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Abstract� An investor faced with a contingent claim may eliminate risk by �super
�
hedging in a �nancial market� As this is often quite expensive� we study partial hedges
which require less capital and reduce the risk� In a previous paper we determined quantile
hedges which succeed with maximal probability� given a capital constraint� Here we
look for strategies which minimize the shortfall risk de�ned as the expectation of the
shortfall weighted by some loss function� The resulting e�cient hedges allow the investor
to interpolate in a systematic way between the extremes of no hedge and a perfect �super
�
hedge� depending on the accepted level of shortfall risk�
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�� Introduction

In a complete �nancial market a given contingent claim can be replicated by a self

�nancing trading strategy� and the cost of replication de�nes the price of the claim� In
incomplete �nancial markets one can still stay on the safe side by using a �superhedging�
strategy� cf� �ElQ ����
�� and �K �������� But from a practical point of view the cost of
superhedging is often too high� Also perfect �super
� hedging takes away the opportunity
of making a pro�t together with the risk of a loss�

Suppose that the investor is unwilling to put up the initial amount of capital required
by a perfect �super
� hedge and is ready to accept some risk� What is the optimal
�partial hedge� which can be achieved with a given smaller amount of capital� In order to
make this question precise we need a criterion expressing the investor�s attitude towards
the shortfall risk� In �FL ������� we introduced strategies of �quantile hedging� which
maximize the probability that a hedge is successful� In that case the investor applies a
dynamic version of the static Value at Risk concept� Just as the static VaR approach� the
dynamic concept of quantile hedging does not take into account the size of the shortfall
but only the probability of its occurrence�

In this paper we describe the investor�s attitude towards the shortfall in terms of a loss
function l� Convexity of l corresponds to risk aversion� The shortfall risk is de�ned as
the expectation of the shortfall weighted by the loss function� Our aim is to minimize
this shortfall risk� given some capital constraint� Instead we could prescribe a bound
on the shortfall risk and minimize the cost� In other words� we are looking for hedges
which are e�cient with respect to the partial ordering de�ned by the shortfall risk and
the initial capital� These e�cient hedges allow the investor to interpolate in a systematic
way between the extremes of a perfect hedge �no chance of making a pro�t� and no hedge
�full risk of shortfall� full chance of pro�t� depending on the accepted level of shortfall
risk�

In the special case l�x� � xp for p � �� our approach can be viewed as a dynamic
version of static risk analysis in terms of lower partial moments� see� e�g�� �F ��������
�Ba �������� �BaL �������� �HR �������� A systematic analysis of �coherent� measures of
risk in a static setting is given in �ADEH ������� where coherence is de�ned in terms of
monotonicity� homogeneity� and translation invariance with respect to adding amounts of
the riskless asset� But from the individual investor�s point of view� it seems to make sense
to relax these requirements to monotonicity and convexity� and in this case risk measures
of the type considered above with a convex loss function l appear� see �L ��������

We begin in section � by de�ning our optimization problem for a given contingent
claim H in a general semimartingale setting� Existence and essential uniqueness of the
solution is shown in section �� The optimal strategy consists in �super
� hedging a suitable

modi�ed claim eH � e�H where e� is some �randomized test� taking values in ��� ��� In the
special case l�x� � x� where we simply minimize the expected shortfall� we can construct
the optimal test e� by applying the Neyman Pearson lemma in direct analogy to the case
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of quantile hedging� see section 	 and �FL �������� In this case� the resulting claim eH
typically has the form of a knock
out option�

For a general convex loss function l the problem becomes more involved� In section 

we consider the complete case where the equivalent martingale measure is unique� Using
a method of �Ka ���
���� we show how the construction of the optimal test e� can again be
reduced to an application of the Neyman Pearson lemma� Typically the resulting claim �H
has a smoother structure than the knock
out options which occur in the case of quantile
hedging and in the case of a linear loss function�

In particular we consider the case of lower partial moments� i�e� l�x� � xp� Thus
we introduce a scale for the attitude towards risk� As p increases from � to �� the
e�cient hedges interpolate smoothly between the knock
out option and a shifted claimeH � �H � c��� If H is a call� then eH is a call at higher strike whose arbitrage
free price
equals the given initial capital� In section 
�	 we also consider the case p � � where
risk
averse behavior is replaced by risk
seeking behavior� As appetite for risk increases
and p decreases from � to �� the corresponding e�cient hedges converge to the knock
out
option which appears in the case of quantile hedging� Thus quantile hedging corresponds
to the bottom
end of our scale�

Alternatively we can use methods of convex duality� In section � we use a variant of
the methods of �CK ������� and of �KS ������� in order to describe the structure of the
solution in the general case� In the incomplete case we rely on the basic duality theorem in
�KS �������� Even in the complete case� these methods provide additional information on
the qualitative properties of the value function of our problem� In the linear case l�x� � x
and in a model driven by Brownian motion� similar results including constraints on the
strategies and margin requirements appear in �CK ������� and �C �������� In �P �������
convex duality methods are applied in a discrete time setting with l�x� � xp�

In order to illustrate our approach we compute in section � the e�cient hedges for a
call option in the standard case of a geometric Brownian motion with known volatility
and for the loss function l�x� � xp� While in the case of quantile hedging the optimal
strategy consists in replicating the option �knocked out� above a certain threshold� the
option is �knocked in� above some threshold if we minimize the expected shortfall� i�e��
in the case p � �� In the case p � � of risk aversion� the modi�ed options are no
longer �knocked out�in� but exhibit continuous payo�s� Finally in section � we study an
incomplete extension of the model where volatility is subject to a random jump�

It is a pleasure to thank Jack sa Cvitani!c� Freddy Delbaen and Paul Embrechts for
stimulating discussions�

�� Formulation of the problem

The discounted price process of the underlying asset is described as a semimartingale
X � �Xt�t����T � on a probability space �"�F � P � with �ltration �Ft�t����T �� For simplicity
we assume that F� is trivial� Let P denote the set of equivalent martingale measures� We
assume absence of arbitrage in the sense that P �� ��
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A self
�nancing strategy is given by an initial capital V� � � and by a predictable
process � such that the resulting value process

Vt � V� �

Z t

�

�sdXs �t � ��� T ������

is well de�ned� A strategy �V�� �� is called admissible if the corresponding value process
V satis�es

Vt � � �t � ��� T � � P � a�s������

Consider a contingent claim given by a FT 
measurable� nonnegative random variable
H� We assume

