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ABSTRACT

For the problems of nonparametric estimation of nonincreasing and symmetric
unimodal density functions with bounded supports we determine the projections
of estimates onto the convex families of possible parent densities with respect to
the weighted integrated squared error� We also describe the method of approx�
imating the analogous projections onto the respective density classes satisfying
some general moment conditions� The method of projections reduces the esti�
mation errors for all possible values of observations of a given 	nite sample size
in a uniformly optimal way and provides estimates sharing the properties of the
parent densities�

R�ESUM�E

L
auteur s
int�eresse au probl�eme de l
estimation non param�etrique de fonctions
de densit�e non croissantes ou unimodales et sym�etriques �a support 	ni� Il
d�etermine la projection d
estimateurs non param�etriques sur des familles con�
vexes de densit�es de lois par rapport �a l
erreur quadratique pond�er�ee int�egr�ee�
Il d�ecrit en outre une m�ethode d
approximation de projections analogues sur les
classes de fonctions de densit�e dont les moments satisfont �a certaines conditions
g�en�erales� Cette technique de projection r�eduit de fa
con uniforme et optimale
les erreurs d
estimation pour toutes les valeurs possibles des observations d
un
�echantillon 	ni donn�e� en plus de produire des estimations qui partagent cer�
taines des caract�eristiques de la famille de lois choisie�
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� INTRODUCTION

Suppose that we wish to estimate the density function of a lifetime distribution
knowing that the lifetime is bounded by a given constant and that its density
is nonincreasing� If prior knowledge is insu�cient to select a parametric model�
the density can be estimated nonparametrically� Standard techniques �e� g�� the
kernel method� often assign some probability to the complement of the support
�especially to small negative values�� In addition� they do not allow for control
of the shape of the estimate�

In the paper� we determine the projection of a given estimate onto the class of
possible densities with respect to the weighted integrated squared error �WISE�
for short�� Moreover� we present the solution of the respective problem for the
class of unimodal symmetric densities and describe procedures approximating
the projections for the analogous problems under several moment constraints�
The projection improves the estimator accuracy for all possible values of obser�
vations and a given sample size and this is the uniformly optimal correction of
the original estimate�

The problem of nonparametric estimating of nonincreasing density was 	rst
considered by Grenander ������ who proposed a maximum likelihood estimate�
This is the derivative of the smallest concave majorant of the empirical distri�
bution function� and takes the form of a nonincreasing stepwise function with
jumps at some observation points� vanishing at the maximal one� The asymp�
totic representation of the MLE and its accuracy were established in Prakasa
Rao ������� and in Groeneboom and Pyke ������ and Groeneboom �������
respectively� A nonasymptotic analysis of the L��risk of the estimate was car�
ried out in Birg�e �����a� ������ Recently� Foug�eres ������ proposed another
approach to the problem� modifying a pilot kernel estimate by a monotone re�
arrangement� She proved that the modi	cation is almost uniformly strongly
consistent� and it improves the pilot in Lp�norms� p � �� almost surely� and
determined its rate of convergence and asymptotic distribution� The Grenander
and Foug�eres estimates have natural generalizations for unimodal densities with
a known mode�

Birg�e ������ introduced a modi	cation of the former one for problems with
an unknown mode that has the same asymptotic L��risk as the original estimate
based on the knowledge of the mode� Barlow and van Zwet ������ ������ study�
ing more general problems �e� g� estimating monotone failure rates�� proposed
a monotone histogram�type estimate with bins wider than spacings which tends
to the parent density faster than the Grenander estimate� Birg�e �����b� con�
structed a histogram with geometrically increasing bin widths proving that the
estimate is minimax optimal for nonincreasing densities under an appropriate
choice of the rate of the width increase� Di�erent approaches to the monotone
density estimation problem were discussed in Devroye ������ Chapter ���

Kiefer and Wolfowitz ������ proved that the antiderivatives of the Grenan�
der estimates are asymptotically e�cient in estimating concave and convex func�
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tions� Deely and Kruse ������ constructed the Kolmogorov metric projections
of the empirical distribution function onto mixtures of distributions �due to
Kintchine ������� every nonincreasing life density is a mixture of scaled uni�
forms�� More general minimum distance estimates for abstract mixture models
were studied in Barbe �������

Shape restrictions were also treated in regression problems� especially with
deterministic designs �see Wright ������� Friedman and Tibshirani ������� Muk�
erjee ������� Mammen �����a� b��� The methods proposed consist in adapting
either data or estimates by projecting onto respective ordered families� The
idea of applying spline smoothers satisfying shape constraints were developed
by Utreras ������� Villalobos and Wahba ������� and Mammen and Thomas�
Agnan ������� For a recent review of nonparametric estimation problems under
shape restriction we refer the reader to Delecroix and Thomas�Agnan �������
A comprehensive study of inference methods in order restricted models can be
found in Robertson et al� �������

A method of projecting improper density estimates onto the family of proper
densities in the weighted L��norm was proposed by Gajek ������ and further
improved in Gajek ������� Lenic ������ studied a similar problem for the den�
sities satisfying a moment condition� Schuster ������ considered the problem
of projecting densities onto symmetric ones� Ka�luszka and Lenic ������ de�
termined the projections onto density functions with respect to the Hellinger
distance� The idea of projecting in density estimation can be considered as a
special case of the nonparametric minimum distance estimation theory intro�
duced in Vapnik and Stefanyuk ������ and Stefanyuk ������� and developed in
Vapnik ������ �see also Devroye ������ Chapter ��� where the emphasis was
laid on smoothness conditions rather than shape ones� Minimum distance den�
sity estimates� especially ones based on the Hellinger norm� proved to be both
asymptotically e�cient and robust in many parametric models� We only refer
here to a pioneering paper of Beran ������ and a recent review of Basu et al�
�������

Sometimes objections are raised that projections do not improve the rate
of convergence of the original estimate� E� g�� the rates of convergence of the
Grenander estimate and the histogram are identical� and so neither of them is
recommended for estimating smooth density functions� The estimates of Barlow
and van Zwet ������ ����� have the same asymptotic behavior as their uncon�
strained nonmonotone versions� Kiefer and Wolfowitz ������ proved that the
smallest concave majorant does not improve the asymptotics of the empirical
distribution� Barbe ������ described two types of necessary and su�cient condi�
tions for minimum distance distribution estimators to behave asymptotically in
mixture models as the empirical distribution� Similar conclusions for regression
models were presented in Mammen �����b� and Mammen and Thomas�Agnan
������� This phenomenon has a natural explanation� Reasonable unconstrained
estimates are consistent and eventually share the properties of the curve being
estimated so that the corrections become smaller as the sample size increases�
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Nevertheless� we defend projections referring to our problem of estimating
a monotone density� E�cient smooth curve estimates based on expansions ap�
plied for estimating densities do not preserve the property of being density func�
tions themselves and have to be corrected anyway in order to become meaningful
for practical interpretation� It is therefore justi	able to determine 	rst highly ef�
	cient unrestricted estimates for models with restrictions and then project them
onto the restricted families� This provides estimates with desired properties and
improves the accuracy of the original ones for given 	nite data which is of ac�
tual interest in practice� It is worth pointing out that actual corrections valid
for every 	nite sample and every model distribution are derived by projections
onto convex sets of Hilbert spaces� For instance� projecting with respect to the
Hellinger distance we can consider density functions which are nonnnecassarily
square integrable� but the square roots of the densities do not form convex sets
and� in consequence� we cannot obtain uniform 	nite�sample corrections�

In Propositions � and � of Section � we establish the projections of density
estimates onto the convex families of nonincreasing and symmetric unimodal
densities satisfying some support restrictions� The projections are described up
to a single constant that can be determined numerically� For the analogous
problems with moment constraints� we show that the respective projections are
approximated by sequences of functions that are the projections of combina�
tions of the original estimates with elements of some given 	nite dimensional
subspaces onto speci	ed convex cones �see Propositions � and ��� The main tool
for the proofs that are presented in Section � is an in	nite algorithm of Boyle
and Dykstra ������ combining the projections onto a number of convex sets so
as to obtain sequences tending to the projection onto the intersection� Adapting
the algorithm to a properly chosen partition of conditions on the parent density
function we are in a position to guess the 	nal forms of the projections described
in Propositions � and �� This is not possible when we additionally assume that
the expectations of some generally unspeci	ed functions are given� However� we
are able to specify simple algorithms �see Section �� so that the outcomes of all
stages improve the estimation accuracy of the previous ones� and� accordingly�
those of the original estimates� The sequences tend to the projections� although
they do not belong to the respective classes of possible parent densities� We
also specify algorithms for some related problems�

� RESULTS

In order to estimate a one�dimensional density function f � we carry out an
experiment� get some observations X and determine an estimate �f � �f�X� ���
To 	x the ideas� we could think of X as of a sequence of a given length of
independent identically distributed random variables with the parent density f �
but more general models for which f is identi	able �e� g�� stationary processes�
can be considered� We measure the accuracy of estimation by means of weighted
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integrated squared error

