
Dette, Holger; Melas, Viatcheslav B.; Strigul, Nikolay

Working Paper

Design of experiments for microbiological models

Technical Report, No. 2003,41

Provided in Cooperation with:
Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475),
University of Dortmund

Suggested Citation: Dette, Holger; Melas, Viatcheslav B.; Strigul, Nikolay (2003) : Design of
experiments for microbiological models, Technical Report, No. 2003,41, Universität Dortmund,
Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/49316

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/49316
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Design of experiments for microbiological models

Holger Dette

Ruhr-Universität Bochum

Fakultät für Mathematik

44780 Bochum

Germany

email: holger.dette@ruhr-uni-bochum.de

FAX: +49 2 34 70 94 559

Viatcheslav B. Melas

St. Petersburg State University

Department of Mathematics

St. Petersburg

Russia

email: v.melas@pobox.spbu.ru

Nikolay Strigul

Princeton University,

Department of Ecology and

Evolutionary Biology

Princeton, NJ, USA

email: nstrigul@princeton.edu

1 Introduction

Methods of optimal experimental design potentially are very useful tool in research practice.

There exists, unfortunately, some distance between mathematicians who investigating models

of biological processes and practical researchers who do experiments. The beautiful, efficient

and potentially very useful mathematical results are often not available for the wide range of

experimental researchers which each time face the same problems. The purpose of this paper

is to review applications of optimal experimental design in microbiology and to introduce those

methods in such a way as to be accessible for scientists who making experimental research with no

deep mathematical background. Examples in this paper are taken from microbiology but it should

be also interesting for the wide group of researchers in biomedical sciences, such as biophysicists,

pharmacologists, plant physiologists or for anyone facing the problem of identifying parameters of

non-linear biological models.

The mathematical methods of optimal experimental design for non-linear models have been devel-

oped very intensively since 1960th when the basic theorems by Kiefer and Wolfowitz were published
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(Kiefer, Wolfowitz, 1960; Kiefer, 1974). Then for several decades were very active theoretical re-

search in this area and several reviews and monographs appeared (Fedorov, 1972; Pukelsheim,

1993; Walter, Pronzato, 1990; 1997). Now with the expansion of personal computers and the

developing of efficient mathematical program packages such as Mathematica or Matlab and even

more specialized software for the optimal experimental design searching (Rovati, 1988; Verotta,

1988, 1990; Marco et al., 2003) the application of these methods is becoming much more avail-

able for non-mathematicians and the frequency of application of this technique has significantly

increased in the last 10 years.

Mathematical modeling is the usual method for describing quantitative data and predicting out-

comes of microbiological processes (Pirt, 1975; Baranyi, Roberts, 1995). Several types of empirical

regression models are used in applications. Most of the models, which describe microbial growth

are non-linear first order differential equations in several variables. As a consequence the com-

monly used models in microbiology are regression models, where the unknown parameters enter

the model nonlinearly. In the statistical literature these models are called nonlinear regression

models. An appropriate choice of the experimental conditions can improve the quality of the

experiment substantially. The present chapter is concerned with the optimal design of experi-

ments for estimating parameters in nonlinear regression models. This problem has received much

attention in the literature and the available references can be divided into the following three

groups

(i) papers containing theoretical results on optimal experimental designs;

(ii) papers devoted to numerical construction of optimal designs or/and to stochastic modeling

of biological data;

(iii) papers devoted to the application of optimal designs in real experiments.

Note that some of the references cited in this paper will fit in both groups (i) and (ii). However

most papers can be put in group (ii) and only a few of the cited references belong to group (iii).

The reason for the scarcity of papers in group (iii) may be that practitioners are not well-enough

aware of the basic methods and advantages of optimal design.

The main purpose of this review is to explain some of the basic ideas of design of experiments and

its applications in a form accessible to readers with a microbiological education. For this purpose

we will avoid many technical details, which would require a deep mathematical background. Al-

though nonlinear regression models appear in many applications, such as econometrics, genetics,

agriculture etc., we will mainly concentrate on nonlinear models used in microbiology and will

give a review of results from the literature on this issue.

The paper is organized in the following way. In Section 2 we will introduce some basic concepts and

results relating to estimation and experimental designs for nonlinear regression models, used in

microbiology. We discuss the properties of the least squares estimates, design optimality criteria

and basic approaches to optimal design for nonlinear models. In Section 3 we discuss these
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concepts in more detail for the model given by the Monod differential equation. This model is

taken as a typical example from microbiology to explain the practical benefits and difficulties

in the implementation of optimal designs. The same section contains also a review of optimal

designs for other typical nonlinear regression models in microbiology. A Bayesian approach to the

construction of optimal designs is considered separately in Section 5, while Section 6 is devoted

to some conclusions.

2 Experimental design for nonlinear models

In microbiological problems the quantity to be measured is usually dependent on one scalar con-

trol variable and a few parameters. The control variable is either the time of observation or a

concentration of a substrate. For the sake of universality we will denote the control variable by

the symbol t, inspite of the fact that in some microbiological applications it should be replaced by

c, where c is a concentration value. In many cases the variable t is also called explanatory variable

and due to natural biological conditions it is reasonable to assume that t varies in an interval, say

[0, T ], where T is a maximal value for t. From a mathematical point of view observations taken

under particular experimental conditions are random values. In microbiological applications these

values can usually be considered as independent random variables. Supposing that our model

describes a microbiological phenomenon adequately we can assume that each observation consists

of a deterministic part, which describes the microbiological phenomenon, and a random error,

which is modelled by a random variable with expectation equal to 0. However, the variance of a

particular observation (or of the corresponding error) can depend on the experimental condition

t under which the experiments have been performed. Generally speaking this dependence is un-

known but we can hypothesize a mathematical model for it and then study the influence of the

assumed model on the procedures for choosing experimental design and estimation of parameters.

Thus we will assume that the experimental results at experimental conditions ti, i = 1, 2, . . . , N

(where N is the total number of observations) are described by the following nonlinear regression

model

yi = η(tj, θ) + g(tj, θ, γ)εj, j = 1, . . . , N(1)

where y1, . . . , yN , are experimental observations taken under the experimental conditions t1, . . . , tN .

η and g are known functions, describing the microbiological phenomenon in the absence of obser-

vation errors, but the parameters θ = (θ0, . . . , θm)T and γ = (γ1, . . . , γr)
T are unknown parameters

and have to be estimated from the available data y1, . . . , yN . In many cases the main interest of

the experimenter lies in a precise estimation of the parameters θ0, . . . , θm while the parameters

γ1, . . . , γr can be considered as nuisance parameters [see Silvey (1980)]. Finally the random errors

ε1, . . . , εN are assumed to be independent and identically distributed random values with zero

mean and variance 1. For the sake of a transparent notation we will explain the main ideas of

parameter estimation and design of experiments for nonlinear regression models under the as-
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sumption that the function g is constant, say g ≡ σ > 0, which corresponds to the case of a

heteroscedastic nonlinear regression model. The main concepts in the heteroscedastic case, where

the function g is not constant, are exactly the same with an additional amount of notation [see

e.g. Akinson and Cook (1995)].

Generally speaking, in microbiological problems the function η(t, θ) is given implicitly as a solution

of an ordinary differential equation of the form

η′(t, θ) = F (t, θ, η(t, θ))(2)

with an initial condition η(0, θ) = θ0, where θ = (θ0, . . . , θm)T and the function F is explicitly

given. Moreover, the function F (t, θ, η) is usually assumed to be representable in the form

F (t, θ, η) = ψ(t, θ(1))ϕ(η, θ(2)), η = η(t, θ),(3)

where (θT
(1), θ

T
(2)) = θT and for fixed θ the function ψ depends only on t, whereas the function ϕ

depends only on η. A few examples will be given soon in this section and some more examples

are considered in section 3.

Using (3), since η′(t, θ) = dη/dt, we obtain from (2) by multiplication of both sides by dt and

dividing then by ϕ the following equation

[1/ϕ(η, θ(2))]dη = ψ(t, θ(1))dt.

Integrating both sides we obtain

Φ(η) = Ψ(t),(4)

where

Φ(η) := Φ(η, θ(1)) =

∫ η

0

[1/ϕ(η, θ(2))]dη, η = η(t, θ),

Ψ(t) := Ψ(t, θ(1)) =

∫ t

0

Ψ(t, θ(1))dη.

Equation (4) determines the function η = η(t, θ) implicitly and also allows an efficient calculation

of its values for any fixed value of t and θ. In a few important cases the function η can be found

explicitly. However, in most cases the function η is only be defined implicitly.

Example 2.1 The exponential regression model

Let ψ(t, θ(1)) ≡ 1, ϕ(η, θ(2)) = −θ1η, then θ(2) = θ1, θ = (θ0, θ1)
T (note that θ(1) is not needed

here). It can be easily verified that

η(t, θ) = θ0e
−θ1t

is the unique solution of equation (4).
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Example 2.2 Three parameters logistic distribution

Assume that ψ(t, θ(1)) ≡ 1, ϕ(η, θ(2) = θ1η(1− η/θ2), θ2 > 0. Then we have

η(t, θ) =
θ0e

θ2t+θ1

1 + e−θ2t+θ1
.

This function is called the three parameter logistic distribution.

Example 2.3 The Monod differential equation

Consider the equation (Monod, 1949; Pirt, 1975)

η′(t, θ) = µ(t)η(t, θ),

where θ = (θ0, θ1, θ2, θ3)
T denotes the unknown parameter

µ(t) = µ(t, θ) = θ1
s(t)

s(t) + θ2

,

s(t)− s0 =
η0 − η(t)

θ3

,

and s0 = s(θ), η0 = η(θ) = θ0 are given initial condition and θ = (θ1, θ2, θ3)
T . This model can be

rewritten in the form

η′(t, θ) = ϕ(η(t, θ), θ),

where η = η(t, θ),

ϕ(η, θ) = θ1
s0θ3 + η0 − η

s0θ3 + η0 − η + θ2θ3

η.

By an integration we obtain equation (4) in the form

t =
1

θ1

[
(1 + b) ln(η/η0)− b ln

c− η

c− η0

]
,

where the constant b is defined by b = θ2θ3/[s0θ3 + η0].