U� � sup
P ��P

E��H� �� ������

where E� denotes expectation with respect to P �� The value U� is the smallest amount V�
such that there exists an admissible strategy �V�� �� whose value process satis�es VT � H
P �a�s� This is well known in the complete case where the equivalent martingale measure
P � is unique� and where U� � E��H� is the unique arbitrage
free price of the contingent
claim H� For the general case see� e�g�� �ElQ ����
��� �Kr �������� �FKab ��������

As in the discussion of quantile hedging in �FL �������� we now ask what can be done if
the investor is unwilling or unable to put up the initial capital U�� What is the best hedge
the investor can achieve with a given smaller amount eV� � U�� In �FL ������� we took
as our optimality criterion the probability that the hedge is successful� In other words�
we were looking for an admissible strategy �V�� �� which minimizes the probability of a

shortfall P �VT � H� under the constraint V� � eV��
In this paper we want to control the size of the shortfall �H � VT �

�� not only the
probability that some shortfall occurs� To this end we introduce a loss function l which
describes the investor�s attitude with respect to the shortfall� We assume that l is an
increasing convex function de�ned on ������ with l��� � �� We further assume that

E�l�H�� ������	�

De�nition ���� The shortfall risk is de�ned as the expectation

E�l��H � VT �
������
�

of the shortfall weighted by the loss function l�

Our aim is to �nd an admissible strategy �V�� �� which minimizes the shortfall risk while

not using more capital than eV�� Thus we consider the optimization problem

E�l��H � VT �
��� � E�l��H � V� �

Z T

�

�sdXs�
��� � min�����

under the constraint

V� � eV�������
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In section ��� we show how this optimization problem can be reformulated in terms of
maximizing the expectation of a suitable state
dependent utility function�

Remark ���� Instead of minimizing the shortfall risk under a cost constraint� we could
�x a bound on the shortfall risk and minimize the cost� The results in section � show that
both versions of the problem are in fact equivalent�

Remark ���� A typical example of a loss function is l�x� � xp for some p � �� This
approach to measuring risk by lower partial moments is well known in the economics
literature� see� e�g�� �F �������� �Ba �������� �BaL �������� �HR �������� In �F ������� a
mean�risk dominance model for distributions of returns is considered� Risk consists in
falling short of a speci�ed target return t and it is measured by a partial moment below t�
Thus the risk of a random variable X with distribution � is given by

E���t�X���p� �

Z t

��

�t� x�p��dx��

As pointed out in �F �������� mean�risk dominance is congruent with maximizing expected
utility for a utility function of the form

U�x� � x� const ��t� x���p �

Note that U is linear �i�e� risk�neutral� above the target return and concave �i�e� risk�
averse� below the target return�
There are several aspects in which we move beyond this setting� We consider a dynamic
instead of a static problem and we allow for general loss functions� Moreover our investor
is faced with a contingent claim instead of a �xed target return� i�e� the investor aims at
a random target�

�� The optimal hedge

Let us reduce our problem to the search for an element e� in the class

R � f� � " �� ��� �� j � FT 
measurableg
of �randomized tests� which solves the following optimization problem�

Proposition 	��� There exists a solution e� � R to the problem

min
��R

E�l���� ��H�������

under the constraint

sup
P ��P

E���H� � eV� ������

If l is strictly convex� then any two solutions coincide P � a�s� on fH � �g�
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Proof� �� LetR� consist of those elements ofR that satisfy ������ Let ��n� be a minimizing
sequence for ����� in R�� Using Lemma A����� in �DS ����	�� we can choose functionse�n � R� belonging to the convex hull of f�n� �n��� ���g such that �e�n� converges P� a�s�
to some e� � R� Since l�H� � L��P � we can use dominated convergence to conclude that

E�l���� e�n�H�� �� E�l���� e��H�� � min �

On the other hand

E��e�H� � lim inf E��e�nH� � eV� �P � � P
by Fatou�s lemma� Thus e� � R��

�� Let e� be a solution� For any � � R� and for � � ��� �� we de�ne

�� � ��� ��e�� �� �

By the convexity of l we get

E�l���� ���H�� � ��� ��E�l���� e��H�� � �E�l���� ��H�� �

If l is strictly convex� then the inequality is strict if

P �f� �� e�g 	 fH � �g� � � �

Let e� be the solution to the problem de�ned by ����� and ������ Without loss of
generality we assume e� � � on fH � �g ������

Let us introduce the modi�ed claim

�H � e�H ����	�

and let us de�ne �U as a right
continuous version of the process

�Ut � ess�sup
P ��P

E��e�H j Ft� ����
�

�U is a P
supermartingale� i�e� a supermartingale with respect to any equivalent martingale
measure P � � P� We can now apply the optional decomposition theorem� see �Kr ��������

�FKab �������� Thus there exists an admissible strategy � �V�� ��� and an increasing optional
process �C with �C� � � such that

�Ut � �V� �

Z t

�

e�dX � �Ct ������

Remark 	��� In the complete case where the equivalent martingale measure is unique�
� �V�� ��� is simply the duplicating strategy for the modi�ed claim �H � e�H� i�e�

E��e�H j Ft� � �V� �

Z t

�

e�dX �t � ��� T � � P � a�s������
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De�nition 	��� For any admissible strategy �V�� �� we de�ne the corresponding success
ratio as

��V���� � �fVT�Hg �
VT
H
�fVT�Hg������

Theorem 	��� The strategy � �V�� ��� determined by the optional decomposition ����� of the

modi�ed claim eH � e�H solves the optimization problem �	���� �	���� Its success ratio
coincides P � a�s� with ���

Proof� �� Let �V�� �� be any admissible strategy with V� � eV�� and denote by � the
corresponding success ratio� Since �H � VT 
H the shortfall takes the form

�H � VT �
� � H � VT 
H � ��� ��H������

For any P � � P the corresponding value process is a supermartingale under P � and so
we get

E���H� � E��VT � � V� � eV��
Thus the success ratio satis�es the constraints ����� and so we have

E�l��H � VT �
��� � E�l���� ��H�� � E�l���� e��H��������

since �� is optimal for the problem de�ned by ����� and ������
�� The strategy � �V�� ��� is admissible since the corresponding value process satis�es