WISE� �f� f� �

Z
� �f�X� x�� f�x���w�x� dx� ���

for some nonnegative weight function w� assuming that both f and �f for all
possible observations are square integrable with the weight� i�e�

f� �f�X� �� � H � L��R�w�x� dx� � fh �

Z
h��x�w�x� dx ��g�

We 	rst assume that the parent density function f satis	es the following

f � F � fh � H � h � ��
R
h � �� h � � on Ic�

h is nonincreasing on Ig�
���

where I � ��� a� is a 	nite interval and Ic stands for its complement� and
R
I w�R

I
��w are 	nite� This implies that for all possibleX the integrals

R
I
�f and

R
I
�fw

exist and are 	nite� In particular� we do not demand that
R

�f � � nor �f � ��
This allows us to use� e� g�� e�cient kernel estimates with high order kernels or
ones based on orthogonal series expansions with a large number of summands�
The essential assumptions on w concern its behavior on the support I of the
parent density function� The choice of its shape there re�ects the importance we
put on accuracy of estimating f in some regions with respect to the other ones�
For instance� one could be more interested in the higher estimation precision
either at the borders �especially at the left border� where the greatest probability
mass is concentrated� or in the central part of the domain� The exact form of w
in Ic plays no role in our approach and we can always de	ne it there to ensureR
Ic

�f
�
w ���

Our purpose is to determine projection Q �f of an arbitrary realization of the
estimate �f � �f�X� �� onto F with respect to WISE� i� e�� to 	nd Q �f that min�
imizes the distance ��� among all elements of the convex set ���� This method
has two advantages� First� the new estimate is actually a density function that
satis	es the shape and support postulates� Second� for every h � F �and so for
the actual density f in particular�

WISE� �f� h� �WISE�Q �f� h�� ���

Since this holds for all possible X � by taking the expectations of both the sides
of ��� with h � f we conclude that using the projections we decrease mean
weighted integrated squared error

MWISE� �f� f� � E

Z
� �f�X� x�� f�x���w�x� dx�

It can be also veri	ed that in some sense Q �f is the uniformly optimal correction
of �f in F � i� e�� for any other modi	cation Q� �f � F of �f � depending on data X
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through �f � the following holds

inf
h�F

�WISE� �f� h��WISE�Q� �f� h�� � inf
h�F

�WISE� �f� h��WISE�Q �f� h���

Observe that the idea of reducing the estimation error by projections is not so
easily justi	ed in the case of nonconvex classes of model densities� Then ��� does
not hold for all possible h and so it may happen that the projection would
actually increase the error� It makes some sense� however� in the asymptotic
setup�

In order to describe Q �f � we 	rst introduce some auxiliary notation� Let gjA
denote the function coinciding with g on a set A and vanishing elsewhere� Set
g� � gjfg��g� Let W stand for the primary of wjI � i�e�

W �x� �

Z x

�

w�t� dt� x � I�

and let A � W �a�� Since W is strictly increasing and absolutely continuous� its
inverse W�� � ��� A� �� I exists and has the mentioned properties of W � If

Z a

�

g�x�w�x� dx �

Z A

�

g �W���x� dx

is 	nite� then the primary � of the composition g �W�� � ��� A� �� R is a well�
de	ned 	nite absolutely continuous function� Accordingly� there exist a unique
smallest concave majorant �� of � and a nonincreasing version �� of the derivative
of ��� Put 	nally

P�g�x� � �� �W �x�� ���

which is a well�de	ned nonincreasing function on I and

P�� g � ��P�g���jI � ���

Below we construct the operators ��� and ��� for �f� � �f � ��w with various �
being elements of speci	ed 	nite dimensional subspaces�

Proposition � If for a given X� �f�X� �� � H and the integrals
R
I
w�x� dx andR

I
dx�w�x� are �nite� then

Q �f � P��
�fc�

where c is a unique constant determined byZ
I

P��
�fc � �� ���

is the projection of �f�X� �� onto ����
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It is known that P� �f describes the projection of �f jI onto the convex cone

H�
jI of nonincreasing functions in HjI � L��I� w�x� dx�� To the best of the

author
s knowledge� the result was originally established by Moriguti ������ in
the case of uniform weighting� The discrete version of P�� which can be ef�
fectively determined by the pool adjacent violators algorithm proposed in Ayer
et al� ������� was extensively applied in various problems of order restricted
inference �see Robertson et al� �������� Furthermore� �fcjI � � �f � c�w�jI with

c � �� �
R
I
�f��
R
I
���w� provides the projection of �f jI onto the family of func�

tions integrating to � �see Gajek ������ Lemma ���� Finally� it can be trivially
concluded that �f jI and �f� are the projections of �f onto the families of func�
tions supported on I and nonnegative ones� respectively� A nontrivial matter
is composing the four operations so that we obtain the projections onto the set
of functions ��� satisfying the respective conditions altogether� Observe that
generally it is impossible to determine c in ��� analytically� because admitting
strongly �uctuating weight functions may result in signi	cant changes of c� For�
tunately� the function

