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Abstract

This paper shows how endogeneous inflation inertia is generated by a
simple modificaton of the quadratic adjustment cost structure faced by
economic agents. We derive the pertinent inflation relationships based
on purely nominal rigidities and show that they always involve additional
expectation terms which are absent in a Calvo-type environment. However,
the structural differences do not prevent dynamic adjustment paths and
theoretical moments to be similar under both rigidity assumptions. An
extensive application of nominal adjustment frictions leads to a full-scale
macroeconomic framework able to replicate empirical responses to an interest
rate shock.
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1 Introduction

The staggered price setting according to Calvo (1983) is the most common ap-

proach to rule out the neutrality of monetary policy. Similar to the nominal wage-

contracting environment suggested by Taylor (1979), an inertial adjustment of prices

emerges as a salient outcome. Equivalent conclusions are derived by assuming the

existence of menu costs in nominal adjustment (Rotemberg (1982) and Hairault and

Portier (1993)). However, none of these rigidity specifications is able to replicate

the highly amplified inflation persistence typically observed in empirical data. Most

importantly, the theoretical fit towards observed fundamentals of inflation always

involves an extension of the non-neutrality at work. For instance, the Calvo version

is usually modified as in Gaĺı, Gertler, and López-Salido (2001) or in Christiano,

Eichenbaum and Evans (2005) to include rule-of-thumb setters. This means that a

fraction of monopolistic agents is forced to index their nominal choice variable to

past nominal conditions, as they are disallowed to decide optimally. In a rather over-

looked consistency, the induced endogeneity in inflation variables is due to purely

nominal frictions. In contrast, inflation endogeneity under the Taylor contracting

and the adjustment cost assumption typically entails (additional) real frictions. A

standard procedure in the Taylor-type setting is to introduce real-valued wage con-

tracts as done by Furher and Moore (1995), while the adjustment cost environment

generally assumes additional adjustment costs in input utilization1. Concerning the

latter, we rule out the apparent misperception in the literature about inflation endo-

geneity as a specific result of real rigidities2. In particular, we show that endogenous

inflation persistence could be well traced back to purely nominal rigidities in a re-

1 See for example Lechtaler and Snower (2008) for a very simple specification of labor adjustment
costs. While these are embedded in a Calvo setting, the same inflation inertia can be generated
by assuming quadratic adjustment costs in the pricing decision instead.

2 We concentrate on the adjustment cost specification because it is increasingly applied in the
optimal policy literature due to its simplicity. Examples can be found in Faia (2008) and
Schmitt-Grohé and Uribe (2004). Interesting results have been obtained by Ascari and Merkl
(2009) after disinflationary policy experiments in a non-linear adjustment cost setting.

1
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defined adjustment cost environment. However, the resulting inflation curves at the

aggregate level display a higher degree of complexity in terms of expectations but

lead to similar qualitative results as in the rule-of-thumb Calvo setting.

The remainder is as follows. Section 2 introduces the novel adjustment cost structure

and its intertemporal implications. Section 3 embeds this formulation in microeco-

nomic optimization problems across monopolistic agents. In section 4, the pertinent

optimality conditions are aggregated and linearized in order to obtain a stylized

New Keynesian macroeconomic framework. The latter is calibrated and simulated

in section 5. We compare its dynamic and numerical implications to the Calvo-type

rigidity modeling. Section 6 summarizes and concludes the discussion.

2 Adjustment Cost Structure Revisited

The inertial development in the change rate of a nominal variable Xt is driven by

real adjustment costs of the form:

Qx
t+k = φx2 (

Xt+k

Xt+k−1

− X
X
)2 + υx

2
( Xt+k

Xt+k−1

− Xt+k−1

Xt+k−2

)2 φx, υx > 0 (1)

whereXt+k is the choice variable of a monopolistic agent not explicitly indexed andX

denotes the steady state level of this variable. The suppresed agent indexation makes

clear that (1) is also an aggregate formulation due to symmetry assumptions. From

the perspective of the decision period t, the agent rationally expects the following

asymptotic and discounted stream of adjustments costs:

Et

∞

∑
k=0

( 1

1 + ξ)
k

Qx
t+k (2)

where ξ is the subjective time perference rate of the agent. Notice that setting

φx > 0, υx = 0 leads to the adjustment cost structure typically found in the literature.

We refer to this basic quadratic formulation as the Hairault/Portier specification,

as Hairault and Portier (1993) formulate the non-linear version of the adjustment

costs introduced by Rotemberg (1982). A monopolistic economic agent optimizes

in period t its target with respect to Xt and subject to its own demand function.

2
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Moreover, equation (1) implies the emergence of menu costs wheneverXt is adjusted,

forcing the agent to adopt an intertemporal perspective as formulated in (2). In the

Hairault/Portier specification adjustment costs arise in case that the next periods’

(rationally expected and discounted) level Xt+1 differs from the current level Xt.

Therefore, the agent will intend to smooth the chosen level of Xt over two periods

along an intertemporal taget optimization in order to reduce adjustment costs. For

υp > 0, adjustment costs disperse over three periods and the prevalescence of the

variable set in period t over the succeeding two periods renders a more complex

intertemporal optimization problem for the agent. Particularly, the agent will have

to form rational expectations concerning the variable Xt+2 given the information set

at period t. This is not found to be implausible since two periods ahead is not a

considerable large amount of time if the quarterly time span is adopted as typically

done in the New Keynesian literature. As for the cost structure itself (k = 0), note

first that as long as υp > 0, the isolated equivalence Xt =Xt−1 will not lead to Qx
t = 0

as in the Hairault/Portier specification:

Q
x,I
t = υx2 (

Xt

Xt−2

− 1)2 for Xt =Xt−1 ≠Xt−2 (3)

Therefore, the identity of the nominal variable to its last-period counterpart will not

be sufficient to generate a flexible price environment. Note further that the isolated

imposition of Xt−1 =Xt−2 implies:

Q
x,II
t = φx

2
( Xt

Xt−2

− X
X
)2 + υx

2
( Xt

Xt−2

− Xt−1

Xt−2

)2 for Xt ≠Xt−1 =Xt−2 (4)

or written in terms of equation (3):

Q
x,II
t = φx

2
( Xt

Xt−2

− X
X
)2 +Qx,I

t (5)

Therefore, we obtain an asymmetric cost structure in which the costs are higher

Q
x,II
t > Qx,I

t if the current level diverges from its last’s periods value, the latter

being equalized to its before-last level (Xt ≠ Xt−1 = Xt−2). Finally, note that the

adjustment cost structure (1) fulfills the desired property of null adjustment costs

in the flexible nominal variable environment (Xt =Xt−1 =Xt−2).

