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unnecessary in general, homoskedasticity may be required in special cases to recover all 
parameters. Extensions to asymmetric responses to peers and binary outcomes are also 
considered. Once more, most parameters are semiparametrically identified under weak 
conditions. However, recovering all of them requires more stringent assumptions. Eventually, 
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1 Introduction

In a seminal paper, Manski (1993) showed that in a linear-in-expectations model with so-

cial interactions, endogenous and exogenous peer effects cannot be identified separately. To

overcome this negative result, empirical studies usually rely on instrumental strategies, which

impose strong exogeneity conditions. In the context of pupils achievement for instance1,

Hoxby (2000) and Ammermueller and Pischke (2006) suppose that variations in time or be-

tween classrooms within the same school are random. Moreover, estimation is based upon

reduced forms, so that the structural parameters cannot be recovered. In other terms, one

cannot distinguish between exogenous and endogenous peer effects. However, Lee (2006) has

recently proposed a modified version of the social interaction model, which corresponds to

a linear-in-means model, and which is shown to be identifiable without any of the previous

restrictive assumptions, thanks to the group size variation.

Whereas Lee (2006) is mainly concerned with the estimation of the linear-in-means model,

we focus on its identification. More precisely, the aim of our paper is threefold. Firstly, we

clarify the identification result proposed by Lee (2006) for the linear-in means model. We

show that the crucial assumptions here are 1) the knowledge of the group sizes, and 2) the

fact that group sizes take at least three different values. On the other hand, and contrary

to usual identification strategies based on reduced forms and exclusion restrictions, one does

not need to observe all members of the group. This contrasts with the method based on the

reduced form, where measurement errors arise as soon as some members of the groups are

missing in the data (see Graham and Hahn, 2005). Moreover, neither parametric assumption

nor homoskedasticity restriction (as assumption 1 in Lee’s paper, 2006) is needed in general.

Yet, we show that, in some special cases, the homoskedasticity assumption is required for

recovering the structural parameters.

Secondly, we extend the analysis beyond the linear-in-means model. One important limi-

tation of this model is the fact that the mean outcome does not depend on the allocation of

individuals across groups. We consider a model with asymmetric responses to peers, and show

that almost all parameters can then be identified. However, some parameters are identified

only when the whole group is observed. We also consider the case of binary outcomes. Iden-
1In the following, we will often consider the example of peer effects at school, although the model could

also be applied to other topics like smoking (see e.g. Krauth, 2006), productivity in teams (see Rees et al.,
2003) or retirement (Duflo and Saez, 2002).
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tification of discrete models with social interactions has already been studied by, e.g., Brock

and Durlauf (2001, 2004). Our model is slightly different, though, as we assume that social

interactions may affect individuals through peers’ latent variables rather than through their

observable outcomes. This is convenient when only binary outcomes are observable, because

of data limitation. To the best of our knowledge, this is the first time such a model is studied

in the literature. The attractive feature of our result is that it does not rely on any functional

assumption concerning the errors. Yet, due to data limitation, homoskedasticity is needed to

recover endogenous peer effects.

Thirdly, we discuss the theoretical background of the linear-in-means model. We show

that, in the framework of a noncooperative game between members of the group, the Nash

equilibrium satisfies Lee’s model (2006), Manski’s model (1993) or an intermediate version

of these two models, depending on the amount of common knowledge of the players. Lee’s

model (2006) arises when their information is rich whereas Manski’s model emerges when

players have little information on their peers. This, along with the slow rate of convergence

obtained by Lee (2006) when groups are large, shows that our model should rather be used

when groups are small. Lastly, we also show that our model can be viewed as the stationary

equilibrium of a dynamic model. Interestingly, one of the identifying assumption arises as a

stability condition of this model.

The paper is organized as follows. The first section goes back on the identification of

the linear-in-means model. Section two considers an extension to the case of asymmetric

responses to peers. Section three is devoted to the discrete case. The fourth section discusses

the theoretical foundations of the linear-in-means model. Section five concludes. Proofs are

given in the appendix.

2 The linear-in-means model

Suppose that we observe R non-overlapping groups (r = 1, ..., R). Group r has size mr. The

outcome variable yri for individual i in group r is assumed to be a linear function of her own

observable covariates, denoted xri, but also of the outcome variables and observable covariates

of her peers, and of a group-specific (fixed) effect, according to the linear-in-means model of
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Lee (2006) :2

yri = xriβ10 +

 1
mr − 1

mr∑
j=1,j 6=i

yrj

λ0 +

 1
mr − 1

mr∑
j=1,j 6=i

xrj

β20 + αr + εri. (1)

Following the terminology introduced by Manski (1993), the second term in the right hand side

corresponds to the endogenous peer effect, the third refers to the exogenous peer effects and αr

is a contextual (group-specific) effect. This model essentially departs from the one considered

by Manski (1993) or by Graham and Hahn (2005) by replacing, on the right-hand side, the

expectations relative to the whole group by the means of outcomes and covariates in the group

of peers.3 As shown by Lee (2006), this small difference allows to obtain identification of the

structural parameters, as soon as there is sufficient group variation.

In this section, we clarify and extend some results obtained by Lee (2006). We restrict

our analysis to the case where mr does not depend on the size of the sample.4 We believe

that, in practice, such an assumption is virtually always satisfied. For instance, there is no

reason why the mean classroom size should depend on the size of the sample. Moreover, this

restriction enables us to clarify the identification results by showing what comes from the usual

exogeneity condition (see assumption A5 below) and when homoscedasticity is necessary (see

theorem 2 below). On the other hand, we do not impose that all members of the groups are

observed; we denote nr the number of sampled individuals in group r.

