-ante only by their marginal

utilities of income.

Consider now a mechanism with money burning that treats voters symmetrically solely with

respect to their private types xi, i.e., the induced choice function π(x) is symmetric in the types.

Such a mechanism may properly be said to treat voters equally in an ex-ante sense, and in particular

does not discriminate between voters on the basis of their willingness to trade off money for electoral

outcomes. Let ci(xi) be the money burning function for voter i in the mechanism, where voter i

has public characteristic θi. By symmetry of the distribution of private types and of the choice

function π(·), the mechanism is supported by specifying a money burning function for voter j with

public characteristic θj equal to cj(xj) = (θi/θj)ci(xj) for all xj . That is, when voters i and j have
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the same private type x̂, they burn money in the proportion θj/θi. Thus, a voter with a greater

marginal utility of income is required to burn less money in order to express a given preference.

In this example, when marginal utility of income can be observed by the mechanism designer,

a mechanism that strives for equality in representation has the natural property that it requires

those who value income highly to burn less money. This contrasts sharply with explicit or implicit

institutions in which influence is always proportional to total expenditures.

Related Literature

Our work has precedent in various strands of literature. One strand is models of influence buying,

which share with ours the feature that a group of agents can spend resources to affect collective de-

cisions. This work includes, among others, Tullock (1967), Becker (1983), Bernheim and Whinston

(1986), and Grossman and Helpman (1994). The main goals of these papers are to characterize

equilibria and comparative statics of influence games; in Bernheim and Whinston and in Grossman

and Helpman, in which resources are transferred to a decision maker rather than dissipated, there

is also focus on the potential for efficient decisions to be made in equilibrium. Our work is different

from the cited papers in two especially important respects. First, these papers assume no private

information among agents, meaning that there is perforce no informational role for expenditures

to play. Second, these papers each assume a particular specification for the way that expenditures

map into final decisions, while ours is a mechanism design approach that considers a general class

of such mappings.

The issue of information aggregation in simple elections is treated in Feddersen and Pesendor-

fer (1997). They also consider an environment in which a group of voters chooses between two

alternatives. Each voter may vote for one of the two alternatives, and the winning alternative

is determined according to a prespecified proportional threshold (possibly a supermajority rule).

Voters have two-dimensional private information: a private characteristic that affects only that

voter’s payoff; and a signal about an underlying state that affects all voters’ payoffs. Feddersen and

Pesendorfer wish to characterize when voters will successfully aggregate their information about

the state, in the following particular sense: the alternative that wins the election is the alternative

that would have won had the state been common knowledge, and the voters voted simply accord-

ing to their private characteristics. They find sufficient conditions such that the probability of this

coincidence goes to one as the number of voters grows.

A recent literature explores possibilities for eliciting information about intensity of preferences

when the alternatives over which voters choose are multidimensional. For instance, votes on several

11



referenda may be held simultaneously, so that an outcome is a description of the winner in each

individual contest. Similarly, if there are multiple elections over time, then voters have preferences

over a sequence of winners. Several papers, including Cassella (2005), Cassella and Gelman (2005),

and Jackson and Sonnenschein (2005), observe that if voters are given a “budget” of votes to

distribute over the individual contests, rather than being limited to a single vote on each contest,

then information can be gained about voters’ intensities of preference, as a voter has an incentive to

trade off votes in a contest in which her preference is weak for one in which her preference is strong.

The papers show, to varying degrees, that the informational gains from vote budgets help result

in more efficient outcomes. Jackson and Sonnenschein show specifically that their budgeting rule

allows for sufficient information revelation for implementation of the efficient outcome in the limit.

One way of summarizing the contrast between our limiting result for large electorates and those of

Jackson and Sonnenschein and of Feddersen and Pesendorfer is that they show that costless voting

mechanisms can achieve approximate efficiency in the limit, while our result shows that a costly

mechanism can achieve perfect efficiency, gross of those costs, at a cost that vanishes in the limit.

Our result for large electorates has a close precedent in work by McLean and Postlewaite (2002,

2004) on mechanism design with informationally small agents. They show that if the impact of

every agent’s private information on aggregate beliefs about a payoff-relevant underlying state goes

to zero, then in a mechanism that implements the efficient outcome, the cost of inducing agents to

reveal that information, as measured by informational rents earned by the agents, vanishes also.