3
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3 Microeconomic Foundations

In the following sections the presented adjustment cost structure is embedded in

a New Keynesian DSGE framework at the microeconomic level. This is the main

distinction to the theoretical models developed so far in order to fit empirical charac-

teristics at the aggregate level. The production side consists of a final-good producer

and intermediate firms. Further agents are households, commercial banks, and a

monetary authority. Intermediate goods are sold under monopolistic competition

to the assembling production agent and the latter sells the resulting homogeneous

final good to households under perfect competition market conditions. Households

maximize a sepparable utility function asymptotically with respect to consumption,

money and leisure in a similar manner as in Smets and Wouters (2003). We intro-

duce internal habit formation in consumption, which is in line with Casares (2006).

Moreover, labor supply is differentiated across households and offered under monop-

olistic competition to intermediate firms. The latter finance in advance labor cost

with a portfolio of differentiated loan types. Therefore, we introduce monopolistic

commercial banks as in Henzel et al. (2009) and Hülsewig et al. (2009).

3.1 Final Good Production

The production in this sector results in a homogeneous good Yt sold under perfect

market conditions with a corresponding aggregate price index Pt. Input factors

are monopolistically offered intermediate goods, where Yt(i) is the input from an

intermediate firm lying in the unit interval [0,1]. The assembly across all types of

intermediate goods towards the final good takes place according to a Dixit-Stiglitz

type aggregator function:

Yt = ⎛⎝
1

∫
0

Yt(i) ǫp

ǫp−1 di
⎞
⎠

ǫp−1

ǫp

(6)

where ǫp denotes the elasticity of substitution between intermediate good variaties.

The final good producer maximizes its profits with respect to an input variety Yt(i)
and taking the CES production technology (6) into account. Real profits can be

4
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formulated as:

Yt −
1

∫
0

Pt(i) Yt(i)
Pt

di (7)

The resulting profit maximizing demand schedule for input variety i is:

Yt(i) = (Pt(i)
Pt
)−ǫp Yt (8)

Inserting this equation into (6) yields a Dixit-Stiglitz type price index for the bundle

Yt:

Pt = ⎛⎝
1

∫
0

Pt(i)1−ǫp di⎞⎠
1

1−ǫp

(9)

3.2 Intermediate Good Producers

Each commodity Yt(i) is produced by a single firm with a decreasing returns to

labor hours technology 3:

Yt(i) = Nt(i)1−α , 0 < α < 1 (10)

Nominal labor cost WtNt(i) is assumed to be prefinanced at the beginning of period

t by the type-differentiated nominal loan volume Lt(i). Repayment takes place after

one period at the gross loan rate RL
t . The total operational cost of firm i is therefore

given by:

TCt(i) = WtNt(i)
Pt

RL
t = Lt(i)Pt

RL
t (11)

3 We abstract from capital rental services for the sake of simplicity but without loss of generality.

5
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An intratemporal total cost minimization procedure of the firm subject to (10) yields

the firm-specific real marginal cost:

MCt(i) = ( 1

1 − α)
Wt

Pt
RL
t Yt(i) α

1−α (12)

A firm i ∈ [0,1] chooses its own price Pt(i) in order to maximize monopolistic

real profits. The own demand schedule to be taken into account is given by (8).

Moreover, the firm faces real quadratic costs of price adjustment as formulated

under section 2. Specifically, we have for k = 0:

Q
p
t (i) = ψp2 (

Pt(i)
Pt−1(i) − πp)

2

+ υp
2
( Pt(i)
Pt−1(i) −

Pt−1(i)
Pt−2(i))

2

(13)

where πp = 1 denotes the steady state gross inflation rate in the abscence of trend

inflation. The real profits of an intermediate firm can be written as:

Et

∞

∑
k=0

∆t,t+k

⎡⎢⎢⎢⎢⎣
Pt+k(i)Yt+k(i)

Pt+k
−MCt+k(i)Yt+k(i) −Qp

t+k(i)
⎤⎥⎥⎥⎥⎦

(14)

Inserting the individual demand schedule and the adjustment cost formulation into

the intertemporal profit expression and taking the first-order derivative with respect

to Pt(i) leads to the optimal price setting pattern from the viewpoint of firm i:

( Pt(i)
Pt−1(i) − πp)

Pt(i)
Pt−1(i) =

ǫpYt

ψp
(MCt(i) − 1

µp
) − υp

ψp
( Pt(i)
Pt−1(i) −

Pt−1(i)
Pt−2(i))

Pt(i)
Pt−1(i)

+Et
⎡⎢⎢⎢⎢⎣
∆t,t+1

∆t,t

⎛
⎝(
Pt+1(i)
Pt(i) − πp)

Pt+1(i)
Pt(i)

+υp
ψp
(Pt+1(i)
Pt(i) −

Pt(i)
Pt−1(i))(

Pt+1(i)
Pt(i) +

Pt(i)
Pt−1(i))

⎞
⎠
⎤⎥⎥⎥⎥⎦

−Et
⎡⎢⎢⎢⎢⎣
∆t,t+2

∆t,t

υp

ψp
(Pt+2(i)
Pt+1(i) −

Pt+1(i)
Pt(i) )

Pt+1(i)
Pt(i)

⎤⎥⎥⎥⎥⎦

(15)

where µp = ǫp/ (ǫp − 1) is the constant monopolistic markup of the firms.

6
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Since households own firms, the (aggegate) marginal utility of consumption relation

∆t,t+k = βk (∂Ut+k/∂Ct+k

∂Ut/∂Ct
) represents the relevant stochastic discount factor for current

and future firm profits in real terms. Note that under full price flexibility (ψp =
0 ; Pt−2(i) = Pt−1(i) = Pt(i) = Pt+1(i) = Pt+2(i)) an intermediate firm sets its price as

a markup over its nominal marginal cost Pt MCt(i).

3.3 Commercial Banks

We introduce monopolistic loan supply as in Henzel et al. (2009) and Hülsewig et al.

(2009). The differentiation and monopolistic competition in loan types may appear

from tight customer-banks relationships or specialization in certain geographical

regions (Carletti et al. (2007)). However, we depart from their Calvo-type modeling

of lending frictions and assume the specification presented in section 2 instead.

The real profits of a commercial bank l ∈ [0,1] can be formulated as:

Et

∞

∑
k=0

∆t,t+k

⎡⎢⎢⎢⎢⎣
RL
t+k(l)Lt+k(l)

Pt+k
− TCr

t+k(l) −QR
t+k(l)

⎤⎥⎥⎥⎥⎦
(16)

where the balance sheet equalizes the nominal loan volume to the sum of nominal

deposits dt(l) and the net position in the money market Bt(l):

Lt(l) = dt(l) +Bt(l) (17)

Since deposits and money market credits are assumed to be perfect substitutes

(Freixas et. al (2000)), their gross interest rates are identical (Rd
t = RM

t ). Total real

cost arising from the placing of loans can then be written as:

TCt(l) = dt(l)
Pt

Rd
t + Bt(l)

Pt
RM
t = (dt(l) +Bt(l)

Pt
)RM

t = (Lt(l)Pt
)RM

t (18)

The loan demand schedule faced by the monopolistic bank can be shown to be:

Lt(l) = (RL
t (l)
RL
t

)
−ζ

Lt (19)