As emphasized by Lee (2006), identification is achieved by the within-group equation, that

is (see equation (2.5) of Lee, 2006)

Wnr Ỹr = WnrX̃r

(
(mr − 1)β10 − β20

mr − 1 + λ0

)
+ Wnr

ε̃r

1 + λ0/(mr − 1)
, (2)

where Ỹr (respectively, X̃r and ε̃r) is the vector of outcomes (respectively, of observed co-

variates and unobserved residuals) for individuals sampled in group r, and Wnr denotes the

within-group matrix of size nr.To recover the structural parameters, we use the variation in

the slope coefficient β(m) = ((m− 1)β10 − β20) / (m− 1 + λ0). For this purpose, we make

the following assumptions:
2On the contrary to Lee (2006), we do not distinguish xri,1 from xri,2. This is without loss of generality

since it is sufficient to set xri = (xri,1, xri,2) and to constraint some of the parameters to be zero to obtain his
model. Otherwise, we use Lee’s notations for facilitating comparison with his paper.

3Graham and Hahn (2005) makes the further restriction that β20 = 0, i.e. that there are no exogenous peer
effects.

4This is approximately the scenario with small group interactions of Lee (2006).
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A1. For all r = 1, ..., R, (Ỹr, X̃r,mr, nr) are i.i.d.

A2. sup(Supp(n1)) ≥ 2 (where Supp(n1) = {k ∈ N,Pr(n1 = k) > 0}).

A3. m1, ...,mr are known and card(Supp(m1)) ≥ 3 (where for all A ⊂ N, card(A) =∑+∞
i=1 1{i ∈ A}).

A4. For all 1 ≤ i, j ≤ m1, E [x′1i ε1j | m1, n1] = 0.

A5. E
[
X̃ ′

1 Wnr X̃1 | m1, n1

]
is almost surely nonsingular.

A6. λ0 > 1−min (Supp(m1)).

Assumption A2 simply states that the within-group approach is possible. Assumption A3 is

crucial; it imposes that group sizes are known and that these sizes vary sufficiently in the

sample. Assumption A1, A4 and A5 are standard in linear panel data models, except that

conditional expectations depend here both on the number of observed individuals in each

group and on the group size. Conditioning by n1 does not cause any trouble if, for instance,

the observed individuals are drawn at random from the group. Finally, assumption A6, which

is very similar to assumption 4 introduced by Lee (2006), ensures that β(m) exists for all

m ∈ Supp(m1).5 As we will see in section 5, this assumption arises as the stability condition

of a dynamic model.

Theorem 1. Under assumptions A1-A6, β10 is identified. Moreover,

- if β20 6= −λ0β10, then λ0 and β20 are identified;

- if β20 = −λ0β10, then λ0 is not identified and β20 is identified up to a constant.

This theorem states that all parameters are generally identified provided that there is

sufficient variation in the group sizes, (mr)r. As a notable exception, identification is lost in

the absence of endogenous and exogenous peer effects (since then β20 = −λ0β10 = 0). One

can always rationalize such a model with any λ′0 6= 0 and β′20 = −λ′0β10. Below, we provide

a method which yields identification in this case, but it relies on a stronger assumption of

homoskedasticity. In any case, one can check whether identification is lost or not, since this

amounts to test whether β(.), which is always identified, is constant.
5This assumption is not minimal here, since λ0 /∈ −Supp(m1 − 1) would be sufficient for this purpose. But

it will be necessary in this form in theorems 2 and 5.
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Contrary to the reduced form approach, we do not need to know the means (xr)1≤r≤R

on the whole groups to identify the parameters. Thus the problem of measurement error of

xr, which appears when some individuals in the group are unobserved, does not arise in our

framework. Here the crucial assumption is the knowledge of the group size. If it is unknown

but can be estimated, the measurement error problem comes back in a nonlinear way. The

issue of identification in this case is left for future research.6

Another identifying assumption is the additive nature of the group size effect. Indeed, mr

may be correlated with αr in a general way, but we cannot add interaction terms mr × xri

to the list of regressors, since then assumption A5 would fail. Moreover, β10, β20 and λ0 are

assumed to be independent of the group size. An informal test of this assumption would be

to estimate (β10, β20, λ0) on strata made of groups with at least three different sizes, and to

compare the estimates obtained from different strata.

If β20 = −λ0β10, then λ0 and β20 cannot be identified. However they can be recovered

by studying variance variation under an homoskedasticity condition (assumption A7 below).

More precisely, the conditional variance of the residuals should not depend on the group size.

This hypothesis is quite weak since it does not restrict the relationship between the residuals

εri and the covariates xri. Moreover, under A7, one needs less variation on the group sizes

than previously and we can replace assumption A3 by A3’.

A3’. m1, ...,mR are i.i.d. and known; card(Supp(m1)) ≥ 2.

A7. Var (ε̃1 | n1,m1) = σ2In1 where In1 is the identity matrix of size n1.

Theorem 2. Under assumptions A1-A2, A3’ and A4-A7, (β10, λ0, β20) are identified.

The idea of using second order moments has already been used by Graham (2005) to identify

peer effects. On the contrary to us, however, he can only estimate the posterior distribution

of λ0 in a Bayesian framework.
6Following Schennach (2004), the model would still be identified if two independent measures of mr were

available. The remaining issue is whether the model is identified with only one measure, as it is (under weak
conditions) in a linear model (see, e.g., Lewbel, 1997).
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3 Asymmetric responses to peers’ outcomes

One major limitation of the basic linear-in-means model is its functional form. In particular,

the fact that everybody reacts similarly to peers is often considered implausible.7 Moreover,

this restriction implies that the composition of groups does not affect the mean outcome.

Hence, if this outcome corresponds to the individual utility, rearranging groups is useless in

terms of public policy under a utilitarian social welfare.8 For instance, losses due to the

reallocation of students in classrooms should perfectly compensate for the gains of these real-

location. Thus, the model implies that the much debated issue of tracking versus mixing in

classrooms is irrelevant in terms of efficiency.