Our limiting result, which is for all mechanisms that treat ex-ante identical agents symmetrically,

includes but does not restrict attention to efficient decision rules (which maximize the sum of agent

utilities gross of money burnt). Furthermore, our specification in which a voter’s type serves as

both a private preference parameter and information about an underlying state is not covered by

their results.

The limiting result of Feddersen and Pesendorfer in particular may cast some doubt on the

usefulness of money burning, since it seems that simple, costless voting mechanisms may effectively

aggregate information in the limit anyway. We thus provide an example not covered by Feddersen

and Pesendorfer’s environment to demonstrate the potential power of money burning. Taking the

replication environment described previously, assume that there are two underlying states, ω1 and

ω2; that voters are ex-ante symmetric (i.e., they have identical public characteristics); and that

voters have purely private values (ui(xi, ω) = xi for ω ∈ {ω1, ω2}). Thus, the only effect of ω is

to alter the distribution of voter types, F (xi|ω). Assume further that in both states, the ex-ante

probability that a voter prefers A to B is identical: F (0|ω1) = F (0|ω2). In a simple election in
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which voters only vote for A or vote for B, the unique equilibrium is for all voters to vote for

their preferred alternative; this behavior does not reveal anything about the realized state, as the

probabilistic distribution of votes is the same in either state. Thus, any fixed election rule yields

identical expected results across states, for any number of voters.5

In contrast, if xip(ωj |xi) is weakly increasing in xi for all ωj , then any monotonic choice rule

can be implemented with money burning, and at vanishing cost in the limit if voters are treated

symmetrically. In particular, since voters can be induced to reveal their profile of types exactly, it

would be possible to implement a mechanism such that in the limit, one alternative wins almost

surely in state ω1, and the other alternative wins almost surely in state ω2.

4. CONCLUSION

We have shown a theoretically beneficial role for money in elections, and that for a large electorate,

these benefits are robust even when the money that is expended is dissipated. A natural question

is how the theoretical benefits might be realized in practice. As with many problems of mechanism

design, the mechanisms that achieve certain desiderata are liable to be complex, and to depend

very particularly on details of the specifications of preferences and underlying uncertainty. The

controversy that would likely surround any attempt formally to institutionalize expenditures into

the workings of public choice would only be exacerbated by a lack of transparency, particularly if

individual citizens were treated differently.

Against this, it may be argued that systematic differences in participation already exist, even

in institutions seemingly untouched by the influence of money. In elections in the United States,

in which voting is voluntary, there are patterns in participation suggesting that the act of voting

itself is costly, and that those for whom the cost is lowest tend to vote more often, ceteris paribus.

An example in support of this is the high rate of turnout among retirees. Those for whom getting

to the polls is particularly burdensome, such as single parents and people holding multiple jobs,

may be expected to abstain more on average. Hence, the default alternative to an electoral system

that allows money burning is not one in which participation is costless (or equally costly) to all

participants, and some form of expenditure mechanism or transfers may be needed simply to redress

such inequities.

5 Because there is correlation of types, it is theoretically possible that there is a more revealing equilibrium of a
mechanism in which voters do not burn money, but send richer messages than simply voting for A or voting for
B. However, the scope for such mechanisms to reveal information in the private values case is limited, more so the
closer the types are to being independently distributed.
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APPENDIX

Proof of Proposition 1. We first prove that the stated condition on the ui(·) and f(·) (called

“condition *” hereafter) is necessary for all monotonic choice rules to be implementable with money

burning. Suppose that condition * is violated, i.e., for some i, some x−i, and some x̃i > x′
i,

ui(x̃i, x−i)f(x−i|x̃i) < ui(x′
i, x−i)f(x−i|x′

i). By continuity of the ui(·) and f(·) functions, there

necessarily exists an open rectangle X−i, i.e., the set of all type profiles for other agents in which

each xj lies in some interval (xj , xj), such that ui(x̃i, x−i)f(x−i|x̃i) < ui(x′
i, x−i)f(x−i|x′

i) for all

x−i ∈ X−i. Consider the monotonic choice rule π∗(·) with the following features on the domain in

which no agent makes the null report. If xj ≤ xj for any j �= i, then π∗(xi, x−i) = 0 for all xi. If

xj > xj for all j and xj ≥ xj for any j, then π∗(xi, x−i) = 1 for all xi. If x−i ∈ X−i and xi ≤ x′
i,