Moreover, the bank faces real quadratic costs of loan rate adjustment as formulated

7
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under section 2. In terms of nominal loan rate deviations this implies:

Qr
t(l) = ψr2 (

RL
t (l)

RL
t−1(l) − 1)

2

+ υr
2
( Rt(l)
RL
t−1(l) −

RL
t−1(l)

RL
t−2(l))

2

(20)

Inserting the last two constraints toghether with TCt(l) into the banks’ profit for-

mulation and taking the first-order derivative with respect to RL
t (l) leads to the

optimal loan rate setting pattern from the viewpoint of bank l:

( RL
t (l)

RL
t−1(l) − 1) RL

t (l)
RL
t−1(l) =

ζNt

ψr

Wt

Pt
(RM

t − R
L
t

Ξ
) − υr

ψr
( RL

t (l)
RL
t−1(l) −

RL
t−1(l)

RL
t−2(l))

RL
t (l)

RL
t−1(l)

+Et
⎡⎢⎢⎢⎢⎣
∆t,t+1

∆t,t

⎛
⎝(
RL
t+1(l)
RL
t (l) − 1) RL

t+1(l)
RL
t (l)

+υr
ψr
(RL

t+1(l)
RL
t (l) −

RL
t (l)

RL
t−1(l))(

RL
t+1(l)
RL
t (l) +

RL
t (l)

RL
t−1(l))

⎞
⎠
⎤⎥⎥⎥⎥⎦

−Et
⎡⎢⎢⎢⎢⎣
∆t,t+2

∆t,t

υr

ψr
(RL

t+2(l)
RL
t+1(l) −

RL
t+1(l)
RL
t (l) )

RL
t+1(l)
RL
t (l)

⎤⎥⎥⎥⎥⎦

(21)

3.4 Households

There is a continuum of households in the unit interval [0,1], each supplying one

specific variety of labor j in a monopolistic manner. A household aims to maximize

its expected and discounted sum of periodical utilities:

Et

∞

∑
k=0

βk Ut+k (22)

The perodical utility functional form is separable in consumption, labor, and real

balances. Moreover, current consumption is relative to a time-varying internal habit

term:

Ut+k = (Ct+k(j) − h Ct+k−1(j))
1−σ

1 − σ + (Mt+k(j)/Pt+k)1−ν
1 − ν − (Nt+k(j))1+η

1 + η (23)

where σ is the coefficient of relative risk aversion (or the inverse of the intertemporal

elasticity of substitution in consumption). The coefficient ν represents the inverse

8
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of the elasticity of real money holdings with respect to the interest rate and η is

the inverse of the sensibility of labor supply with respect to the real wage. The

household chooses its optimal demand path for consumption Ct(j), money holdings

Mt(j) and deposits dt(j) by maximizing (22) subject to the following intertemporal

real budget constraint:

Et

∞

∑
k=0

βk
⎡⎢⎢⎢⎢⎣
Ct+k(j) + dt+k(j)

Pt+k

⎤⎥⎥⎥⎥⎦
= Et

∞

∑
k=0

βk
⎡⎢⎢⎢⎢⎣
Wt+k(j)Nt+k(j)

Pt+k
+Rd

t+k−1

dt+k−1(j)
Pt+k

+Divrt+k(j) −Qw
t+k(j)

⎤⎥⎥⎥⎥⎦
(24)

where Divrt+k(j) are the dividends derived from firms and commercial banks. Com-

bining the resulting first-order conditions with respect to Ct(j) and dt(j) leads to the

following consumption Euler equation of household j with internal habit formation:

β Et [ Rd
t

π
p
t+1

] = Et [ λt(j)
λt+1(j)] (25)

Further, the optimality conditions concerning Mt(j) and dt(j) allow for an individ-

ual real money demand formulation of the following form:

(Mt(j)
Pt
)−ν = Et [λt(j) (1 − 1

Rd
t

)] (26)

The variable λt(j) denotes the multiplier of the corresponding lagrange problem

given as the individual marginal utility of consumption:

λt+k(j) = ∂Ut+k(j)/∂Ct+k(j)
= (Ct+k(j) − hCt+k−1(j))−σ − βh (Ct+k+1(j) − hCt+k(j))−σ

(27)

The labor supplying household chooses its own monopolistic nominal wage Wt(j)
optimally taking into account its individual labor demand schedule.

9
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The latter can be derived as:

Nt(j) = (Wt(j)
Wt

)−ǫw Nt (28)

where

Nt = ⎛⎝
1

∫
0

Nt(j) ǫw
ǫw−1 di

⎞
⎠

ǫw−1
ǫw

(29)

and

Wt = ⎛⎝
1

∫
0

Wt(j)1−ǫw dj⎞⎠
1

1−ǫw

(30)

are Dixit-Stiglitz formulations for aggregate labor demand and the aggregate nom-

inal wage index. A household faces real costs of nominal wage adjustment as intro-

duced in section 2. For k = 0 this implies the following additional constraint:

Qw
t (j) = ψw2 (

Wt(j)
Wt−1(j) − πw)

2

+ υw
2
( Wt(j)
Wt−1(j) −

Wt−1(j)
Wt−2(j))

2

(31)

Inserting (28) and (31) into the utility and budget constraint leads after the opti-

mization to the wage setting pattern from the viewpoint of household j:

( Wt(j)
Wt−1(j) − πw)

Wt(j)
Wt−1(j) =

(ǫw − 1)Nt

ψw
(µw MRSt(j) − Wt(j)

Pt
)

− υw
ψw
( Wt(j)
Wt−1(j) −

Wt−1(j)
Wt−2(j))

Wt(j)
Wt−1(j)

+ βEt
⎡⎢⎢⎢⎢⎣
λt+1(j)
λt(j)

⎛
⎝(
Wt+1(j)
Wt(j) − πw)

Wt+1(j)
Wt(j)

+υw
ψw
(Wt+1(j)
Wt(j) −

Wt(j)
Wt−1(j))(

Wt+1(j)
Wt(j) +

Wt(j)
Wt−1(j))

⎞
⎠
⎤⎥⎥⎥⎥⎦

− β2Et

⎡⎢⎢⎢⎢⎣
λt+2(j)
λt(j)

υw

ψw
(Wt+2(j)
Wt+1(j) −

Wt+1(j)
Wt(j) )

Wt+1(j)
Wt(j)

⎤⎥⎥⎥⎥⎦
(32)

10
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where µw = (ǫw/ǫw − 1) is the constant monopolistic markup of households. Note

that under full price flexibility (ψw = 0 ; Wt−2(j) = Wt−1(j) = Wt(j) = Wt+1(j) =
Wt+2(j)) a household sets its nominal wage as a markup over its monetarized

marginal rate of substitution Pt MRSt(j), where the real counterpart is given by:

MRSt(j) = −∂Ut(j)/∂Nt(j)
∂Ut(j)/∂Ct(j) =

N
η
t (j)
λt(j) (33)