To allow for asymmetric reactions to endogenous effects, one could consider, as Cooley

(2006), a general nonlinear model. However, the identification of her model relies on the

existence of a valid instrument. Instead, we propose a simple extension to the basic model (1)

that does not require any exclusion restriction, because our identification strategy still works

out in this framework. More precisely, we suppose that

yri = xriβ10 +

 1
mr − 1

mr∑
j=1, j 6=i

yrj

λ0(tri) +

 1
mr − 1

mr∑
j=1,j 6=i

xrj

β20(tri) + αr + εri, (3)

where tri denotes an observable characteristic of individual i. For the sake of simplicity, we

consider that tri is binary (and may take value 0 or 1).9 The assumption that β10 does not

depend on tri can be relaxed without loss of generality by including in xri some interaction

terms between tri and the other covariates. On the other hand, an exclusion restriction is

needed for identification, and we assume that xri is not reduced to tri. Let us denote x−t
ri the

components of xri different from tri.

Though simple, this model enables us to overcome the aforementioned drawback. Indeed,
7For instance, inside the classroom, the race and gender composition variables could interact with individual

race and gender. Hoxby (2000), Angrist and Lang (2004), and Cooley (2006) find that such interactions are
important.

8However, under a social welfare function with inequality aversion, the composition of the groups does in
general matter in the basic linear-in-model model.

9The extension to any discrete variable is straightforward. On the other hand, the case of a continuous
variable is more tedious and not considered here.
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some tedious algebra gives:

yr =
1

1−
(

mr(0)λ0(0)
mr−1+λ0(0) + mr(1)λ0(1)

mr−1+λ0(1)

)

×

[(
mr(0)

mr

�
1+

λ0(0)
mr−1

�xr(0)
(
β10 − β20(0)

mr−1

)
+ mr(1)

mr

�
1+

λ0(1)
mr−1

�xr(1)
(
β10 − β20(1)

mr−1

))

+
(

mr(0)β20(0)
mr−1+λ0(0) + mr(1)β20(1)

mr−1+λ0(1)

)
xi + mr(0)(αr+εr(0))

mr

�
1+

λ0(0)
mr−1

� + mr(1)(αr+εr(1))

mr

�
1+

λ0(1)
mr−1

�
]

,

where, for k ∈ {0, 1}, xr(k) denotes the mean among individuals i of group r for whom

tri = k, and where mr(k) is the size of this subgroup. Contrary to the basic model, it is now

possible to increase the average outcome of the population, y = 1
m

∑R
r=1 mryr, by changing

the (mr(k))1≤r≤R.

Let βt
10 (respectively, βt

20(t)) denote the component of the parameter vector β10 (respec-

tively, β20(t)) which corresponds to covariate t. For instance, if t denotes the ethnic group of

a pupil in a classroom (with, e.g., t = 0 for a white pupil and t = 1 for a black pupil), βt
10

denotes the impact of being black on, e.g., achievement, and βt
20(0) denotes the effect of the

proportion of blacks in the group on the achievement of a white pupil. β−t
10 and β−t

20 (t) corre-

spond to the other components of parameter vectors β10 and β20(t). The following additional

assumptions are required for identification of these parameters:

A2’. sup(Supp(n1(k))) ≥ 2 for k ∈ {0, 1}.

A5’. E
[
X̃ ′−t

1 (k) Wnr(k) X̃−t
1 (k) | m1, n1

]
(where X̃−t

1 (k) is the subvector of X̃−t
1 for individ-

uals i such as ti = k) is almost surely nonsingular for k ∈ {0, 1}.

A8. β20(k) 6= −λ0(k)β10 for k ∈ {0, 1}.

A9. (xr, yr)1≤r≤R are known.

Assumption A2’ states that there are some subgroups in which at least two individuals

are observed, so that we can use the within equation on subgroups with a positive probability.

Assumption A5’ supposes that variables are linearly independent within subgroups, almost

surely. Assumption A8 is made for convenience. If it does not hold, one can still obtain

partial identification results, as in theorem 1. Assumption A9 is restrictive, since it supposes

in practice that all individuals belonging to a group are observed. However, it is not required

to identify parameters β−t
10 , λ0(k) and β−t

20 (k), k ∈ {0, 1}.
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Theorem 3. Under assumptions A1, A2’, A3, A4, A5’, A6 and A8, β−t
10 , λ0(k) and β−t

20 (k) (k ∈

{0, 1}) are identified. Moreover, if assumption A9 holds, βt
10 and βt

20(k) (k ∈ {0, 1}) can also

be recovered.

4 The discrete case

In this section, we investigate whether the parameters are still identified when one cannot

observe directly the outcome variable but only a rough (binary) measure of it. In other

terms, we observe yri = 1{y∗ri ≥ 0}, where y∗ri satisfies equation (1). For instance, to study

pupil achievement, only grade retention rather than test scores may be available. Similarly,

in violence studies, only criminal (that is, sufficiently violent) acts can be observed by the

econometrician. Note that these models remain essentially linear because the underlying model

is linear. One could also study the case where y∗ri depends on yrj rather than y∗rj . Such models,

which have been studied by Brock and Durlauf (2001, 2004), Bayer and Timmins (2002),

Tamer (2003) and Krauth (2006), are more complex because in general multiple equilibria

arise.

When the outcome is a binary variable, the reduced-form equation (3) is useless for iden-

tification because Wnr Ỹ
∗
r (where Ỹ ∗

r is the vector of latent outcomes for observed individuals

of r) has no observational counterpart. Instead, we rely on equation (4) below. The result

is obtained under A6’, which is slightly stronger than assumption A6. Note that A6’ holds

under the stability condition of the dynamic model that will be proposed in section 5 (see

proposition 1 below).