Assume that under the experimental condition tj (j = 1, 2, . . . , n) an experiment is repeated rj

times, while errors of different experiments under the same conditions are independent and let∑n
j=1 rj = N denote the total number of observations in the experiment. The specification of

the experimental conditions t1, . . . , tn and the relative proportions ωn = rn

N
, . . . , ω1 = r1

N
of total

observations taken under these conditions is called experimental design and denoted by a matrix

ξ =

(
t1, . . . , tn
ω1, . . . , ωn

)
,(5)
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where
∑n

j=1 ωj = 1, ωj > 0, tj ∈ [0, T ], j = 1, 2, . . . , n. In other words: a design of the form (5)

advices the experimenter to take at each point tj exactly rj = ωjN observations yij (if the numbers

ωjN are not integers a rounding procedure should be applied such that the resulting values rj

satisfy
∑
rj = N). The results of the experiments from such type of design can be conveniently

written in the form

yji = η(tj, θ) + εji, i = 1, . . . , rj, j = 1, . . . , n,(6)

where εji denote independent random variables with expectation 0 and constant variance. Note

that the index j in (6) corresponds to the different experimental conditions tji under which ob-

servations are obtained, while the index i corresponds to the rj observations obtained under a

particular fixed condition.

The most popular technique for estimating parameters is the least squares technique. The estimate

θ̂(N) is obtained as the value θ for which the sum of squares

n∑
j=1

rj∑
i=1

(yij − η(tj, θ))
2 .(7)

attains its minimal value. Note that there may exist several values for θ minimizing this sum

and this property depends on the particular regression function η under consideration. As a

consequence there may exist nonlinear regression models where the least squares estimator is

not uniquely determined. However, in many models used in microbiology it can be proved by

mathematical arguments that the least squares estimator is uniquely determined. For example, it

was proved for the Monod model (Dette et. al., 2003) that for every θ0 with positive coordinates

the least squares estimate is uniquely determined (note that in the Monod model the regression

function can not be represented in an explicit form). The technique of that paper can be applied

to most of the models used in microbiology.

Throughout this paper let θ∗ denote the ’true’ but unknown value of the parameter θ. In other

words the equation (6) holds for θ = θ∗. We assume that the least squares estimate θ̂(N) obtained

from the rj experiments under the experimental conditions tj, j = 1, . . . , n is unique (note that∑n
j=1 rj = N is the total number of observations). Under some assumptions of regularity it was

shown by Jennrich (1969) that for a sufficiently large sample size N the vector (θ(N) − θ∗) has

approximately a normal distribution with zero mean and covariance matrix

σ2

N
M−1(ξ, θ∗).

where σ denotes the standard deviation of the errors in model (6) and the matrix M(ξ, θ∗) is

defined by

M(ξ, θ) =

(
n∑

k=1

ωk
∂η(tk, θ)

∂θi

∂η(tk, θ)

∂θj

)m

i,j=0

(8)

This matrix is called Fisher information matrix in the literature and we assume that it is nonde-

generate throughout this paper. In principle the covariance matrix is a measure for the precision of
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the least squares estimator for the unknown parameter θ∗ and a ’smaller’ matrix yields more pre-

cise estimates. For example, the ith diagonal element of the matrix σ2

N
M−1(ξ, θ∗) will be denoted

by (σ2

N
M−1(ξ, θ∗))ii and is an approximation of the variance or mean squared error for the ith

component θ̂i(N) of the least squares estimator θ̂(N). A confidence interval for the ith component

θi of the vector θ is given by

[θ̂i(N) −
σu1−α

2√
N

√
(M−1(ξ, θ∗))ii, θ̂i(N) +

σu1−α
2√

N

√
(M−1(ξ, θ∗))ii]

where u1−α/2 denotes the 1−α/2 quantile of the standard normal distribution. If the sample size

N is sufficiently large this interval has a coverage probability approximately equal to 1−α. For the

practical implementation of these results we will use the estimate θ̂(N) instead of the true vector

θ∗ since the last is unknown. In particular if we are interested in estimating the i-th parameter

θi, i = 0, 1, . . . ,m we have the relation

D
(
θ̂i(N)

)
≈ σ2

N

(
M−1(ξ, θ̂(N))

)
ii
.(9)

and the confidence interval for the ith component of the vector θ is given by[
θ̂i(N) −

σ̂u1−α
2√

N

√
(M̂−1(ξ, θ̂(N))ii, θ̂i(N) +

σ̂u1−α
2√

N

√
(M−1(ξ, θ̂(N))ii

]
where σ̂2 is an estimate of the unknown variance of the error. For a concrete nonlinear regres-

sion model closeness of the estimator θ̂(N) to θ∗ and the variance D
(
θ̂i(N)

)
to the variance σ2

N

(M−1(ξ, θ̂(N)))ii can and should be verified by stochastic simulation techniques. Such a verifica-

tion was done in cases for the commonly used models in microbiology. For most cases it was

shown that for moderate sample sizes N the sampling variances of the parameter estimates are

well approximated by formula (9).

Note that the precision of the estimates can always be decreased by increasing the sample size

N , which yields a ’smaller’ covariance matrix and smaller variances of the least squares estimates.

However, in practice the sample size is usually fixed, due to cost considerations of each additional

experiment. To improve the quality of the estimates or, from a different point of view, to reduce

the number of experiments needed to obtain the estimates with a given accuracy we note that the

variances of the estimates θ̂i(N) and the covariance matrix of the vector θ̂(N) also depends on the

given design ξ, which determines the relative proportion of total observations to be taken at the

experimental conditions t1, . . . , tn and its location. Therefore the question arises if one can find a

design in some optimal way.

Example 2.4. Consider a special case of the exponential regression model in Example 2.1, that

is

η(t, θ) = e−θt
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where t ∈ [0, 10] and assume that the unknown parameter is given by θ∗ = 0.05 and that σ2 = 1.

The length of the confidence interval is given by

2u1−α
2√

N

√
(M−1(ξ, θ∗))11

where the Fisher information is given by

M(ξ, θ) =
n∑

i=1

ωi

( ∂
∂θ
η(ti, θ)

)2

=
n∑

i=1

ωit
2
i e
−2tiθ.

Assume that a 95% coverage probability is desired and that N = 100 are available. If observations

are taken according to the uniform design (i.e. ti = i/10;ωi = 1/100 i = 1, . . . , n = 100) the

length of the confidence interval is approximately

2 · 0.196 · 0.2481 ≈ 0.0972.

On the other hand, assume that the experimenter takes the 100 observation only at n = 5 different

experimental conditions uniformly, that is ti = 2i, ωi = 1/5 i = 1, . . . , 5, then the length of the

confidence interval is

2 · 0.196 · 0.2244 ≈ 0.0879.

Thus we obtain a reduction of the length of the tolerance region simply by sampling at different

experimental conditions. A further reduction of the length could be obtained by sampling at only

two different experimental conditions, e.g. t1 = 10, t2 = 20, ω1 = ω2 = 1/2. In this case the length

of the interval would be

2 · 0.196 · 0.1483 ≈ 0.0581

and the question arises if the experimental conditions can be chosen such that the length of the

confidence interval is minimal. This is precisely the problem of finding an optimal experimental

design, which will be described and discussed next.

In general an optimal design maximizes or minimizes the value to a given function of the Fisher

information matrix (see, f. e., Silvey, 1980). However this matrix depends on the vector θ∗, which is

unknown. To overcome this difficulty a simple and often rather efficient approach is to substitute

an initial guess θ0 for the unknown value θ∗. The corresponding designs are called local optimal

designs

(Chernoff, 1953). The most popular criteria of optimality are D-, c- and E-criteria (Pukelsheim,

1993). These criteria have appeared in the literature on optimal design for microbiological non-

linear models and we review some of them for the sake of completeness.

A design is called local D-optimal if it maximizes the quantity

detM(ξ, θ0),
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where θ0 is a given initial value for the true parameter vector. It can be shown that an optimal

design with respect to this criterion yields approximately a minimal value for the volume of the

tolerance ellipsoid of the estimates (see, f. e., Karlin, Studden, 1966, ch. X). In addition, due to

the famous equivalence theorem introduced in Kiefer, Wolfowitz (1960), this design minimizes an

approximation of the worst variance of the predicted response η(t, θ̂N) over the interval [0, T ], that

is

max
t∈[0,T ]

D(η(t, θ̂N)).

For a given vector c ∈ Rm+1 a design is called local c-optimal if it minimizes the variance

D(ctθ̂N) =
σ2

N
cTM−1(ξ, θo)c

of the estimate of a given linear combination of the parameters θT c =
∑m

i=0 θici. The important

choices for the vector c are contrasts, where the sum of the components of the vector c is 0 and

unit vectors, i.e.

c = ei = (0, . . . , 0,︸ ︷︷ ︸
i

1, 0, . . . , 0)T .

In the latter case a c-optimal design minimizes the variance of the least squares estimate for the i-

th parameter (under the condition that θ∗ = θ0). Such a criterion was used in Example 2.4, where

the interest was the length of a particular confidence interval. If the experimenter has particular

interest in several linear combinations of the parameters a local E-optimal design seems to be

appropriate. This design maximizes the minimum eigenvalue

λmin(M(ξ, θ0))

of the Fisher information matrix. A standard argument from linear algebra shows that this

maximization is equivalent to the minimization of the maximum eigenvalue of the inverse Fisher

information matrix M−1(ξ, θ0) or to the minimization of the worst variance among all estimates

cT θ̂N for the linear combinations cT θ with a given norm cT c = 1.

Another important criterion used in microbiological studies is the modified E-criterion

λmin(M(ξ, θ0))

λmax(M(ξ, θ0))
,

and an optimal experimental design with respect to this criterion makes this quantity as small as

possible.

For many models used in microbiology it has been proved either by mathematical rigorous argu-

ments or by intensive numerical experiments that the number n of different experimental conditions

for a local optimal design is equal to the number of parameters in the nonlinear regression model,

i.e.

n = m+ 1.
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It is also usually the case that the local optimal designs advise the experimenter to take obser-

vations at the maximal possible value T for the explanatory variable. Moreover, if n = m + 1

the optimal relative proportions of total observations to be taken at the experimental conditions

t0, . . . , tm can usually easily be determined as functions of the points t0, . . . , tm (see Pukelsheim

and Torsney, 1991), where the particular function depends on the optimality criterion under con-

sideration. For example, for the case of the D-optimality criterion these functions are constant

and all equal, i.e. ωi = 1/(m + 1), i = 0, 1, . . . ,m (see, f. e., Fedorov, 1972) and similar formulas

are available for the c-and E-optimality criterion [see Pukelsheim and Torsney (1991)]. These facts

are very helpful for the determination of local optimal designs, because they reduce the dimension

of the optimization problem.