3.5 Monetary Policy

The central bank is assumed to follow a Taylor rule (see Taylor (1993)). We consider

the non-linear deviation of the gross interest rate from its steady state counterpart

R as the control instrument. The reaction parameters with respect to real output

and inflation variations are given by δπ, δy, while φ acts as a smoothing parameter:

(Rt

R
) = ⎛⎝(

π
p
t

πp
)
δπ (Yt

Y
)δy⎞⎠

1−φ

(Rt−1

R
)φ (Zt

Z
) (34)

The shock variable Zt depicts an unsystematic deviation from the policy rule and is

governed by the following first-order autoregressive process with a stochastic i.i.d.

shock impulse variable ẽ:

Zt = (Zt−1)ρ (Z)1−ρ exp{ẽ} , ρ ∈ [0,1) , ẽt ∼ N (0,1) (35)

A very simplifying assumption is the complete control of interbank money interest

rates by the central bank instrument:

Rt = RM
t (36)

11
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4 Aggregation and Log-Linearization

In the following a symmetric macroeconomic equilibrium is assumed. Moreover, we

impose a market clearing in the goods, labor, and loan market in conjunction with

a neutral net position of households and banks (dt = Bt ≡ 0). An equilibrated money

market is obtained by an endogenous money supply to meet money demand at given

interest rates. The symmetry assumption implies that all firms are confronted with

an identical profit maximization problem when setting their own price. The same

applies for households concerning their nominal wage and for commercial banks

when adjusting their gross loan rate. Consequently, we have the following set of

aggregation conditions:

Pt(i) ≡ Pt (37) Yt(i) = Yt (38)

Wt(j) ≡Wt (39) Nt(j) = Nt (40)

Rt(l) ≡ Rt (41) Lt(l) = Lt (42)

Ct(j) ≡ Ct (43) Divt(j) ≡Divt (44)

Bt(l) ≡ Bt ≡ 0 (45) dt(j) ≡ dt ≡ 0 (46)

The conditions stated above symplify the behavioral equations of private agents

significantly and allow for an aggregate economy representation. Concerning the

individual price setting behavior stated in (15), we obtain on the aggregate level:

( Pt
Pt−1
− πp) Pt

Pt−1
= ǫpYt
ψp
(MCt − 1

µp
) − υp

ψp
( Pt
Pt−1
− Pt−1
Pt−2
) Pt

Pt−1

+Et
⎡⎢⎢⎢⎢⎣
∆t,t+1

∆t,t

⎛
⎝(
Pt+1

Pt
− πp) Pt+1

Pt

+υp
ψp
(Pt+1
Pt
− Pt

Pt−1
)(Pt+1

Pt
+ Pt

Pt−1
)⎞⎠
⎤⎥⎥⎥⎥⎦

−Et
⎡⎢⎢⎢⎢⎣
∆t,t+2

∆t,t

υp

ψp
(Pt+2
Pt+1
− Pt+1
Pt
) Pt+1
Pt

⎤⎥⎥⎥⎥⎦

(47)
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where aggregate real marginal cost are given according to (12) as:

MCt = ( 1

1 − α)
Wt

Pt
RL
t Y

α
1−α

t (48)

By defining the gross price inflation rate as πpt+k ≡ (1 + Pt+k−Pt+k−1

Pt+k−1
) = Pt+k

Pt+k−1
and

expressing the stochastic discount factors in terms of marginal household utility, we

arrive at the following non-linear Phillips curve for price inflation:

(πpt − πp)πpt = ǫpYtψp
(MCt − 1

µp
) − υp

ψp
(πpt − πpt−1)πpt

+ β Et
⎡⎢⎢⎢⎢⎣
(Ct+1 − hCt)−σ − βh (Ct+2 − hCt+1)−σ(Ct − hCt−1)−σ − βh (Ct+1 − hCt)−σ

⎛
⎝(πpt+1 − πp)πpt+1

+υp
ψp
(πpt+1 − πpt ) (πpt+1 + πpt )⎞⎠

⎤⎥⎥⎥⎥⎦
− β2 Et

⎡⎢⎢⎢⎢⎣
(Ct+2 − hCt+1)−σ − βh (Ct+3 − hCt+2)−σ(Ct − hCt−1)−σ − βh (Ct+1 − hCt)−σ

υp

ψp
(πpt+2 − πpt+1)πpt+1

⎤⎥⎥⎥⎥⎦
(49)

A similar procedure delivers on the grounds of individual nominal wage setting (32):

( Wt

Wt−1

− πw) Wt

Wt−1

= (ǫw − 1)Nt

ψw
(µw MRSt − Wt

Pt
) − υw

ψw
( Wt

Wt−1

− Wt−1

Wt−2

) Wt

Wt−1

+ βEt
⎡⎢⎢⎢⎢⎣
λt+1

λt

⎛
⎝(
Wt+1

Wt

− πw)Wt+1

Wt

+υw
ψw
(Wt+1

Wt

− Wt

Wt−1

)(Wt+1

Wt

+ Wt

Wt−1

)⎞⎠
⎤⎥⎥⎥⎥⎦

− β2Et

⎡⎢⎢⎢⎢⎣
λt+2

λt

υw

ψw
(Wt+2

Wt+1

− Wt+1

Wt

)Wt+1

Wt

⎤⎥⎥⎥⎥⎦

(50)

13

Jena Economic Research Papers 2010 - 023 



where the aggregate marginal rate of substitution is given according to (33) as:

MRSt = Nη
t ((Ct − hCt−1)−σ − βh (Ct+1 − hCt)−σ)−1 (51)

Considering the gross wage inflation rate as πwt+k ≡ (1 + Wt+k−Wt+k−1

Wt+k−1
) = Wt+k

Wt+k−1
and

subtituing stochastic discount factors, we arrive at the following non-linear Phillips

curve for nominal wage inflation:

(πwt − πw)πwt = (ǫw − 1)Nt

ψw
(µw MRSt − Wt

Pt
) − υw

ψw
(πwt − πwt−1)πwt

+ βEt
⎡⎢⎢⎢⎢⎣
(Ct+1 − hCt)−σ − βh (Ct+2 − hCt+1)−σ(Ct − hCt−1)−σ − βh (Ct+1 − hCt)−σ

⎛
⎝(πwt+1 − πw)πwt+1

+υw
ψw
(πwt+1 − πwt ) (πwt+1 + πwt )⎞⎠

⎤⎥⎥⎥⎥⎦
− β2Et

⎡⎢⎢⎢⎢⎣
(Ct+2 − hCt+1)−σ − βh (Ct+3 − hCt+2)−σ(Ct − hCt−1)−σ − βh (Ct+1 − hCt)−σ

υw

ψw
(πwt+2 − πwt+1)πwt+1

⎤⎥⎥⎥⎥⎦
(52)

The optimal loan rate setting from the viewpoint of a commercial bank (21) delivers

the aggregate loan rate behavior as:

( RL
t

RL
t−1

− 1) RL
t

RL
t−1

= ζNt

ψr

Wt

Pt
(RM

t − R
L
t

Ξ
) − υr

ψr
( RL

t

RL
t−1

− RL
t−1

RL
t−2

) RL
t

RL
t−1

+Et
⎡⎢⎢⎢⎢⎣
(Ct+1 − hCt)−σ − βh (Ct+2 − hCt+1)−σ(Ct − hCt−1)−σ − βh (Ct+1 − hCt)−σ

⎛
⎝(
RL
t+1

RL
t

− 1) RL
t+1

RL
t

+υr
ψr
(RL

t+1

RL
t

− RL
t

RL
t−1

)(RL
t+1

RL
t

+ RL
t

RL
t−1

)⎞⎠
⎤⎥⎥⎥⎥⎦

−Et
⎡⎢⎢⎢⎢⎣
(Ct+2 − hCt+1)−σ − βh (Ct+3 − hCt+2)−σ(Ct − hCt−1)−σ − βh (Ct+1 − hCt)−σ

υr

ψr
(RL

t+2

RL
t+1

− RL
t+1

RL
t

) RL
t+1

RL
t

⎤⎥⎥⎥⎥⎦
(53)
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and we refrain from any further simplification as done above since the loan rate

itself is of interest rather than its change rate over time. The consumption Euler

equation on the individual level (25) is rendered by our aggregation assumptions to

be:

β Et [ Rd
t

π
p
t+1

] = Et [ (Ct − hCt−1)
−σ − βh (Ct+1 − hCt)−σ(Ct+1 − hCt)−σ − βh (Ct+2 − hCt+1)−σ ] (54)

Similarly, considering (26) yields aggregate real money demand as:

(Mt

Pt
)−ν = Et [((Ct − hCt−1)−σ − βh (Ct+1 − hCt)−σ)(1 − 1

Rd
t

)] (55)

According to the production function (10), aggregate employment evolves as:

Nt = Y 1

1−α

t , 0 < α < 1 (56)

Note that the coexistence of nominal wage setting frictions with aggregate price

rigidities leads to sluggish real wage movements over time. This is visualized by the

following inflation identity:

Wt

Pt
= Wt

Pt

Wt−1

Pt−1

Pt−1

Wt−1

= Wt−1

Pt−1

πwt
π
p
t

(57)

Finally, the aggregate resource constraint can be derived directly from the periodical

household budget constraint (24) in its aggregate version. After eliminating the

profit transfers stemming from firms and banks, one arrives at:

Yt = Ct + ψp
2
(πpt − πp)2 + υpψp (π

p
t − πpt−1)2 + ψw2 (πwt − πw)2 +

υw

ψp
(πwt − πwt−1)2

+ ψr
2
( RL

t

RL
t−1

− 1)
2

+ υr
ψr
( RL

t

RL
t−1

− RL
t−1

RL
t−2

)
2 (58)
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We simplify the aggregate expressions stated above by applying a first-order Taylor

expansion in logarithms around the deterministic and non-inflationary steady state4.

For a variable Vt and its steady state counterpart V , we then have (Vt−V
V
) ≈ log (Vt)−

log (V ) ≡ V̂t, where a hat over a variable denotes the logarithmic deviation from its

steady state value. The non-linear Phillips curve for price inflation (49) can then be

rewritten as:

π̂
p
t = γ1 π̂

p
t−1 + γ2 Et [π̂pt+1] − γ3 Et [π̂pt+2] + γ4 M̂Ct (59)

γ1 = υp

υp (1 + 2β) +ψp (60) γ2 = υp (2 + β)β +ψpβ
υp (1 + 2β) +ψp (61)

γ3 = υp β2

υp (1 + 2β) +ψp (62) γ4 = (ǫp − 1)Y
υp (1 + 2β) +ψp (63)

The variable Y gives the steady state real output level which can be obtained by

solving for the time independent relationships implied by the model:

Y = ((1 − α) (1 − βh)β
µp µw Ξ (1 − h)σ )

1−α
α+η+σ(1−α)

(64)

A log-linearization of aggregate real marginal cost (48) delivers:

M̂Ct = Ŵt − P̂t + R̂L
t + ( α

1 − α) Ŷt (65)

A few words are in order concerning the price inflation relation stated in (59). Note

first, that our New Keynesian Phillips curve is not only hybrid, but involves a

negative inflation expectation term two periods ahead (Et [πpt+2]) conditional on the

information set available in period t. This is a direct result of the adjustment cost

4 Note that we do not pursue any normative insights in terms of welfare but only business cycle
characterizations. While the former are not reliable under our approximation order of one, the
latter can well be inspected.
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structure presented in section 2. Second, the parameter υp relates the last period

inflation rate πpt−1 to the two-period-ahead expectation since setting υp = 0 eliminates

both terms and our inflation curve collapses to the traditional forward-looking New

Keynesian Phillips curve. Third, we obtain the desirable property for the inflation

weights γ1 +γ2 +γ3 = 1. Proceeding as done so far, we derive the following log-linear

relationship for the wage inflation Phillips curve stated in (52):

π̂wt = κ1 π̂
w
t−1 + κ2 Et [π̂wt+1] − κ3 Et [π̂wt+2] + κ4 (M̂RSt − (Ŵt − Pt)) (66)

κ1 = υw

υw (1 + 2β) +ψw (67) κ2 = υw (2 + β)β +ψwβ
υw (1 + 2β) +ψw (68)

κ3 = υw β2

υw (1 + 2β) +ψw (69) κ4 = (ǫw − 1)
υw (1 + 2β) +ψw

W

P
N (70)

The steady state employment and real wage expressions entering the equation above

are:

N = ((1 − α) (1 − βh)β
µp µw Ξ (1 − h)σ )

1

α+η+σ(1−α)

(71)

W

P
= µw (1 − h)σ

1 − βh ((1 − α) (1 − βh)β
µp µw Ξ (1 − h)σ )

1

η+σ(1−α)

(72)

Note that κ1 + κ2 + κ3 = 1 and by setting υw = 0 the nominal wage inflation Phillips

curve reverts to its purely forward-looking counterpart. Further, the marginal rate

of substition determining wage inflation can be calculated in logarithmic deviations

as:

M̂RSt = ηN̂t + ι1 Ĉt − ι2 Ĉt−1 − ι3 Et [Ĉt+1] (73)

ι1 = σ (1 + βh2)
(1 − h) (1 − βh) (74) ι2 = hσ

(1 − h) (1 − βh) (75)
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ι3 = σβh

(1 − h) (1 − βh) (76)

where an internal habit consumption parameter h = 0 eliminates all intertemporal

consumption relations in the marginal rate of substitution. The log-linear dynamic

equation for the aggregate loan rate can analogously be calculated as:

R̂L
t = ϕ1 R̂

L
t−1 −ϕ2 R̂

L
t−2 +ϕ3 Et [R̂L

t+1] −ϕ4 Et [R̂L
t+2] +ϕ5R̂

M
t (77)