π∗(xi, x−i) = 0; if x−i ∈ X−i and xi > x′
i, π∗(xi, x−i) = 1. Let ci(xi) be the money burning

function for i in an arbitrary mechanism with π∗(·) as the choice rule. Necessary conditions for the

mechanism to be Bayesian incentive compatible are

∫
�I−1

π(x̃i, x−i)ui(x̃i, x−i)f(x−i|x̃i)dx−i − ci(x̃i) ≥
∫

�I−1

π(x′
i, x−i)ui(x̃i, x−i)f(x−i|x̃i)dx−i − ci(x′

i)

and

∫
�I−1

π(x′
i, x−i)ui(x′

i, x−i)f(x−i|x′
i)dx−i − ci(x′

i) ≥
∫

�I−1

π(x̃i, x−i)ui(x′
i, x−i)f(x−i|x′

i)dx−i − ci(x̃i).

A necessary condition for satisfaction of these inequalities is

∫
�I−1

(π(x̃i, x−i) − π(x′
i, x−i))(ui(x̃i, x−i)f(x−i|x̃i)dx−i − ui(x′

i, x−i)f(x−i|x′
i)dx−i) ≥ 0.

However, this condition is violated for the constructed choice rule: the first term in the integrand

is 0 except for on x−i ∈ X−i, where it is strictly positive, but the second term in the integrand is

strictly negative on x−i ∈ X−i by assumption.

We show that condition * is sufficient for implementability of all monotonic choice rules with

money burning by construction. Let π(·) be an arbitrary monotonic choice rule, and fix an

agent i. By the monotonicity of π(xi, x−i) in xi and the assumed continuity of ui(xi, x−i) and

f(xi, x−i), the function π(xi, x−i) ∂
∂xi

{ui(xi, x−i)f(x−i|xi)} is Riemann-Stieltjes integrable in xi

for any x−i. Furthermore, the assumed boundedness of
∫
�I−1 1i(xi, x−i)ui(xi, x−i)f(x−i|xi)dx−i
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and
∫
�I−1 1′i(xi, x−i)ui(xi, x−i)f(x−i|xi)dx−i ensures, by bounded convergence, that the expecta-

tion
∫
�I−1 π(xi, x−i) ∂

∂xi
{ui(xi, x−i)f(x−i|xi)}dx−i is also Riemann-Stieltjes integrable. Choose an

arbitrary type x0
i , and define

ĉi(xi) ≡
∫

�I−1

π(xi, x−i)ui(xi, x−i)f(x−i|xi)dx−i −
∫

�I−1

π(x0
i , x−i)ui(x0

i , x−i)f(x−i|x0
i )dx−i

−
xi∫

x0
i

∫
�I−1

π(t, x−i)
∂

∂t
{ui(t, x−i)f(x−i|t)}dx−idt.

By the monotonicity of π(·) and the hypothesis that u(xi, x−i)f(x−i|xi) is increasing in xi, we have

∫
�I−1

π(xi, x−i)(ui(xi, x−i)f(x−i|xi) − ui(x0
i , x−i)f(x−i|x0

i ))dx−i

=

xi∫
x0

i

∫
�I−1

π(xi, x−i)
∂

∂t
{ui(t, x−i)f(x−i|t)}dx−idt

≥
xi∫

x0
i

∫
�I−1

π(t, x−i)
∂

∂t
{ui(t, x−i)f(x−i|t)}dx−idt

≥
xi∫

x0
i

∫
�I−1

π(x0
i , x−i)

∂

∂t
{ui(t, x−i)f(x−i|t)}dx−idt

=
∫

�I−1

π(x0
i , x−i)(ui(xi, x−i)f(x−i|xi) − ui(x0

i , x−i)f(x−i|x0
i ))dx−i.