L�c� �

Z
I

P��
�fc ���

is continuous and strictly increasing for c � supfc � L�c� � �g� Therefore a
numerical solution of ��� can be determined easily�

Note that a modi	cation of Proposition � for the case of nondecreasing den�
sities can be immediately derived once we replace the smallest concave majorant
by the greatest convex minorant in the construction of P�� More generally� we
can similarly treat the problem of estimating the density which is piecewise non�
decreasing and nonincreasing� and the locations of respective peaks and valleys
are known� However� one cannot usually 	nd a practical justi	cation for claim�
ing that the density of interest has a number of precisely determined intervals
of monotonicity� More practical applications can be found when considering
the class of symmetric unimodal densities with a given� say �� mode� De	ne
J � ��a� a� for some a � R�� and

G � fh � H � h � ��

Z
h � �� h � � on Jc� h is sym� ���

metric about � and nonincreasing on R�g�

ws�x� � w�x� � w��x��

gs��x� �
g�x�w�x� � g��x�w��x� � ��x� � ���x�

ws�x�
� g� � � H� ���

Proposition � Given g � H� let S�� g be the function which is symmetric

about �� and de�ned as P�� g on R� for the symmetrized weight ws instead
of w� Under the hypotheses of Proposition �� with I replaced by J � there is
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a unique number c satisfyingZ
I

S��
�f
s

c�x� dx � ����

such that S��
�f
s

c is the projection of �f onto ����

More precise approximations of the parent density can be obtained if we
impose expectation and or some other moment constraints� The bias�reducing
kernel estimates have some moments identical with their sample counterparts�
The improvement procedures presented in Propositions � and � violate these
nice properties� but we can recover them adding extra moment conditions for
distance�minimizing problems� One should be aware though that the respective
projections ensure the reduction ofWISE for densities whose moments coincide
with those for the empirical distribution for the given X �

Generally� we additionally assume that f is a member of the family

Fm � fh � F �

Z
�i�x�h�x� dx � mi� i � �� � � � � kg� ����

where �i are nonconstant� linearly independent� and such that all
R
I �

�
i �w�

i � �� � � � � k� are 	nite� Note that for some choices of m � �m�� � � � �mk� the
system of equations in ���� may have no solution� It can be concluded from
Kemperman ������ �see also Anastassiou ������ Section ����� that a su�cient
condition for Fm being nonempty is that the moment vectorm is an inner point
of the convex hull of the image of the vector function ! � �!�� � � � �!k� � I �� Rk�
with !i�x� �

�
x

R x
�
�i�t� dt� i � �� � � � � k� i� e��

m � int convf!�x� � x � Ig� ����

Note that if some �i are monotone� then the moment vector m of the uniform
density supported on I is a border point of the convex hull� However� other
border points generally correspond to mixtures of nonincreasing densities on I
and a pole at the left end�point�

Proposition � If
R
I �

�
i �w ��� i � �� � � � � k� and ���� holds� then there exists

a sequence �n � spanf�i � i � �� � � � � kg with �� 	 �� n � �� �� � � �� such that the
unique projection Qm �f of �f onto ���� can be represented as

Qm �f � lim
n��

P��
�f�n �

The proof is constructive and we write down explicit formulas for the co�
e�cients ci�n� i � �� � � � � k� in the representation of each �n �

Pk
i�� ci�n�i�

n � �� �� � � �� in Section �� One can also try to 	nd � �
Pk

i�� ci�i such that

P��
�f� satis	es the moment constraints and check if this is actually the desired

projection �e� g�� verifying a condition analogous to ���� below�� However� it
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may generally happen that the moment conditions on P��
�f� do not uniquely

determine �� Another possibility is that various systems of coe�cients could
lead to the same 	nal form of projection� Analogous reservations concern the
symmetric case� With the notation

Gm � fh � G �

Z
�i�x�h�x� dx � mi� i � �� � � � � kg� ����

!s
i �x� �

�

x

Z x

�

��i�t� � �i��t�� dt� i � �� � � � � k� x � I�

we have the following

Proposition � If
R
J �

�
i �w � �� i � �� � � � � k� and m � int convf!s�x� � x �

Ig� then there is a sequence �n � spanf�i � i � �� � � � � kg� n � �� �� � � �� such
that the projection Sm �f of �f onto ���� is the symmetric function de�ned on R�

by
Sm �f � lim

n��
S��

�f
s

�n �

� PROOFS

The idea of proofs consists in decomposing the convex sets ���� ���� ���� and ����
into the intersections of simpler ones for which the respective projections are
more tractable� The latter have the following forms�

F� � fh � H �

Z
��x�h�x� dx � �� h � � on Icg� ����

F�
� � fh � H � h � � and is nonincreasing on I� h � � on Icg� ����

G�� � fh � H � h � �� h � � on Jc� h is symmetric ����

about � and nonincreasing on R�g�

The respective projections are presented in Lemmas �� � and �� Then we de�
scribe the Boyle�Dykstra algorythm whose convergence is stated in Lemma ��
This is applied for establishing the 	nal forms of projections considered in Sec�
tion �� We provide a detailed proof of Proposition � and outline the proofs of
the other results�

Lemma � If ��w � HjI then for any g � H

P �g � �g � b
�

w
�jI � ����

with

b � ���

Z
I

�g��

Z
I

��

w
�

is the projection of g onto �����
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Proof� This is a slight modi	cation of Lenic ������ and we write it down for
completeness� We 	rst observe that b is well de	ned since

j

Z
I

�gj �

�Z
I

��

w

Z
I

g�w

����

���

and therefore P�g is actually an element of F�� We apply a condition charac�
terizing the projections onto closed convex subsets of Hilbert spaces


h � F� �P�g � g� P �g � h� � �� ����

�see� e� g�� Balakrishnan ������ p� ���� which in our case is satis	ed sinceZ
�P�g � g��P�g � h�w � b

Z
I

�P�g � h�� � �� �

Here I can be replaced by any Borel set in R� and so by S in particular� Note
that the correction in ���� is inversely proportional to the weight� This means
that the greater signi	cance is put on the accuracy of approximating g in some
regions the less this is modi	ed there�

Lemma � The P�� g de�ned in ��� is the projection of g onto �����

Proof� We 	rst note that ���� is a convex cone in H� Therefore it su�ces to
verify two conditions


h � F�
� �g� h� � �P�� g� h�� ����

�g� P�� g� � �P�� g� P�� g�� ����

uniquely characterizing projections onto convex cones �see� e� g�� Balakrishnan
������ p� ��"����� We shall exploit the fact that P�g is the projection of gjI onto

the convex cone H�
jI of nonincreasing �not necessarily nonnegative� functions in

HjI which implies that


h � H�
jI

Z
I

ghw �

Z
I

P�g hw� ����Z
I

gP�g w �

Z
I

�P�g��w� ����

By ����� for all h � F�
� we haveZ

ghw �

Z
I

P�g hw �

Z
I

�P�g��hw �

Z
P�� g hw�

which gives ����� Set � � supfx � I � P�g�x� 	 �g� If P�g is nonpositive
then ���� holds trivially� If � � a then ���� follows immediately from ����� So
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assume that � is an interior point of I � Referring to the construction of P�g we
observe that W���I� � ��� A� can be split into two sequences of open and closed
subintervals� where �� 	 � �and �� is constant on each of the respective subinter�
vals� and �� � �� Since � is a point at which P�g � �� �W actually decreases�
we have ���W ���� � ��W ����� In particular� this implies that P�gj����� is the
Hj������projection of gj����� onto the cone of nonincreasing functions� Applying
the analogue of ���� with a replaced by �� we conclude thatZ

gP�� g w �

Z �

�

gP�g w �

Z �

�

�P�g��w �

Z
�P�� g��w

which provides ���� and completes the proof� �

Lemma � For S�� de�ned in Proposition �� and

gs��x� �
g�x�w�x� � g��x�w��x�

ws�x�
� x � I� g � H�

�cf� equation ����� the projection of g onto ���� is de�ned as S�� gs��

Proof� Since G�� is a convex cone� we check two criteria analogous to ����"����
from the proof of Lemma �� Also� some conclusions of Lemma � will be exploited
here� The former criterion is ful	lled� because for arbitrary h � G�� yields

�g� h� �

Z
J

g hw �

Z
I

gs� hw
s

�

Z
I

S�� gs� hw
s �

Z
J

S�� gs� hw � �S�� gs�� h��

The above inequality is a consequence of the fact that S�� is the projection
operator onto the cone of nonnegative nonincreasing functions on I with respect
to weight ws� By the same arguments� we have

�g� S�� gs�� �

Z
J

g S�� gs� w �

Z
I

gs� S
�
� gs� w

s

�

Z
I

�S�� gs��
�ws �

Z
J

�S�� gs��
�w � �S�� gs�� S

�
� gs���

which proves the lemma� �

We now present the Boyle�Dykstra algorithm that allows us to combine
the projections Pi onto convex closed sets Hi� i � �� � � � � k� so as to derive
sequences converging to the projection P onto the nonempty intersection of
the Hi� The algorithm consists of in	nite sequence of steps� and each step
consists of k substeps� Suppose that h is to be projected and put h��� � h�

��



and #��i � �� i � �� � � � � k� At the step n� n � �� �� � � � � and for each substep
i � �� � � � � k� we consecutively determine the projection

hn�i � Pi�hn�i�� �#n���i�

and the respective correction

#n�i � �hn�i�� �#n���i�� Pi�hn�i�� �#n���i� � hn�i�� �#n���i � hn�i�

i � �� � � � � k� and write 	nally hn���� � hn�k� The latter� together with all #n�i�
i � �� � � � � k� are applied in step n� ��

Lemma � �Boyle and Dykstra ������ Each of the sequences hn�i� i � �� � � � � k�
tends in the norm to Ph� as n � �� Moreover� if any of Hi is either a linear
subspace or a translate of a linear subspace� then we can put #n�i � �� n �
�� �� � � �� and the conclusion still holds�

Proof of Proposition �� Observe that we can write F � F� � F� with

F� � fh � H �

Z
h � �� h � � on Icg

and F� � F�
� �see formulas ����� ������ For the above decomposition we apply

the Boyle�Dykstra algorithm to show that the outcome of each step has the
form P��

�fcn for some constant cn� Notice 	rst that F� is a translate of a linear
subspace in H and� by Lemma �� we can put #��n � � for n � �� �� � � �� From
Lemmas � and � we conclude that

�f��� � P � �f � � �f � b��w�jI �

�f��� � P��
�f��� � P�� � �f � b��w� � P��

�f b� � ����

#��� � � �f � b��w�jI � P�� � �f � b��w�� ����

Put c� � b� and suppose that for some n � � functions �fn�� and #n�� have the
forms ���� and ����� respectively� with b� replaced by some cn� Proceeding to
step n� �� we obtain

�fn���� � P�� � �f � cn�w� � �bn���w�jI � ����

�fn���� � P�� � �fn���� �#n��� � P�� � �f � cn���w� � P��
�fcn�� � ����

with cn�� � cn�bn��� By Lemma �� both ���� and ���� tend to Q �f � as n���
We analyze more closely the latter sequence whose elements are determined up
to single real parameters cn�

��



We claim that Q �f � P��
�fc with a uniquely determined parameter c �

limn�� cn� We 	rst recall the representation P� �fc �
��c �W with

��c�x� � inf
x�v�A

sup
��u�x

�

v � u

Z v

u

�fc �W
�� ����

� inf
x�v�A

sup
��u�x

�

v � u

�Z v

u

�f �W�� � c

Z v

u

�

w �W��

�
� � � x � A�

�cf� equation ��� and� e� g�� Mammen �����a� p� ����� respectively�� Since
for arbitrary u� v and c � �� the expression in parentheses tends to ��� we
conclude that P� �fc � �� pointwise and so does P��

�fc� Letting c� ��� we

see that P� �f c � �� and P��
�fc � �� This implies boundedness of cn�

Applying ���� again we can deduce that P��
�fc� � P��

�fc�� if c� � c��� In

fact� a stronger assertion holds� if c� � c�� and P��
�fc�� �	 �� then P��

�fc� �

P��
�fc�� on a set of positive measure� On the contrary� suppose that P��

�fc� �

P��
�fc�� which is equivalent to saying that the smallest concave majorants ��c�

and ��c�� � appearing in the constructions of these functions� coincide at least up
to a common positive maximum point W �
� � ��� A�� say� However� arguing as
in the proof of Lemma �� we get

��c���W �
�� � ��c��W �
�� � �c���W �
�� ��c��W �
��

� �c�� � c��
 	 ��

which contradicts our claim� Thus P��
�fc� and P��

�fc�� are actually di�erent
and L�c�� � L�c��� �see equation ����� This enables us to conclude that cn�
n � �� �� � � �� determined by the algorythm have a unique concentration point�
and there is at most one c such that L�c� � ��

It it now su�cient to show that P��
�fcn � P��

�fc� as cn � c� To this end�

we refer again to some steps of construction of P�� � If cn � c then

�cn�x� �

Z x

�

�fcn �W
���t� dt ����

�

Z x

�

�fc �W
���t� dt� �cn � c�

Z A

�

dt

w �W���t�

� �c�x� � �cn � c�a

and� in consequence� for the respective smallest concave majorants we have

��c � ��cn � ��c � �cn � c�a� ��c ����

uniformly on ��� A�� as n � �� If cn � c the reversed inequalities in ����
and ���� and the same 	nal conclusion hold� The limiting ��c uniquely deter�

mines P��
�fc that integrates to �� �

��



Proof of Proposition � is a modi	cation of the preceding one� We can write

G � G� � G� � fh � H �

Z
h � �� h � � on Jcg � G�� �

In the 	rst step of the Boyle�Dykstra procedure we obtain

�f��� � � �f � b��w�jJ

with b� �
�
��

R
J
�f
�
�
R
J

�
w �see Lemma ��� and

�f��� � S�� � �f � b��w�
s
� � S��

�f
s

b� �

#��� � � �f � b��w�jJ � S��
�f
s

b�

�see Lemma ��� The second step provides

�f��� � S��
�f
s

b� � �b��w�jJ �

for some b� and

�f��� � S�� � �f��� �#���� � S��

�
�f � �b� � b���w

�s
�
� S��

�f
s

b��b� �

One can easily check that �fn�� � S��
�f
s

cn � n � �� for cn �
Pn

i�� bi� Note that

�f
s

cn�x� �
�f�x�w�x� � �f��x�w��x�

w�x� � w��x�
�

�cn
w�x� � w��x�

� �f
s

��x� �
�cn
ws�x�

� x � I�

and S�� projects functions supported on I onto ���� with respect to weight func�

tion ws� If we substitute S�� � �f
s

�� �cn and ws for P�� � �f � cn and w� respectively�
in the second part of the proof of Proposition � we immediately establish the
desired conclusion� �

Proof of Proposition �� It su�ces to show that the elements of one of the
sequences determined by the Boyle�Dykstra algorithm can be written in the form

P��

�
�f � �

w

Pk��
i�� ci�n�i��

�
� n � �� �� � � �� for a properly chosen representation

of ���� as the intersection of convex sets with a simpler structure� We propose

setting Fm �
Tk��
i�� Fi� where

Fi � Fmi�� � fh � H �

Z
h�i�� � mi��� h � � on Icg� i � �� � � � � k � ��

��



with �� 	 � � m� and Fk�� � F�
� �see formulas ����� ������ By Lemmas �

and ��

�f��l �

�
�f �

�

w

lX
i��

c��i�i

�
jI

� l � �� � � � � k � �� ����

�f��k�� � P��

�
�f �

�

w

k��X
i��

c��i�i

�
� ����

#��k�� �

�
�f �

�

w

k��X
i��

c��i�i

�
� P��

�
�f �

�

w

k��X
i��

c��i�i

�
� ����

Note that we can put #n�i � � for i � �� � � � � k � � and all n � �� Replacing �
by an arbitrarily given natural number n in the indices of the left�hand sides of
����� ����� ���� as well as in those of the coe�cients of the combinations of the
respective right�hand sides� we determine

�fn���l � P��

�
�f �

�

w

k��X
i��

cn�i�i

�
�

�
�

w

lX
i��

bn���i�i

�
jI

� l � �� � � � � k � ��

�fn���k�� � P��

�
�fn���k�� �#n�k��

�
� P��

�
�f �

�

w

k��X
i��

cn���i�i

�
�

with cn���i � cn�i � bn���i� i � �� � � � � k � �� The last sequence meets our
requirements� �

The same proof works for Proposition � when we substitute G�� for F�
� �

The details are left to the reader� Versions of the above algorithms which are
suitable for numerical implementations will be presented in Section ��

� ALGORITHMS AND REMARKS

An algorithm for projecting a density estimate �f onto the nondecreasing den�
sities with given support I and moment conditions

R
I �if � mi� i � �� � � � � k�

�Here I is an arbitrary 	nite interval� �� 	 � and m� � ���

Determine 	rst

Aj�i �

Z
I

�j�i�w� � � j � i � k�

�i�x� � �i�x��w�x�� x � I�

Put

n � ��

��



c��i � �� i � �� � � � � k�

���i � mi �

Z
I

�f�i� i � �� � � � � k�

Then

n � n� �� ����

bn�i �

�
��n���i �

i��X
j��

bn�jAj�i

�
A �Ai�i� i � �� � � � � k�

cn�i � cn���i � bn�i i � �� � � � � k�

�fn�x� � P��

�
�f �

kX
i��

cn�i�i

�
�x�� x � I� ����

�n�i � mi �

Z
I

�fn�i� i � �� � � � � k�

If �n�i � �� i � �� � � � � k� ����

then Qm �f � �fnjI � stop

else go to �����

An algorithm for projecting a density estimate �f onto the symmetric uni�
modal densities with given center of symmetry c and support J � �c�a� c�a� and
moment conditions