ϕ1 = υr (2 (1 + β)) +ψr
υr (1 + β (4 + β)) +ψr (1 + β) + ζN (W /P )RM

(78)

ϕ2 = υr

υr (1 + β (4 + β)) +ψr (1 + β) + ζN (W /P )RM
(79)

ϕ3 = υr (2β (1 + β)) +ψr β
υr (1 + β (4 + β)) +ψr (1 + β) + ζN (W /P )RM

(80)

ϕ4 = υr β2

υr (1 + β (4 + β)) +ψr (1 + β) + ζN (W /P )RM
(81)

ϕ5 = ζN (W /P )RM

υr (1 + β (4 + β)) +ψr (1 + β) + ζN (W /P )RM
(82)

where the steady state interest rate factor is:

RM = πp
β
= πw
β
= 1

β
(83)

Again, setting υr = 0 eliminates the two-period lagged aggregate loan rate R̂L
t−1

as well as its two-period ahead expectation Et [R̂L
t+2]. This renders a purely

forward-looking loan rate Phillips curve, when considering the logarithmic change

in the loan rate R̂L
t − R̂L

t−1.
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From equation (54), we obtain a standard Euler consumption equation with

internal habit formation in log-deviations:

Ĉt = Θ1 Ĉt−1 +Θ2 Et [Ĉt+1] −Θ3 Et [Ĉt+2] −Θ4 (R̂d
t −Et [π̂pt+1]) (84)

Θ1 = h

1 + h (1 + βh) (85) Θ2 = 1 + βh (1 + h)
1 + h (1 + βh) (86)

Θ3 = βh

1 + h (1 + βh) (87) Θ4 = (1 − h) (1 − βh)
σ (1 + h (1 + βh)) (88)

Similarily, the aggregate money demand expression (55) can be rewritten as:

M̂t − P̂t = Φ1 Ĉt −Φ2 Ĉt−1 −Φ3 Et [Ĉt+1] −Φ4 R̂
d
t (89)

Φ1 = σ (1 + βh2)
ν (1 − h) (1 − βh) (90) Φ2 = σh

ν (1 − h) (1 − βh) (91)

Φ3 = σβh

ν (1 − h) (1 − βh) (92) Φ4 = β

ν (1 − β) (93)

Again, setting h = 0 eliminates all lagged intertemporal consumption relations in

the the aggregate consumption Euler equation and in the aggregate money demand

equation. Aggregate employment and the aggregate real wage evolve in log-linear

terms as:

N̂t = 1

1 − αŶt , 0 < α < 1 (94)

Ŵt − P̂t = Ŵt−1 − P̂t−1 + π̂wt − π̂pt (95)

Note that the adjustment cost inefficiencies absorbing output in (58) vanish not only

the long run, but also when considering log-deviations:

Ŷt = Ĉt (96)
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Finally, we rewrite the shock-augmented Taylor rule (34) in the form that is stan-

dardly applied in the literature:

R̂t = (1 − φ) (δπ π̂pt + δy Ŷt) + φR̂t−1 + Ẑt (97)

Ẑt = ρ Ẑt−1 + ẽt , ρ ∈ [0,1) , ẽt ∼ N (0,1) (98)

5 Calibration and Aggregate Dynamic Behavior

The model parameters are calibrated such that the time elapsing between the be-

ginning of period t until the initiation of period t + 1 is one quarter. We mostly

adopt the values widely found in the literature (see for instance Smets and Wouters

(2006) or Casares (2006)), but considering that our Phillips curves are structurally

different than usual. In order to resemble an annual steady state real interest rate

of four percent, we equalize the discount factor β to the value of 0.99. The struc-

tural parameters of household utility are set such that the pertinent elasticities are

given by 1/σ = 1/2, 1/ν = 1/4, and 1/η = 1/2. If internal habit formation is assumed

to be at work, the corresponding parameter is set as h = 0.85, which is in line to

Casares (2006). We impose an output share of labor α = 0.3. The substitution elas-

ticities are fixed as ǫp = 11, ǫw = 6, and ζ = 3.5. This implies steady state markups

on firms’ and households’ marginal cost of 10 and 20 percent respectively whereas

banks add 40 percent on RM . We impose an adjustment cost rigidity parameter

ψp that resembles the probability of price non-adjustment θp under the staggered

pricing assumption of Calvo (1983). The rule-of-thumb behavior is formulated in

the version of Gaĺı, Gertler, and López-Salido (2001). In this setting, we obtain the

corresponding hybrid New Keynesian Phillips curve for price inflation:

π̂
p
t = γc1 π̂pt−1 + γc2 Et [π̂pt+1] − γc3 Et [π̂pt+2] + γc4 M̂Ct (99)

where the superscript ‘c’ denotes reaction parameters under the Calvo pricing as-

sumption.
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These are given by:

γc1 = [1 + α (ǫp (1 − β θp) − 1)]ωp[1 + α (ǫp (1 − β θp) − 1)] (θp + ωp (1 − θp)) + (1 − α)β θpωp (100)

γc2 = (1 − α)β θp[1 + α (ǫp (1 − β θp) − 1)] (θp + ωp (1 − θp)) + (1 − α)β θpωp (101)

γc3 = 0 (102)

γc4 = (1 − α) (1 − β θp) (1 − θp) (1 − ωp)[1 + α (ǫp (1 − β θp) − 1)] (θp + ωp (1 − θp)) + (1 − α)β θpωp (103)

The parameter ωp denotes the fraction of firms indexing its price to the last-periods

inflation rate (following a ‘rule-of-thumb’). In order to compute ψp, we induce the

purely forward-looking Phillips curves (ωp = υp = 0) and equalize the current inflation

rates π̂pt . This pins ψp down against θp:

ψp = θp [1 + α (ǫp − 1)]Y ǫp(1 − θp) (1 − βθp) (1 − α)µp (104)

Concerning our adjustment cost specification (13), the only parameter to be still cal-

ibrated is υp. We leave it unassigned at first in order to visualize inflation persistence

implications across its different values. We proceed in a similar way concerning the

nominal wage rigidity parameter ψw. That is, we derive the New Keynesian Phillips

curve under the staggered nominal wage setting and compute the pertinent forward

looking equations. Nominal wage inflation evolution á la Calvo (1983) can be shown

to be:

π̂wt = κc1 π̂wt−1 + κc2 Et [π̂wt+1] − κc3 Et [π̂wt+2] + κc4 (M̂RSt − (Ŵt − Pt)) (105)

where the corresponding composite parameters are given by:

κc1 = θw ωw

θw (1 − ωw (1 + β (θw)2)) + ωw (106)
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κc2 = β θw

θw (1 − ωw (1 + β (θw)2)) + ωw (107)

κc3 = 0 (108)

κc4 = (1 − θw) (1 − ωw) (1 − βθw)
[θw (1 − ωw (1 + β (θw)2)) + ωw] (1 + ηǫw) (109)

κc5 = β θw (1 − θw) ωw
θw (1 − ωw (1 + β (θw)2)) + ωw (110)