A6’: λ0 > 1−min (Supp(m1)) and λ0 6= 1.

Lemma 1. Suppose that yri = 1{y∗ri ≥ 0} with y∗ri satisfying equation (1), and that assumption

A6’ holds. Then the model is observationally equivalent to

yri = 1
{

xri

(
β10 −

β20

mr − 1

)

+
[
xr

mr

mr − 1

(
β20 +

β10 + β20

1− λ0
λ0

)
+ αr

(
1 +

mr

mr − 1
λ0

1− λ0

)]

+εr
mr

mr − 1
λ0

1− λ0
+ εri ≥ 0

}
.

(4)
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The term in brackets corresponds to a group-specific effect. Thus we are led back to

a binary model for panel data. Identification of such a model has been considered, among

others, by Manski (1987), and our analysis relies on his paper. The group indices are omitted

for the ease of notation. Then xk
j denotes the k-th covariate of individual j. The following

assumptions are needed for identification:

A10. (ε1, ..., εm) are exchangeable conditionally on (m, x1, ..., xm, α). The support of

F
ε1+ε m

m−1
λ0

1−λ0
|m,x1,...,xm,α

(.|m∗, x∗1, ..., x
∗
m, α∗)

(where, for any couple of random variables (u, v), Fu|v denotes the conditional c.d.f. of u given

v) is R for all (m∗, x∗1, ..., x
∗
m, α∗).

A11. Let z = x2 − x1.10 The support of Fz is not contained in any proper linear subspace of

RK (where K is the dimension of xri).

A12. There exists k0 such that zk0 has everywhere a positive Lebesgue density conditional on

(m, z1, ..., zk0−1, zk0+1, ..., zK) and βk0
10 = 1. Without loss of generality we set k0 = 1.

The first part of assumption A10 holds for instance if (εi)i=1,...,m is conditionally indepen-

dent of (xi)i=1,...,m given m and α, and if (εi)i=1,...,m are exchangeable conditionally on m, α.

Hence, it is satisfied if the (εi)i=1,...,m are i.i.d. and independent of (x1, ..., xm,m, α). The

second part of assumption A10 is a technical condition, which is identical to the second part

of assumption 1 set forth by Manski (1987). Assumption A11 ensures that z varies enough

within a group. As usually in binary models, one parameter must be normalized and this is

the purpose of A12. However, a small difficulty arises here, because the reduced form does

not allow us to recover the sign of the structural parameters. A sufficient condition is to fix

one parameter (and not only its absolute value): thus we set β1
10 = 1.11

Theorem 4. Suppose that assumptions A1-A3, A6’ and A10-A12 hold. Then β10 is identified.

Moreover,

- if β20 6= β1
20β10, then β20 is identified,

- if β20 = β1
20β10, β1

20 is not identified and the other βk
20 are identified up to β1

20.

On the other hand, λ0 is not identified.
10Without loss of generality, we assume here that individuals 1 and 2 are observed.
11Obviously, theorem 5 also holds with β1

10 = −1.
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If fewer parameters than in model (1) are identified, theorem 4 shows that the main

attractive features of the method remain. Without any exclusion restriction and even if only

two members of the groups are observed, β10 and β20 are generally identified. Similarly to the

result of theorem 1, identification of β20 is lost when there is no exogenous effect, because in

this case β20 = β1
20β10 = 0. That λ0 cannot be recovered is not surprising as this parameter

only appears in the fixed effect and the residuals (see equation (4)). Heuristically, without

any hypothesis imposed on these terms, any λ0 can be rationalized by changing accordingly

α and the (εi)1≤i≤m.

Thus, stronger assumptions are needed for identifying λ0. One possibility is to observe x

and to restrict the dependence between the residuals and the covariates.

A9’. x is observed.

A13. (ε1, ..., εm, α) ⊥⊥ (x1, ..., xm) | m,x.

A14. Var(ε1, ..., εm, α | x, m) =
(

Var(ε1 | x)Im 0
0 Var(α | x)

)
.

A15. Given (x,m), the support of
{

x1(β10 − β20

m−1), x2(β10 − β20

m−1)
}

is R2.

As mentioned above, assumption A9’ is a restrictive condition as it imposes either to observe

all individuals in the group or to consider only the covariates for which the means are known.

Assumption A13 is in the same spirit than assumption A10. It restricts the dependence

between α and the covariates to a dependence on the mean. Assumption A14 is the assumption

of homoskedasticity in m; it is very similar to assumption A7. The difference between both

assumptions stems from the identifying equation we use in both cases. In the discrete model,

α remains in expression (4) and thus its variance must be modeled as well as its covariance

with the (εi)1≤i≤m.12 Lastly, assumption A15 is a condition of large support. It especially

implies that m ≥ 3. Otherwise, indeed, the two variables belong to a line in R2.

Theorem 5. Under assumptions A1-A3, A6’, A9’, and A10-A15 and if β20 6= β1
20β10, λ0 is

also identified.
12The assumption of no covariance is not restrictive. Indeed, if the correlation between εi and α is not zero

and independent of i, we can always reparametrize the model in order to make them uncorrelated.
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5 Theoretical background

Model (1) is very close to the one considered by Manski (1993) or by Graham and Hahn (2005).

Yet conclusions much differ since the basic linear-in-means model is generically identified

without any exclusion restriction. Thus, one should set forth the reasons to choose this model

rather than the linear-in-expectations model. An argument borrowed from game theory shows

that this choice is in fact better justified for small groups. Indeed, we show below that

identification depends on the information set of players. Equation (1) arises when players are

fully informed, whereas Manski’s model corresponds to an imperfect information situation.