If we have found a local optimal design we should study its sensitivity with respect to the choice

of the initial value θ0. This can be done by calculating the relative efficiency of a local optimal

design at the point θ0 with respect to the local optimal designs at other points from a given set.

For example, in the case of D-optimality criterion one usually considers the quantity

I(ξ) = min
θ∈Ω

I(ξ, θ),(10)

where Ω is a given set of possible values for the unknown parameter θ∗,

I(ξ, θ) =

(
detM(ξ, θ)

detM(ξθ, θ)

)1/(m+1)

,

is the D-efficiency of the given design ξ with respect to the local D-optimal design ξθ under the

assumption that θ∗ = θ is the ’true’ parameter. The value I(ξ, θ) indicates how many more

observations will be needed under the design ξ to obtain a given accuracy with respect to the

design ξθ, θ = θ∗. If it can be shown that the accuracy of the local optimal design for the choice θ0

is not too sensitive with respect to the choice of the initial value θ0 the application of local optimal

designs is well justified. For most models in microbiology it was shown that local optimal designs

are often robust with respect to the choice of the initial parameter θ0 (see f.e. Bezeau, Endrenyi,

1986; Dette et. al., 2003) and for this reason we will mainly concentrate on local optimal designs

in this paper.

However, if the dependence of the optimal design on the nonlinear parameter is more severe, or if

the experimenter has no prior knowledge about the location of the unknown parameters, some care

is necessary with the application of local optimal designs. In this case some more sophisticated

optimality criteria are required for the construction of efficient and robust designs, which will be

briefly mentioned here for the sake of completeness. We restrict ourselves to the D-optimality

criterion, but the idea for other types of criteria is very similar.

(i) If one can split the whole experiment into several stages with N1, . . . , Nr observations taken

at each stage, then it can be useful to use a so called sequential experimental design (see

Fedorov, 1972; Silvey, 1980). In this approach the estimate constructed at the previous stage
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can be used to construct a design for a current stage. For example, for the D-criterion we

start start with an initial guess for the unknown parameter, say θ0 and take N1 observations

according to the local D-optimal design (i.e. the design, which maximizes detM(ξ, θ0)) to

obtain the least squares estimate θ̂(N1). In the second stage this estimate is used as prelim-

inary guess and a new design is determined by maximizing the determinant detM(ξ, θ(N1))

to obtain the N2 observations for the second stage of the experiment. The least squares esti-

mate from the first N1 +N2 observations, say θ̂(N1+N2) is then used as preliminary guess for

the third stage and the next N3 observations are taken according to the design maximizing

the determinant detM(ξ, θ̂(N1+N2)). This procedure is continued for all r stages to obtain

the least squares estimate θ̂(N) = θ̂(N1+...+Nr) from the total sample. It should be noted

that inference from a sequential design is not easy (see e.g. Ford and Silvey, 1980; Ford,

Titterington and Wu, 1985; Wu, 1985 or Woodroofe and Coad, 2002). Moreover, there exist

many experiments, where observations cannot be taken at several stages.

(ii) In order to obtain a non-sequential design, which is less sensitive with respect to the choice

of the parameter θ0 several authors proposed to construct a design maximizing the value

I(ξ) for a given set Ω with respect to the choice of the experimental design. Such designs are

called maximin efficient designs (see Müller, 1995). Maximin efficient designs for the D- and

E-optimality criterion were constructed in Dette and Biedermann (2003) and Dette, Melas,

Pepelyshev (2003a) for the Michalis–Menten model, respectively. Further examples can be

found in Biedermann, Dette and Pepelyshev (2004), who considered a compartmental model,

and Dette, Melas and Wong (2004), who discussed this type of design in the Hill model.

Some more general results for this type were obtained by Dette, Haines and Imhof (2003a,b).

We finally note that the determination of maximin efficient designs is a substantially more

difficult problem compared to the problem of determining local optimal designs.

(iii) A different robust alternative is to assume sufficient knowledge of θ to specify a prior distri-

bution for this parameter and to average the respective optimality criteria over the plausible

values of θ defined by the prior. This leads to so-called Bayesian optimality criteria [see

e.g. Chaloner and Larntz (1989) or Chaloner and Verdinelli (1995)] and we will discuss this

approach separately in Section 5.

3 Applications of optimal experimental design in micro-

biology.

The parameters of models for describing quantitative data and predicting outcomes of microbio-

logical processes often have special names and their values play an important role in the analysis

of experimental results. Most of the models, which describe microbial growth are non-linear first

order differential equations in several variables. Variables are related by the stoichiometric co-

11



efficients and reflect mass-balances equations (Pirt, 1975; Howell, 1983; McMeekin, Ross, 2002).

Additionally at some time point (usually at initial point), all coefficients and variable definitions

are specified. One of the important stages of the mathematical modelling application is a

comparison of the model predictions with the real experimental data and identification of the

model parameters and optimal experimental designs are very useful at this stage.

The problem of identification of the model parameters concerns two important questions. The

first question is how well the mathematical model reflects the real microbiological process. This

question is a very difficult one; the answer always depends on the level of details of the research.

For example if one will consider degradation of organic pollutants, for example nitroaromatic

compounds, by a community of microorganisms with complex and unknown structure (let us

imagine activated sludge), then it should be sufficient to choose an unstructured growth model

such as the classical Monod model or some of its modifications such as Andrews or Haldane use

to describe this microbiological process (Ellis et al., 1996; Knightes, Peters, 2000; Goudar, Ellis

2001). On the other hand, if one will consider a much more “simple” microbiological process, such

as utilization of glucose by Escherichia coli, we would find that the Monod model is not a realistic

tool for describing this process and it is necessary to use models with more complicated structure

(Ferenci, 1999). One of the important methods for examining if a particular model is adequate

for a given microbiological process is the comparison of the model predictions with experimental

data. Unfortunately, a good fit of the model is only a necessary but not a sufficient condition to

be confident that the selected model is realistic. It is not difficult to identify models which yield a

good fit to experimental data but are not realistic (Hopkins, Leipold, 1996). The model selection

is not a formal procedure and it requires simultaneous theoretical and experimental biological

efforts.

If the first question is answered then the second problem is the identification of model parameters

and the question of the efficiency of an experiment arises. This problem plays the central role in

our paper. The following questions should be answered:

1) Is it possible to determine parameters of the mathematical model which describe the micro-

biological process using the particular experimental procedure? And if that answer is ’no’

can we find such scheme of measurements for which the answer is ’yes’?

2) Is it possible to make a relatively small number of experiment replications and measurements

without loosing information?

Without a clear understanding that the model parameters are unique and their values are realistic,

it is not possible to use them as characteristics of a microbiological process. Ignoring these

important questions leads to mistakes and unsuccessful application of mathematical models for the

analysis and prediction of microbiological processes. Although the mathematics cannot guarantee

that the necessary data is obtainable it can be extremely useful in the sense that it can significantly

reduce the number of necessary measurements and experimental replications. A good experimental

design can therefore help to economize laboratory time and expenses.
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The present section consists of two parts. First we will consider ideas of optimal experimental

design using the Monod model as an example. Next we will review some literature on applications

of optimal design techniques to microbiological models, which are not related to the Monod model.

3.1 The Monod model

The Monod model can describe several important characteristics of microbial growth in a simple

periodic culture of microorganisms. This model was proposed by Nobel Laureate J. Monod more

than 50 years ago and it is one of the basic models for quantitative microbiology (Monod, 1949,

Ferenci, 1999). After several decades of intensive studies many limitations of this model as well as

restrictions of its applications are very well known (Pirt, 1975; Baranyi, Roberts, 1995; Ferenci,

1999). At the same time many modifications of this model have been proposed in some specific

cases (Ellis et al., 1996; Fu, Mathews, 1999; Schirmer et al., 1999; Vanrolleghem et al., 1999).

The Monod model is still used very often without any modifications, especially in such fields

as environmental and industrial microbiology. For example, it is the most common model for

describing the dynamics of organic pollutant biodegradation (Blok, Struys, 1996; Knightes, Peters,

2000; Goudar, Ellis, 2001). At the same time the similarity of the Monod model and the Michaelis-

Menten equation provides a very wide application of this model type throughout biological and

biomedical sciences. This type of equation is very often used in biochemistry, plant physiology,

biophysics and pharmacology.

The Monod model (Monod, 1949, Pirt, 1975) for periodic culture (batch) experiments may be

presented as a first order differential equation:

η/(t) = µ(t)η(t)

where

µ(t) = θ1
s(t)

s(t) + θ2

,

s(t)− s0 =
η0 − η(t)

θ3

Here s0 = s(0) and η0 = η(0) are given initial conditions, i.e., initial concentrations of the

consuming substrate and microbial biomass, respectively. Three parameters characterize microbial

growth. Each parameter has its own traditional notation and name: θ1 is called the maximal

specific growth rate usually denoted by µmax, θ2 the saturation (affinity) constant denoted by Ks,

θ3 the yield coefficient usually denoted by Y . The variable t represents time, which varies in the

closed interval [0, T ]. Typical minimum values of T are several hours for optimal microbiological

media, whereas the maximum is one year or more for specialized groups of

microorganisms. All three parameters, initial conditions and variables are positive because of

natural biological conditions. This differential equation can be easily integrated as indicated in

the previous section.
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The general meaning of this model is that the rate of microbial growth (i.e. change of microbial

biomass) is equal to the current biomass value multiplied by the specific growth rate. Specific

growth is a function of the concentration of nutrients with two parameter characteristics for a

given microorganism (maximum specific growth rate and saturation constant or Michaelis-Menten

constant). At the same time increase of microbial biomass is proportional to the decrease of

nutrients where the coefficient of proportionality is the Yield coefficient Y .

The parameter estimation problem for the Monod and Monod-type models has been considered

many times with different mathematical and biological assumptions (Aborney, Williamson, 1978;

Holmberg, 1982; Baltes, 1994; Vanrolleghem et al., 1995). Some of the results are more theoretical

and other are more related to a specific experimental procedure. Usually the best technique for

parameter identification are chosen based on the experimental procedure. For Monod-type models

experimental procedures vary greatly dependent on measurements technique and reactor type.