Again, θw is the constant probability that a household does not adjust its nominal

wage under the Calvo setting and ωw gives the fraction of households setting its

wage as a price inflation markup over their last period’s nominal wage. Note that

the price inflation term described by κc
5

is not present in our specification but is

a specific result of the Calvo wage setting environment. However, the forward-

looking wage inflation schedule (ωw = 0) implies κc
1
= κc

5
= 0. Letting υw = 0 in our

specification (66) and equalizing π̂wt of both wage inflation Phillips curves pins down

the parameter value of ψw as the counterpart of θw:

ψw = θw (1 + ǫwη) (ǫw − 1) (W /P )N
(1 − βθw) (1 − θw) (111)

We proceed in exactly the same way with the loan rate equation (77). Its staggered

counterpart with the non-adjustment probability τ can be calculated as:

R̂L
t = ϕc1 R̂L

t−1 −ϕc2 R̂L
t−2 +ϕc3 Et [R̂L

t+1] −ϕc4 Et [R̂L
t+2] +ϕc5R̂M

t (112)

ϕc1 = τ

1 + βτ 2
(113) ϕc2 = 0 (114)

ϕc3 = βτ

1 + βτ 2
(115) ϕc4 = 0 (116)
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ϕc5 = (1 − τ) (1 − βτ)1 + βτ 2
(117)

where we already have set a potential indexing parameter ‘ωr’ equal to zero. This

is in line with the modelling strategy pursued by Hülsewig, et al. (2009), who do

not impose a backward-looking feature in the change of loan rates because such an

endogeneity is not observed in the data. Assuming υr = 0 in our loan rate relationship

(77) and proceeding as done so far, we arrive at:

ψr = τζ(W /P )NRM

1 + τ [β (τ − 1) − 1] (118)

We first generate the very basic version of the New Keynesian model under price

adjustment costs, where the probability of price non-adjustment θp is standardly

assigned a quarterly value of 0.75. That is, we shut down any potential sources of

persistence in the model itself. For example, setting θw = 0 prevents the real wage

Wt/Pt to behave in a predetermined way. We simulate in the first step a one-off

increase of the interest intrument rate (ρ = 0). This enables us to isolate the time

series effects stemming from the novel parameter υp across values ranging from 0 to

15000. In a second step, we assume a higly persistent one percent shock impulse

(ρ = 0.8) and undertake the same experiment concerning υp. An overview of the

baseline calibration is given by table 15. Table 2 gives autocorrelation coefficients of

the shock variable, real output and price inflation after a one percent positive shock

impulse. A parameter ρ = 0 means that there is no autocorrelation in the shock

process of Ẑt. The shock impulse to the instrument rate R̂t is therefore completely

reverted at the end of the shock period. Further, since we shut down internal habit

formation in consumption h = 0, the freedom of autocorrelation is directly trans-

lated to real output. However, the same conclusion applies for price inflation only

if υp equals to zero. According to table 2, a positive level of this parameter (here

5 See the list of tables and figures below.
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υp = 200) introduces a meaningful degree of price inflation persistence up to the

last three periods in the abscence of any other persistence source. In other words,

υp > 0 generates endogeneous price inflation persistence. The impulse responses of

price inflation in figure 1 corroborate this fact and show typical properties of infla-

tion endogeneity, namely a damped jump decrease in the shock period followed by a

longer-lasting reversal to its steady state. The figure also suggests that an increasing

level of υp accentuates the persistence effects. Note that identical implications apply

for υw concerning wage inflation. A positive value of υw generates similar persistence

effects on π̂wt , even if the underlying shock impulse is not autocorrelated. The same

reasoning applies for any other nominal variable under purely nominal frictions, as

for example the loan rate R̂L
t .

We proceed to investigate the consequences of long-lasting shocks (ρ = 0.8) in the

baseline calibration. If we set υp equal to zero, the only source of persistence stems

from the autoregressive shock process of Zt. Following table 3, output and price

inflation (as well as all other model variables) show the same degree of autocorrela-

tion as the shock process. This is the main weakness of the standard (baseline) New

Keynesian model because empirical impulse responses show a considerably damped

response when the shock occurs and an amplified development of nominal and real

variables in the following periods. However, if we induce price inflation endogene-

ity (υp = 200 > 0), the model diplays desirable characteristics that are known from

macroeconomic stylized facts. As visible in table 3, price inflation autocorrelation

increases by 0.2 points, but also at the cost of output persistence in the same amount.

Regardless, the latter could be restored through h > 0 leaving the advantage of a

positive parameter υp intact. Most convincingly, the impulse responses of price in-

flation in figure 2 show the distinctive hump shape widely observed in the empirical

macroeconomic literature. It should become clear that with an increasing degree

of price inflation endogeneity (i.e. an increasing υp) the hump shape accentuates.

In summary, two ingredients are needed in order to generate empirical responses

in our model: a highly persistent autoregressive shock process and a model-innate

persistence source. In contrast to existing literature, our inflation endogeneity stems

solely from nominal rigidities instead of real frictions.
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The computational results shown so far underline the potential ability of our ad-

justment cost specification to generate inflation persistence. In the following, we

pursue a direct comparison with the widely applied Calvo pricing specification with

rule-of-thumb setters. The Calvo setting is taken as a point of reference because

researchers in this area have a common sense of its implications. Therefore, we have

two model versions differing only in their inflation curves. These are given in the

Calvo setting by (99), (105), and (112), while for the adjustment cost setting the

pertinent equations are (59), (66), and (77). So far our calibration was targeted

at the isolated implications of our rigidity modeling. From now on, we calibrate

the model parameters in order to obtain impulse responses observed in empirical

studies. Accordingly, we let all rigidities and persistence sources be persent in the

model economy. An overview of the implied reaction parameters is given by table

4. We let the rigidity parameters be characterized by θw = 0.61, τ = 0.41, ωp = 0.71,

and ωw = 0.38 as estimated in Hülsewig et al. (2009). Further, we induce internal

habit formation in consumption by setting h = 0.85 (Casares (2006)) and assume

a highly persistent shock process (ρ = 0.8). Moreover, the central bank smoothes

interest rate movements (φ = 0.85) over time. Although our inflation curves are

structurally different due to aditional expectation terms, the novel rigidity param-

eters are set to reproduce the impulse responses of the Calvo setting as close as

possible. We find that this is the case for relatively high values, namely υp = 5000

and υw = 5000. Since Hülsewig et al. (2009) do not model the change of the loan rate

as backward-looking, we induce the equivalent equation in (77) by setting υr = 0.

We simulate again a persistent percentage point increase of the instrument interest

rate R̂t. Table 5 gives descriptive statistics of core variables under the two model

specifications. A first result standing out is the highly increased volatility of price

inflation and the relatively low variability of wage inflation in the adjustment cost

model. However, the remaining variables display fairly similar second moments.