We also consider an intermediate situation where homoscedasticity is lost, and thus theorem

2 cannot be applied.

Suppose that the utility of player i has the following form:

Uri(eri, (erj)j 6=i) = eri

[
xriβ10 +

(
1

mr − 1
∑mr

j=1, j 6=i erj

)
λ0

+
(

1
mr − 1

∑mr
j=1, j 6=i xrj

)
β20 + αr + εri

]
− 1

2e2
ri,

where we suppose here that the individual specific terms (εri)i are mutually independent and

independent of (xri, αr,mr). In this game, the marginal returns of individual i depend on her

peers’ outcomes. This captures the fact that people are influenced by their peers’ behavior.

If λ0 > 0, player i tries to conform to other members of her group, whereas she tries to stand

out from them when λ0 < 0. This model is close to the one developed by Cooley (2006) for

examining pupil achievement in the classroom.

Assuming that αr and the (xri, εri)1≤i≤mr are observed by all players in group r, the Nash

equilibrium of the game (e∗r1, ..., e
∗
rmr

) satisfies equation (1). Thus, using theorems 1 and 2,

all parameters are identified provided that there is sufficient variation in group sizes.13

Now suppose that the (εrj)j 6=i are unobserved by player i. This situation is realistic in

moderately large groups where each player observes the characteristic xrj of j but not her
13This conclusion still holds if we do not observe the optimal effort e∗ri but instead the corresponding outcome

yri = e∗ri+ηri, where ηri is an unanticipated shock, independent of other variables. A quick examination reveals
that in the within-group equation (3), shocks are not homoskedastic anymore, but the proof of theorem 2 can
be adapted provided that at least three different group sizes are available.
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idiosyncratic shock. Then the Bayesian Nash equilibrium satisfies:14

e∗ri = xriβ10 +

 1
mr − 1

mr∑
j=1, j 6=i

E(e∗rj | εri)

λ0 +

 1
mr − 1

mr∑
j=1, j 6=i

xrj

β20 + αr + εri. (5)

Taking the conditional expectation leads to, for i 6= k,

E(e∗ri | εrk) = xriβ10 +

 1
mr − 1

mr∑
j=1, j 6=i

E(e∗rj)

λ0 +

 1
mr − 1

mr∑
j=1, j 6=i

xrj

β20 + αr, (6)

because, by independence of the (εri)i, E[E(e∗rj | εri) | εrk] = E[E(e∗rj | εri)] = E(e∗rj). Hence,

taking the expectation of (5) and comparing with (6) leads to E(e∗ri | εrk) = E(e∗ri) for all

i 6= k. Replacing E(e∗rj | εri) by E(e∗rj) in (5), we get e∗ri = E(e∗ri) + εri. Finally, substituting

e∗rj − ε∗rj to E(e∗rj) in (5), we obtain:

e∗ri = xriβ10 +
(

1
mr−1

∑mr
j=1, j 6=i e

∗
rj

)
λ0 +

(
1

mr−1

∑mr
j=1, j 6=i xrj

)
β20 + αr − mr

mr−1εrλ0

+εri

(
1 + λ0

mr−1

)
,

which is equivalent to

e∗ri = xriβ10 +

 1
mr − 1

mr∑
j=1, j 6=i

e∗rj

λ0 +

 1
mr − 1

mr∑
j=1, j 6=i

xrj

β20 + α′r + ε′ri,

where α′r = αr −mr/(mr − 1)εrλ0 and ε′ri = εri

(
1 + λ0

mr−1

)
. This equation is very similar

to (1) and the parameters can be identified using the exogeneity of covariates. However, the

errors become heteroskedastic. More precisely, the variance of residuals in the within-group

equation (2) is no more dependent on mr, so that λ0 cannot be recovered by using this device,

as in theorem 2. Identification of β20 and λ0 is lost when β20 = −λ0β10.

Lastly, let us suppose that the (xrj)j 6=i are also unobserved by i but that αr is still observed.

If groups are large, player i may not know j and thus does not observe neither εrj nor xrj .

On the other hand, she may know the general features of the group, represented by αr and

E(xr1 | αr). Then, proceeding as previously, we can easily show that

e∗ri = xriβ10 + E(xr1 | αr)β20 + E(e∗ri | αr)λ0 + αr + εri.

Thus we are led back to Manski’s model (1993), which is not identifiable.
14All expectations are in fact taken conditionally on (xri)1≤i≤mr and αr. We omit them for the sake of

simplicity.
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Another structural interpretation of the model is to consider equation (1) as the stationary

state of a dynamic model with interactions. Let yt
ri denote the outcome of individual i in

group r at date t, and suppose that the variation in this outcome at date t is generated by

the following first-order differential equation:

dyt
ri

dt
= yt

riµ +

 1
mr − 1

mr∑
j=1, j 6=i

yt
rj

λ0 + xriβ10 +

 1
mr − 1

mr∑
j=1, j 6=i

xrj

β20 + αr + εri. (7)

In other terms, the variation in the i-th individual’s outcome at date t depends on her current

outcome and on her time-constant observable covariates, but also on the mean of her peers’

outcomes at date t and on the mean of their time-constant observable covariates. In the

example of a classroom, λ0 > 0 implies that a pupil will get better test scores when the mean

score of her classmates is higher.

Proposition 1. Equation (7) admits a stable solution for all r = 1...R if and only if

µ ≤ 0 and λ0 ∈
]
µ
{

min
r

(mr)− 1
}

,−µ
[
.

Provided that µ = −1, this solution is given by equation (1).

Setting µ = −1 is natural in view of identification. Indeed, in the steady state, dyt
ri

dt = 0 so

that equation (7) can be normalized without loss of generality. Proposition 1 states that if

the dynamic model is true, then λ0 lies in a known interval. Interestingly, this restriction

(λ0 > 1−minr(mr)) is used both in Lee’s paper (assumption 3) and in ours (assumption A6

and A6’) to identify the model.