The first and last expressions in the last series of inequalities are bounded, and the middle expression

is the final term in ĉi(xi). Thus, all the terms in ĉi(xi) are bounded, and ĉ(xi) is a bounded

function. Therefore, it has an infimum ci. Let the money burning function in the constructed

mechanism ci(xi) satisfy ci(xi) = ĉi(xi) − ci. This ci(xi) necessarily takes on only nonnegative
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values. Furthermore, for any types xi and x′
i, we have

∫
�I−1

π(xi, x−i)ui(xi, x−i)f(x−i|xi)dx−i − ci(xi)

=
∫

�I−1

π(x0
i , x−i)ui(x0

i , x−i)f(x−i|x0
i )dx−i +

xi∫
x0

i

∫
�I−1

π(t, x−i)
∂

∂t
{ui(t, x−i)f(x−i|t)}dx−idt + ci

≥
∫

�I−1

π(x0
i , x−i)ui(x0

i , x−i)f(x−i|x0
i )dx−i +

x′
i∫

x0
i

∫
�I−1

π(t, x−i)
∂

∂t
{ui(t, x−i)f(x−i|t)}dx−idt

+

xi∫
x′

i

∫
�I−1

π(x′
i, x−i)

∂

∂t
{ui(t, x−i)f(x−i|t)}dx−idt + ci

=
∫

�I−1

π(x′
i, x−i)ui(xi, x−i)f(x−i|xi)dx−i − ci(x′

i).

Thus, every type xi prefers to announce her true type and burn ci(xi) than to misregister as a

different type.

The only remaining feature to construct is how the mechanism responds to null reports. Because

equilibria in which no agent makes a null report are sought, the specification for π(·) when there

are multiple null reports is irrelevant. However, π(·) must have the property that no type of agent

wishes to make a null report unilaterally. Denote the message profile in which agent i makes the null

report and other agents report vector of types x−i by (m∅, x−i). Consider arbitrary agent i and the

constructed function ci(·). It is known that the infimum of ci(·) is 0. If there is a type x̃i such that

ci(x̃i) = 0, then assume that π(m∅, x−i) = π(x̃i, x−i) for all x−i; then by incentive compatibility,

no type of agent will have an incentive to make the null report, as no type of agent except x̃i has

an incentive to report x̃i and burn no money. However, it is possible that there is no type xi such

that ci(xi) = 0. In this case, we construct π(m∅, x−i) as follows. Because the infimum of ci(·) is

0, there necessarily exists a sequence of types of agent i, (xt
i)

∞
t=1, such that limt→∞ ci(xt

i) = 0, and

such that (xt
i)

∞
t=1 is either increasing or decreasing. By the monotonicity of π(·), as well as the fact

that π(·) is bounded between 0 and 1, the limit limt→∞ π(xt
i, x−i) therefore exists for every x−i;

let π(m∅, x−i) = limt→∞ π(xt
i, x−i). Choose any type xi of agent i; by incentive compatibility of

π(·) for type reports, we have

∫
�I−1

π(xi, x−i)ui(xi, x−i)f(x−i|xi)dx−i − ci(xi) ≥
∫

�I−1

π(xt
i, x−i)ui(xi, x−i)f(x−i|xi)dx−i − ci(xt

i),
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for all t. Therefore, we have
∫

�I−1

π(xi, x−i)ui(xi, x−i)f(x−i|xi)dx−i − ci(xi)

≥
∫

�I−1

lim
t→∞ π(xt

i, x−i)ui(xi, x−i)f(x−i|xi)dx−i − lim
t→∞ ci(xt

i)

=
∫

�I−1

π(m∅, x−i)ui(xi, x−i)f(x−i|xi)dx−i.

Thus, no type has an incentive to report m∅ and burn no money.

Proof of Proposition 2. Fix a pre-replication environment, a replication factor T , and consider

any choice rule π(·) that is anonymous up to public type and implementable, with money burning

functions ĉi(·), for the T -fold replication. Denote the lower bound of the ex-ante support of money

burnt by agent i as ci. If ci > 0, modify i’s money burning functions to ci(xi) = ĉi(xi) − ci. If

this results in some (measure zero) set of agent types burning a negative amount of money, adjust

the mechanism so that a report of those types has the same effect as a null message. This makes

the lower bound of the ex-ante support of money burnt for every agent 0, without altering the

performance of the mechanism. With this feature, for every agent i there exists a set of types Xi

of positive measure such that ci(xi) < ε/2 for all xi ∈ Xi.

Fix any signal type xi of any agent i in the interior of the support of signal types of i, and any

signal x′
i ∈ Xi also in the interior of the support of signal types of i. By incentive compatibility of

the given mechanism with money burning, and the specification of Xi, we have

ci(xi) ≤ ci(x′
i) +

∑
ω∈Ω

p(ω)
∫

�I−1

(π(xi, x−i) − π(x′
i, x−i))ũi(xi, ω)f(x−i|ω)dx−i

< ε/2 +
∑
ω∈Ω

p(ω)ũi(xi, ω)
∫

�I−1

(π(xi, x−i) − π(x′
i, x−i))f(x−i|ω)dx−i.(A)

Fix a state ω, and consider the term ũi(xi, ω)
∫
�I−1 (π(xi, x−i) − π(x′

i, x−i))f(x−i|ω)dx−i. There

necessarily exists a set of signals Xω(xi) of positive measure µ(Xω(xi)) ≡ µ ≡ ∫
Xω(xi)

f(z|ω, θi)dz,

and a disjoint set of signals Xω(x′
i) of positive measure µ(Xω(x′

i)) ≡ µ′ ≡ ∫
Xω(x′

i
)
f(z|ω, θi)dz, such

that

ũi(xi, ω)
∫

�I−1

(π(xi, x−i) − π(x′
i, x−i))f(x−i|ω)dx−i

≤ũi(xi, ω)
∫

�I−1

[
∫

X(xi)

π(z, x−i)
f(z|ω, θi)

µ
dz −

∫
X(x′

i
)

π(z, x−i)
f(z|ω, θi)

µ′ dz]f(x−i|ω)dx−i.
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To confirm this, suppose that ui(xi, ω) > 0 and xi > x′
i, or that ui(xi, ω) < 0 and xi < x′

i. Then

choosing Xω(xi) such that xi is its minimum element, and Xω(x′
i) such that x′

i is its maximum

element, achieves the desired condition, by the monotonicity of π(·); furthermore, such disjoint

Xω(xi) and Xω(x′
i) having positive measure can be found because xi and x′

i are in the interior of

the support of signals. A parallel argument holds if ui(xi, ω) > 0 and xi < x′
i, or if u(xi, ω) < 0

and xi > x′
i.

The assumption that the conditional expected payoffs
∫
�I−1 1i(xi, x−i)ui(xi, x−i)f(x−i|xi)dx−i

and
∫
�I−1 1′i(xi, x−i)ui(xi, x−i)f(x−i|xi)dx−i are bounded for all i and xi implies that ũi(xi, ω) is

bounded in absolute value over all xi and ω in our state environment; let this bound be Bi.

In the T -fold replication, there are at least T−1 other agents who share agent i’s public type, and

whom the choice function π(·) treats symmetrically. Given the choice function π(·), it is possible

to calculate its expectation conditional on the fixed state ω, and on whether each of these T agents

has a signal that lies in X(xi), in X(x′
i), or in neither. Furthermore, by symmetry of π(·) for

these agents, this expectation must depend only on the number of such agents who have signals

lying in each of the three sets, and not on the specific profile of signal sets for these agents. Thus,

suppressing the dependence on ω, we may write the expectation as π(y1, y2), where y1 is the number

of the T agents in question with signals in Xω(xi), and y2 is the number of those agents with signals

in Xω(x′
i). Invoking this notation, we may rewrite the expectation

∫
�I−1

[
∫

Xω(xi)

π(z, x−i)
f(z|ω, θi)

µ
dz −

∫
Xω(x′

i
)

π(z, x−i)
f(z|ω, θi)

µ′ dz]f(x−i|ω)dx−i

as
T∑

y1=1

T−y1∑
y2=0

(T − 1)!
(y1 − 1)!y2!

µy1−1µ′y2(1 − µ − µ′)T−y1−y2π(y1, y2)

−
T−1∑
y1=0

T−y1∑
y2=1

(T − 1)!
y1!(y2 − 1)!

µy1µ′y2−1(1 − µ − µ′)T−y1−y2π(y1, y2).