There are several main variants of simple batch experiments, as indicated below:

1) The batch-type experiment where it is possible to make only measurements of the biomass

value or some parameter which is related to biomass activity, for example oxygen uptake or

carbon dioxide production (Blok, Struys, 1996; Vanrolleghem et al., 1995). The structural

identifiability of the parameters in the Monod model for this case was analyzed by Chappel

and Gofrey (1991).

2) Experiments where it is possible to make simultaneous measurement of the consumed sub-

strate and the biomass concentration. An example of this type of experiment is the in-

vestigation of the biodegradation of the volatile hydrophobic organic compounds such as

phenanthrene (Guha, Jaffe, 1996), where parameters in the Monod model were determined

by maximum likelihood estimation from direct measurements of the phenanthrene concentra-

tions and carbon dioxide production. Applications of the least squares estimation techniques

for this case were considered from a theoretical perspective in several publications (Aborney,

Willianson, 1972; Holmberg,1982; Saez, Rittmann, 1992)

To discuss the main ideas of optimal experimental design let us consider the first type of experi-

ment. For example, we are investigating biodegradation of some organic pollutant, which is the

unique source of organic and energy for the growing microorganisms (Sommer et al., 1995) and we

can only make measurements only of the biomass of microorganisms at different time points (or

for example respiratory activity). Then the results of the experiment is a table {ti, xi} with two

rows; the first row is the time of the measurement {ti}, and the second is the value a microbial

biomass {xi}. The first column of this table is called experimental design; it will be denoted as

ξ, and to be more mathematically precise we can say that it is a discrete probabilistic measure

with equal weights [see Section 2]. It is obvious that before we start an experiment it is important

to decide when we will make our measurements, but we should also leave open the possibility

of changing the experimental design after the experiment has started. To illustrate the optimal

design approach artificial experimental data sets will be used. This approach is very often used
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Figure 1: Artificial experimental data and the plot of the Monod solution (20 uniform points

experimental design with normal distributed experimental errors, dispersion 0.02).

with Monte-Carlo simulations as a tool for the analysis of regression models (Holmberg,1982; Ellis

et al., 1996; Melas, Strigul, 1999; Poschet et al., 2003). Let us decide to make measurements every

2 hours up to 40 hours; then our experimental design is the {0, 2, 4, 6 . . . 40}. A typical example

of data is illustrated in Figure 1. The experimental data will be simulated artificially. Let us fix

some parameter set called ’true’ value θ∗ , for example θ∗1 = 0.25; θ∗2 = 0.5; θ∗3 = 0.25 (this set is the

average of several experimental results, see Pirt, 1975). The Monod model solution is calculated

for this parameter θ∗ with the initial conditions s0 = 1 and η0 = 0.03. Consider the values of the

solution of the Monod model at the points of our experimental design, ηi = η(ti, θ), i = 1, . . . , 20.

At this stage the ideal set of experimental data is constructed. It is such a set of experimental

measurements which was obtained if there were no experimental errors in both measurements and

time of measurements.
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uniform design D-optimal design
θ̂1(µmax) θ̂2(Ks) θ̂3(Y ) θ̂1(µmax) θ̂2(Ks) θ̂3(Y )

1 0.1645 0.0795 0.2441 0.2545 0.5097 0.2492
2 0.3087 0.9239 0.2557 0.2541 0.5123 0.2455
3 0.2520 0.5295 0.2547 0.2452 0.4814 0.2556
4 0.1497 0.0477 0.2565 0.2661 0.5725 0.2519
5 0.1639 0.0597 0.2434 0.2451 0.4533 0.2487
6 0.1851 0.2446 0.2562 0.2690 0.5430 0.2521
7 0.2007 0.2456 0.2342 0.2489 0.5224 0.2568
8 0.2937 0.7057 0.2624 0.2389 0.4631 0.2519
9 0.3251 0.9019 0.2397 0.2569 0.5313 0.2534
10 0.2255 0.3607 0.2584 0.2510 0.4848 0.2458
Average 0.2269 0.4099 0.2505 0.2530 0.5074 0.2511
CD 0.0647 0.3379 0.0094 0.0093 0.0371 0.0038

Table 1. Replications of least squares estimates of the parameters in the Monod model with a uniform
design (20 equidistant distributed points in the interval [0, 40] and a local D-optimal design, which uses
only three different experimental conditions). The ’true’ parameters are θ∗1 = 0.25, θ∗2 = 0.5, θ∗2 = 0.25,
while the experimental errors are generated from a normal distribution with variance σ2 = 0.02.)

But the most important property of real experimental data is the existence of random error in

measurements. In real life there are never precise measurements; there are errors in the biomass

measurements (for any experimental technique) and sometimes significant errors in the time of

measurements. Suppose that those errors are random and they are normally distributed with

some fixed values of dispersion. For example suppose the variance of random errors equals 0.02.

Then the table of the artificial experimental data using the values of the microbial biomass are

the numbers randomly taken from this normal distribution with these values as averages, i.e.

η∗i = ηi + εi, where εi ∈ N(0; 0.02). Assume that we can repeat the experiment several times, say,

k times, and hence we will have k independent sets of the experimental data {η∗i }j, i = 1, . . . , 20,

j = 1, . . . , k. The number of replications k is a very important characteristic of any experiment

scheme, of course we would like to make as few experimental replications as possible without loss

of information. The experimental optimal design approach is useful in making k minimal.

Let us forget that we know the ’true’ parameter’ values θ∗ and assume that after the experiment

we have the results of the biomass measurements {η∗i }j. Then our aim is to estimate the Monod

model parameters from these data. This situation is very close to real problems (Knightes, Peters,

2000; Schirmer et al., 1999). What do we have at this stage? First, we know that the experiment

is very well described by the Monod model (note that in real applications the specification of a

nonlinear regression model is a nontrivial problem). Second, we have experimental data sets with

some realistic replication number k, say, k = 5.

The problem of determining the least squares estimate in a non-linear regression model (that is

the set of parameter estimates that minimizes the sum of squared residuals in (7)) is a nonlinear
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optimization problem, which can be solved by standard algorithms, for example the Gauss-Newton

method. In the following we denote the set of Monod parameter estimates as θ̂ = {θ̂1, θ̂2, θ̂3} and

the parameter estimates obtained from the k experiments by θ̂1, . . . , θ̂k. How do we know that

the obtained estimation θ̂ is close enough to the ’true’ parameters θ∗? Actually, we can say only

that the non-linear least squares estimate are good enough asymptotically, i.e. consistent and

asymptotically normally distributed if the sample size is sufficiently large. [see Jennrich (1969)

and Dette et al. (2003)]. Unfortunately mathematics cannot guarantee that any of the estimates

{θ̂j}j=1,...k will be close enough to the ‘true’ parameter θ∗ when the sample size is not very large.

As we can see from Table 1, the ten independent estimates of θ̂ do not provide precise estimations

of θ∗ (the question of what is a precise estimate is also very important; suppose at most 10% error

is the criterion of good estimation). The estimates of θ̂1, θ̂2 are not close to the ’true’ values θ∗1 and

θ∗2 in the presented replications and the standard deviation of them is large. At the same time the

estimate θ̂3 determines the component θ∗3 with sufficient accuracy practically in each replication.

For better understanding of this result let us make a correlation analysis of the results of 100

independent replications (k = 100). It is important that the estimators θ̂1 and θ̂2 are closely

correlated with the correlation coefficient 0.99, at the same time the estimator θ̂3 is not correlated

with the other two estimates. The two dimensional plot (Figure 2) of θ̂1 and θ̂2 can be considered

as the level surface of the non-linear square estimation, as long as the values of the min
∑

(η∗i −
η(ti, θ))

2 are very close in those experiments (table 1). It is interesting to examine the three

dimensional plot of
∑

(η∗i −η(ti, θ))2 for varying values of θ1 and θ2 (Figure 3). The lowest level of

the sum of squares is located on the line at the bottom; it looks very similar to a ravine. We can

conclude that linear dependence of θ̂1 and θ̂2 is a serious problem for a precise estimation of the

parameters θ∗1 and θ∗2 for realistic sample sizes. For the Monod type of nonlinearity, i.e. for the

form of the Michaelis-Menten function this problem was described many times by different groups

of researchers (Holmberg, 1982; Magbanua et al., 1998). It was shown that in the considered

experimental conditions it is not possible to identify parameters of the Monod model (Holmberg,

Ranta, 1982).
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Figure 2: Scatter plot of the estimations of the Monod model parameters: Maximum specific growth

rate and saturation constant, n = 100, r = 0.987, p < 0.0001.

Figure 3: Regression surface for one artificial data set (large point is the true parameters value).

18



Since the problem of the correlation between θ̂1 and θ̂2 plays a central role in there considerations it

is useful to obtain an elementary interpretation of this problem. In Figure 4, 5 and 6 we represent

results of the solution of the Monod differential equation for a variation of the model parameters.

As we can see that θ3 mostly determines the value of the horizontal asymptote of the solution η(t)

and that θ1, θ2 determine the bottom and upper bends of the solution. The lower bend is called

the exponential phase of microbial growth and the upper bend is the retardation phase (Monod,

1949). In some sense the change of the maximal specific growth rate θ1 (for example increase)

can be compensated by the opposite change of the Michaelis-Menten constant (decrease) and the

graph of the solution will be very similar. Hence, the correlation between θ̂1 and θ̂2 means that

if we plot such solutions of the Monod equation with very different values of θ1, θ2 than they will

have the same level of non-linear least squares estimation to the experimental points (Figure 7).

It is possible to consider several alternative approaches to deal with this problem:

(i) One could use a different mathematical model for the analysis of the data (but obviously in

this case the Monod model is the correct chosen model)

(ii) One could increase the number k of experimental replications (but it is not known how many

replications will guarantee good parameter estimates and each replication causes additional

expenses)

(iii) One could improve the precision of the experimental measurements to reduce the dispersion

of the measurement errors (this is not always possible and may require additional expensive

equipment)

(iv) One could apply another mathematical estimation technique, for example maximum likeli-

hood estimation, which is sometimes better than the simple non-linear least square regression

technique (Sommer et al., 1995; Knightes, Peters, 2000), or an estimation algorithm based

on the Lyapunov’s stability theory (Zhang, Guay, 2002).