�Vt � �Vt � �Ct � ess�sup
P ��P

E��e�H j Ft� � ��

Its success ratio �� �V�����
satis�es

�� �V�����
H � �VT 
H � e�H P � a�s� on fH � �g�

hence

�� �V�����
H � e�H P � a�s� on fH � �g

due to ������� Moreover we have

�� �V�����
� e� � � on fH � �g �

and so the success ratio coincides P 
a�s� with e�� In particular we have

�H � �VT �
� � ��� ���H

due to ������ Thus the inequality ������ shows that the strategy � �V�� ��� solves the opti

mization problem de�ned by ����� and ������



�

	� Minimizing the expected shortfall

In this section we consider the case of a linear loss function l�x� � x� Thus we want to
minimize the expected shortfall

E��H � VT �
���	���

under the constraint

V� � eV���	���

Theorem ��� shows that this is equivalent to the optimization problem

E��H� � max�	���

under the constraint that � � R satis�es

sup
P ��P

E���H� � eV���	�	�

This takes the form Z
�dQ � max�	�
�

under the constraints Z
�dQ� � ��P �� � �V�	E

��H� �P � � P ��	���

where the measures Q and Q� are de�ned by

dQ

dP
�

H

E�H�
�

dQ�

dP �
�

H

E��H�
�

Thus the solution e�� is identi�ed as the optimal randomized test in a problem of testing
the compound hypothesis

fQ� j P � � Pg
parametrized by the class of equivalent martingale measures against the simple alternative
Q� where the signi�cance level varies with the parameter P � � P� see� e�g�� �W ����
���

In the complete case the Neyman
Pearson lemma provides an explicit solution�

Proposition 
��� Assume that P � fP �g� Then the optimal randomized test ��� � R is
given by

��� � �f dP
dP�

��ag � 
�f dP
dP�

��ag�	���

where

�a � inffa j
Z
f dP
dP�

�ag

HdP � � �V�g�	���



�

and


 �
�V� �

R
f dP
dP�

��ag
HdP �R

f dP
dP�

��ag
HdP �

��	���

in the case that P ��f dP
dP �

� �ag 	 fH � �g� � �� If P ��f dP
dP �

� �ag 	 fH � �g� � �� then ���

reduces to the indicator function of the success set f dP
dP �

� �ag�
Proof� The optimal test of the simple hypothesis Q against the simple alternative Q� is
described by the Neyman
Pearson lemma in terms of Q and Q�� cf�� e�g�� �W ����
��� If
we rewrite it in terms of P and P �� it takes the form �	����


� Explicit solution in the complete case

In this section we assume that the equivalent martingale measure P � is uniquely deter

mined� and we denote by

�� �
dP �

dP

the corresponding Radon
Nikodym derivative� We assume that our loss function satis�es
l � C������� and that the derivative l� is strictly increasing with l����� � � and l���� �
�� Let

I � �l����

denote the inverse function of l��


��� Structure of the modi�ed claim� By proposition ��� the solution e� of our op

timization problem exists� and it is unique on fH � �g since l is strictly convex� On
fH � �g we set e� � �� The following theorem provides the explicit structure of e��
Theorem ���� The solution e� to the optimization problem ���
�� ���	� is given by

e� � ��
�
I�c���

H

 �

�
on fH � �g��
���

where the constant c is determined by the condition

E��e�H� � #V� ��
���

Proof� We use the method of Karlin �Ka ���
��� in order to reduce the computation of e�
to an application of the Neyman
Pearson lemma�

�� For � � R we de�ne

�� � ��� ��e�� �� �

Let F� the convex function de�ned on ��� �� via

F���� � E�l���� ���H��



�	

Applying monotone convergence separately on f� � e�g and on f� � e�g we see that the
derivative F �

����� exists and satis�es

F �
����� � E�l����� e��H��e�� ��H� �

The optimality of e� means that for any � � R the corresponding convex function F� on
��� �� assumes its minimum in � � �� This is equivalent to

F �
����� � � �� � R �

i�e�� to

E�l����� e��H�e�H� � E�l����� e��H��H� �� � R ��
���

�� If we de�ne probability measures Q�Q� on fH � �g by

dQ

dP
� const l����� e��H�H �

dQ�

dP �
� const H

then �
��� becomes the problem of testing the hypothesis Q against the alternative Q�

at the level � � �V�	E
��H�� The Neyman
Pearson lemma describes the structure of the

optimal test in terms of the likelihood ratio

dQ

dQ�
� const l����� e��H�

dP

dP �

where the constant c is determined from the level condition� On the set

fdQ	dQ� � cg � fl����� e��H�	�� � cg�
�	�

the optimal test is zero� On the set

fdQ	dQ� � cg � fl����� e��H�	�� � cg�
�
�

the optimal test should be equal to one� Notice however that e��
� � � implies l���� �e��
��H�	�� � � due to l���� � �� a contradiction� Thus we have e� � � on fH � �g� In
the ordinary Neyman
Pearson situation there is no restriction on the values on the set

fdQ	dQ� � cg � fl����� e��H�	�� � cg�
���

except compliance with the level condition� In our situation� however� we have to choosee� on this set such that

��� e��H � I�c����
���

in order to be consistent�
�� De�ne

�c � �� �I�c���	H 
 ���
���

on fH � �g� Note that I�c��� goes from � to � a�s� on fH � �g as c goes from � to �
since l���� � � and l���� � �� Thus �cH goes from H to � a�s� on fH � �g as c goes
from � to �� Consequently E���cH� goes from E��H� to � by dominated convergence�



��

Since I is continuous� E���cH� is continuous in c by dominated convergence� Hence we
can �nd c � ����� such that

E���cH� � eV� � E��H��

For this c we de�ne e� � �c�

Then e� satis�es the consistency condition �
��� on the set in �
���� On the set in �
�	� we
have

�� e� � I�c���	H �

and this implies e� � � by the de�nition �
��� of e� � �c� Thus e� is the optimal Neyman

Pearson test described in ���

Remark ���� Notice that the solution e� is a function of H and �� If both H and �
happen to be functions of the �nal stock price XT � then e� is also a function of XT � This
will be the case in the explicit computations for the Black�Scholes model below�

Remark ���� Suppose that the objective measure P already happens to be the martingale
measure P �� i�e� �� � �� Then the modi�ed claim takes the simple forme�H � H � �I�c� 
H� � �H � I�c�����
���

If H is a call� then e�H is again a call �XT � �K��at the higher strike �K � K � I�c��


��� Lower partial moments� Let us consider the special case

l�x� �
xp

p

for some p � �� Thus we want to minimize a lower partial moment of the di�erence
VT �H� As a special case of theorem 
�� we obtain the following result�

Proposition ���� The optimal hedge consists in hedging the modi�ed claim

�pH � H � cp��
��

�
p�� 
H�
����

where the constant cp is determined such that

E���pH� � �V���
����


��� Increasing risk�aversion� Let us now consider the limit p�� corresponding to
ever increasing risk
aversion with respect to large losses�

Proposition ��	� i� For p � � the modi�ed claim �pH converges to �H � c�� almost
surely and in L��P ��� where c is the unique constant that satis�es

E��c 
H� � E��H�� �V���
����



��

ii� If H is a call at strike K� then the limit for p�� is again a call at the higher strike
�K � K � c which corresponds to the Black�Scholes price �V��

E���XT � �K��� � �V���
����

Proof� �� It is straightforward to see that the constant c in �
���� is uniquely de�ned� We
now show that limp�� cp � c� To this end consider a subsequence cpn with limn cpn � #c �
������ Then

cpn��
��

�
pn�� 
H � #c 
H a�s�

because

����
�

pn�� � � a�s�

By dominated convergence we conclude that

E��cpn��
��

�
pn�� 
H�� E��#c 
H��

Thus we must have

E��#c 
H� � E��H�� �V�

due to �
����� hence #c � c since c is unique� Applying this argument to the limit inferior
and to the limit superior� we see that lim inf cp � c � limsup cp� hence lim cp � c as
claimed�

�� From �� it follows that

cp��
��

�
p�� 
H � c 
H a�s� �

hence

�pH � H � cp��
��

�
p�� 
H � H � c 
H � �H � c��

both almost surely and in L��P �� �by dominated convergence since H � L��P �� due to
our assumption �������


�	� Risk�taking and quantile hedging� In this section we assume that our investor�
instead of being a standard risk
averse agent� is in fact inclined to take risk� In our setting
this corresponds to a concave rather than a convex loss function� Hence let k � ������
����� be increasing and strictly concave with k��� � ��

Our basic optimization problem is still the same�

E�k��H � VT �
��� � min�
��	�

under the constraint

V� � �V��
��
�

As before this is equivalent to �nding � � R such that

E�k���� ��H�� � min�
����



��

under the constraint

E���H� � �V��
����

It is straightforward to see that a solution e� exists and that e� is extremal on the set
fH � �g�

From the concavity of k and from k��� � � the following inequality is immediate�

E�k���� ��H�� � E�k�H��� E��k�H����
����

But minimizing the lower bound in �
���� can be done by a direct application of Neyman

Pearson because it is equivalent to maximizing EQ��� under the constraint EQ���� �
�V�	E

��H� where the measures Q�Q� are de�ned by dQ � const k�H� dP and dQ� �
const H dP ��

To avoid technicalities we only sketch the case where no randomization is needed� for
details and proofs see �L �������� In this case the optimal Neyman
Pearson teste� � �fk�H��aH��g�
����

is simply an indicator function where the constant a is determined by the constraint�
Hence e� minimizes the lower bound in �
����� But for this e� �
���� holds in fact as an
equality� Thus e� must be the optimal solution to our optimization problem �
����� �
�����

Now let us consider lower partial moments again� i�e� k�x� � xp for some � � p � ��
Then the set fk�H� � apH��g�fH � �g takes the form f� � apH

��p��g� and the optimal
solution is given by

�p � �f��apH��p��g ��
����

if we assume for simplicity that no randomization is needed� i�e� E���pH� � �V��

Let us also assume that there is unique constant �a such that E����H� � �V� where ��

denotes the indicator function of the set f� � �aH��g� The following proposition shows
that quantile hedging� as introduced in �FL �������� appears as the limiting strategy with
minimal shortfall risk as p decreases to zero�

Proposition ��
� For p � � the solution �p in ���	
� converges to the solution �� in
the case of quantile hedging� both almost surely and in L��P ���

Proof� Let apn � a� be a convergent subsequence� From H��pn � H it follows that

�f��apnH��pn��g � �f��a�H��g a�s�

Due to assumption ����� we can apply the dominated convergence theorem to conclude
that

E��H�f��apnH��pn��g�� E��H�f��a�H��g� �

and this implies

E��H�f��a�H��g� � �V��



��

From the uniqueness of �a it follows that a� � �a� Applying this argument to the limit
superior and inferior respectively we see that limap � �a� Consequently

�p � �f��apH��p��g � �f��eaH��g � ��

both a�s� and in L��P ���

In an analogous manner one can establish the following proposition

Proposition ���� For p � � the solution �p in ���	
� converges to the solution e�� in
the linear case �cf� proposition ��
�� both almost surely and in L��P ���

�� Computations in the Black�Scholes model

In the standard Black
Scholes model with constant volatility � � � the underlying
discounted price process is given by a geometric Brownian motion

dXt � Xt��dWt �mdt�

with initial value X� � x�� where W is a Wiener process under P and m is a constant�
We assume that m � �� The unique equivalent martingale measure P � is given by

dP �

dP
� �� � exp

�
�m
�
WT � �

�

�m
�

�	

T

�
� const X��

T

where we set

� �
m

�	
�

The process W � de�ned by

W �
t � Wt �

m

�
t

is a Brownian motion under P ��
A European call H � �XT � K�� can be hedged perfectly if we provide the initial

capital

H� � E��H� � x�$�d���K$�d�� �

where

d��x�� K� �
lnx� � lnK

�
p
T


 �

�
�
p
T

and $ denotes the distribution function of the standard normal distribution� Suppose we
want to use only an initial capital eV� which is smaller than the Black
Scholes price H��
Under this constraint we want to minimize the shortfall risk E�l��H � VT �

��� where l is
a given loss function satisfying the assumptions of section �� We know that the optimal
strategy consists in hedging the modi�ed option e�H where e� solves the optimization
problem de�ned by ������ ������ We will work out the solution explicitly in the case of
lower partial moments�
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���� Lower partial moments� We know from �
��� that the modi�ed claim is given by

e�pH � �XT �K�� � �c
�

p��X
��
p��

T 
 �XT �K��� ������

Since c
�

p��x
��
p�� is convex and decreasing� there is at most one point of intersection L with