6 Conclusion

This paper considers identification of linear social interaction models using group size variation.

Provided that the size of the group is known and varies sufficiently, endogenous and exogenous

effects can be identified without any exclusion restriction. Moreover, the method does not

require to observe all members of the group. The result is extended to asymmetric models

and binary outcomes. We also show that, from a game theoretic point of view, our analysis

is more relevant for small groups such as classrooms. When groups are large, Manski’s model

(1993) should be more appropriate in terms of players’ information. The result is also in line

with the weak identification result of Lee (2006) in the case of large groups.

14



Our paper has two main limitations. First, the size of the group is assumed to be known.

However, as emphasized by Manski (2000), it is often difficult to define groups on an a priori

background. This criticism is common to all models of social interactions, but may be es-

pecially problematic here. Indeed, ignoring the boundaries of the group leads (among other

difficulties) to measurement errors on the group size, which could prevent identification. Sec-

ond, we do not consider a fully nonparametric regression. The issue of whether group size

variation has an identifying power in this general case remains to be settled.
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Appendix

Theorem 1

First, under assumption A4, E(X̃ ′
1Wn1 ε̃1 | n1,m1) = 0 and thus, by assumption A5, β(m) is

identified for all m ∈ Supp(m1). We now prove that the knowledge of m 7→ β(m) allows in

general to recover the structural parameters.

Let (m∗
1,m

∗
2) ∈ Supp(m1)2, then

(m∗
1 − 1)β10 − β20

m∗
1 − 1 + λ0

=
(m∗

2 − 1)β10 − β20

m∗
2 − 1 + λ0

is equivalent to

−λ0β10

(
1

m∗
1 − 1

− 1
m∗

2 − 1

)
= β20

(
1

m∗
1 − 1

− 1
m∗

2 − 1

)
.

Hence, if β20 = −λ0β10, β(.) is constant, and if not, β(.) is a one-to-one mapping. In the

first case, β(m) = β10 for all m. Thus β10 is identified, but λ0 cannot be recovered by β(.).

Because β20 = −λ0β10, β20 is identified up to a constant.

Now suppose that β20 6= −λ0β10 and let (m∗
0,m

∗
1,m

∗
2) be three different values in Supp(m1).

We will prove that the knowledge of β(m∗
0), β(m∗

1) and β(m∗
2) permits to recover (β10, λ0, β20).
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This amounts to show that the system
β(m∗

0)λ0 − (m∗
0 − 1)β10 + β20 = −β(m∗

0)(m
∗
0 − 1)

β(m∗
1)λ0 − (m∗

1 − 1)β10 + β20 = −β(m∗
1)(m

∗
1 − 1)

β(m∗
2)λ0 − (m∗

2 − 1)β10 + β20 = −β(m∗
2)(m

∗
2 − 1)

has a unique solution. Using the matrix form, we can rewrite the system as Aζ0 = B where

ζ0 = (λ0, β10, β20)′. If det(A) 6= 0, ζ0 is identified. Suppose that det(A) = 0. Then

com(A)′B = 0 where com(A) denotes the comatrix of A. By using the first line of this

equation and the expression of det(A), we get
(m∗

2 −m∗
1)β(m∗

0) + (m∗
0 −m∗

2)β(m∗
1) + (m∗

1 −m∗
0)β(m∗

2) = 0

(m∗
0 − 1)(m∗

2 −m∗
1)β(m∗

0) + (m∗
1 − 1)(m∗

0 −m∗
2)β(m∗

1) + (m∗
2 − 1)(m∗

1 −m∗
0)β(m∗

2) = 0.

Hence, 
(m∗

2 −m∗
1)β(m∗

0) = −(m∗
0 −m∗

2)β(m∗
1)− (m∗

1 −m∗
0)β(m∗

2)

m∗
0(m

∗
2 −m∗

1)β(m∗
0) + m∗

1(m
∗
0 −m∗

2)β(m∗
1) + m∗

2(m
∗
1 −m∗

0)β(m∗
2) = 0.

Thus, 
(m∗

2 −m∗
1)β(m∗

0) + (m∗
0 −m∗

2)β(m∗
1) + (m∗

1 −m∗
0)β(m∗

2) = 0

β(m∗
1)(m

∗
0 −m∗

2)(m
∗
1 −m∗

2) + β(m∗
0)(m

∗
2 −m∗

1)(m
∗
0 −m∗

2) = 0.

Because m∗
1 6= m∗

2 and m∗
0 6= m∗

2, this implies that β(m∗
1) = β(m∗

0), which is in contradiction

with the fact that β(.) is a one-to-one mapping. Thus det(A) 6= 0 and ζ0 is identified.

Theorem 2

Because m 7→ β(m) is identified, Var

 Wn1 ε̃1

1 +
λ0

m1 − 1

| n1,m1

 is known. Thus, under assump-

tion A7,

Var

(
Wn1 ε̃1

1 + λ0
m−1

| n1,m1

)
=

σ2(
1 + λ0

m1−1

)2 Wn1 .

Hence, for m∗
1 6= m∗

2,

C ≡

(
1 + λ0

m∗
1−1

)2

(
1 + λ0

m∗
2−1

)2
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is identified. Under assumption A6,
(
1 + λ0

m−1

)
> 0 for all m ∈ Supp(m1). Thus( √

C

m∗
1 − 1

− 1
m∗

2 − 1

)
λ0 = 1−

√
C.

It is clear that
( √

C
m∗

1−1 −
1

m∗
2−1

)
6= 0. Otherwise C = 1 and then m∗

1 = m∗
2, which contradicts

the assumption. Thus λ0 is identified.