(v) One could use an optimal experimental design to define the different experimental conditions

(there is no guarantee of improvement by a design obtained from asymptotic theory, but

if this approach will be efficient it will have more advantages compared to the previous

approaches because it does not cause additional costs).

Let us concentrate on the application of optimal experimental design and describe a way to con-

struct an experimental design such that parameters will be identified very well from a minimal

number of experimental measurements n and a minimal number k of replications of the experi-

ment. This approach for Monod-type models was developed theoretically (Munack, 1989; Baltes,

1994; Versyck et. all 1998; Dette et al., 2003) and applied in several types of experiments (Van-

rolleghem et al., 1995; Ossenbruggen et al., 1996; Merkel et al., 1996). First of all it is known

that the parameters of the Monod model can be identified (see Dette et. al. 2003; Petersen et al.,
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Figure 4: Effect of the maximum specific growth rate on the solution of the Monod equation

(maximal specific growth rate was changed from 0.1 to 0.5 with step 0.05, other parameters were

fixed (0.5, 0.25); initial conditions x0 = 0.3, S0 = 1).

Figure 5: Effect of the Michaelis-Menten constant on the solution of the Monod equation (the

Michaelis-Menten constant was changed from 0.1 to 1.9 with step 0.3, other parameters were fixed

(0.25, 0.25); initial conditions x0 = 0.3, S0 = 1).
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Figure 6: Effect of the Yield coefficient on the solution of the Monod equation (the Yield coefficient

was changed from 0.05 to 0.3 with step 0.05, the other parameters were fixed (0.25, 0.5); initial

conditions x0 = 0.3, S0 = 1).
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Figure 7: Illustration of the correlation of parameter estimations problem. Three solutions of

the Monod model with different parameters but same least square value from the artificial exper-

imental data set: red: (0.25, 0.5, 0.25) true parameter set; green: (0.1497, 0.047, 0.2565); blue:

(0.3418, 0.8224, 0.2547).
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2003; Holmberg, Ranta, 1982; Chappel, Gofrey, 1991). The minimum values of the least squares

estimation for the regression model in a two dimensional problem give an ellipse, and if the es-

timates of the parameters are closely correlated (as θ̂1 and θ̂2) then the ellipse is very elongated

(Figure 2, 3); when parameters are not correlated this regression ellipse is a circle. If we consider

a problem of 3 parameters then the resulting object is a 3 dimensional ellipsoid. But in this case

parameter θ3 is estimated very well by any experimental design which includes measurements of

the stationary phase of microbial growth. Then our problem is two dimensional, i.e. we need to

estimate θ1, θ2. The eigenvalues of the Fisher information matrix are determined by the axes of

this ellipse and their lengths are proportional to the square root of the inverse of the eigenvalues.

The determinant of the Fisher information matrix is the area of this regression ellipse. Our ob-

jective is to find an optimal experimental design in order to make this regression ellipse small in

some sense.

It was proved in (Dette et al., 2003) that the local D-optimal design for the Monod model is a

3-point design. Therefore to identify the Monod parameters it is enough to take measurements of

the growing biomass only 3 times in the optimal time. The two points of the optimal design are on

the lower and upper bends and the third point is on the horizontal asymptote. We can give a non-

formal interpretation of this optimal design as follows. To obtain good estimates of our parameters

we should make measurements at points of the microbial growth curve where the curve changes

its behavior determined by the parameters, i.e. the maximal specific growth rate determines the

exponential phase of growth (Figure 4) and Michaelis-Menten constant determines the retardation

phase of microbial growth (Figure 5). Then to obtain good estimates of those parameters it is

necessary to take measurements at some critical points in the middle of those growth phases (i.e.

in the middle of the lower and the upper bends). As for the Yield coefficient, then it is obvious that

this parameter can be determined from one measurement of the stationary growth phase (Figure

6). It seems truly amazing that the results obtained with advanced mathematical techniques can

be explained in such a simple and obvious way.

Now having constructed the optimal designs we are facing several very important questions, which

will determine how useful the optimal experimental design approach is for the Monod model. Some

of the questions are theoretical, some practical.

1) How efficient is the application of the non-linear optimal design in our experiments? Do we

obtain a significant advantage from the application of those methods or may be some naive

experimental designs (as the uniform design) be nearly as good?

2) What is the relation between local D-optimal design and other types of local optimal ex-

perimental designs? Maybe, for example, local E-optimal design will turn out to be more

efficient in this case.

3) How precise should measurements be at optimal points? How stable is the optimal design

with respect to experimental errors in the measurements?
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4) The initial value of parameters θ0 is crucial for the construction and performance of the

optimal design, What will the result of the experiment if this value deviates substantially

from the ’true’ value of the parameters? How will the optimal design change if the actual

values of the parameters are not very close to the initial values?

Each of those questions is important in some sense. If this type of optimal design is not efficient

compared to some naive experimental designs or if a much more efficient optimal design of another

type exists we can reject this approach. If an optimal design is very efficient but not stable with

respect to the experimental measurement error or is very sensitive to a change in the values of

initial parameters, the design may also be inappropriate for practical purposes.

For optimal experimental design in the Monod model all those questions are answered in the

affirmative and the answers are very positive. The improved efficiency of the obtained optimal

design over the previous uniform design is obvious from the parameters estimation data (Table

1). The measurements in 3 optimal points provide much better approximations of the parameter

θ∗ than the measurements in 20 uniform time points! More statistically significant results relating

the efficiency of the constricted optimal design can be found in the literature (Dette et al., 2003).

The comparison of different optimal designs, also has been done (Dette et al., 2002). It has been

found that E- and e2- optimal designs are more efficient than D-optimal designs for estimating the

parameters θ1 and θ2 but the D-optimal design is more efficient for the estimation of θ3. However,

if improvement of the accuracy in the estimation of the parameters θ1and θ2 is considered to be

more important, then the E- and e2-optimal designs have some advantages (Dette et al., 2002).

The third and fourth questions also have been answered (Dette et al., 2002, 2003). It was found

that optimal designs for the Monod model are robust with respect to the experimental errors and

with respect to moderate misspecifications of the initial parameter.

Several theoretical considerations for microbiological models related to the Monod model have been

published. Munack (1989) calculated the optimal feeding strategy for identification of Monod-type

models using the modified E-criterion. Versyck, with colleagues (Versyck, 1998), considered the

fed-batch reactor and compared modified E-criterion for Monod and Holdane kinetics. A theoret-

ical comparison of those two models, including consideration of optimal experimental designs for

parameter estimation and optimal control of the microbiological reactor, was undertaken by Smets

with colleagues (Smets et al., 2002), where the modified E-criterion and D-criterion were under

consideration. Berkholz, with colleagues (Berkholz et al., 2000), applied modified E-criterion in

order to identify parameters of fed-batch hyaluronidase fermentation by Streptococus agalactiae.

The application of optimal experimental design for parameter estimation of the Monod model was

considered by Vanrolleghem with coauthors (Vanrolleghem et al., 1995) for activated sludge res-

piration. Growing microbial biomass in fed-batch experiments was characterized by their oxygen

uptake with a respirograph biosensor. The single Monod model in specific form was successfully

applied to the description of activated sludge kinetics:

dS1

dt
= −µmaxX

Y1

S1

Km1 + S1

(11)
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OURex = −(1− Y1)
dS1

dt
,(12)

where S1 denotes the substrate concentration, X is the biomass concentration, Y1 the yield coef-

ficient, µmax the maximal specific growth rate, Km1 the saturation affinity constant and OURex

the exogenous oxygen uptake rate. The important assumption in this model is that the biomass

concentration X is considered as a constant, because the ratio S1/X is low and biomass growth

can be neglected (dX
dt

= 0). The efficiency of the D- and E- optimal designs for the estimation and

identification of the Monod parameters was demonstrated in the experiments of organic substrate

(acetate was chosen) utilization by activated sludge.

D-optimal designs have been very useful for the identification of parameters of the nitrification

model for activated sludge batch experiments (Ossenbruggen et al., 1996). The respiration rate

of ammonium and nitrite was presented as a sum of two Michaelis-Menten functions, that is

q0 =
kNHSNH

KNH + SNH

+
kNOSNO

KNO + SNO

(13)

where q0 denotes the specific respiration rate (oxygen consumption), SNH is the ammonium (NH+
4 )

concentration, SNO the nitrite (NO−2 ) concentration, kNH , kNO the maximum specific respiration

rates, and KNH , KNO the half saturation constants for SNH and SNO, respectively. A D-optimality

criterion was used to find good designs to model the two step nitrification process with piece-wise

non-linear models of ammonium and nitrite concentration. The experimental part included a

series of 14 batch runs where activated sludge was spiked with ammonium chloride and sodium

nitrite individually and in combination with recording of respiration activity.

Another model for activated sludge process is the ASM Model No.1 incorporating carbon oxidation,

nitrification and denitrification processes (Vanrolleghem et al., 1999; Hidalgo, Ayesa, 2001). This

model describes the wastewater treatment process by activated sludge and is based on the Monod-

type kinetics. The complete model contains 13 variables and 19 parameters. The structural

identifiability and the optimal experimental design problem for the simplest modifications with

two or three unknown parameters of ASM Model No.1 were investigated (Dochain et al., 1995;

Vanrolleghem et al., 1999; Hidalgo, Ayesa, 2001).

Effective application of optimal experimental design to the anaerobic degradation of pollutants

was developed by Merkel with colleagues (Merkel et al., 1996). The Monod type equation describes

kinetics of anaerobic biodegradation of acetic acid in the batch and fed-batch experiments. The

application of the optimal design technique allowed for accurate estimation of Monod parameters.

The Monod or Michaelis-Menten type of non-linearity is incorporated in a large number of math-

ematical models used in biomedical sciences. The ideas of the optimal experimental design can

be very useful for such situations. For example, the D-optimal design is efficient for the model

based on the Michaelis-Menten equation with first-order decay of the enzyme describing batch

enzymatic reaction where enzyme activity decades with time (Malcata, 1992). The problem of op-

timal design was considered many times from theoretical perspective and also experimentally for
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ligand-receptor interactions, enzymatic reactions and pharmacokinetics described by the models

related to the Michaelis-Menten model (Johnson, Berthouex, 1975; Zaitcev et al., 1987; Rovati et

al., 1988; Dunn, 1988; Dette, Wong, 1999; Hooker et al. 2003; Foracchia et al., 2003, Murphy et

al., 2003).