�x�K��� So we get

e�pH �

�
XT �K � L

�
p�� �L�K�X

��
p��

T

�
�fXT�Lg�����

� fp�XT �

where

fp�x� �
h
x�K � L

�
p�� �L�K�x

��
p��

i
�fx�Lg ������

Let � � T � t� Consider the conditional expectation

Vt � E��e�pH j Ft����	�

� E��fp�Xt exp���W
�
T �W �

t ��
�

�
�	�T � t��� j Ft�

� Fp�t� Xt�

where the function Fp is given by

Fp�t� x� �

Z �

��

fp�x exp��
p
�y � �

�
�	� �� exp���

�
y	�

dyp
��

�

Z �

�d��x�L�

�x exp��
p
�y � �

�
�	� ��K� exp���

�
y	�

dyp
��
� �

L

x
�

�
p�� �L�K��

�
Z �

�d��x�L�

exp�� �

p� �
��
p
�y �

�

�
�	��� exp���

�
y	�

dyp
��

���
�

� x$ �d��x� L���K$ �d��x� L��� L
�
p�� �L�K�

x
�

p��

�

� exp�
�

�
�	�

�

p� �
�

�

p� �
� ���$

�
d��x� L�� ��

p
�

p� �

�
�

The constant L is determined by the equationeV� � E��e�pH� � Fp��� x�� ������

The strategy is obtained from this by di�erentiation�

�p�t� x� �
�

�x
Fp�t� x� � $

�
lnx� lnL

�
p
�

�
�

�
�
p
�

�
�

�

p� �

L
�
p�� �L�K�

x
�

p��
��

������

� exp�
�

�
�	�

�

p� �
�

�

p� �
� ���$

�
lnx� lnL

�
p
�

� �
p
� �

�

p� �
�

�

�
�

�
�
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Remark 
��� As shown in section ��� the limit for p�� is again a call option with a
strike eK corresponding to the Black�Scholes price eV��e��H � �XT � eK�������

where eK is such thateV� � E���XT � eK��������

� x�$

�
lnx� � ln eK

�
p
�

�
�

�
�
p
�

�
� eK$

�
lnx� � ln eK

�
p
�

� �

�
�
p
�

�
�

���� The linear case� In the case l�x� � x proposition 	�� shows that we have to knock
out the option outside the success set

A � fdP	dP � � eag � fX�
T � c�g � fXT � cg �������

where the constant c is determined by the equationeV� � E��H�A�������

� x�$

�
lnx� � ln c

�
p
T

�
�

�
�
p
T

�
�K$

�
lnx� � ln c

�
p
T

� �

�
�
p
T

�
�

Thus we have to hedge the modi�ed claime��H � H�fXT�cg � �XT � c�� � �c�K��fXT�cg �������

The conditional expectations are of the form

E��e��H j Ft� � F��t� Xt�������

where

F��t� x� � x$

�
lnx� ln c

�
p
�

�
�

�
�
p
�

�
�K$

�
lnx� ln c

�
p
�

� �

�
�
p
�

�
�����	�

By di�erentiation we obtain the hedging strategy�

���t� Xt� � $

�
lnXt � ln c

�
p
�

�
�

�
�
p
�

�
�

c�Kp
��c�

p
� exp��



�	��

�
c

Xt

� lnXt�ln c

����T�T �
� �

�

�����
�

���� The case of risk�taking� For p � � the optimal hedge consists in replicating the
knock
out option H�Ap where

Ap � fX�
T � ap��XT �K�����pg �

see �
����� Let us illustrate this result in the case � � �� For p � � the call is hedged for
values in ��� K�� �c���� see ������� As soon as p drops below � both thresholds move up�
i�e� the success set takes the form

Ap � fXT � ��� bp� � �cp���g������



��

with K � bp � cp ��� As p decreases to the level �� �� the upper threshold cp goes to
� and the lower threshold bp increases to the value b which is determined by the capital
constraint

E���XT �K���fXT�bg� �
eV� �������

The resulting knock
out option eH � �XT �K���fXT�bg is the optimal hedge for any value
p � ��� ����� and it is exactly the knock
out option which appears in the case of quantile
hedging�

In the case � � � the optimal hedge in the quantile case is of the form

�XT �K���fXT�bg	fXT�cg�

In accordance with proposition 
�	� the thresholds b and c appear as decreasing limits of
the corresponding thresholds bp and cp as p goes to zero�

��	� Illustrations� In the following we illustrate the modi�ed claims and strategies de

termined above and compare them to the Black
Scholes �perfect� hedging strategy� The
parameters are chosen as

K � ��� T � ���
 x� � ���
m � ���� � � ��� t � ���

The resulting Black
Scholes price is H� � ��
� but we choose to provide only an amounteV� � � of initial capital�
�Insert Graph � here�
The dashed line shows the original call� The thick line shows the modi�ed option for

p � �� the medium line that for p � ���� the thin line that for p � ��
 and the dotted line
that for p � 
� Notice that already for p � 
 the modi�ed option is close to a call at a
higher strike� This corresponds to the limit for p�� as described in the remark above�
Notice also that in the case of risk
aversion �p � �� the modi�ed options are continuous
as opposed to the case of the knock
in option for p � � and the case of the knock
out
option of quantile hedging �see �FL ��������� In particular undesirable features arising in
the hedging of knock
in�out options �see e�g� �W �������� are avoided�

�Insert Graph � here�
The dashed line shows the Black
Scholes strategy� The thick line shows the e�cient

strategy for p � �� the medium line for p � ���� the thin line for p � ��
� and the dotted
line for p � 
�

The di�erences in the attitudes towards shortfall risk are re%ected in the shape of
the modi�ed claims and the resulting hedging strategies� See �F ������� for a thorough
discussion of the microeconomic aspects of such a risk analysis� The e�cient hedging
strategies above allow the investor to interpolate in a systematic way between the extremes
of a perfect hedge �no chance of making a pro�t� and no hedge �full risk of shortfall� full
chance of a pro�t� depending on the investor�s appetite for risk�
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�� Convex duality methods

Convex duality is a well established tool in mathematical �nance� see e�g� �K ��������
In this section we brie%y show how convex duality methods may be used as an alternative
to the reduction to the Neyman Pearson lemma in solving our problem� Additionally this
approach reveals some qualitative features of the value function� i�e� the shortfall risk as a
function of the initial capital employed� This value function describes the e�cient frontier
in our problem of balancing cost and shortfall risk� We only sketch the basic steps in this
approach� for detailed proofs see �L ��������

For the case of minimizing the expected shortfall in a di�usion model the convex du

ality approach has been worked out in �CK ������� and in �C ������� under additional
constraints on the strategies� In a discrete time setting the case of lower partial mo

ments is treated in �P �������� In our approach we combine the basic duality result from
�KS ������� with the technique of considering state
dependent Legendre transforms which
is used in �CK �������� �C ������� and�P ��������

���� State�dependent utility� In the initial formulation of our optimization problem
we want to minimize the shortfall risk given an amount of initial capital which we now call
z� In other words we are looking for a random variable Z �corresponding to the terminal
wealth resulting from an admissible strategy� such that