Each of these two terms is an expectation of trinomial random variables. For any T , define

y1(T ) as the smallest nonnegative integer such that 1 − ε
8Bi

< T−1
y1(T )

µ, y2(T ) as the smallest

nonnegative integer such that 1− ε
8Bi

< T−1
y2(T )µ

′, y
1
(T ) as the largest nonnegative integer such that

1 + ε
8Bi

> T−1
y
1
(T )−1µ, and y

2
(T ) as the largest nonnegative integer such that 1 + ε

8Bi
> T−1

y
2
(T )−1µ′.

There exists a number T ′ such that T > T ′ implies that y
1
(T ) < y1(T ) and y

2
(T ) < y2(T ). As the

function π(·) is bounded, the law of large numbers implies that for some T̂ (≥ T ′ without loss of
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generality), T > T̂ implies that

|
T∑

y1=1

T−y1∑
y2=0

(T − 1)!
(y1 − 1)!y2!

µy1−1µ′y2(1 − µ − µ′)T−y1−y2π(y1, y2)

−
y1(T )∑

y1=y
1
(T )

y2(T )∑
y2=y

2
(T )

(T − 1)!
(y1 − 1)!y2!

µy1−1µ′y2(1 − µ − µ′)T−y1−y2π(y1, y2)|

<
ε

8Mi

and

|
T∑

y1=0

T−y1∑
y2=1

(T − 1)!
y1!(y2 − 1)!

µy1µ′y2−1(1 − µ − µ′)T−y1−y2π(y1, y2)

−
y1(T )∑

y1=y
1
(T )

y2(T )∑
y2=y

2
(T )

(T − 1)!
(y1 − 1)!y2!

µy1µ′y2−1(1 − µ − µ′)T−y1−y2π(y1, y2)|

<
ε

8Mi
.

Thus, for T > T̂ , we have

|
T∑

y1=1

T−y1∑
y2=0

(T − 1)!
(y1 − 1)!y2!

µy1−1µ′y2(1 − µ − µ′)T−y1−y2π(y1, y2)

−
T−1∑
y1=0

T−y1∑
y2=1

(T − 1)!
y1!(y2 − 1)!

µy1µ′y2−1(1 − µ − µ′)T−y1−y2π(y1, y2)|

<
ε

4Mi
+ |

y1(T )∑
y1=y

1
(T )

y2(T )∑
y2=y

2
(T )

(T − 1)!
(y1 − 1)!y2!

µy1−1µ′y2(1 − µ − µ′)T−y1−y2π(y1, y2)

−
y1(T )∑

y1=y
1
(T )

y2(T )∑
y2=y

2
(T )

(T − 1)!
y1!(y2 − 1)!

µy1µ′y2−1(1 − µ − µ′)T−y1−y2π(y1, y2)|

=
ε

4Mi
+

y1(T )∑
y1=y

1
(T )

y2(T )∑
y2=y

2
(T )

(T − 2)!
(y1 − 1)!(y2 − 1)!

µy1−1µ′y2−1(1 − µ − µ′)T−y1−y2π(y1, y2)|T − 1
y2

µ′ − T − 1
y1

µ|.

The second term in the last sum is a sub-expectation over the realizations y
1
(T ) ≤ y1 ≤ y1(T )

and y
2
(T ) ≤ y2 ≤ y2(T ); for these values, by construction of the four bounds, it is the case that

|T−1
y2

µ′ − T−1
y1

µ| < ε
4Mi

. Since π(y1, y2) is bounded between 0 and 1, the entire sub-expectation

is necessarily less than ε
4Mi

, and final term in the last chain of inequalities is less than ε
2Mi

. This

means that for every state ω, the expression

ũi(xi, ω)
∫

�I−1

[
∫

X(xi)

π(z, x−i)
f(z|ω, θi)

µ
dz −

∫
X(x′

i
)

π(z, x−i)
f(z|ω, θi)

µ′ dz]f(x−i|ω)dx−i,
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repeated from above, is less than ε/2, as ũi(xi, ω) is bounded in absolute value by Mi. The

expectation over states

∑
ω∈Ω

p(ω)ũi(xi, ω)
∫

�I−1

(π(xi, x−i) − π(x′
i, x−i))f(x−i|ω)dx−i

is thus also less than ε/2, and, invoking inequality (A), ci(xi) < ε.
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