Then, because m 7→ β(m) is identified, β10 −
β20

m− 1
is known for all m ∈ Supp(m1). Taking

two different values for m permits to recover β20, and then β10.

Theorem 3

Let i1 and i2 be two individuals in group r such as tri1 = tri2 = k. Then

yri1 − yri2 = (xri1 − xri2)
(

(mr − 1)β10 − β20(k)
mr − 1 + λ0(k)

)
+

εri1 − εri2

1 + λ0(k)/(mr − 1)
.

Thus, by application of Theorem 1 on both subgroups, β−t
10 , β−t

20 (k) and λ0(k) are identified.

To recover βt
10 and βt

20(k), we start from

yri (mr − 1+ λ0(tri))− x−t
ri

(
(mr − 1)β−t

10 − β−t
20 (tri)

)
−mryrλ0(tri) + mrx

−t
r β−t

20 (tri)

= tri

(
(mr − 1)βt

10 − βt
20(tri)

)
+ mrtrβ

t
20(tri) + (mr − 1)αr + (mr − 1)εri.

Let ŷri denote the left hand side of this equation; it is identified thanks to the previous result

and to assumption A9. Taking i1 and i3 such as tri1 = 1, tri3 = 0, we get

ŷri1 − ŷri3 = (mr − 1)βt
10 − βt

20(1) + mrtr
[
βt

20(1)− βt
20(0)

]
+ (mr − 1)(εri1 − εri3).

This regression (over groups of the same size but with different tr) enables us to recover the

constant (mr−1)βt
10−βt

20(1) and βt
20(1)−βt

20(0). Then making mr vary allows us to identify

βt
10 and βt

20(1), and thus βt
20(0).

Lemma 1

Applying the between-group operator to (1) gives

y∗r = xr

(
β10 + β20

1− λ0

)
+

αr

1− λ0
+

εr

1− λ0
,
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since 1/(1 − λ0) exists according to assumption A6’. Consequently, replacing y∗r in equation

(1), we obtain

y∗ri

(
1 + λ0

mr−1

)
= xri

(
β10 − β20

mr−1

)
+ xr

mr
mr−1

(
β20 + β10+β20

1−λ0
λ0

)
+αr

(
1 + mr

mr−1
λ0

1−λ0

)
+ εr

mr
mr−1

λ0
1−λ0

+ εri.

Note that this equation is equivalent to (1). Now, under assumption A6’, 1+λ0/(mr− 1) > 0

for all r, so that y∗ri ≥ 0 if and only if y∗ri

(
1 + λ0

mr−1

)
≥ 0. Thus, under assumption A6’,

yri = 1{y∗ri ≥ 0}, where y∗ri satisfies equation (1), is observationally equivalent to yri satisfying

equation (4).

Theorem 4

Assumption A10 implies that the conditional distribution of ε m
m−1

λ0
1−λ0

+ εi is identical for

every i. Thus assumption 1 in Manski (1987) is satisfied and, using A11 and A12, we can

apply directly his result to recover (m−1)β10−β20∣∣m−1−β1
20

∣∣ . The first term of the vector, (m−1)β1
10−β1

20∣∣m−1−β1
20

∣∣ , is

also identified. By assumption A12,

β̃(m) ≡ (m− 1)β10 − β20

m− 1− β1
20

=

(m−1)β10−β20∣∣m−1−β1
20

∣∣
(m−1)β1

10−β1
20∣∣m−1−β1

20

∣∣ ,

so that β̃(m) is identified as the ratio of two known terms. The rest of the proof of identification

of (β10, β20) follows the same line than the one of Theorem 1, λ0 being replaced by −β1
20.

However, λ0 cannot be identified. Indeed, let λ′0 6= λ0 and define

ε′i = εi + ε
m(λ0 − λ′0)

(m− 1 + λ′0)(1− λ0)
.

Finally let

α′ =
mx(β10 + β20)(λ0 − λ′0) + α(m− 1 + λ0)(1− λ′0)

(m− 1 + λ′0)(1− λ0)
.

Then (λ′0, α
′, ε′1, ..., ε

′
m) are observationally equivalent to the initial model. Indeed, we can

check that they lead to (4) as well. Moreover, conditioning on (m,x1, ..., xm, α′) is equivalent

to conditioning on (m,x1, ..., xm, α), and conditional exchangeability of (ε1, ..., εm) implies

conditional exchangeability of the (ε′1, ..., ε
′
m). Furthermore,

F
ε′1+ε′ m

m−1

λ′0
1−λ′0

|m=m∗,x1=x∗1,...,xm=x∗m,α′=α′∗
= F

ε1+ε m
m−1

λ0
1−λ0

|m=m∗,x1=x∗1,...,xm=x∗m,α=α∗
,
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where

α∗ =
(m− 1 + λ′0)(1− λ0)α′∗ −mx(β10 + β20)(λ0 − λ′0)

(m− 1 + λ0)(1− λ′0)
.

Thus the second part of assumption A10 also holds with (λ′0, α
′, ε′1, ..., ε

′
m). This shows that

λ0 is not identified.

Theorem 5

Let θ0 =
λ0

1− λ0
and

vi =
[
x m

m−1 [β20 + θ0(β10 + β20)] + α
(
1 + m

m−1θ0

)]
+ ε m

m−1θ0 + εi.