3.2 Application of optimal experimental design in microbiological mod-

els

Numerous mathematical models other then the Monod are used in microbiology to describe ki-

netic processes. Practically all the famous theoretical biology growth models (such as Logistic,

Gompertz, Exponential models etc.) and the usual empirical regression models (linear, polyno-

mial, exponential, different probability distributions etc.) have been applied to study processes in

microbiology. Some of them were modified and their parameters have special names and precise

meanings in particular areas of microbiology. There are many analytical considerations of the op-

timal experiment design problem for models which are used in microbiology (Table 2) and several

very successful examples of application of this technique in experimental practice.

3.2.1 Empirical regression models and growth models

Linear regression models

Linear regression models are often used in microbiology and science in general. The optimal

experimental design problem for the linear model is one of the classical and very extensively

investigated problems in the experimental design area (Fedorov, 1972; Pukelsheim, 1993). The

classical example of the successful application of D-optimal experimental design for the linear

model in microbiology is the design of an experiment for DNA extraction from the anaerobic

rumen microbial community (Broudiscou et al., 1998). The objective of the experiment is to assess

the efficiency of the enzymatic pretreatment and to screen a number of detergents to maximize

cell breakage and DNA recovery rate. Several potential detergents were tested: two enzymes

(lysozyme and proteinase K) and five detergents (CHAPS, deoxycholic acid (SD), sodium dodecyl

sulfate (SDS), sodiun lauroyl sarcosine (SLaS) and triton X-100). The following linear model with

seven factors was applied to optimize DNA recovery

y = b0 + b1 ∗ (Proteinase K) + b2 ∗ (Lysozime) + b3 ∗ (CHAPS) + b4 ∗ (SD)

+ b5 ∗ (SDS) + b6 ∗ (Triton X-100) + b7 ∗ (SLaS).

Here bi, i = 0, . . . , 7 are the unknown coefficients to be estimated. Also the variables ’Proteinase

K’ and ’Lysozime’ were mutually excluded, as they relate to the same factor. The D-optimal

design was numerically calculated by the NEMROD software (LPRAI, Universite Aix-Marseille

III, France). This method gave the optimal quantity of detergents for maximization of DNA

recovery.
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Exponential models

Exponential models are very often used for describing growth and death of microorganisms, dose-

response analysis and risk assessment (Coleman, Marks, 1998), and kinetics of metabolite produc-

tion. Exponential models are also incorporated in the numerous model in predictive microbiology

for describing effects of temperature (Geeraerd et al., 2000). The simplest single exponential

model for microbial growth can be presented as a first-order differential equation

dX

dt
= µmX

where, X is a biomass concentration and µm the maximal specific growth rate. In this context the

closely associated parameter, called the doubling time τ , is very often used in microbiology, i.e.

τ =
ln 2

µm

.

The more complicated exponential models, including sums of several exponential functions, are

also applied. For example, the model (Cobaleda et al., 1994), which is sum of two exponential

terms with four unknown parameters, was used to fit the kinetic data of fusion between Newcastle

disease virus and erythrocyte ghosts, i.e.

F (t) = A1[1− exp(−k1t)] + A2[1− exp(−k2t)],

where, A1, A2, k1, k2 are constant (unknown) parameters and t represents time. The first expo-

nential equation represents a fast reaction, which is the viral protein-dependent fusion process

itself, and the second exponential equation represents a slow nonspecific dequenching reaction

(Cobaleda et al.1994). Another model, which is the sum of two exponentials with three unknown

parameters, was used to describe Escherichia coli inactivation by pulsed electric fields (Alvarez

et al., 2003). The biological meaning of this model is that in one population of microorganisms

two subpopulations exist, where the first population is sensitive with respect to the inactivating

factor and the second population is resistant (Pruitt, Kamau, 1993), i.e.

S(t) = p exp(−k1t) + (1− p) exp(−k2t),

where S(t) denotes the fraction of total survivors, t is the treatment time, p is the fraction of

survivors in population 1 (sensitive population), (1−p) is the fraction of survivors in population 2

(resistant population) and k1, k2 are the specific death rates of subpopulation 1 and 2 respectively.

The optimal design of experiments for some of the exponential-type models were analyzed many

times and their theoretical properties are well known (Melas, 1978; Mukhopadhyay, Haines, 1994;

Dette, Neugebauer, 1997; Han, Chaloner, 2003; Dette, Melas and Pepelyshev, 2003b). However,

because the number of concrete practical applications is very small, several examples of applica-

tions of optimal designs for exponential models in food microbiology will be considered in Section

3.2.2 of this paper.
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Logistic models

The logistic type models is traditionally very often used in biology and in particular in microbiology

for the description dynamic of microbial growth, infection processes and risk assessment (Peleg,

1997; Coleman, Marks, 1998; Ratkowsky, 2002; Pouillot, 2003). The simple continuous logistic

model for microbial growth can be written as a first-order non-linear differential equation, that is

dX

dt
= µmX(1− kX),

where, X is a biomass concentration, µm is the maximal specific growth rate, and k is a logistic

growth constant. The biological meaning of the logistic growth constant k is the inverse of the

maximal possible biomass concentration, i.e. K = 1
k
.

The logistic model is one of the basic models in ecology, where it well-know as the Verhilst-

Pearl equation. This equation describes density-dependent growth of the biological population

(Nicholson, 1954). The parameters of the logistic equation are the specific growth rate (r = µm)

and maximal size of population (K = 1/k) and have fundamental meanings in ecology as they

are the basis for the concepts of r- and K- selections (May, 1981). It is interesting to note that

the logistic equation can be described as the first two terms of Taylor’s expansion of the growth

equation. We will shortly present this classical consideration as developed by Lotka (1925).

Let us assume that the population (microbial culture) growth rate at any moment is a function

of the population size (number or concentration of microorganisms), i.e.

dX

dt
= f(X).

Usually the function f(X) can be expanded in a convergent Taylor series, that is

dX

dt
= c0 + c1X + c2X

2 + . . .

If X = 0 then c0 should be equal 0 as well, because it is necessary that there is at least one

microorganism for the population to grow. Then if we will set f(X) = c1X, the exponential

model for the microbial growth is obtained where the coefficient c1 is the maximal specific growth

rate µm. The important property of this equation is that the zero growth rate may be registered

only at X = 0 and a positive growth rate dX
dt
> 0 is observed at any population size.

If the next term of the Taylor series is also under consideration, i.e.

f(X) = c1X + c2X
2,

then the logistic equation, with the coefficients c1 = µm and c2 = −µmk, is obtained. The

important property of the logistic equation is that it is the simplest equation, where f(X) has two

roots, one at X = 0 and the second when the number of microorganisms X reaches some positive

saturation level. This property provides a typical sigmoid growth curve.
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The logistic equation can be integrated by separation of variables and the solution is

X =
1

k(1− eα−µmt)
,

where α is the constant of integration, which determines the position of the solution relative to

the origin. The asymptotic value limt→∞X = 1/k is the saturation level of the microbial culture

(population) which can not be exceeded because of the limitations of cultivation or of the natural

environment.

Another important variant of the logistic equations is the discrete logistic equation, which is

named in ecology as the difference logistic equation. In this case the variable t is not instantaneous

time, but discrete time, and 4t notation

is used instead of dt notation. A difference logistic equation can be presented in the form

Xn+1 = rXn(1−Xn) , 0 < X < 1,

where Xn and Xn+1 are the fractions (of the habitat maximum capacity, for example) of a pop-

ulation in the time step, or generation, n and n + 1; and r is the constant characterizing the

population in the particular environmental conditions. Several modifications of this discrete lo-

gistic equation which are using in the microbiology, were recently considered by Peleg (1997).

Furthermore there exist several differences equations which an analogous to the logistic equation

as density-dependent equations (May, 1981).

Local optimal experimental designs for the logistic model based on the D- and E-criteria and

Bayesian designs have been extensively investigated from a theoretical prospective (Chaloner,

Larntz, 1989; Ford et al.1992, Sebastiani, Settimi, 1997). We will briefly consider the Bayesian

optimal design problem for the logistic model in Section 4.

The Hill model

The Hill equation (Bezeau, Endrenyi, 1986; Liu, Tzeng, 2000) is an empirical equation widely

applied in biomedical sciences. This equation was proposed by A.V. Hill in 1910 to describe the

binding of oxygen to hemoglobin (Bezeau, Endrenyi, 1986). Since then it has been widely applied

in physiology, pharmacokinetic modeling and as one of the growth equations (Savageau, 1980).

In microbiology this equation, for example, has been successfully applied to describe sporulation

kinetics of Bacillus thuringiensis (Liu, Tzeng, 2000). In terms of the enzyme kinetics the Hill

equation describes the relationship between substrate concentration (c) and reaction velocity (v):

v =
V cN

(KN + cN)
,

where V is the maximal velocity, K is the substrate concentration required to yield half of the

maximal velocity (analogue of the Michaelis-Menten coefficient), and N is the Hill coefficient,

which is the measure of deviation from hyperbolicity.
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It is obvious that when N = 1 the Hill model gives the Michaelis-Menten model. At the same

time the Hill equation is equivalent to the 3-parameter logistic function (Pregibon, 1983)

y = A
eα+βx

1 + eα+βx
,

where A = V, β = N,α = −N lnK, and x = ln c. The D-optimal experimental design for the

determination of the parameters V,K and N of the Hill equation or, what is the same, A, β

and α of the logistic function was investigated by M. Bezeau and L. Endrenyi (1986). 3-point

optimal designs were constructed numerically and several important properties of the design were

considered. In particular, the effect of the additive error of the observed value was investigated

under the assumption that the error can be described by the power model, in which the variance

of the error is proportional to the ’true’ response raised to some power, i.e.

σ2
i = σ2

0v
2λ
i ,

where 0 ≤ λ ≤ 1, and the variance σ2
0 is the constant of proportionality. When λ = 0 it reduces

to the case of homogeneous variance and when λ = 1 it reduces to the case of constant relative

(or constant percentage) errors. The effect on the design efficiency of the parameter λ and initial

parameter values was investigated. It was found that D-optimal designs for the Hill equation are

robust with respect to moderate deviations from the assumed parameter values and efficient for

different values of λ. The optimal designs were compared with the uniformly and logarithmically

spaced designs. In general, the optimal design was always better than uniform design, but 4-, 5-,

6-point logarithmically designs also performed very well. The optimal design for the case λ = 0.5

generally outperformed both uniformly and logarithmically spaced designs.