These results are translated into the corresponding impulse responses. Figure 3

shows an accentuated hump-shape of price inflation while nominal wage inflation

reverts to its steady state smoothly and only from below. Accordingly to their sec-

ond moments in table 5, real output, employment, and interest rates show similar
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adjustment paths as in the Calvo setting. Note further, that our adjustment cost

structure generates nearly the same contemporaneous correlation coefficients with

respect to real output. However, the link between nominal wage inflation and real

output is much stronger in our approach. The quantitative differences between the

two rigidity models are traced back to their structural differences when considering

backward-looking elements directly linked to additional expectational terms. Nev-

ertheless, the appearance of a price inflation rate term two periods ahead does not

counteract the qualitative implications of the Calvo model.
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6 Conclusions

The non-neutrality of monetary policy is usually achieved through the assumption

of staggered price setting decisions at the agent level (Calvo (1983)). Equivalent

real effects are obtained by the existence of menu costs commonly postulated in the

tradition of Rotemberg (1982) and Hairault and Portier (1993). However, none of

these adaptations is able to generate the amplified inflation persistence observed in

empirical data. The introduction of inflation inertia under the Calvo setting requires

a rule-of-thumb behavior which represents a purely nominal rigidity at the individual

level. In contrast, the adjustment cost environment usually requires additional fric-

tions in the real sector such as real wage contracting or input adjustment rigidities.

We show that inflation inertia could be well traced back to purely nominal rigidi-

ties. For this purpose, we undertake a slight alteration of the real adjustment cost

structure suggested by Hairault and Portier (1993). The main result of this respec-

ification is the appearance of a backward-looking inflation term, which is directly

linked to a further expectational expression. The latter comprises inflation expec-

tations two periods ahead. We find that this is a general result when attempting to

generate a backward term in the inflation schedule that is due to nominal rigidities

only. While the inclusion of such a term is a striking feature in order to amplifiy

persistence, the additional espectations tend to enforce inertia and to increase infla-

tion volatility. Consequently, the intended analogy to the Calvo setting with respect

to purely nominal frictions leads to structurally more sophisticatd Phillips curves

with particular quantitative inplications. Nevertheless, the qualitative responses of

model variables remain close to those implied by the Calvo environment since they

share similar hump-shaped responses. A fruitful area of research would be to asses

the empirical value of the novel rigiditiy coefficients introduced here. As these pa-

rameters determine the backward component of inflation relationships, they must

display a significant value on the grounds of empirical data. At the same time, they

would highlight the empirical magnitude of two period-ahead rational expectations.
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A Tables

Table 1: Structural and composite parameter values in the baseline calibration under
adjustment cost-driven nominal frictions. ‘t.b.c.’=‘to be calibrated’.

α β σ η ν ǫp ǫw ζ

0.3 0.99 2 2 4
11

(µp=1.1)
6

(µw=1.2)
3.5

(Ξ=1.4)

θp θw τ
0.75

(ψp=553)
0

(ψw=0)
0

(ψr=0)

γ1 γ2 γ3 γ4 κ1 κ2 κ3 κ4

0 1 0 0.015 0 1 0 769

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

0 0 0 0 1

Θ1 Θ2 Θ3 Θ4 Φ1 Φ2 Φ3 Φ4

0 1 0 0.5 0.5 0 0 24.75

ι1 ι2 ι3 δπ δy φ h ρ

2 0 0 1.5 0.5 0 0 0 (or
0.8)

RM υp υw υr
1.01 t.b.c. 0 0
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Table 2: Autocorrelation of simulated core variables in the baseline calibration after a
one-off shock impulse (ρ = 0) under υp = 0. Entries enclosed by [. . . ] have been generated
under υp = 200.

Period t − 1 t − 2 t − 3 t − 4 t − 5

Ŷt
0

[0]
0

[0]
0

[0]
0

[0]
0

[0]

π̂
p
t

0

[0.22]
0

[0.05]
0

[0.01]
0

[0]
0

[0]

Ẑt
0

[0]
0

[0]
0

[0]
0

[0]
0

[0]

Table 3: Autocorrelation of simulated core variables in the baseline calibration after a
persistent shock impulse (ρ = 0.8) under υp = 0. Entries enclosed by [. . . ] have been
generated under υp = 200.

Period t − 1 t − 2 t − 3 t − 4 t − 5

Ŷt
0.8

[0.93]
0.90

[0.87]
0.86

[0.83]
0.81

[0.79]
0.77

[0.75]

π̂
p
t

0.8

[0.97]
0.90

[0.92]
0.86

[0.88]
0.81

[0.83]
0.77

[0.79]

Ẑt
0.8

[0.8]
0.90

[0.90]
0.86

[0.86]
0.81

[0.81]
0.77

[0.77]
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Table 4: Structural and composite parameter values in the full-scale calibration under
adjustment cost- and ruler-of-thumb-driven nominal frictions.

α β σ η ν ǫp ǫw ζ

0.3 0.99 2 2 4
11

(µp=1.1)
6

(µw=1.2)
3.5

(Ξ=1.4)

θp θw τ ωp ωw
0.75

(ψp=800.06)
0.61

(ψw=75.65)
0.41

(ψr=1.22)
0.85 0.61

γ1 γ2 γ3 γ4 κ1 κ2 κ3 κ4

0.32 1 0.31 ≈ 0 0.33 1 0.32 ≈ 0

γc
1

γc
2

γc
3

γc
4

κc
1

κc
2

κc
3

κc
4

0.61 0.29 0 0.0072 0.34 0.90 0 0.0062

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

0.35 0 0.35 0 0.30

ϕc
1

ϕc
2

ϕc
3

ϕc
4

ϕc
5

0.35 0 0.35 0 0.30

Θ1 Θ2 Θ3 Θ4 Φ1 Φ2 Φ3 Φ4

0.33 1 0.33 0.0046 36.07 17.88 17.70 24.75

ι1 ι2 ι3 δπ δy φ h ρ

144.29 71.50 70.79 1.5 0.5 0.85 0.85 0.8

RM υp υw υr
1.01 5000 5000 0

Table 5: Descriptive statistics of simulated core variables in the full-scale calibration.

Variable Ŷ π̂p π̂w R̂M R̂L N̂

(a) Standard deviation (%)

Adjustment costs 6.45 0.86 1.12 4.43 4.12 9.21

Rule-of-thumb pricing 6.76 0.43 2.32 4.66 4.35 9.65

(b) Correlation with output

Adjustment costs 1 0.8 1 −0.94 −0.96 1

Rule-of-thumb pricing 1 0.98 0.11 −0.95 −0.96 1
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B Figures
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Figure 1: Impulse responses of annualized price inflation in the baseline model after a
one percent one-off increase of the intrument interest rate across different values of the
rigidity parameter υp.
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Figure 2: Impulse responses of annualized price inflation in the baseline model after a
one percent persistent increase of the intrument interest rate across different values of the
rigidity parameter υp.
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Figure 3: Impulse responses of core variables after a one percent increase of the intrument
interest rate under the adjustment cost-extended and the staggered pricing model.
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