Note that Fv1,...,vm|x1,...,xm,m = Fv1,...,vm|x,m. Indeed

F v1,...,vm|x1,...,xm,m(v∗1, ..., v
∗
m|x∗1, ..., x∗m,m∗)

=
∫

Fv1,...,vm|x1,...,xm,m,α(v∗1, ..., v
∗
m|x∗1, ..., x∗m,m∗, α∗)dFα|x1,...,xm,m(α∗|x∗1, ..., x∗m,m∗)

=
∫

Fv1,...,vm|x,α,m(v∗1, ..., v
∗
m|x∗, α∗,m∗)dFα|x,m(α∗|x∗,m)

= Fv1,...,vm|x,m(v∗1, ..., v
∗
m|x∗,m∗),

where the third line stems from assumption A13 and the fact that, given x1, ..., xm,m, α,

(v1, ..., vm) is a deterministic function of (ε1, ..., εm). Now

Pr(y1 = 0, y2 = 0 | x1 = x∗1, x2 = x∗2, x = x,m = m∗)

= Pr
{

v1 ≤ −x∗1

(
β10 − β20

m−1

)
, v2 ≤ −x∗2

(
β10 − β20

m−1

)
| x1 = x∗1, x2 = x∗2, x = x, m = m∗

}
= Fv1,v2|x,m

(
−x∗1

(
β10 − β20

m∗−1

)
,−x∗2

(
β10 − β20

m∗−1

)
|x,m∗

)
.

Because, by theorem 4, (β10, β20) is identified, x∗1

(
β10 − β20

m∗−1

)
and x∗2

(
β10 − β20

m∗−1

)
are

known. Moreover, x is observed so that the first term is identified on the whole support

of (x1, x2). Thus, by assumption A15, making (x1, x2) vary allows us to recover the whole

conditional distribution of (v1, v2) given x and m. Thus, using assumption A14,

Cov(v1, v1 − v2 | x,m) = Cov
(

ε
m

m− 1
θ0 + ε1, ε1 − ε2 | x,m

)
= Var(ε1 | x),

so that the right term is identified. By the way, let us note that assumption A14 can be

tested thanks to the data, since it implies that Cov(v1, v1 − v2 | x,m) does not depend on m.
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Moreover, a little algebra shows that

(m− 1)2Cov(v1, v2|x,m) = m2
[
(1 + θ0)2Var(α|x)

]
+ m

[
− 2(1 + θ0)Var(α|x)

+θ0(2 + θ0)Var(ε1|x)
]

+ [Var(α|x)− 2θ0Var(ε1|x)] .

This is a regression of the (known) left term on (m2,m, 1). Because m takes at least three

values, the coefficients (a, b, c) of this regression can be recovered.15 We will show that the

knowledge of these coefficients implies that θ0 is identified. The conclusion will follow because

θ0 is one-to-one with λ0.

First, let φ0 = 1 + θ0 and ρ0 = Var(α|x)
Var(ε|x) . Let also a′ = a/Var(ε|x), b′ = b/Var(ε|x) + 1 and

c′ = c/Var(ε|x)− 2. Then a′, b′ and c′ are identified, and
φ2

0ρ0 = a′

−2φ0ρ0 + φ2
0 = b′

ρ0 − 2φ0 = c′.

Replacing ρ0 by c′ + 2φ0 in the first and second equation leads to
φ3

0 + c′/2φ2
0 − a′/2 = 0

φ2
0 + 2c′/3φ0 + b′/3 = 0

ρ0 − 2φ0 = c′.
(8)

This system admits at most two solutions in (ρ, φ). Suppose that there are two different

solutions, and let (ρ1, φ1) denote the second one. Then we can write the polynomial of the

first equation as a product in which one factor is the polynomial of the second equation.

Hence, there exists x such as, for all φ ∈ R,

φ3 + c′/2φ2 − a′/2 = (φ2 + 2c′/3φ2 + b′/3)(φ + x).

Thus 
x = −c′/6

2c′x = −b′

2b′x = −3a′.

Hence c′2 = 3b′. Replacing b′ and c′ by their expression gives

3(−2φρ + φ2) = (ρ− 2φ)2,

which must hold for (ρ0, φ0) and (ρ1, φ1). But this statement is equivalent to φ + ρ = 0.

Replacing ρ by −φ in c′ gives φ0 = φ1 = −c′/3 and thus also ρ0 = ρ1. This contradicts

(ρ0, φ0) 6= (ρ1, φ1). Thus φ0 is identified by 8 and the conclusion follows.
15These coefficients depend on x but for the sake of simplicity, we let this dependency implicit from now on.
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Proposition 1

Let kri = xriβ10 +
(

1
mr−1

∑mr
j=1, j 6=i xrj

)
β20 + αr + εri, Y t

r = (yt
r1, ..., y

t
rmr

)′ and Kr =

(kr1, ..., krmr)′. Equation (2) can be rewritten in matrix terms:

dY t
r

dt
=
[(

µ− λ0

mr − 1

)
Imr +

λ0

mr − 1
Jmrd

]
Y t

r + Kr,

where Jmr denotes the matrix of ones of size mr. The eigenvalues of Ar = (µ − λ0
mr−1)Imr +

λ0
mr−1Jmr are µ− λ0

mr−1 and µ+λ0. Thus the system is stable when max(µ− λ0
mr−1 , µ+λ0) ≤ 0.

Because max(µ − λ0
mr−1 , µ + λ0) ≥ µ, this implies that µ ≤ 0. Moreover, when λ0 ≥ 0, the

condition is equivalent to λ0 ≤ −µ and when λ0 < 0, this amounts to λ0 ≥ µ(mr − 1). Thus,

the system is stable for all r = 1...R if and only if

µ ≤ 0 and λ0 ∈ [µ{min
r

(mr)− 1},−µ].

If these conditions are fulfilled, then, limt→+∞ArY
t
r = −Kr. Equivalently, if yri denotes the

i-th component of the stationary state of Y t
r ,

−µyri =

 1
mr − 1

mr∑
j=1, j 6=i

yrj

λ0 + xriβ10 +

 1
mr − 1

mr∑
j=1, j 6=i

xrj

β20 + αr + εri.

Thus, when µ = −1, we retrieve equation (1).
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