Generalized microbial growth models

The model of microbial growth developed by J. Baranyi and colleagues (Baranyi et al., 1993) is

very often used to describe microbial growth in food. This growth model has some advantages

compared to the other famous models of microbial growth in food, because it provides a better

approximation of the lag-phase of microbial culture growth (Baranyi, Roberts, 1995). The crucial

step in this approach is the consideration of the potential growth and actual growth concept. It

is well know that in most experiments the potential growth rate of the culture is higher then

the actual growth rate if the time is close to inoculation. J. Baranyi et al. (1993) suggested the

use of the ratio of the actual to the potential growth in a given environment to characterize the

process of adjustment of the cells to the new environment. The pre-inoculation environment (the

subculture) is denoted by E1 and the actual (post-inoculation) environment by E2.

When this difference is neglected (E1 = E2) then the microbial growth is described by the usual

first-order autonomous differential equation of the form

dx

dt
= µ(x)x,
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where x is the concentration of microorganisms and µ(x) is the specific growth rate. The change of

µ(x) is determined by the model of microbial kinetics; it may be any of the Exponential, Monod,

Gompertz or Logistic equations.

But in some cases the difference between E1 and E2 is large, or very important, and it cannot be

neglected. For such cases an adjustment function α(t) from E1 to E2 is introduced. This function

depends on E1 and E2, 0 ≤ α(t) ≤ 1 for t ≥ 0, α(t) → 1, and monotone increasingly as t → ∞.

Also it is assumed that µ(x) is independent of E1 and the same as in the classical autonomous

models. Then the differential equation which describes microbial growth is the non-autonomous

differential equation
dx

dt
= α(t)µ(x)x.

The class of the adjustment functions that were suggested have the form

αn(t) =
tn

λn + tn
,

where λ and n are positive numbers (Baranyi et al., 1993). It is obvious that those functions are

special cases of the Hill equation when V = 1. The problem of the identification of parameters of

this model was considered by Grijspeerdt and Vanrolleghem (1999). The structural identifiability

was investigated using the Taylor series expansion. Practical identifiability and optimal design for

this model were also considered. The local D-optimal design was constructed numerically and its

efficiency and robustness were investigated using Monte Carlo simulations. The obtained results

demonstrated the potential effectivity of the optimal experimental design approach.

3.2.2 Optimal experimental design in microbial inactivation processes

Predictive microbiology (the quantitative microbial ecology of food) has received much attention

during the last few decades. This relatively young research area is devoted to the analysis of

microbial behavior in food (McMeekin et al. 2002). The central concept of predictive microbiology

is that the growth, survival and death responses of microbes in foods should be modeled with

respect to the main controlling factors, such as temperature, pH and water activity (Baranyi,

Robert, 1994; Roberts, 1995).

There is a difference between modelling approaches used in biotechnology and environmental

microbiology and those used in predictive microbiology. The main differences are (Roberts, 1995)

(i) The bacterial concentration of concern to food microbiologists is lower than that for fermen-

tation microbiologists, and it may be inappropriate to use fermentation models.

(ii) The aim is different: in predictive microbiology it is important to prevent growth of mi-

croorganisms rather than optimize it.

(iii) In food microbiology, as in environmental microbiology, the controlling factors influencing

growth are generally rather heterogeneous and often poorly quantified.
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(iv) Many foods are nutritionally rich, so nutrient limitation of microbial growth does not occur.

The classification techniques of the mathematical models used in predictive microbiology have

unique features. Simple classification is based on the microbial population behavior (McMeekin

and Ross, 2002) described growth models, limit of growth (interface) models and inactivation

models.

Evaluation of the death of microorganisms is one of the most typical problems in food microbiology.

Usually the experimental aspects of the research include a large number of experiments, where

the main affective factor and other factors vary. Therefore application of optimal experimental

designs is a way to significantly reduce the cost of the experiments and to improve the quality

of the obtained results. The typical problem is the analysis of the temperature inactivation

of microorganisms; different variations of temperature effects are most often used for growth

inhibition or killing microorganisms. The mathematical theory of this process has received much

attention in recent decades.

The first-order kinetic model is the simplest and is often useful for describing inactivation of

microorganisms in one factor experiments. For example, at a constant temperature

dN

dt
= −k(T )N,

where N is the microbial population number (or density in a homogeneous model), and k is the

specific rate of thermal inactivation, which is a constant at a given temperature. It is obvious that

for this type of experiment the very thoroughly investigated optimal designs for the exponential

regression model can be efficiently applied.

The Arrhenius-type model (Bigelow, 1921) and its subsequent modifications (Bernaerts, 2000) are

very often used for determining the inactivation constant k, i.e.

k(T ) =
2.303

Dref

exp

[
2.303

z
(T − Tref )

]
,

where Dref is the decimal reduction time for the reference temperature Tref , and z is the number

of degrees of temperature change required for a tenfold change D value, i.e. decimal reduction

time for an arbitrary temperature.

It is very common in food science to use this model and so the problem of the estimation of

the parameters D and z is very important. Optimal experimental designs for this model were

developed numerically using the D-criterion (Cunha et al., 1997, Cunha, Oliveira, 2000) and the

modified E-criterion (Versyck et al., 1999) . It was demonstrated theoretically that the optimal

experimental designs are efficient and to illustrate the concept, a case study has been done using

data from the literature (Cunha et al., 1997).

Another way to inactivate microorganisms by temperature is to keep products under suboptimal

temperatures for microbial growth. Mathematical models used for describing those processes are

not principally different from models of heat inactivation. Among the most popular models is
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the Ratkowsky model (Ratkowsky et al., 1982) and its modifications (Baranyi, Robert, 1994).

Bernaerts and colleagues (Bernaerts et al., 2000) not only demonstrated theoretical efficiency

of the E-optimal design for experiments in the Ratkowsky-type model but also conducted some

practical experiments with Escherichia coli K12 to illustrate the application of the optimal design.

The model for growth of microorganisms as a function of temperature, proposed by Baranyi and

Roberts (1994), is given by

dn

dt
=

θ(t)

θ(t) + 1
µmax[T (t)] [1− exp(n(t)− nmax)]

dθ(t)

dt
= µmax[T (t)]θ(t)

with an additional equation called the Square Root model, i.e.√
µmax[T (t)] = b(T (t)− Tmin),

where n(t) is the natural logarithm of the cell density (for homogeneous case), nmax is the natural

logarithm of the maximal population density Nmax, and θ(t) is the variable related to the physio-

logic state of the microbial cells. The initial value θ(0) determines the lag phase duration which

is assumed to be related to the physiologic condition of the inoculum. The maximum specific

growth rate µmax, as a function of the suboptimal growth temperature T (t), is modelled by the

two parameter model of Ratkowsky et al. (1982), where b is a regression coefficient and Tmin is

termed the theoretical minimum growth temperature.

Theoretical results enabled the authors (Bernaerts et al., 2000) to construct such optimal dynamic

temperature inputs, where the parameters of the Ratkowsky square root model were identified

from a single set of cell density measurements. In this particular case the model parameters

are uncorrelated, which significantly simplifies the mathematical computations and efficiency of

the optimal design technique. In a later paper they demonstrated (Bernaerts et al., 2002) that a

theoretical design with the modified E-criterion of the optimal temperature input was very efficient

and relevant to real experimental applications. Constrained optimal temperature input guaranteed

model validity and yielded accurate Square Root model parameters. The experimental part of the

research included growth experiments with E. coli K12 in a computer-controlled bioreactor under

optimal-valued temperature conditions and compared well with the classical static experimental

design.

The probabilistic approach for the analysis of the thermal inactivation considers lethal effects as

probabilities (Turner, 1975; Peleg, Cole, 1998). This approach is alternative to the deterministic

consideration of the microbial inactivation kinetics. The initial assumptions of the deterministic

approach relate to the statements that the number of microorganisms is so large that it is possible

to consider the process as deterministic where each cell has the same probability of dying. Under

those assumptions, the application of the differential equations, such as, for example, the first order

kinetics, is appropriate. In the probabilistic approach the death of each cell is considered as a
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single event and the ”death curve” is not a solution of a deterministic equation, but a probabilistic

distribution (Turner, 1975; Peleg, Cole, 1998; Martinus, van Boekel, 2002). At the same time, there

is a general theory of growth models developed in theoretical biology, where a natural connection

between the probabilistic and deterministic approaches and different types of growth models is

established (Turner et al., 1976; Turner, Pruitt, 1977; Savageau, 1979; Chen, Christensen, 1985).

In particular the Monod equation under certain assumptions can be transformed into a special

case of the logistic probability distribution (Christensen, Nyholm, 1984).

The logical consideration of the probabilistic inactivation process leads to the Weibull distribution

as the most appropriate mathematical model for the interpretation of survival curves (Christensen,

1984; Peleg, Cole, 1998). In general, the Weibull distribution is widely used for reliability data,

particularly the strengths of materials and failure times (Smith, 1991). In biology this distri-

bution has been used as one of the growth models (Savagean, 1980), for dose-response function

in toxicological studies (Christensen, 1984), and for the analysis of the microbial survival curves

after different deactivation processes (Peleg, Cole, 1998; Peleg, 2000; Martinus, van Boekel, 2002;

Collado et al., 2003). Other types of probabilistic distributions are also often applied for survival

process analyses (Peleg, Cole, 1998; Peleg, 2000), but the Weibull distribution has some natural

advantages such as flexibility in fitting experimental data and using a minimal number of param-

eters (Martinus, van Boekel, 2002). The probability density function of the Weibull distribution

(Smith, 1991) is given by

f(t) =

{ β
α
( t

α
)β−1 exp(−( t

α
)β), t > 0

0, t ≤ 0
,

where α, β > 0. The D-optimal experimental design for estimation of the kinetics parameters of

processes described by the Weibull probability distribution function was considered by Cunha and

colleagues (Cunha et al., 1998). The optimal designs were numerically constructed for two different

types of experiments. The first was the Weibull process of microbial thermal death under the

constant temperature. The optimal design in this case consisted of the set of two time sampling

points, where fractional concentrations are irrational numbers (approximately η1 = 0.7032 and

η2 = 0.19245) such that their product equals 1
e2 . The second experimental situation consisted of

isothermal experiments conducted over a range of temperatures. In this case the rate parameter

α of the Weibull distribution depended on temperature and followed the Arrhenius-type behavior

1

αi

=
1

α0

exp(− Ea

RTi

).

At the same time, the parameter of the Weibull distribution β indicates the kinetic pattern and

is independent of the temperature, within a limited range of temperatures. Those assumptions

were confirmed in numerous published experiments (Cunha et al., 1998). Therefore, the kinetic

parameters for this practical situation are α0, Ea and β. In this case the optimal design required

not only the selection of sampling times but also the selection of optimal temperatures. It was
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found that the most informative measurements will be obtained in two isothermal experiments

at the limit temperatures of the range of interest. In one experiment, two samples should be

taken with the same conversions as in the first discussed experiment with constant temperature

(η1 = 0.7032 and η2 = 0.19245), while in the other experiment one sample should be taken at the

η3 = 1
e
. Several case studies, based on published data, of the application of optimal experimental

design for the Weibull model were presented by Cunha et al. (1998).

4 Bayesian methods for regression models

The Bayesian methods are receiving much attention in biomedical sciences and pharmacokinet-

ics (Merle, Mentre, 1997) and ecological research (Bois, 2001; Dowl, Meyer, 2003; Marin et al.,

2003). Bayesian methods also play a role in applications to the different networks such as Markov

chains describing bacteria dynamics in the drinking-water distribution systems (Bois et al., 1997)

and estimation of parameters of the growth of Listeria monocytogenes in milk (Pouillot et al.,

2003), neural probabilistic networks for analysis of the growth phases of Bacillus subtilis under

the Gompertz model assumption (Simon, Karim, 2001) and spatial structure of plant populations

(Marin et al., 2003). The application of Bayesian methods for the the construction of good exper-

imental designs in nonlinear regression models has been actively investigated in recent decades;

it was considered in connection with the Michaelis-Menten type model in enzyme kinetics (Mur-

phy et al., 2002, 2003), with the exponential and related first-order equations (Chaloner, 1993;

Mukhopadhyay, Haines, 1995; Dette and Neugebauer, 1997; Sivaganesan et al., 2003), and with

the logistic equation (Chaloner, 1993; Dette, Neugebauer, 1996).

The Bayesian design approach is based on the idea that a prior distribution for the unknown

parameters can be specified. The posterior distribution of θ given the observations at the experi-

mental conditions is then used for point estimations, hypothesis testing and prediction.

To be more specific, let us consider the Bayesian approach for the example of the Logistic regression

which is very well investigated (Chaloner, Larntz, 1989; Chaloner, 1993; Dette, Neugebauer, 1996;

Sun et al. 1996; Smith, Ridout, 2003). The logistic regression model can be presented as a problem

of estimating the probability of success in the Bernoulli trial from a set of observations depending

on an explanatory variable x. The data is given in the set Y = {y1, .., yn}. The two unknown

parameters are µ, β, i.e. the vector θ = {µ, β}, and the probability of success is given by

p(x, θ) = 1/(1 + exp(−β(x− µ)).

The parameter µ is the value of x when the probability of success is 0.5. In microbiology and

toxicology this parameter has a very important meaning, namely the 50% level of the effect and

is denoted by LD50. The second parameter β is the slope in the logit scale.

Under some realistic assumptions it can be shown that the posterior distribution of θ is approx-

imately a multivariate normal distribution with mean equal to the maximum likelihood estimate
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of θ, say θ̂. Moroever, the covariance matrix is equal to the inverse of the observed Fisher infor-

mation matrix, i.e. the matrix of the second derivatives of the log likelihood function evaluated

at the maximum likelihood estimate of θ. It is also important to note that, for logistic regression,

the observed and expected Fisher information matrixes are identical. (Chaloner, Larntz, 1989).

For an experimental design ξ on X, with n distinct design points xi, i = 1, . . . n and proportions

ωi such that
∑n

i=1 ωi = 1, define (Chaloner, Larntz, 1989)

pi = p(xi, θ)(1− p(xi, θ)),

t =
n∑

i=1

piωi,

x = t−1

n∑
i=1

piωixi,

s =
∑

niωi(xi − x)2,

here t, x, and s all depend on the unknown parameter θ. The normalized Fisher information

matrix I(θ, η) is given by

I(θ, η) =

(
β2t −βt(x− µ)

−βt(x− µ) s+ t(x− µ)2

)
Because the matrix I(θ, η) is non-singular, the posterior distribution of θ using the design η is

approximately multivariate normal with mean θ̂ and covariance matrix (nI(θ̂, η))−1). Therefore

preposterior expected losses can be approximated using the prior distribution of θ as the predictive

distribution of θ̂.

Several different criteria can be used to determine an optimal experimental design [see Chaloner

and Larntz (1989), Chaloner and Verdinelli (1995) or Dette and Neugebauer (1996, 1997)]. For

example the Bayesian D-optimal is defined as the design, which maximizes the function

φ1(η) = Eθ log det I(θ, η).

An alternative criterion is to maximize the function

φ2(η) = −Eθ(trB(θ)I(θ, η)−1),

where B(θ) is a given symmetric 2 by 2 matrix. In the particular case where only linear combi-

nations of the parameters are of interest, the matrix B(θ) does not depend on θ and is a matrix

with known entries. If non-linear combinations of the parameters θi are of interest then B(θ)

has entries which are functions of θ. Some Bayesian interpretation of these criteria in terms of

minimization of expected loss can be found in Chaloner and Verdinelli (1995).

The theoretical efficiency of those criteria had been demonstrated by Chaloner and Larntz (1989).

They considered the uniform and independent prior distributions of β and η. The results of these
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authors suggested that the Bayesian methodology for this model is preferable to the classical

optimal experimental design procedure based on the best guest of parameters values, such as for

example the local D-optimal design.

The important particular case of the logistic model when the slope β is assumed to be known was

considered by Dette and Neugebauer (1996). They proved that under a rather general assumption

concerning the prior distribution pξ(θ), the Bayesian D-optimal design for the logistic regression

with one unknown parameter is the one point design at the point x∗ which is given by the unique

solution of the equation ∫
θ

2ex−θ

1 + ex−θ
pξ(θ)dθ − 1 = 0

The numerical investigation of the same one parametric regression model have shown that Bayesian

design of experiments is an efficient tool for the statistical inference in nonlinear models (Sun et

al., 1996).

Unfortunately Bayesian methods are not very often applied in microbiological practice despite

their potential effectiveness and well developed theoretical background. However several very in-

teresting examples of practical applications have been published recently. Bois with colleagues

(1997) applied a Bayesian approach to the network describing bacterial growth in the drinking-

water distribution system. Authors used a mechanistic compartmental model based on differential

equations to describe bacterial populations behavior in the network, affected by dissolved organic

carbon (DOC) and chlorine concentrations. The differential equations were based on the mass

conversation laws for the chemical reaction involved. Free living biomass was increased by con-

sumption biodegradable BOD, decreased by natural mortality and by killing by chlorine, also it

was balanced that biomass can attach to the cement walls and come from shearing off the walls.

Consumption of BOD were assumed to follow Monod’s kinetics. A Bayesian approach was used to

combine prior knowledge from the scientific literature about the possible range of values for each

model parameter, and data from experiments, in the context of the dynamics model parameters. A

priory truncated lognormal or loguniform distributions were assigned to the parameters based on

the literature. The joint posterior distribution of the parameters was determined numerically by

application of the Markov chain Monte Carlo techniques. This method gave an approximate con-

vergence in about 100000 iterations. Different realistic scenarios of the model system development

were considered.

Pouillot with colleagues (2003) applied Bayesian methods for the analyses of growth of Listeria

monocytogenes in milk under different temperatures of incubation. They developed a typical model

for the predictive microbiology based on the logistic equation with time delay, which represented

lag phase of microbial growth as a primary model and a secondary model which described the effect

of incubation temperature on the maximal specific growth rate. Published growth data (total 124

growth curves) of Listeria monocytogenes in milk was used to estimate the prior distributions

of parameters. Then using Markov chain Monte Carlo techniques with the WinBAGS software

(MRC Biostatistics Unit) the posterior parameter distributions were obtained.
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5 Conclusions

The present paper presents some results for optimal experimental design for estimating parameters

in nonlinear regression models, which are usually used in microbiology. Papers in the statistical

literature devoted to this problem provide some justification for the application of the least squares

method for estimating the unknown parameters in these nonlinear regression models. For a suf-

ficiently large sample size the least squares estimates are consistent and its distribution can be

approximated by a normal distrubution. Intensive simulation studies elucidated that for realistic

sizes of experiments the theoretical covariance matrix of the least suares estimator is rather close

to the sampling one. This observation provides a starting point for the construction and imple-

mentation of optimal experimental designs, which maximize or minimize an appropriate function

of the theoretical covariance matrix. Considerable efforts were paid to construct and study local

optimal designs. It is demonstrated that for many models in microbiology local optimal designs

are not too sensitive with respect to the specification of an initial value for the unknown param-

eter. Moreover, the application of these designs yields a substantial improvement with respect

to the accuracy of the estimates and a reduction or even to annihilation the correlation between

them.

In many cases the number of different experimantal conditions defined by a local optimal design

is equal to the number of parameters in the model. It is rather difficult and not always possible

to prove this merely theoretically, but it was confirmed for most of the commonly used models

in microbiology models by intensive empirical studies. Elaboration of more advanced Bayesian

or maximin-optimal designs seems to be promising, because these designs are more robust with

respect to a substantial misspecification of the unknown parameters by the experimenter. However,

the determination of optimal designs with respect to these more sophisticated optimlity criteria

is a substantially harder problem compared the local optimality criteria. So far Bayesian and

maximin optimal designs were constructed only for the most simplest models with one or two

nonlinear parameters.

It should be stressed that the implementation of optimal designs is a potentially very important

opportunity to improve efficiency of experimental studies in microbiology without increasing the

costs of the experiments. However, at present, there are only few real applications of optimal

designs in microbiological practice. The authors hope that this paper will clearly demonstrate

the practical benefits of the optimal design methodology for estimating parameters of nonlinear

regression models in microbiology.

Acknowledgements. The work of H. Dette and V.B. Melas was supported by the Deutsche
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