R
J �if � mi� i � �� � � � � k� �Here

R
J ��f �

R
J f � m� � ���

Determine 	rst

Aj�i �

Z
J

�j�i�w� � � j � i � k�

ws�x� � w�c � x� � w�c� x�� x � ��� a�� ����

�f
s
�x� � � �f�c� x�w�c � x� � �f�c� x�w�c � x���ws�x��x � ��� a��

�si �x� � �i�c� x� � �i�c� x�� x � ��� a�� i � �� � � � � k�

�si �x� � �si �x��w
s�x�� x � ��� a�� i � �� � � � � k�

Put

n � ��

c��i � �� i � �� � � � � k�

���i � mi �

Z
J

�f�i� i � �� � � � � k�

Then

n � n� �� ����

��



bn�i �

�
��n���i �

i��X
j��

bn�jAj�i

�
A �Ai�i� i � �� � � � � k�

cn�i � cn���i � bn�i i � �� � � � � k�

�fn�x� � S��

�
�f
s
�

kX
i��

cn�i�
s
i

�
�x�� x � ��� a�� ����

�n�i � mi �

Z a

�

�fn�
s
i � i � �� � � � � k�

If �n�i � �� i � �� � � � � k� ����

then Sm �f�x� �

	

�

�fn�x� c�� c � x � c� a�
�fn�c� x�� c� a � x � c�
�� x � Jc�

stop

else go to �����

Clearly� conditions ���� and ���� imply that �fn would satisfy all moment
and shape conditions for some 	nite n� something which cannot be expected in
general� One could make the procedures 	nite either by adding a condition on
the maximal number of steps or by relaxing ���� and ����� For instance� the
algorithms could stop when the distance in a chosen metric of ��n��� � � � � �n�k� to
the origin in Rk�� �or to ��n����� � � � � �n���k�� were less than a given 
�

The only nonelementary operations of the algorithms� except of the numeri�
cal integration� are ���� and ����� These can be well approximated by means of
the weighted pool adjacent violators algorithm� To get the former one� we de�

termine the isotonic regression of �
�
�f �
Pk

i�� cn�i�i

�
with respect to weight w

over a su�ciently dense grid in I � then change the sign and reject the negative
values� For the latter� we apply the symmetrized weight �����

However� in the case of symmetric weighting� which is the most natural here�
ws � w and the argument of the right�hand side of ���� reduces to

�fc�x� �
�f�x� � �f��x�

�
�

�

w�x�

kX
i��

cn�i
�i�x� � �i��x�

�
�

Then determining Sm �f simply consists in folding �f and �i� i � �� � � � � k� about ��
applying the former algorithm� and unfolding the solution�

The most natural moment condition are E�X i� � mi� i � �� � � � � k� It is

well known that
R �
� x

ip�x� dx � �i� i � �� � � � � l� for some nonnegative� not
necessarily probabilistic density function p on ��� �� if the following matrices are
positive de	nite

��i�j���i�j�������bl����c� ����

��i�j���i�j�������b�l��	��c� ����

��



��i�j�� � �i�j���i�j�������b�l��	��c� ����

��i�j�� � �i�j �i�j�������bl��c� ����

where b�c denotes the �oor of a number �see� e� g�� Karlin and Studden �����
Chapter ��� If we consider nonincreasing densities supported on the interval I �
�c� c�a� with given 	rst k standard momentsmi� i � �� � � � � k� then� applying ����
and linear transformations� we conclude that the moment conditions are not
contradictory if ����"���� are positive de	nite with l � k and

�i �
i� �

ai

iX
j��

�
i

j

�
��c�i�jmj � i � �� � � � � k� ����

The possible standard moments m�� � � � �mk of symmetric and unimodal �c �
a� c� a��supported densities satisfy

�i��X
j��

�
�i� �

j

�
����j��c�i���jmj � �� � � �i� � � k�

together with positive de	niteness of ����"���� for l � �k��� and

�i �
�i� �

�a�i

�iX
j��

�
�i

j

�
����jc�i�jmj � � � �i � k� ����

Obviously� the above algorithms with k � � provide the projections onto
respective classes of densities without moment constraints� Moreover� if we
assume the uniform weighting and if the original estimate �f is nonnegative andR

�f � �� then both the algorithms terminate in one step� Then �f��� �
�f is

a proper density function and so is �f���� This is because P� �f preserves the

value of
R

�fw and the sign of the one�signed function �f � since P� �f is de	ned

by averaging �f on some intervals�
We can slightly change the algorithms if the conditions of monotonicity and

unimodality are not imposed� Then we only need to replace the operators P��
and S�� in ���� and ����� respectively� by taking the positive parts of the re�
spective arguments� In these cases� we also modify the conditions for standard
moments of densities by dropping i� � and �i� � from the numerators of the
factors standing in front of the sums in ���� and ����� respectively�
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