E�l��H � Z���� � min�����

under the capital constraint

sup
P ��P

E��Z� � z ������

Let us reformulate the problem in terms of maximizing expected utility� To this end we
introduce the state
dependent utility function

Ul�z� 
� � l�H�
��� l��H�
�� z��������

Then the problem ������ ����� is equivalent to

E�Ul�Z�
�� 
�� � max���	�

under the constraint

sup
P ��P

E��Z� � z ����
�

For later purposes we generalize the problem as follows� Let us consider a general
state
dependent utility function U�z� 
� which is non
decreasing and concave in z� strictly
concave on ��� H�
�� and satis�es U��� 
� � C���� H�
��� We also assume that

�� � E�U��� ��� and E�U�H� ��� ��������

As in the usual optimization of expected utility the inverse of marginal utility plays a
central role� In our case the inverse

I�y� 
� � inffz � ��� H�
�� j U ��z� 
� � yg



��

is state dependent� We use the convention that I�y� 
� �� if U ��H�
�� 
� � y� We need
the stochastic conjugate

V �y� 
� � max
��z�H���

�U�z� 
�� zx������

� U�I�y� 
� 
H�
�� 
�� y�I�y� 
� 
H�
��

of U � The function V ��� 
� is non
increasing and convex in y� strictly convex on
�U ��H�
�� 
�� U ���� 
��� and di�erentiable with derivative

V ��y� 
� � ��I�y� 
� 
H�
��������

���� Complete case� In this section we consider the complete case where the equivalent
martingale measure is unique� In this context we de�ne the value function

u�z� � supfE�U�Z� ��� j � � Z � H and E��Z� � zg ������

We can then express the solution in terms of I via convex duality methods� In particular
we recover the solution from section 
 for U � Ul� In addition we obtain qualitative
properties of the value function u� These properties will be used in our discussion of a
volatility jump in section ��

Theorem ���� 
� For each z � E��H� there is a unique solution eZ such that u�z� �

E�U� eZ� ���� It takes the form eZ�
� � I�y�z����
�� 
� 
H�
�������

where y�z� is the solution of

E��I�y�z����
�� 
� 
H�
�� � z �������

	� The conjugate function

v�y� � max
z��

�u�z�� zy�������

of u is given by

v�y� � E�V �y���
�� 
� �������

where

V �y� 
� � U�I�y� 
� 
H�
��� y�I�y� 
�
H�
�� �����	�

Conversely we have

u�z� � min
y��

�v�y� � yz������
�

�� The value function u is strictly increasing and strictly concave on ��� E��H��� and belongs
to C���� E��H��� Its �right� derivative on ��� E��H�� is given by

u��z�� � y�z�������



�	

�� In particular we have

u����� � �� �������

if � � y� � inffy � � j v�y� � E�U��� ���g� and this is the case if

ess�sup
U ���� ��

��
�fH��g ���������

The proof is similar to maximization of expected utility except that� as in �CK ��������
�C �������� �P �������� one has to use stochastic instead of deterministic conjugates� for a
detailed proof see �L ��������

Remark ���� In the Black�Scholes model the su�cient condition ���
�� is always satis�
�ed if the drift m is positive�

���� Incomplete case� The incomplete case involves a fundamental duality which is
shown in full generality in �KS �������� Let

Z�z� � fZ � �Zt� � � j Zt � z �

Z t

�

�dX � � admissible g

denote the class of possible value processes for admissible strategies starting with initial
capital z� Let

C�z� � fg � L� j � � g � ZT for some z � Z�z�g
denote the set of claims attainable with initial capital z� Consider the set of supermartin

gale densities

Y�y� � fY � � j Y� � y and ZY supermartingale �Z � Z���g�
and de�ne

D�y� � fh � L� j � � h � YT for some Y � Y�y�g �
Notice that C�z� � zC��� and D�y� � yD���� For brevity let us denote C��� simply by C
and D��� by D� We quote the following result �

Theorem ���� �Proposition ��
 in �KS ��������
�i� C�D are convex and solid subsets of L�

� which are closed in the topology of convergence
in measure
�ii� C and D stand in bi�polar relation� i�e�

g � C � E�gh� � � �h � D������

h � D � E�gh� � � �g � C������



��

The value function for our problem is de�ned as

u�z� � sup
g�C�z�

E�U�g 
H� ��� � z � ������������

It is straightforward to see that u is non
decreasing and concave� With the help of the
stochastic conjugate V we can then set up the dual problem

v�y� � inf
h�D�y�

E�V �h�
�� 
��������

� inf
h�D

E�V �yh�
�� 
���

It is again straightforward to see that v is non
increasing and convex�
The full duality picture is described by the following theorem�

Theorem ��	� 
� For every y � � there is a solution eh�y� � D to the dual problem

v�y� � inf
h�D

E�V �yh�
�� 
���������

For any two solutions ef�eh
U ��H� �� � ef 
 U ���� �� � U ��H� �� � eh 
 U ���� �� P � a�s� on fH � �g�����	�

	� v � C������ and

v��y� � E�eh�y�V ��yeh�y�������
�

� �E�eh�y��I�yeh�y�� 
H��

�� For � � z � U� there is y�z� � � such that

v��y�z�� � �z�������

and

�g�z� � I�y�z�eh�y�z��� 
H������

is the unique solution �� H� to the optimization problem

u�z� � sup
g�C�z�

E�U�g 
H� ����������

�� u and v are conjugates� i�e�

u�z� � min
y��

�v�y� � zy�������

v�y� � max
z��

�u�z�� zy�������

�� u is strictly increasing and strictly concave on ��� U���
�� Assume that U ��H� �� � � on fH � �g� Then v is strictly convex on ��� y�� where

y� � inffy � � j v�y� � E�U��� ���g������
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and u is in C���� U�� with

u��z� � y�z��������

If in addition y� ��� then

u����� � ���������

Remark ���� Since we know that U ��H� �� � U ���� ��� we have

�U ��H� �� � g� 
 U ���� �� � U ��H� �� � �g 
 U ���� �������	�

for any function g� Thus there is no ambiguity in the expression U ��H� ��� ef 
 U ���� �� in
���	���

Remark ��	� At �rst glance the formulae ���	�� for v� and ���	�� for eg might appear to

depend on the choice of the solution eh� This is of course not so� For any two solutions
f� h one has

E�f�I�yf� 
H�� � E�h�I�yh� 
H������
�

and

I�yf� 
H � I�yh� 
H P � a�s�������

Remark ��
� The condition U ��H� �� � � in �� is always satis�ed in our original problem
where U � Ul for a convex loss function with l���� � ��

There is a di�erence in the assumptions of the above optimization problem in compar

ison to �KS �������� Conditions on the asymptotic elasticity are used in �KS ������� to
control the behavior for large values of the utility� In our context any overshooting the
goal H does no good� Consequently the conditions of �niteness of the value function and
on the asymptotic elasticity are replaced by our conditions on the integrability of U�H� ��
and U��� ���

As in �KS ������� the proof of the above theorem uses the fundamental duality result
theorem ���� However the rest of our proof is more direct� It is closer in spirit to the
proofs in �P �������� �CK ������� and �C ������� 
 except that we work in a general semi

martingale setting with a general state
dependent utility function� The details are given
in �L ��������

�� Hedging of a volatility jump

As in �FL ������� we consider a geometric Brownian motion with positive driftm where
the volatility has a constant value � � � up to time t� and then jumps to a new constant
value � according to some distribution � on ������

We use an explicit model �#"� #F � #P � of the following form� Put #" � C��� T �� ����� and
for #
 � �
� �� de�ne Xt�
� � #Xt�#
� � 
�t�� We �x a time t� � ��� T � and an initial value
x� � �� For each � � � we de�ne a time
dependent volatility by �t��� � � for t � t� and



��

�t��� � � for t � t�� Let P	 denote the unique probability measure on " � C��� T � such
that the process �Xt� satis�es the stochastic di�erential equation

dXt � Xt�mdt� �t���dW
	
t � � X� � x�

under P	 where W 	 is a Wiener process under P	� The measure #P on #" is de�ned by
#P �d
� d�� � ��d��P	�d
�� We denote by #F the completion of the natural product �
�eld
on #" under #P and by � #Ft�t����T � the right
continuous complete �ltration on #" generated
by the processes � #Xt� and ��t�� The projection of #P on " is denoted by P and �Ft� is the
right
continuous complete �ltration on " generated by �Xt��

Consider a European option of the form H � h�XT � where h is some non
negative
continuous function such that our integrability assumptions ����� and ���	� are satis�ed�
At time t� the value Xt� � x is observed and the new volatility � is revealed� From this
time on the option can be replicated perfectly using the standard Black
Scholes hedging
strategy in the complete model P	� Let P �

	 denote the unique equivalent martingale
measure of this model� The required initial capital is given by

v	�x� � E�
	 �h�XT � j Xt� � x� �

We set

v�x� � sup
	

v	�x� ������

where the supremum is taken over the support of ��
For t � t� the value � is still unknown� As in �FL ������� the capital required for

superhedging at time t is given by

Ut � E��v�Xt�� j Ft� ������

where P � denotes the common projection of all equivalent martingale measures #P � � #P
on �"�Ft���

Remark ���� If H is a call and � has unbounded support� then we get v�x� � x� hence
Ut � Xt for t � t� and in particular U� � x�� In this case the superhedging strategy is
reduced to the following trivial procedure� Buy one unit of the underlying asset at time
� and hold it up to time t�� At that time the value � is revealed� Pay out the refund
Ct� � Xt� � v	�Xt�� and use the remaining capital v	�Xt�� to implement a perfect hedge
of the option�

Let us now �x a loss function l� Our aim is to minimize the shortfall risk under the
constraint that the initial capital is not larger than some �xed amount eV� such that

� � eV� � U� ������

At time t� let �	�z� x� denote the minimal shortfall risk that can be achieved given the
present state x � Xt� and some capital z � � if the new volatility is given by �� i�e�

�	�z� x� � minfE	�l���� ��H� j Xt� � x� j E�
	 ��H j Xt� � x� � z � � � Rg����	�



��

Further let u	�z� x� denote the value function of the corresponding complete problem� In
analogy to ����� it is related to �	�z� x� via

u	�z� x� � E	�l�H� j Xt� � x�� �	�z� x�����
�

We know from theorem ��� that u	��� x� is non
decreasing and concave� strictly increasing
and strictly concave on the interval ��� E�

	 �H j Xt� � x��� Furthermore it belongs to
C���� E�

	 �H j Xt� � x�� and its �right� derivative equals

�

�z
u	�z� x� � y	�z� x� �

where y	�z� x� is the solution of

E�
	 �I�y

	�z� x���� 
H j Xt� � x� � z �

Now we assume that the functions � and u de�ned by

��z� x� �

Z
�	�z� x���d��

and

u�z� x� �

Z
u	�z� x���d��

are �nite for all z� x� In the case l�x� � xp these conditions are satis�ed ifZ
exp�

p

�
�p� ���	T ���d�� �� ������

The function u has again the relevant properties of a state
dependent utility function�

Lemma ���� The function u��� x� is non�decreasing� strictly increasing on ��� v�x��� con�
cave and strictly concave on ��� v�x��� Furthermore it belongs to C���� v�x�� with derivative

�

�z
u�z� x� �

Z
�

�z
u	�z� x���d��������

Proof� �� It is straightforward to see that u is non
decreasing and concave� Now let
� � z � z� � v�x�� There exists a set A � ����� with ��A� � � and

E�
	 �H j Xt� � x� � z� �� � A�

Otherwise we would have E�
	 �H j Xt� � x� � z� for �
almost all � in contradiction to

z� � v�x�� Consequently we have for all � � A

u	�z� x� � u	�z�� x�

and

u	��z � ��� ��z�� x� � �u	�z� x� � ��� ��u	�z�� x��

As ��A� � �� this implies

u�z� x� � u�z�� x�



��

and

u��z � ��� ��z�� x� � �u�z� x� � ��� ��u�z�� x��

�� We have

u	�z�� x� �

Z z�

�

�

�z
u	�z� x�dz

by the properties of u	 and the fact that u	��� x� � �� Because

�

�z
u	�z� x� � y	�z� x� � ��

we can apply Fubini�s theorem to conclude that

u�z�� x� �

Z
u	�z�� x���d��

�

Z
�

Z z�

�

�

�z
u	�z� x�dz� ��d��

�

Z z�

�

�

Z
�

�z
u	�z� x���d��� dz�

This shows that u��� x� is di�erentiable on ��� v�x�� with derivative

�

�z
u�z� x� �

Z
�

�z
u	�z� x���d���

Since u is a concave function which is di�erentiable on the convex� open set ��� v�x��� it
is also continuously di�erentiable on this set�

Let � resp� �� denote the distribution of Xt� under P resp� P �� We de�ne the inverse
J��� x� of 



z
u��� x� by

J�y� x� � inffz � ��� v�x�� j �

�z
u�z� x� �

Z
�

�z
u	�z� x���d�� � yg

with the convention that J�y� x� � � if 


z
u�v�x�� x� � y� We can now apply again

theorem ��� to obtain the following proposition�

Proposition ���� There exists a unique function ef such thatZ
u� ef�x�� x���dx� � sup

f

Z
u�f�x�� x���dx������

where the supremum is taken over all measurable functions f � � on ����� withZ
fd�� � eV�������



��

The solution is of the form

ef�x� � J�c�eV��d��
d�

�x�� 
 v�x� �������

where c�eV�� is the solution ofZ
J�c�eV�� d��

d�
�x�� 
 v�x� ���dx� � eV� �������

Proof� It is easy to see that a function which maximizes the integral in ����� must belong

to the class C of all measurable functions f � � with
R
fd�� � eV� and � � f � v� But

then we are precisely in the situation of theorem ��� if we take v as the contingent claim�
u�z� x� as the state
dependent utility function� and consider ����� with � resp� �� as the
basic probability space�

Theorem ��	� The following strategy is optimal�

i� Up to time t� use the strategy which replicates the contingent claim ef�Xt�� where ef is
the solution to the optimization problem ������ ������
ii� From time t� on use the strategy which minimizes the shortfall risk under the new

volatility � given the initial capital ef�Xt�� �see section ���

Proof� Consider any admissible strategy �V�� �� with V� � eV� and denote by � the corre

sponding succes ratio� The resulting value

Vt � V� �

Z t

�

�sdXs

will be viewed as a random variable on �"�Ft�� for any t � t�� We have

V� � eV� �
and the conditional shortfall risk satis�es

#E�l�� #H � VT �
�� j Ft� � � #E�l���� �� #H� j Ft� � � ��Vt� � Xt�� �

This implies

#E�l���� �� #H�� � E���Vt� � Xt��� �������

Let g be a measurable function such that

g�Xt�� � E�Vt� j Xt� � P � a�s�

Since ���� x� is convex� ������ implies

#E�l���� �� #H�� � E�E���Vt� � Xt�� j Xt� �� � E���g�Xt��� Xt���������

via Jensen�s inequality for conditional expectations� Since

E�Vt� j Xt� � � E��Vt� j Xt� � �



��

we have

E��g�Xt��� � E��Vt� � � V� �

The optimality of ef with respect to ����� and the relation ���
� now imply

E��� ef�Xt��� Xt��� � E���g�Xt��� Xt��� �

Thus

#E�l�� #H � VT �
��� � E��� ef�Xt��� Xt��� �

and this shows that E��� ef�Xt��� Xt��� is a lower bound for the shortfall risk if the initial

cost is bounded by eV�� But this bound is actually achieved if we use the strategy described
in the theorem�

Remark ���� It is straightforward to iterate backwards the arguments of this section and
to treat the case where volatility jumps at �nitely many time points� This is based on theo�
rem ��
 which shows that the value function in each step inherits the regularity properties
of the respective utility function�



��

References

�ADEH ������� Artzner� Ph�� Delbaen� F�� Eber� J�	M�� Heath� D�
 De�nition of coherent measures
of risk� Paper submitted at the Risk Management Symposium of the European Finance

Association Meeting� Vienna� August ����

�Ba ������� Bawa� V�
 Safety First� Stochastic Dominance� and Optimal Portfolio Choice� J� of
Financial and Quantitative Analysis� ��� 
��	
��

�BaL ������� Bawa� S�� Lindenberg� E�
 Capital Market Equilibrium in a Mean	Lower Partial Moment
Framework� J� of Financial Economics� �� ���	
��

�C ������� Cvitani�c� J�
 Minimizing expected loss of hedging in incomplete and constrained markets�
Preprint Columbia University� New York

�CK ������� Cvitani�c� J�� Karatzas� I�
 On dynamic measures of risk� Preprint Columbia University�

New York

�DS ������� Delbaen� F�� Schachermeyer� W�
 A general version of the fundamental theorem of asset
pricing� Math� Annalen ���� ���	�
�

�ElQ ������� El Karoui� N�� Quenez� M�C�
 Dynamic programming and pricing of contingent claims
in an incomplete market� SIAM J� Control and Optimization� �� ���� 
�	��

�F ������� Fishburn� P�
 Mean	Risk Analysis with Risk Associated with Below	Target Returns�
American Economic Review ��� ���	�
�

�FKab ������� F�ollmer� H�� Kabanov� Yu�M�
 Optional decomposition and Lagrange multipliers� Fi�
nance and Stochastics �� ��	��

�FKr ������� F�ollmer� H�� Kramkov� D�
 Optional decompositions under constraints� Prob� Theory
Relat� Fields ��	� �	
�

�FL ������� F�ollmer� H�� Leukert� P�
 Quantile Hedging� to appear in Finance and Stochastics

�HR ������� Harlow� W�� Rao� R�
 Asset Pricing in a Generalized Mean	Lower Partial Moment Frame	
work
 Theory and Evidence� J� of Financial and Quantitative Analysis� �
 ���� 
��	���

�K ������� Karatzas� I�
 Lectures in Mathematical Finance� Providence
 American Mathematical
Society

�Ka ������� Karlin� S�
 Mathematical Methods and Theory in Games� Programming and Economics�
vol� 
� Reading� Massachusetts
 Addison	Wesley

�Kr ������� Kramkov� D�O�
 Optional decomposition of supermartingales and hedging contingent
claims in incomplete security markets� Prob� Theory Relat� Fields ���� ���	���

�KS ������� Kramkov� O�� Schachermayer� W�
 The Asymptotic Elasticity of Utility Functions and
Optimal Investment in Incomplete Markets� Preprint Universit�at Wien

�Ku ������� Kulldor�� M�
 Optimal control of favorable games with a time	limit� SIAM J� Control

and Optimization� ��� �
	��
�L ������� Leukert� P�
 � Dissertation� Humboldt�Universit�at Berlin
�P ������� Pham� H�
 Dynamic Lp	Hedging in Discrete Time under Cone Constraints� Preprint

Universit�e de Marne�la�Vall�ee

�W ������� Wystup� U�
 Valuation of exotic options under short	selling constraints as a singular
stochastic control problem� Ph�D� dissertation� Dept� Math� Sc�� Carnegie�Mellon Uni�

versity

�W ������� Witting� H�
 Mathematische Statistik I� Stuttgart
 Teubner ����


