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analyze U.S. occupational segregation by gender and ethnicity. 
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Measuring Segregation When Hierarchy Matters  

 

Measurement of segregation continues to be a topic of debate among economists and 

sociologists. This is in part because the underlying issues continue to be important. Women and 

minorities are underrepresented in some occupations, and there is reason to believe that unequal 

opportunity contributes to that. Similarly, some high schools have higher proportions of minorities 

than others, and that can both reflect and influence the quality of education at those schools. 

Measures of segregation help us examine such issues.1   

This paper focuses on occupational segregation. Although the main ideas are applicable to 

other forms of segregation (e.g., housing or school segregation), occupational segregation provides a 

useful anchor for the exposition.  Existing measures of occupational segregation compare two 

distributions of people across occupations in order to declare one distribution more segregated than 

another. These measures have a curious feature: they ignore the economic advantage of an 

occupation. That fits neither common parlance nor common practice. While separation of men and 

women into different occupations may be of concern, it is of particular concern when one group 

thereby suffers an economic disadvantage.  

For example, in 1991 the U.S. Congress established the “Glass Ceiling Commission” to study 

barriers to the advancement of minorities and women within corporate hierarchies. The commission 

focused on executive occupations, noting that only 5% of senior managers in the Fortune 2000 

companies are women (Federal Glass Ceiling Commission, p. 9). Of course, there are other 

occupations where women are similarly underrepresented (e.g., installation, maintenance, and 

repair). Congress presumably focused on the well-paid executive occupations not only because 



  
  

 

2

women and minorities were underrepresented in such occupations, but also because this 

underrepresentation was perceived to be accompanied by economic disadvantage. A good measure of 

segregation should arguably reflect such perceptions.  

 A similar issue comes up in discussions of role models. It is argued that the small numbers 

of women and minorities in high prestige occupations (e.g., scientist, astronaut, prime minister), 

affect the aspirations of the young and thereby investment in human capital. By implication, such 

segregation is particularly serious because it affects skill acquisition and thereby productivity. A 

good measure of segregation should arguably indicate that increased segregation in some occupations 

is of particular importance.  

The goal of this paper is to develop and empirically implement measures of segregation that 

indicate the extent of segregation when occupations form a hierarchy. Section II defines a class of 

measures of segregation in hierarchies based on a cardinal scale of economic status.  Measures of 

segregation within this class can indicate whether one distribution of people across occupations is 

less segregated -- in a sense that is made concrete below -- than another distribution. The class also 

includes measures where occupations have the same economic status, thereby permitting the kind of 

analysis performed with existing measures of segregation. For example, the square root measure of 

segregation in Hutchens (2001), which ignores economic status, is a member of the class. Section II 

closes with derivation of a unique measure of segregation in hierarchies (Corollary 1.1).  

A problem with the Section II index is that it requires a cardinal scale of economic status, and 

existing scales differ in both derivation and outcome.2 Which scale is correct? The same problem 

arises when using equivalence scales to adjust income for family needs (e.g., numbers of children); 

there exist many equivalence scales, and no one is unambiguously superior. One branch of the 

literature resolves this problem by asserting that there may be no single correct cardinal equivalence 
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scale, and then exploring less informationally demanding ordinal rankings of families, i.e., rankings 

from most needy family to least needy family.  

Section III of this paper takes a similar approach. Suppose analysts disagree on the correct 

cardinal measure of economic status, but agree on the ordinal ranking of occupations from highest to 

lowest economic status. Given that ordinal ranking, are there conditions under which we can declare 

one occupational distribution of people more segregated than another? Theorem 2 gives an 

affirmative answer to this question. In doing so, it takes ideas from the literature on income 

inequality among heterogeneous agents (e.g., Atkinson and Bourguignon, 1987), 3 and extends them 

to the problem of assessing occupational segregation among heterogeneous occupations.  

The methods developed in Sections II and III are then applied in Section IV, which examines 

occupational segregation in the United States  by gender and ethnicity.  The results meaningfully 

differ from those obtained with existing measures of segregation.  

 
 
I. The Problem  
 
 The first task is to introduce notation and frame the problem. Thus, consider a set of T groups 

that contain two types of people.  Let xij be the number of persons of type i in group j (i=1,2; 

j=1,..,T).  For example, type 1 could be women, type 2 could be men, and group j could be one of T 

occupations.  The total number of people in group j is then equal to x1j + x2j.  Let xi denote a row 

vector of numbers of type i people in occupations 1 through T, i.e.,  

 x1 = [x11, x12,...,x1T] 

 x2 = [x21, x22,...,x2T]. 

Let x be the matrix with 









2

1

x
x

x .  For example, for four occupations,  
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       Occupation 
     1   2   3   4 

(1) 









4668
4653

2
1

type
type

x  

 
Denote the sum of type 1 and type 2 people as  j j

x xN 11
and  j j

x xN 22
. Thus, if type 1 people are 

women, the distribution in (1) contains three women and eight men in the first occupation and a total 

of 18 women and 24 men ( xN1 = 3+5+6+4 = 18 and xN2  = 8+6+6+4 = 24). 

 The literature on measuring segregation seeks to assess whether one distribution of people 

across groups is more segregated (less equal) than another distribution. Thus, given an alternative 

distribution such as,  

 









3894
1541

y  

the fundamental question is whether x is more segregated than y.  

 This paper addresses a slightly different problem: whether x is more segregated than y when 

segregation of one group is considered to be more important than segregation of another. Although 

there may be many reasons why segregation of a group is important, the focus here is on 

“differences in economic status.” The idea is that there are group characteristics – characteristics 

other than the gender or racial composition of a group – that influence our assessment of 

segregation’s severity. “Economic status” is used as shorthand for those other characteristics.4  

 In order to assess segregation when groups differ in economic status, assume that a single 

fixed number represents economic status. Let kj be a non-negative scalar associated with group j that 

indicates the economic status of that group, and let k denote the vector of these numbers for groups 

1 through T, i.e.,  

 k = {k1, k2,...,kT} 
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If kj > ki, then group j has higher economic status than group i, and if kj = ki, the two groups have the 

same economic status. In addition, when comparing distributions x and y, the vector k is assumed to 

be fixed in the sense that occupation j in both distributions has economic status kj.   

 The existing literature provides several measures of segregation that implicitly set k1 = k2 

=…= kT. Perhaps the most general measure takes the form of comparing segregation curves.5  

Segregation curves are formed by plotting the cumulative fraction of type 1 people (on the vertical 

axis) against the cumulative fraction of type 2 people (on the horizontal axis), with fractions ranked 

from low to high values of the ratio x1j/x2j. If the segregation curve for x lies everywhere below that 

for y, then the x distribution is more segregated than the y distribution.  Like the Lorenz curves used 

to measure income inequality, segregation curves yield a partial ordering of distributions; when 

segregation curves cross, they yield no information about whether x is more segregated than y.  

 Therein lays the advantage to numerical measures of segregation. Although numerical 

measures rest on more stringent assumptions (or value judgments) about the nature of segregation 

than segregation curves, they have the advantage of yielding a complete ordering of distributions. 

With numerical measures the analyst can always determine whether x is more segregated than y. The 

dissimilarity index in (2) and the square root index in (3) are examples of numerical measures of 

segregation.  

(2) 



T

j

x
j

x
jd NxNxxO

1
22112

1 //)(
    

(3)  



T

j

x
j

x
j NxNxxO

1
2211 ]/][/[1)(   

Because neither segregation curves, the dissimilarity index, nor the square root index utilize 

information on the economic status of different groups, they implicitly assume, k1 = k2 = …= kT. 
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Since that case plays an important role in what follows, denote a k vector with k1 = k2 = …= kT as k0. 

This paper seeks to measure segregation when k does not necessarily equal k0.  

 Thus, the question posed in this paper is, “Given k, under what circumstances is x more 

segregated than y?” The goal is to characterize a class of numerical measures that exhibit appropriate 

properties, and then use those measures to analyze data on segregation. Let O(x; k) be a continuous 

real valued measure of segregation defined on the domain D. Denoting the vector space of all 2 T 

real matrices with non-negative elements by T

2R , the domain of O(x; k) is 

 2T TDD where 

 2,1,0 : and 2  

 iNkxD x

i
TT

T RR .6 Since O(x; k) is a measure of segregation,  

O(x; k) > O(y; k) iff x is at least as segregated as y for each x, y and k element of D. This paper thus 

seeks to characterize O(x; k).7  

  

II. Properties and a Theorem   

 We begin with the case where the elements of k are cardinal measures of group economic 

status.  Of course, this is problematic; it may be difficult to reach agreement on the “true” cardinal 

measure of economic status. That issue is dealt with in the Section III treatment of ordinal rankings. 

This section first states properties for the special case where k = k0, then moves to properties for k  

k0, and concludes with a theorem that links the properties to a specific measure of segregation. Since 

the existing literature stipulates desirable properties when k = k0, it is important to start there. An 

index that is defined for all k should exhibit those same desirable properties when k = k0; if it violates 

the properties, then either the index or the existing literature is wrong.  

 Hutchens (2001) presents seven properties for a “good” numerical measure of segregation 

and establishes the class of measures for which these properties are necessary and sufficient.8 While 
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a statement of these properties has the appearance of going over old ground, in fact, it is more than 

that. The properties specify the behavior of O(x;k) in the special case where k = k0, and thereby 

serve to narrow the class of acceptable  indexes. Moreover, since they belong to an earlier literature, 

the seven properties have the virtue of having been vetted as desirable for a measure of segregation. 

To state the properties, two definitions are required:  

A Proportional Division. The distribution y is obtained from x by a proportional division of a group if  
yij = xij, i = 1,2; j = 1,..,T-1  
yij = xiT/M, i = 1,2; j = T,…,T+M-1, 

where M is a positive integer.  
 
A Disequalizing Movement. The distribution y is obtained from x by a disequalizing movement of 
type 1 people if, for f and g, (a) x2f = x2g = y2f = y2g > 0, (b) x1f/x2f < x1g/x2g, (c) y1f = x1f - d and  
y1g = x1g + d, for 0 < d < x1f, and (d) xih = yih, i = 1,2; h  f,g .  
 
 A proportional division divides a group into M subgroups, such that each of the subgroups 

contain 1/M of the original type 1 and type 2 people. As a result, the ratio of type 1 to type 2 people 

in each of the subgroups is the same as the original (pre-division) ratio. P2 below addresses the effect 

of a proportional division on measured segregation. It essentially says that a segregation index should 

not change as a result of a proportional division.  

 A disequalizing movement is similar to a regressive transfer in the income inequality 

literature. Given two groups, f and g, with x1f/x2f < x1g/x2g, a disequalizing movement reduces x1f/x2f  

and increases x1g/x2g. To illustrate, let type 1 people be women and type 2 people be men, and 

suppose that the initial distribution is as in (1) above. Note that since occupation 2 contains 5 

women and 6 men and occupation 3 contains 6 women and 6 men, x12/x22 = 5/6 < 6/6 = x13/x23. Now, 

suppose “d” women move from occupation 2 to occupation 3 (so that occupation 2 contains 5- d 

women and occupation 3 contains 6+d women), where d is small. This movement increases the 

female to male ratio in the more “female” occupation 3 while decreasing that ratio in the more 
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“male” occupation 2. P7 below addresses the effect of such a disequalizing movement; it essentially 

says that measured segregation should either increase or not change as a result.   

  Given these definitions, the seven properties in Hutchens (2001) can be written,  

P1.  Scale Invariance. Let 










 0
0

 where  and  are positive scalars. If y = x, then 

O(x; k0) = O(y; k0).  
 

P2.  Insensitivity to Proportional Divisions.  If y is obtained from x by a proportional division of 
a group, then O(x; k0) = O(y; k0). 

 
P3.  Zero Member Independence.  If x and y are identical except that x includes a group with no 

members and y excludes that group, then O(x; k0) = O(y; k0).   

P4.  Symmetry in Types. If type 1 and type 2 people exchange labels such that 









2

1

x
x

x  and











1

2

x
x

y  then O(x; k0) = O(y; k0).  

P5.  Additivity. O(x; k0) is additive in groups, i.e., });,({);(
1

0
21

0 



T

j
jjj

j kxxOkxO  

where O1( ), O2( ), ..., OT( ) are continuous real-valued functions from RRR  
2 , and Γ{ } 

is continuous and strictly increasing.  
 

P6.  Symmetry In Groups. If (j1,…,jT) is any permutation of 1,…,T,  











T

T

xxx
xxx

x
22221

11211

,,,
,,,



 , and 









T

T

jjj

jjj

xxx
xxx

y
222

111

,,,
,,,

21

21



 then O(x; k0) = O(y; k0). 

 
P7.  Movement Between Groups. If y is obtained from x by a disequalizing movement, then  

O(x; k0) < O(y; k0).9  
 
 Additional explanation may be helpful here. P1 simply says that in the case where k = k0, if N1 

is multiplied by a positive scalar (α) and the shares of type 1 people in each occupation do not change 

(where a share is calculated as the number of type 1 people in an occupation divided by N1), then 

segregation does not change. To illustrate, let type 1 be women, and assume the number of women in 

the labor force doubles (α = 2). If the occupations that previously contained 0%, 10%, 20%, etc. of all 

women continue to do so, then this change in the level of women in the population does not affect 
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segregation. As noted above, P2 says that a proportional division should not change measured 

segregation.  A proportional division essentially allocates the old segregation over new occupations; 

the ratio of type 1 to type 2 people in the new occupations is the same as in the old. P3 – P6 are self- 

explanatory. As noted above, P7 is similar to the principle of transfers in the income inequality 

literature. The principle of transfers says that a transfer of income from a low income person to a high 

income person can not decrease and may increase income inequality; P7 says that a movement of type 

1 people from a group where the ratio of type 1 to type 2 is low into a group where that ratio is high 

can not decrease and may increase segregation.  

 Note that P7 focuses on type 1 people. One could posit a similar property for type 2 people. 

Thanks in part to symmetry in types (P4), the subsequent theorems can be derived without a parallel 

property for type 2 people. Thus, in keeping with properties that are as unrestrictive as possible, it is 

sufficient to focus on type 1 people. Of course, who is labeled type 1 or type 2 is arbitrary. The same 

point applies to P7’ and P8’ below.  

 In the special case where k = k0, the index in this paper should satisfy the above seven 

properties. The index must, however, also address cases where k  k0. Four additional properties -- 

properties that  extend properties 5-7 above to cases where k  k0 -- are useful. First, it is necessary to 

modify the functional form of the index and to redefine symmetry. Thus,  

 P5’. Additivity For All k. O(x; k) is additive in groups, i.e.,  

 });,({);(
1

21



T

j
jjj

j kxxOkxO  

where O1( ), O2( ), ..., OT( ) are 3-smooth real-valued functions from  RRR  
2 , and  

Γ{ }is differentiable and strictly increasing. 
 
Additivity is a reasonable property because it is reasonable to assert that total segregation can be 

decomposed into components that are attributable to subsets of groups. For example, one might seek 
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to determine what fraction of segregation for all occupations arises in blue-collar occupations.  Such 

an exercise can only be meaningful if segregation in the blue-collar subset is not affected by changes 

in segregation outside of that subset. Only then can total segregation be split into distinct “within 

blue-collar” and “not within blue-collar” categories. Like P5, P5’ is sufficient to insure that that is 

true for the blue-collar subset, the white-collar subset, or any other feasible partition of the 

occupations.10 Unlike P5, P5’ deals with k  k0, and requires that the function O( ) be 3-smooth (thus, 

the function and its first, second, and third derivatives are continuous).  

 This is a good place to introduce a second, more stringent, assumption about functional form: 

additive decomposability. As established below, this assumption leads to a unique segregation index. 

Introducing notation, partition the x matrix into G mutually exclusive and exhaustive subsets 

containing T1,…,TG occupations such that x = {x1, …, xG} where xg is a 2 x Tg matrix that denotes the 

distribution of type 1 and type 2 people across the Tg occupations, and T = ΣgTg. Then proceeding in 

a manner similar to Hutchens (2004),  

Additive Decomposability. A measure of segregation is additive decomposable for groups with 
the same economic status if it takes the form,  





G

g

g
g BkxOwkxO

1

00 );();(   

where wg is the weight attached to subset g (g = 1,…,G), B is the between subset term, and  
wg = wg(N1(x1),..., N1(xG), N2(x1),…, N2(xG), k0) > 0 
B  = B(N1(x1),..., N1(xG), N2(x1),…, N2(xG), k0). 

 

Additive decomposable measures of inequality are useful because they permit a decomposition of 

inequality into “within” and “between” components. For example, an additive decomposable 

measure of segregation permits a decomposition of total segregation into a within-blue collar 

component, a within-white collar component, and a between white and blue collar component. For 
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present purposes, a further advantage of additive decomposability is that it can be used to restrict P5’ 

in a way that yields interesting results. Thus, we consider the following restriction on P5’,  

P5’’. Extended Additivity. O(x; k) is not only additive for all k (P5’), but also additive 
 decomposable for groups with the same economic status. 
 
The next property, P6’, simply extends symmetry in groups (P6) to cases where the elements 

of k differ. Thus, if occupations are relabeled, so that occupation 3 is labeled 4 and occupation 4 is 

labeled 3, then segregation is unaffected; the occupations have the same value of k and the same 

count of men and women as before; only the labels changed. 

P6’. Symmetry In Groups with Different Values of k. Assume that (j1,…,jT) is any permutation of 
1,…,T, and let   

   









T

T

xxx
xxx

x
22221

11211

,,,
,,,



 , 









T

T

jjj

jjj

xxx
xxx

y
222

111

,,,
,,,

21

21



 ,  Tkkkk ,...,, 21 , and  
Tjjj kkkk ,...,,'

21
 . 

Then O(x; k) = O(y;k´).  
 

The next two properties -- P7’ and P8’ -- address movements between groups when groups 

have different levels of economic status. In discussing these properties, it is useful to introduce a 

distinction between two types of disequalizing movements: “a disequalizing movement with reduced 

economic status” and “a disequalizing movement with unchanged economic status.” The first is 

simply a disequalizing movement between two groups such that the “receiving” group has less 

economic status than the “sending” group. Thus, adding part (e) to the previous definition,  

A Disequalizing Movement with Reduced Economic Status. The distribution y is obtained from x by 
a disequalizing movement with reduced economic status of type 1 people if, for f and g, (a) x2f = x2g = 
y2f = y2g > 0, (b) x1f/x2f < x1g/x2g, (c) y1f = x1f - d and y1g = x1g + d, for 0 < d < x1f, (d) xih = yih, i = 1,2; h 
 f,g, (e) kf > kg. 
 
A disequalizing movement with unchanged economic status is defined identically, except that part 

(e) becomes kf = kg.11  
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An illustration may be helpful here. Let type 1 people be women and type 2 people be men, 

and suppose that the initial x distribution is as in (4), with kf = kg > kh by assumption.  

             Occupation 
   f    g    h   

 
 
 

Now form the y distribution by moving d women from occupation f to occupation g (so that 

occupation f contains 2-d women and 4 men and occupation g contains 6+d women and 4 men). 

Since x1f/x2f < x 1g/x 2g and kf = kg, this is a disequalizing movement with unchanged economic status.  

In accordance with P7 such a disequalizing movement may increase segregation. Next, form the z 

distribution by moving d women from occupation f to occupation h. Since x1f/x2f < x 1h/x 2h and kf > kh, 

this is a disequalizing movement with reduced economic status. As stated in the following property, 

because people suffer reduced status, this movement from f to h can have a larger effect on 

segregation than the otherwise identical disequalizing movement with unchanged economic status 

(from f to g). This is because the d women who move from f to h suffer reduced economic status, 

while the d women who move from f to g do not. 

P7’. Movements Between Groups with Different Values of k. Assume that the x distribution has  
T groups. Denote three of these groups as f, g, and h with  x1f < x1g = x1h  and kf = kg > kh. 
With no change in k, let the y distribution be obtained from x through a movement of d type 1 
people from group f to group g, and let the z distribution be obtained from x through a 
movement of d type 1 people from group f to group h. Then for all 0 < d < x1f,   

(a) if x2f = x2g = x2h > 0, then O(x;k) < O(y;k) < O(z;k) 
(b) if x2f = x2g = x2h = 0 then O(x;k) = O(y;k) < O(z;k) 

 
Statement (a) in P7’ essentially makes two points. First, a disequalizing movement with 

unchanged economic status should not decrease and may increase segregation. This essentially 

repeats P7 above. Second, a disequalizing movement with reduced economic status should have an 

effect on measured segregation that exceeds or equals an otherwise identical disequalizing movement 









444
662

)4(
men
women 
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with unchanged economic status. Thus, increased segregation may be more egregious in some 

occupations than in others; while a disequalizing movement may increase segregation, it can increase 

segregation even more if the movers suffer reduced economic status.    

Statement (b) in P7’ addresses the effect on segregation of a movement of type 1 people 

between two groups that only contain type 1 people, i.e., the two groups are completely segregated. It 

essentially says that if the two groups have the same economic status, then the movement does not 

affect measured segregation. Nothing changed; the type 1 people were completely segregated and 

had the same economic status before and after the move.  If the movement involves reduced 

economic status (the receiving group has lower economic status than the sending group), then the 

segregation index should not decrease and may increase. In other words, since the women suffer 

reduced economic status, an increase in measured segregation cannot be ruled out.12 

The next property considers two pairs of groups: the first pair consists of groups f and g, and 

the second  of groups q and r. The property addresses the effect of identical disequalizing movements 

within each pair when kf = kg < kq = kr. 

P8’. Movements Between Groups with the Same Value of k.  

Assume that the x distribution has T groups. Denote four of these groups as f, g, q, and r  with 
0<x1f =x1q< x1g = x1r and kf = kg < kq = kr. With no change in k, let the y distribution be 
obtained from x through a movement of d type 1 people from group f to group g, and let the v 
distribution be obtained from x through a movement of d type 1 people from group q to group 
r. Then for all  0 < d < x1f ,  

(a) if x2f = x2g = x2q = x2r > 0 then O(x;k) < O(y;k) < O(v;k)  
(b) if x2f = x2g = x2q = x2r = 0 then O(x;k) = O(y;k) = O(v;k) 

 
Statement (a) in P8’ essentially says that a small disequalizing movement between two 

equally high economic status occupations should have an effect on measured segregation that is 

greater than or equal to an otherwise identical disequalizing movement between two equally low 

economic status occupations. Alternatively stated, the change in segregation resulting from a 
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disequalizing movement between two occupations with the same value of k should be non-decreasing 

in k. This is arguably consistent with the values underlying establishment of the 1991 Glass Ceiling 

Commission. Societies need to put special emphasis on reducing segregation in high economic status 

occupations. While increased occupational segregation is always worrisome, increased occupational 

segregation in high economic status occupations is particularly worrisome.13   

Like P8’(a), statement P8’(b) considers a movement of type 1 people when kf = kg < kq = kr. 

The only difference is that in statement (b) both pairs of groups are completely segregated, i.e., the 

groups contain only type 1 people. As in P7’(b), if two groups are of equal economic status and are 

completely segregated such that there are only type 1 people in the two groups, then movement of 

type 1 people between the two groups does not change measured segregation. The movement 

changes neither their economic status nor their degree of segregation.   

Properties P5’ – P8’ in combination with P1 - P4 yield the following specification of what is 

henceforth termed a “status-augmented measure of segregation,”  

Theorem 1. O(x;k) satisfies properties 1 - 4, 5’ - 8’  if and only if  

 
 









 


T

j
jjjjjj sskkssLkxO

1
2121 ))(();,();()5(  , where  

Γ{ }: RR  is differentiable and strictly increasing,  
sij = xij/ x

iN , i = 1,2; j = 1,..,T, 
λ(kj): RR  is a non-increasing differentiable function of kj, and 
L( ): RRR  

2 is a 3-smooth function with  
a) L(0,0; kj) = L(s1j,0; kj) = L(0,s2j; kj) = 0, j = 1,..,T. 
b) L( ) is symmetric, and homogeneous of degree one in its first two arguments, i.e.,  

L(s1j,s2j; kj) = L(s2j,s1j; kj) and L(s1j,s2j; kj) = L(δs1j, δs2j; kj)/δ for δ>0.  
c)   0/)(2  jjjij kkksL  , i = 1,2; j = 1,..,T. 

d)   02
1

3  jj ksL  if s2j > 0 and   02
1

3  jj ksL if s2j = 0, j = 1,..,T.  

e)   02
1

2  jsL  if s2j > 0 and   02
1

2  jsL if s2j = 0, j = 1,..,T 

f)   02
2

3  jj ksL  if s1j > 0 and   02
2

3  jj ksL if s1j = 0, j = 1,..,T.  
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g)   02
2

2  jsL  if s1j > 0 and   02
2

2  jsL if s1j = 0, j = 1,..,T 

Proof: See Appendix. 
 
 As noted above, when P5’ is replaced by P5’’, a unique measure emerges. Specifically, 
 
Corollary 1.1: O(x;k) satisfies properties 1-4, 6’ – 8’ as well as P5’’, if and only if it takes the form, 

(6)  
 













T

j
jj

j
jjjb ss

k
bsskkkkbkxOkxO

1
2121 )(

))(()~()~(2)~();();(




 
where b is positive, λ(kj) is a nonincreasing differentiable function of kj, )( jk is positive, 

non –increasing and differentiable in kj, and k~  is a non-negative number.  
 
Proof: See Appendix  
 
 In the special case where k = k0, one would expect the Theorem 1 index to also satisfy P1-P7. 

The following corollary establishes that connection:  

Corollary 1.2. If ,... 00
2

0
1 Tkkk   then (5) satisfies properties 1-7. 

Proof: See Appendix  
 
 Note that equation (6) provides an example of an index that meets the requirements of  
 
Theorem 1. Theorem 1 specifies L( ) as a 3-smooth function that is symmetric, homogeneous of  
 
degree one in s1j and s2j,  and that equals zero when s1j and/or s2j equal zero. The function

jj
j

jjj ss
k
bkssL 2121 )(

);,(


  not only meets these requirements, but also possesses the 

derivatives stipulated in (c) – (g) of Theorem 1.14  
 
 Perhaps the most unusual feature of the indexes in (5) and (6) – at least from the perspective 

of existing measures of segregation like (2) and (3) – is the term,  



T

j
jjj ssk

1
21 ))(( . The term 

essentially arises out of P7’(b); it assures that in the case where kf > kh and s2f = s2h = 0, a movement  
 
of d type 1 people from high status group f to lower status group h cannot decrease and may  
 
increase measured segregation.15  
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  For purposes of understanding Corollary 1.2, it is instructive to consider a variant of the 

index in equation (6). Let Tkkkk  ...~ 21  and b = 1. Then (6) reduces to,  

(7) 
T

j
jj ss ]][[1 21  

which is identical to the square root index in (3) above.  In accordance with Corollary 1.2, the index  
 
in equation (7) should satisfy properties 1 – 7. Not only is that easily confirmed, it is consistent with 

Hutchens (2001), which proves that the square root index satisfies the seven properties. Given this 

connection, the equation (6) index is henceforth termed a “status-augmented square root index,” and 

the equations (3) and (7) index termed a “status-free square root index.”  

 In summary, from Theorem 1 and its corollaries we learn that the stated properties are quite 

restrictive about how one should incorporate economic status into a measure of segregation. When 

hierarchy matters, measurement of segregation requires a complex interaction between the measure of 

economic status (k) and standard status-free measures of segregation.  

 

III. Assessing Segregation When There Is Only an Ordinal Ranking of the kj 

 While the augmented square root index in equation (6) has several desirable properties, it 

also has a weakness: it requires an acceptable cardinal measure of economic status. Consider, for 

example, an analysis of occupational segregation that uses average earnings as a measure of 

economic status. A critic might plausibly ask whether we really believe that an occupation with 

twice the earnings of another has exactly twice the economic status. Of course, this is a problem for 

any member of the class of measures encompassed by Theorem 1. 

 An alternative way to proceed is to assume that while analysts may not agree on a cardinal 

measure of occupational economic status, they can still rank occupations from lowest to highest 

economic status. Thus, instead of claiming that occupation A has twice the economic status of B, one 
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is willing to say that A has greater economic status than B. By this assumption, the only useful 

information in a measure of economic status is the ordinal ranking k1 > … > kT . To make the point 

another way, consider two measures of economic status },...,,{ 21 Tkkkk  and },...,,{ 21 Tkkkk 

with jj kk  , j = 1,…,T; this section assumes that if 0...1  Tkk and ,0...1  Tkk then k  and

k  convey identical information about economic status. In that case, is it still possible to make 

statements about occupational segregation? More precisely, with the T groups fixed in descending 

order of status, are there conditions on x and y that guarantee that O(x;k) > O(y;k) for any index 

satisfying properties 1-4 and 5’-8’? In fact, as indicated by the subsequent Theorem 2, there are. The 

result is a partial ordering. Like the ordering generated by Lorenz or segregation curves, the x distri-

bution can be declared more segregated than y for some but not all feasible realizations of x and y.  

 Additional notation is required to establish these conditions on x and y. First, it is necessary 

to distinguish situations where ki = kj from those where ki > kj. Partition the T groups into G 

mutually exclusive and exhaustive subsets such that each subset contains one or more groups with 

the same economic status.  Thus, suppose the status of the first T1 groups equals *
1k , that of the next 

T2 groups equals *
2k , and so forth. Then, without loss of generality, rewrite the ordinal ranking as 

GgTjkk ggjg ,..,1,,..,1,*  where 0... **
2

*
1  Gkkk .  

 In similar fashion, denote the number of type i people who are in the jth group in subset g as 

xijg, and let x
ijgs  indicate the fraction of all type i people in the x distribution who are in the jth group 

of subset g, thus, x
ijgs  =  xijg/ x

iN , i = 1,2; j = 1,.., ;x
gT g = 1,..,G. Since the subsequent results utilize 

the ratio of type 1 to type 2 people, let x
jgq  = x

jg
x
jg ss 21 , with qq x

jg ˆ0  , where q̂  is the maximum 

value of q in groups with .02 x
jgs
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 Now, we wish to establish conditions under which 0);();(  kyOkxO . Given the results of  

Theorem 1, write this as },{}{);();( yx ZZkyOkxO   where Γ{ } is a strictly increasing real 

 valued function and  ))(();,(
1 1

21
**

21 
 


G

g

T

j

x
jg

x
jggg

x
jg

x
jg

x
x

g
sskkssLZ  with Zy similarly defined. Then since 

Γ{ } is strictly increasing, the problem is to find conditions under which ΔZ > 0 where 





G

g
g

yx ZZZZ
1

  and, 

     .);,();,()(
1

*
21

1

*
21

1
21

1
21

* 
















y
g

x
g

y
g

x
g T

j
g

y
jg

y
jg

T

j
g

x
jg

x
jg

T

j

y
jg

y
jg

T

j

x
jg

x
jggg kssLkssLsssskZ    

 
 Introducing additional notation, let t be a non-negative variable and define a function 
 

),( x
jgqt that jumps from zero to one when t becomes greater than or equal to x

jgq . Thus,  

 

















x
jg

x
jg

x
jg

x
jg

x
jg

x
jg

x
jg

x
jg

x
jg

x
jg

qsstandsif
qsstandsif

sif
qt

212

212

2

/01
/00

00
),( ,    j = 1,.., x

gT ; g = 1,..,G.  

In addition, let  



x

g
x

g T

j

x
jg

T

j

x
jg

x
jg

x
g sqtstF

1
2

1
2 ),()(   . Note that )(tF x

g  behaves like a 

cumulative function; it indicates the fraction of type 2 people in subset g that are in 

groups with tq x
jg  . Thus, 0)0( x

gF , and 1)ˆ( qF x
g . Finally, define the integral of

)(tF x
g as,   




x
g

x
g T

j

x
jg

T

j

x
jg

x
jg

q
x

g
x
g sqqMaxsdttFq

1
2

1
2

0
,0)()( . In the income inequality 

literature the integral of the cumulative function, )( , is termed the “deficit function.”  

 Similar notation applies to an alternative distribution y. Thus, denote the number of type i 

people who are in the jth group of subset g as yijg, and the share of all type i people in the y 

distribution who are in subset g as y
ijgs  =  yijg/ y

iN , i = 1,2; j = 1, y
gT ; g = 1,..,G. Let y

jgq  = y
jg

y
jg ss 21 , 

with qq y
jg ˆ0  , where q̂  is now the maximum value of q in groups with ,02 

jgs  α = x,y. Finally, 

define )(tF y
jg and )(qy

jg in a manner parallel to )(tF x
jg  and )(qx

jg . 



  
  

 

19

The subsequent proof of Theorem 2 shows that using this notation and some algebra, one 

can rewrite ΔZg as,   ,)(/);1,()ˆ(
ˆ

0

2*2
221  

q

ggggggg dqqCqkqLBqCZ  where qkqLk ggg  /);1,ˆ()( **
1  ,

)( *
2 gg k  , and 




y
g

x
g T

j

y
jg

T

j

x
jgg ssB

1
2

1
22 .16 With a bit more algebra, suitable restrictions can be placed 

 on the B2g and Cg(q) such that ΔZ = ΣgΔZg > 0. Thus, proceeding in a manner analogous to Atkinson 

and Bourguignon (1987), Bourguignon (1989), and Chambaz and Maurin (1998), the following 

theorem states conditions on x and y such that O(x;k) > O(y;k),17 

Theorem 2. Fix the T groups 1,…,T in descending order of status such that 0... **
2

*
1  Gkkk  

and ggjg Tjkk ,...,1,*  Gg ,..,1 . For all measures of O( ) satisfying properties 1-4, 5’-8’,  the 
following conditions on x and y are necessary and sufficient for O(x;k) > O(y;k): 

  (9.1)   0)(
1






g
g qC  where 




y
g

x
g T

j

y
jg

y
g

T

j

x
jg

x
gg sqqsqqqC

1
2

1
2 ))(())(()(   

 (9.2)   0
1

2 




g
gB   where 




y
g

x
g T

j

y
jg

T

j

x
jgg ssB

1
2

1
22  

  
 for all q, qq ˆ0  , and  τ =  1,..,G.   
 

Proof: See Appendix.  

 While the inequalities in (9.1) and (9.2) are not difficult to verify in actual data (see Section 

IV below), the necessary condition in the following corollary is useful for purposes of conducting an 

initial investigation of the data.  

Corollary 2.1. For all measures of segregation O( ) satisfying properties 1 – 4, 5’ – 8’, and for all 
measures of economic status k satisfying 0... **

2
*
1  Gkkk  and  ,*

gjg kk   GgTj g ,...,1,,...,1  , the 
following condition is necessary for O(x;k) > O(y;k):  

 (10)   0
1

1 




g
gB  and 0

1
2 





g
gB , τ = 1,..,G,   where 




y
g

x
g T

j

y
ijg

T

j

x
ijgig ssB

11
, i = 1,2.  

 
Proof: See Appendix  
 
 In other words, begin an analysis of occupational segregation by partitioning the occupations 

into G subsets such that all of the occupations within a subset have the same economic status. To 
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assess whether O(x;k) > O(y;k), Corollary 2.1 says that for the T1 groups in the highest status 

category (g = 1), determine whether the share of type 1 people in the x distribution is smaller than 

 that in the y distribution, i.e., 0
11

1
11

1
1111  



yx T

j

y
j

T

j

x
j ssB . Next, for the T1 + T2 groups in the two highest 

status categories (g = 1,2), determine whether  
 















2

1 1
1

1
1

2

1
1 0

g

T

j

y
jg

T

j

x
jg

g
g

y
g

x
g

ssB . Compute similar sums 

 
for the three highest categories, four highest categories, and so forth, and then do the same for type 2 
 
people. If one of the sums is positive, then the corollary’s necessary condition is violated, and it is 

not the case that O(x;k) > O(y;k), for all measures of segregation satisfying 1 – 4, 5’ – 8’, and for all 

measures of economic status k satisfying 0... **
2

*
1  Gkkk  and GgTjkk ggjg ,...,1,,...,1,*  .18  

 On the other hand, if the corollary’s necessary condition is satisfied, then the analysis shifts 

to verifying the necessary and sufficient conditions in Theorem 2. This boils down to checking 

condition (9.1), since verifying Corollary 2.1 requires assessment of the inequalities in (9.2).  

Condition (9.1) involves a comparison of the deficit functions ( )(q ) for distributions x and y. To see 

this, consider the case (similar to Atkinson and Bourguignon, 1987) where 



y

g
x

g T

j

y
jg

T

j

x
jg ss

1
2

1
2    

for all g. In that case (9.1) says that for the T1 groups in the highest status category (g = 1), determine 

whether for all q,   0)()()( 11
1

121
1

 


qqsqC xy
T

j

x
j

x

 . Next, for the T1 + T2 groups in the two highest 

status categories (g = 1, 2), determine whether for all q,   0)()()(
2

1
11

1
12

2

1

1
  

  g

xy
T

j

x
j

g
g qqsqC

x

 .  

Compute similar sums for the three highest categories, four highest categories, and so forth. If all of  

these sums are non-positive for all q, then condition (9.1) is satisfied. Matters are somewhat more  

complicated when  



y

g
x

g T

j

y
jg

T

j

x
jg ss

1
2

1
2 , but the essential idea is the same. 
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  In summary, even if there does not exist an agreed upon cardinal measure of economic 

status, hierarchy can still be incorporated into a measure of segregation. Given an ordinal ranking of 

occupations, Theorem 2 and its corollary provide a means for declaring distribution x at least as 

segregated as distribution y. The result is a partial ordering; if the conditions of Theorem 2 are not 

met, then in order to state whether O(x;k) > O(y;k), the analyst must either accept a cardinal measure 

of economic status, commit to an explicit measure of segregation, or both. The application in the 

next section illustrates these points. 

 This is a good place to address a potential criticism of Theorems 1 and 2: perhaps in 

combining economic status with variation in numbers of type 1 and 2 people, we end up with a 

measure of occupational segregation that is less transparent than earlier measures, i.e., a status-

augmented index (such as that in equation (6)) is less transparent than a status-free index (such as 

(3)). In response, while transparency is desirable, in this situation it comes at a cost; by ignoring 

economic status, a status-free measure misses a key aspect of what we mean by segregation and is 

thereby incomplete. The situation is analogous to comparing a headcount measure of poverty with 

the Foster-Greer-Thorbeck (FGT) measure.19 A headcount measure indicates the fraction of a 

community’s population that falls below a poverty line. While this simple measure of poverty is 

easily understood and enjoys wide use, it is incomplete in that it ignores the extent to which the 

incomes of the poor fall below the poverty line. In contrast, the FGT measure gets closer to what we 

mean by poverty in that it includes both the headcount and the gap between incomes and the poverty 

line.20 While the FGT measure may be less transparent than a headcount measure, it is arguably 

more in accord with what we mean by poverty and thereby more convincing. Similarly, while a 

status-augmented segregation index may be less transparent than a status-free index, it is arguably 

more in accord with what we mean by segregation.  
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 Finally, it is important to note that Theorem 2 is linked to a broader literature; one can show 

that the results on second order dominance in Atkinson and Bourguignon (1987), Jenkins and 

Lambert (1993) and Chambaz and Maurin (1998) constitute special cases of Theorem 2.  Thus, 

Theorem 2 is not an isolated result that is cut off from the mainland of inequality research. Rather, it 

is a more general version of a key theorem in that literature. This point is developed rigorously in a 

theorem and its attendant (rather lengthy) proof that are available from the author.  

 
IV. An Application  
 
 One way to assess the practical utility of Theorems 1 and 2 is to apply them to data. To what 

extent do they help us better understand data on segregation? First, consider Theorem 1 and its 

corollaries. To utilize the equation (6) status-augmented square root index, one must first specify the 

2T + 3 parameters, b, λ( k~ ), γ( k~ ), λ(kj) and γ(kj), j = 1,…,T. Matters are simplified by working with 

the following normalization of the status level kj, 

(11)   )min()max(
)min(ˆ

jj

jj
j kk

kk
k




  

where min(kj) and max(kj) are the minimum and maximum values of the kj, j = 1, T, and 1ˆ0  jk . In 

addition, let λ( ) and γ( ) be linear functions of the form,  )ˆ(ˆ)( jjj kmedkk   
 
and  

 )ˆ(ˆ)( jjj kmedkk   
 
where med( jk̂ ) is the median value of the jk̂ . As a result, the 2T 

parameters λ(kj) and γ(kj), j = 1,…,T are reduced to four non-negative parameters:   ,,, . 

 In the subsequent empirical work these four parameters along with b, λ( k~ ), γ( k~ ) are  

assigned values so as to facilitate interpretation of results. In particular, parameters are specified so 

that the index takes a minimum value of zero. That occurs when all people are employed in 
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occupations with the maximum status and there is complete integration within those occupations (s1j 

= s2j, j = 1,..,T). Moreover, the parameters are specified so that if all people are employed in 

occupations with the median status (med( jk̂ )), then the equation (6) index equals one plus the status-

free square root index. 21 Call the resulting parameterization of equation (6) “Augmented Index A.”  

 This section uses Augmented Index A to analyze occupational segregation by ethnicity and 

gender in the U.S. Specifically, it measures the degree of occupational segregation from whites for 

three race/ethnic groups (African American, Hispanic, and Asian), and ranks them from most to least 

segregated. It also measures occupational segregation of women from men within the four 

race/ethnic groups (whites, African Americans, Hispanics, and Asians), and asks which group has 

greater gender segregation.   

There exists an extensive empirical literature that addresses such questions.22 Particularly 

noteworthy is a recent analysis of 2000 Census data by David Cotter, Joan Hermsen, and Reeve 

Vanneman; (2005). Part of their work is mirrored here. Following Cotter, Hermsen, and Vanneman 

(CHV), the subsequent analysis is restricted to labor force participants age 25 – 54 in the U.S. Census 

2000 5% Public Use Micro Data Sample (PUMS). These data provide detailed information on the 

ethnic and gender composition of 389 occupations. Although it would have been ideal to replicate the 

CHV results, that proved impossible.23 

 Calculation of a status-augmented measure of segregation requires information on 

occupational status. While there are several alternatives from which to choose,24 the following 

analysis relies on a widely used measure first developed by Charles Nam, Mary Powers, and Monica 

Boyd. Researchers at the University of Michigan updated the Nam-Powers-Boyd (NPB) index using 

1990 data on earnings and education, and then applied it to the Census 2000 PUMS.25 Although the 
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NPB is scaled from 0 to 100, for present purposes it is divided into five categories such that the 

equation (11) normalization takes values .0ˆ75.ˆ,1ˆ
521  kkk  26  

Table 1 introduces the data. Note the differences in economic status. More than 40% of 

African American and Hispanic men and women are employed in the bottom two status categories, 

while more than 40% of white and Asian men and women are in the top two categories. Tables 2 and 

3 present results on occupational segregation. Table 2 examines segregation from whites for African 

Americans, Hispanics, and Asians. It does this first for males (Panel A), and then for females (Panel 

B). Table 3 examines gender segregation within the four race/ethnic groups.  

Consider Panel A of Table 2. Columns 1 and 3 assess segregation with a pair of status-free 

measures of segregation: the dissimilarity index and the square root index. As reflected in the 

rankings in columns 2 and 4, these status-free measures indicate that occupational segregation from 

white males is more severe for Asian males and less severe for Hispanic and African American 

males, a result that is consistent with other work on the topic.27  Column 5 presents Augmented Index 

A for these data. We see from the rankings in column 6 that this index paints a different picture of 

segregation. Now segregation is lowest for Asians (.903) and highest for Hispanics (1.045). Of 

course, this different picture is in part due to economic status of the jobs held by Asians, Hispanics, 

and African Americans. In part because African Americans and Hispanics experience their 

segregation from whites in comparatively low status occupations, the augmented index indicates that 

their segregation is greater than that for Asians.28  

Table 3 presents results on segregation of men and women within the four race/ethnic groups 

(whites, Asians, Hispanics, and African-Americans.) Once again, the augmented square root measure 

disagrees with the status-free measures. For example, although the column 3 status-free square root 
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index declares whites to be more gender segregated than African Americans (.240 versus .202), the 

column 5 augmented index says that whites are slightly less gender segregated (1.123 versus 1.201).  

 What about Theorem 2? Do the less restrictive conditions of Theorem 2 yield segregation 

orderings similar to those above? To keep things simple, the following focuses on the Table 3 gender 

segregation. The ideas are, of course, equally applicable to the race/ethnic segregation in Table 2.  

 To implement the conditions in Theorem 2, assume a hierarchy with five levels, and let *
1k

denote the status of the first (highest) level of the occupational hierarchy, *
2k  the status for the second 

highest level of the hierarchy and so forth. For purposes of Theorem 2, the only constraint on the 

value of the *
ik , i = 1,…,5 is that they satisfy the ordinal ranking 0*

5
*
4

*
3

*
2

*
1  kkkkk . Of 

course, the five category scheme used in Tables 1-3 satisfies the constraint. At issue is whether for all 

measures of status that satisfy the constraint and all measures of segregation that satisfy  properties 

1-4, 5’ – 8’, the four race/ethnic groups can be ranked from most to least gender segregated.   

The Corollary 2.1 necessary condition provides a good starting point. For the five levels of 

the hierarchy in, do we observe 0
1

1 




g
gB  and 0

1
2 





g
gB , τ = 1, …,5? Consider African Americans 

and Asians. For the highest level of the hierarchy in Table 1, the percent of African American and 
 

Asian women is 17.8% and 32.3% respectively. Then B11 = 17.8 – 32.3 = -14.5. Calculating the other 

sums for Asian and African American men and women at all five levels of the hierarchy, we find that 

all sums are non-positive. Thus, the Corollary 2.1 necessary condition is, indeed, satisfied.  

The top panel of Table 4 presents gender segregation results for the other race/ethnic groups. 

The issue here is whether gender segregation for the race/ethnic groups in the columns (the X 

race/ethnic groups) is greater than or equal to gender segregation for the race/ethnic groups in the 

rows (the Y race/ethnic groups). Table 4 indicates that the Corollary 2.1 necessary condition is 

satisfied in some, but not all, cases.  
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  When the Corollary 2.1 necessary condition is satisfied, the next step is to evaluate the more 

elaborate necessary and sufficient condition of Theorem 2 (equations 9.1 and 9.2). As noted in  

Section III, this reduces to evaluating equation 9.1 since equation 9.2 was already checked when 

assessing Corollary 2.1. In order to evaluate equation 9.1 a computer program calculated 




1
)(

g
g qC for  

τ = 1,...,5, and for a sequence of 1000 values of q satisfying qq ˆ0  .29 The results are displayed in 

the lower panel of Table 4. The table indicates that gender segregation among Hispanics exceeds that 

of both African Americans and Asians, and gender segregation among African Americans exceeds 

that of Asians. Since the conditions are not satisfied for several other Table 4 pairwise comparisons 

(e.g., those involving whites), one must impose more stringent assumptions – assumptions that go 

beyond those in Theorem 2 – to make statements about them.  

To conclude, both Theorem 1 and Theorem 2 are useful; they provide a way to look at data 

on segregation in situations where our notion of segregation includes hierarchical differences in 

economic status. Moreover, in practice the theorems matter; status-augmented measures of 

segregation can yield segregation orderings that substantially differ from status-free measures.   

 
 
V. Conclusion  
 
 This paper considers the problem of measuring segregation when groups form a hierarchy 

whereby some groups have greater economic advantage or status than others. The literature has 

focused on measuring segregation in ways that either ignore economic status or that assume that all 

groups have the same status. This paper’s contribution lies in defining a broader class of segregation 

measures. The class is not only applicable to the “same economic status” case, but also to cases 

where people are distributed across groups with different levels of economic status.  
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 The paper also contributes to the literature by offering two ways to incorporate economic 

status into empirical work, both of which are utilized in Section IV. One is to rank groups from 

highest to lowest economic status, and then apply the dominance criteria in Theorem 2. The other is 

to decide on a cardinal measure of group economic status and compute a numerical index like the 

augmented square root index in (6) above. While the first approach has the advantage of requiring 

less information and weaker value judgments, it comes at the cost of a partial or incomplete ordering. 

If the conditions in Theorem 2 are met, then we can say that the x distribution is at least as segregated 

as y; if the conditions are not met then, in a manner similar to intersecting Lorenz curves, nothing can 

be said about segregation of x versus y without additional value judgments.  

 Application of these ideas in Section IV yields the conclusion that – in contrast to results 

based on existing status-free measures of segregation – occupational segregation from whites is more 

severe for African Americans and Hispanics than for Asians. Moreover, gender segregation tends to 

be greatest among Hispanics versus either African Americans or Asians.  

 Finally, the paper is part of a broader endeavor whereby the framework used to analyze 

measures of income inequality is extended to topics other than income (Hutchens 1991, 2001, 2003; 

Foster, 1994). In particular, the present paper takes ideas from the literature on income inequality 

among heterogeneous agents, and extends them to the problem of assessing occupational segregation 

among heterogeneous occupations. Although the literature on segregation has largely developed in 

isolation from that on income inequality, the two literatures deal with related forms of inequality and 

can be analyzed with related analytic tools.  

 



  
  

 

28

 

 

 

 

 

Table 1 

Economic Nam-Powers
Status -Boyd Index Value

Category Average of k^ % male % female % male % female % male % female % male % female
1 (high) 87.09 1 15.0% 17.8% 40.3% 32.3% 11.1% 13.6% 27.7% 26.8%
2 68.66 0.75 14.4% 15.1% 12.8% 12.7% 10.1% 11.9% 16.7% 17.1%
3 (middle) 50.32 0.5 15.9% 20.5% 15.2% 17.1% 15.5% 18.5% 19.9% 22.6%
4 31.29 0.25 33.4% 28.3% 18.4% 21.6% 31.6% 25.7% 24.3% 20.8%
5 (low) 13.10 0 21.3% 18.3% 13.3% 16.3% 31.7% 30.3% 11.4% 12.7%

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Distribution by Economic Status for Men and Women in Four Race/Ethnic Groups 

White (only)African American Hispanic (any)Asian (any)
Race/Ethnic Group 

U.S. Census 2000 5% Public Use Micro Data Sample

Panel A: Men

Race/Ethnic Value Rank Value Rank Value Rank
Group (1) (2) (3) (4) (5) (6)

African American 0.277 1 0.057 1 1.000 2
Hispanic 0.291 2 0.064 2 1.045 3
Asian 0.311 3 0.076 3 0.903 1

Panel B: Women

Race/Ethnic Value Rank Value Rank Value Rank
Group (1) (2) (3) (4) (5) (6)

African American 0.229 1 0.040 1 0.993 2
Hispanic 0.249 3 0.052 3 1.042 3
Asian 0.243 2 0.049 2 0.949 1

Augmented
   Index A   

Table 2
Occupational Segregation from Whites for Three Race/Ethnic Groups 

Dissimilarity 
   Index        Index     

Square Root 

Dissimilarity Square Root 
   Index        Index     

Augmented
   Index A   
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Race/Ethnic Value Rank Value Rank Value Rank
Group (1) (2) (3) (4) (5) (6)
Asian 0.415 1 0.140 1 0.978 1
African American 0.486 2 0.202 2 1.201 3
Hispanic 0.520 3 0.245 4 1.310 4
White 0.522 4 0.240 3 1.123 2

Table 3
Gender Segregation (women vs. men) within Race/Ethnic Groups

Dissimilarity Square Root 
   Index        Index     

Augmented
   Index A   

Race/Ethnic
Group Y Hispanic African-American White Asian
Hispanic  - - NC Fails NC Fails NC Fails

African-American NC Pass  - - NC Fails NC Fails
White NC Pass NC Pass  - - NC Fails
Asian NC Pass NC Pass NC Fails  - -

Race/Ethnic
Group Y Hispanic African-American White Asian
Hispanic  - - 

African-American N&SC Pass  - -
White N&SC Fail N&SC Fail  - -
Asian N&SC Pass N&SC Pass  - -  - -

Testing Theorem 2 Necessary and Sufficient Condition (N&SC) for O(x;k) > O(y;k)

 Race/Ethnic Group X

Table 4
Using Theorem 2 and its Corollary to Test for Whether Race/Ethnic
Group X is More Gender Segregated than Race/Ethnic Group Y. 

Testing the Corollary 2.1 Necessary Condition (NC) for O(x;k) > O(y;k)

Race/Ethnic Group X



  
  

 

30

Appendix30 
 
 It is easiest to begin the proof of Theorem 1 with a more compact notation. Thus, let 

))(();,();,( 212121 jjjjjjjjj sskkssLkssJ   , and restate Theorem 1 as, O(x;k) satisfies properties 
1 - 4, 5’ - 8’  if and only if  

 








 


T

j
jjj kssJkxOA

1
21 );,();()1.(   

 

where x
iijij Nxs / , i = 1,2; j = 1,…,T,  Γ{ } is a strictly increasing 

differentiable function, λ(kj) is a non-increasing differentiable function, 
and J( ) is 3-smooth with  

a) J(0,0; kj) = 0, J(s1j,0; kj) = λ(kj)s1j, J(0, s2j; kj) = λ(kj)s2j,  j = 1,...,T,  
b) in its first two arguments, J( ) is symmetric, and homogeneous of degree one,  
c)   02  jij ksJ , i = 1,2; j = 1,...,T, 

d)   02
1

3  jj ksJ  if s2j > 0 and   02
1

3  jj ksJ if s2j = 0, j= 1,...,T,  

e)   02
1

2  jsJ  if s2j > 0 and   02
1

2  jsJ if s2j = 0, j = 1,...,T, 

f)   02
2

3  jj ksJ  if s1j > 0 and   02
2

3  jj ksJ if s1j = 0, j = 1,...,T,  

g)   02
2

2  jsJ  if s1j > 0 and   02
2

2  jsJ if s1j = 0, j = 1,...,T. 
 
The following Lemma simplifies the proof of Theorem 1.  
 
Lemma 1.  
 
a) Given the definition of O(y;k) in P7’ and evaluating derivatives at dy = 0, 

    dksJ
N

dkyO
g

f

s

s
ffy  




1

1

2
2

2

1
/;,

{}'
/);( .  

b) Given the definition of O(y;k) and O(z;k) in P7’ and evaluating derivatives at dy = dz = 0, 

   dkkskssJ
N

dkyOdkzO
g

h

k

k
gggyz  


 121

2

1

/;,{}'/);(/);( .  

c) Given the definition of O(y;k) and O(v;k) in P8’ and evaluating derivatives at dy = dv = 0, 

    ./;,
{}'

/);(/);(
1

1

2
2

3

1
dkdkksJ

N
dkyOdkvO

g

f

r

g

s

s
g

k

k
yv  


  

 
Proof of Lemma 1. 
 
(a). From P7’ we have 
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Then,  
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 Where the last equality is obtained with the chain rule.  Then at ,0yd   

 ]/);,(/);,([}{'/);( 121121
1

ggggffffy skssJskssJ
N

dkyO 


 .  

Now,  
g

f

s

s
ff dksJ

1

1

]/);,([ 2
2

2    = ffffgffg skssJskssJ 121121 /);,(/);,(  . 

If, as is assumed in the definition of );( kyO in P7’, fg ss 22   and fg kk  , then this can be written, 

ffffgggg

s

s
ff skssJskssJdksJ
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121121
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2
2 /);,(/);,(]/);,([

1

1

  . Substituting into the above 

expression for ydkyO  /);( , it follows that evaluated at dy = 0, 
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(b) From P7’ we have  
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where the last equality is obtained with the chain rule. Evaluating this at 0zd , 

 ]/);,(/);,([{}'/);( 121121
1

hhhhffffz skssJskssJ
N

dkzO 


 . 

From Lemma 1(a), ydkyO  /);(  evaluated at 0yd  yields,  

]/);,(/);,([{}'/);( 121121
1

ggggffffy skssJskssJ
N

dkyO 


  

Then at 0 zy dd  
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  gggghhhhyz skssJskssJ
N

dkyOdkzO 121121
1

/);,(/);,({}');(/);( 


 . 

Now ghgggggg

k

k
ggg skssJskssJdkkskssJ

g

h

12112112,1
2 /);,(/);,(]/);([  . If, as is 

assumed in the definition of );( kyO and );( kzO  in P7’, hg ss 11   and hg ss 22  , then this can be 
written: 
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It follows that, evaluated at  0 zy dd  
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(c) From P8’ we have 
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Then arguing in a manner identical to (a) and (b) above, at 0vd  
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From Lemma 1(a) ydkyO  /);(  evaluated at 0yd  is,  
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/);,(/);,({}'/);( 


  

If, as is assumed in the definition of );( kvO and );( kyO in P8’ 
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Since it is assumed in the definition of );( kvO  and );( kyO that rg kk   and gf ss 11  , it follows that, 
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where the last equality is due to gf ss 22  . Then evaluated at 0 yv dd , 
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Proof of Theorem 1. 
 
Sufficiency: If O(x; k) satisfies properties 1-4, 5’ – 8’, then it takes the form of (A.1).  
 

Let  );();( 1 kxOkxO  . In accordance with P5’, );( kxO takes the form of (A.2) 





T

j
jjj

j kxxOkxOA
1

21 );,();()2.( . 

Then the proof of sufficiency proceeds in several steps. 
 
Step 1. P4 and P6’ imply that );,( 0

21 kxxO jj
j is symmetric in its first two arguments for j = 

1,…,T, where  00
2

0
1

0 ,...,, Tkkkk   and 00
2

0
1 ... Tkkk  .   

Let TT xx 21   and jj xx 21  , j=1, T-1. Then P4 implies, 

);,();,();();,();( 0
12

1

1

0
12

0

1

0
21

0
TTT

TT

j
jjj

jT

j
jjj

j kxxOkxxOkyOkxxOkxO 



 . 

Since x1j = x2j, j = 1,…,T-1, it follows that );();,( 0
1,2

0
21 TTT

T
TTT

T kxxOkxxO  .Then TO  is 
symmetric, and by P6’(symmetry in groups), );,( 0

21 jjj
j kxxO is symmetric for j=1,…T. 

Step 2. P3 and P6’ imply that if 021  jj xx  then 0);,( 0
21 jjj

j kxxO . 

Let 021  TT xx .   Then P3 implies 







1

1

0
21

0

1

0
21

0 );,();();,();(
T

j
jjj

jT

j
jjj

j kxxOkyOkxxOkxO . So 0);,( 0
12 TTT

T kxxO . Then by P6’ 

(symmetry in groups) 021  jj xx  implies 0);( 0
2,1 jjj

j kxxO .  
 
Step 3.  P3 and P6’ imply that Og(x1g, x2g ; 0

gk ) = Oh(x1g, x2g; 0
gk ) for all g,h = 1,…,T.  

Assume that distribution y is identical to x except that the people in groups g and h trade 
places. Then y1g = x1h, y2g = x2h, y1h = x1g, y2h = x2g, and yij = xij, i = 1,2 and j =1,...,T, jg,h. By 
P6’, O(x; 0k ) = O(y; 0k ). Then given A.2, P6’ implies,  

(A.3)  Og(x1g, x2g; 0
gk  ) + Oh(x1h, x2h; 0

gk ) = Og(y1g, y2g; 0
gk ) + Oh(y1h, y2h; 0

gk ). 
Since that is true for all feasible values of xij, consider x1h = x2h = y1g = y2g = 0.  From step 2 and 
P3 we get that Oh(x1h, x2h; 0

gk )  = Og(y1g, y2g; 0
gk ) = 0.  Then from A.3 it follows that  
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Og(x1g, x2g; 0
gk  )  = Oh(y1h, y2h; 0

gk ).  Therefore, since y2h = x2g and y1h = x1g it is the case that 

Og(x1g, x2g; 0
gk  )  = Oh(x1g, x2g; 0

gk ), g, h = 1,…,T.  
 
Step 4. P1, P2, P3, P5’ and P6’ imply that  





T

j
jjj kssJkxOA

1
21 );,();()4.(  

where s1j = x1j/N1, s2j = x2j/N2, J(s1j,s2j;kj) is 3-smooth and, in its first two arguments, symmetric 
and homogeneous of degree one with J(0,0;kj) = 0, J(s1j, 0;kj) = λ(kj)s1j, and J(0,s2j;kj) = λ(kj)s2j.  

 From P1, 



T

j
jj

jT

j
jj

j kxxOkxxOkxO
1

0
21

1

0
21 );,();,();(  ,  α > 0, β > 0.  Letting  





T

j
jxN

1
11 /1/1 and 




T

j
jxN

1
,22 /1/1 it follows that  





T

j
jj

T

j
jj

jT

j
jj

j kssJkssOkxxOkxO
1

0
21

1

0
21

1

0
21 );,();,();,();(  

where (using the result in Step 3), ),;,();,();,( 0
21

0
21

0
21 kssOkssOkssJ jj

h
jj

j
jj   

.T,...,1;T,...,1  hj  If O(x;k) satisfies P2, then,  

),;();,(;/,/);,();( 00000

1
2121

1

1
21 kxOkssJkMsMsMJkssJkyO

T

j
jjTT

T

j
jj 













implying 










  00 ;,;/,/ 2121 kssJkMsMsMJ TTTT . Let K  be a positive integer, then  


















  000 ;,;,;/,/ 212121 kssKJkKsKsJkMKsMKsMJ TTTTTT ,  and  












  00 ;,;/,/ 2121 kssJkMKsMKsJ

K
M

TTTT . 

For any nonnegative real number σ there is a sequence of rational positive numbers σj σ. 
Applying the previous result to σj , taking the limit σj σ and using continuity of J, we conclude 
that J is homogeneous of degree one in its first two arguments. From step 1 J is symmetric in its 
first two arguments, and from step 2 J(0,0; 0

jk ) = 0. Given that J( ) is symmetric in its first two 

arguments, let J(1,0; 0
jk ) = J(0,1; 0

jk ) = λ( 0
jk ). Since J( ) is homogeneous of degree one in its 

first two arguments, J(s1j,0; 0
jk ) = s1jJ(1,0; 0

jk ) = λ( 0
jk )s1j and J(0,s2j;

0
jk ) = s2jJ(0,1; 0

jk ) = λ( 0
jk

)s2j. Then A.4 is valid for k0.  
Designate a new k vector as kwhere 0

TT kk   and the 0
jj kk


 , j = 1,...,T-1. Since 0

TT kk  , it 

follows that J(s1T, s2T; Tk  ) = J(s1T, s2T; 0
Tk ) for all feasible values of jk , j = 1, T-1. Then  

J(s1T, s2T; Tk  ) is symmetric and homogeneous of degree one in its first two arguments, with 
J(0,0; Tk  ) = 0, J(s1T, 0; Tk ) = λ( Tk )s1T, and J(0, s2T; Tk  ) = λ( Tk  )s2T, j = 1,...,T. Since the index in 
A.1 is additive in groups (P5’) and symmetric in groups (P6’), it follows that for all feasible 
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values of the vector k, J(s1j, s2j; kj) is symmetric and homogeneous of degree one in its first two 
arguments, with J(0,0;kj) = 0, J(s1j, 0; kj) = λ(kj)s1j, and J(0, s2j; kj) = λ(kj)s2j, j = 1,...,T. Moreover, 
from property P5’ J( ) is 3-smooth.  
 
Step 5. P1 – P4, P5’ – P7’ imply part (c) of Theorem 1, i.e.,  

  0;, 121
2  jjjjj kskssJ  and   0;, 221

2  jjjjj kskssJ  j = 1,...,T.  
 From P7’(a) and (b), if x2f = x2g = x2h > 0 then O(x;k) < O(y;k) < O(z;k) for all feasible dy 
= dz. Then taking derivatives with respect to dy and dz, and evaluating at dy = dz = 0, 

zy dkzOdkyO  /);(/);(0 . It follows that ,0/);(/);(  yz dkyOdkzO which 
from Lemma 1b implies,  

(A.5)     0/;,{}'
121

2

1




  dkkskssJ
N

g

h

k

k
jgg .  

Now, we wish to establish that   0;, 121
2  jjjjj kskssJ . Suppose to the contrary that 

  0;, 121
2  jjjjj kskssJ for some s1j, s2j, and kj. Then since J( ) is a 3-smooth function, it must 

be that    0/;,{}'
121

2

1








dkkskssJ

N

j

j

k

k
jjj




for some ε > 0. But that contradicts A.5. Then 

  0;, 121
2  jjjjj kskssJ , j = 1,...,T.  

To show that   0;, 221
2  jjjjj kskssJ , note that from Step 4 J(  ) is symmetric, and 

thus, J(a,b;kj) = J(b,a; kj) for all a > 0 and b > 0. It follows  that    jj kakbaJ ;,2

  jj kakabJ  ;,2  for all a > 0 and b > 0. Then   0;, 121
2  jjjjj kskssJ  implies 

  0;, 221
2  jjjjj kskssJ ,  j = 1,...,T.  

  
 
Step 6. P1 – P4, P5’ – P7’ imply part (e) and (g) of Theorem 1, i.e.,  

  02
1

2  jsJ  if s2j > 0 and   02
1

2  jsJ if s2j = 0, j= 1,...,T.  

  02
2

2  jsJ  if s1j > 0 and   02
2

2  jsJ if s1j = 0, j = 1,...,T.  
From P7’(a), if x2f = x2g = x2h > 0 then O(x;k) < O(y;k) for all feasible dy. Then taking derivatives 
with respect to dy and evaluating at dy = 0, ./);(0 ydkyO   It follows from Lemma 1a that  
for s2f  > 0  

(A.6)    0/;,{}' 1

1

2
2

2

1




  dksJ
N

g

f

s

s
ff .  

Now, we wish to establish that   02
1

2  jsJ . Suppose to the contrary that   02
1

2  jsJ , for 
some s1j, kj and s2j > 0. Then since J( ) is a 3-smooth function it must be that  
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   0/;,{}' 1

1

2
2

2

1













dksJ

N

j

j

s

s
jj for some δ > 0. But that contradicts (A.6). Then 

  02
1

2  jsJ if s2j > 0, j = 1,...,T.  

From P7’(b), if  x2f = x2g = x2h = 0 then ydkyO  /);(0 . Proceeding in the same manner 

as the above treatment of P7’(a), it is straightforward to show that ,   02
1

2  jsJ if s2j = 0, j = 
1,...,T.  

As in Step 5, symmetry of J( ) implies   02
2

2  jsJ if s1j > 0, and   02
2

2  jsJ if s1j = 
0, j = 1,...,T. 
Step 7. P1 – P4, P5’ – P8’ imply part (d) and (f) of Theorem 1, i.e.,  

  02
1

3  jj ksJ  if s2j > 0 and   02
1

3  jj ksJ if s2j = 0, j= 1,...,T.  

  02
2

3  jj ksJ  if s1j > 0 and   02
2

3  jj ksJ if s1j = 0, j = 1,...,T.  
 From P8’(a), if  x2f = x2g = x2q = x2r > 0 then O(x;k) < O(y; k) < O(v;k) for all feasible dy 

= dv.Then taking derivatives with respect to dv and dy, and evaluating at dy = dv = 0,   
vy dkvOdkyO  /);(/);(0 , which implies .0/);(/);(  yv dkyOdkvO It follows 

from Lemma 1c that for s2g > 0,   

 (A.7)     0/;,{}' 1

1

2
2

3

1




 dkdkksJ
N

g

f

r

g

s

s
g

k

k
 . 

 Now, we wish to establish that   02
1

3  jj ksJ . Suppose to the contrary that   02
1

3  jj ksJ , 
for some s1j, kj, and s2j > 0.  Then since J( ) is a 3-smooth function it must be that 

   0/;,{}' 1

1

2
2

3

1












dkdkksJ

N

j

j

j

j

s

s
j

k

k









for some ε > 0 and δ > 0. But that contradicts 

(A.7). Then   02
1

3  jj ksJ if s2j > 0, j = 1,...,T.    
From Property 8’(b), if  x2f = x2g = x2q = x2r = 0 then  O(x;k) = O(y;k) = O(v;k).  

Proceeding in the same manner as the above proof from Property 8’(a), it is straightforward to 
show that ,   02

1
3  jj ksJ if s2j = 0, j = 1,...,T.  

As in Step 5, symmetry of J( ) implies   02
2

3  jj ksJ  if s1j > 0 and   02
2

3  jj ksJ
if s1j = 0, j = 1,...,T.  
Step 8. λ(kj) is non-increasing in kj.  

From Theorem 1(a), J(s1j, 0; kj ) =  λ(kj)s1j. From Theorem 1(c), 0/)( 1
2  jj ksJ . Then 

λ(kj) is nonincreasing in kj.  
 
Necessity: If O(x;k) is of the form of (A.1), where Γ{ } is a continuous and strictly increasing 
function, and J( ) is a 3-smooth function with properties (a) – (g) in this appendix’s restatement 
of Theorem 1 , then O(x;k) satisfies properties 1 - 4, 5’ - 8’. 
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Proof: P1 (scale invariance) follows from the fact that xij/Ni is invariant to a proportional change 
in xi1, …,xiT. P2 (insensitivity to proportional divisions) is proved by obtaining y from x by a 
proportional division of the Tth group into M subgroups and using J( )’s homogeneity of degree 
one. P3 (zero member independence) is proved by taking y identical to x except that y excludes 
group T where x1T = x2T = 0, and using J(0,0;kT) = 0. To show P4 (symmetry in types) let 











2

1

x
x

x  and 









1

2

x
x

y . Since J( ) is symmetric in its first two arguments, it follows that O(x; k0) 

= O(y; k0), so A.1 satisfies P4. P5’ (additivity) follows trivially since A.1 is additive. Similarly, 
P6’ (symmetry in groups with different values of k), follows from the additive form of A.1. The 
proof that O( ) satisfies P7’(a) proceeds in two steps:  
  
Step 1. Since O( ) is continuous, assume that contrary to P7’(a), there exists δ and d′y such that, 

O(x;k) > O(y; k) for dy = δ + d′y, and  
O(x;k) = O(y; k) for dy = δ  

where δ > 0, d′y > 0,  δ + d′y < x1f, and yd with η an arbitrary small neighborhood of zero. Let 
x′ denote the distribution obtained from x through a movement of δ type 1 people from group f to 
group g, and let y′ denote the distribution obtained from x′ through a movement of d′y type 1 
people from group f to g. Since O(x;k) > O(y; k) for dy = δ + d′y, it must be that O(x′;k) > O(y′;k). 

Then since O( ) is differentiable, 
  0/);();();(

0





 y
y

d
dkyO

d
kxOkyOLim

y

, and from 

Lemma 1a it follows that, 

    ,0/;,{}'/);(
1

1

2
2

2

1




 



 dksJ

N
dkyO

g

f

s

s
ffy  

where 111 / Nss ff   and 111 / Nss gg  . Then there must be a value of ξ such that  

  022  J . But that contradicts Theorem 1(e) whereby   02
1

2  jsJ . Then as stipulated in 
P7’(a), O(x;k) < O(y; k) for all 0 < dy < x1f.  
 
Step 2. Since O( ) is continuous, assume that contrary to P7’(a), there exists some δ and d′z = d′y 
such that,  

O(y;k) > O(z; k) for dy = δ + d′y= δ + d′z = dz, and  
O(y;k) = O(z; k) for dy = δ = dz,  

 where δ > 0, d′y > 0,  δ + d′y < x1f, and yd with η an arbitrary small neighborhood of zero. 
Let the x’ and y’ distributions be obtained from x through movements from group f to group g in 
the same way as in step 1 above, and let the z′ distribution be obtained from x′ through a 
movement of d′z type 1 people from group f to group h. Since O(y;k) > O(z; k) for  
dy = δ + d′y = δ + d′z = dz, it must be that O(y′;k) > O(z′;k). Then since O( ) is differentiable, 

0/);(/);(  yz dkyOdkzO , and from Lemma 1b it follows that  

   0/;,{}'/);(/);( 121
2

1




  dkkskssJ
N

dkyOdkzO
g

h

k

k
gggyz , 
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where 111 / Nss gg  .  Then there must be a value of k such that   0/;, 121
2  kskssJ ggg  . 

But that contradicts Theorem 1(c) whereby   0/ 1
2  jg ksJ . Then as stipulated in P7’(a) 

O(y;k) < O(z; k) for all 0 < dy = dz < x1f.  P7’(b) is proved in an identical manner except that the 
step 1 contradiction pertains to the  second part of Theorem 1(e), i.e., 0/)( 2

1
2  jsJ , if 02 js . 

 
The proof that O( ) satisfies P8’(a) proceeds in the same way as that for P7’(a). Since O( ) 

is continuous, assume that contrary to P8’(a), there exists some δ and d′v = d′y such that,  
O(y;k) > O(v; k) for dy = δ + d′y = δ + d′v = dv, and  
O(y;k) = O(v; k) for dy = δ = dv,  

where δ > 0, d′y > 0,  δ + d′y < x1f, and yd with η an arbitrary small neighborhood of zero. Let 
the x′ and y′ distributions be obtained from x through movements from group f to group g in the 
same way as in step 1 of the above necessity proof that O( ) satisfies P7’(a). Let v′ denote the 
distribution obtained from x′ through a movement of d′v type 1 people from group q to group r. 
Since O(y;k) > O(v; k) for dy = δ + d′y = δ + d′v = dv, it must be that O(y′;k) > O(v′;k). Then since 
O( ) is differentiable, 0/);(/);(  yz dkyOdkvO , and from Lemma 1c it follows that ,  

   0/;,{}'/);(/);(
1

1

2
2

3

1




 



dkdkksJ

N
dkyOdkvO

g

f

r

g

s

s
g

k

k
yz   

where 111 / Nss ff   and 111 / Nss gg  . Then there must be some ξ and k such that 

  0/;, 2
2

3  kksJ g  . But that contradicts Theorem 1(d) whereby   02
1

3  jj ksJ . 
Then as stipulated in P8’(a) O(y;k) < O(v;k) for all 0 < dy = dv < x1f. Since from the above 
necessity proof for P7’(a) O(x;k) < O(y; k) for all 0 < dy < x1f, it follows that O(v;k) > O(y;k) > 
O(x;k) for all 0 < dy = dv < x1f.  P8’(b) is proved in an identical manner except that the 
contradiction pertains to the  second part of Theorem 1(d), i.e.,   02

1
3  jj ksJ if s2j = 0. This 

completes the proof of necessity and thereby the proof of Theorem 1.   
 
Proof of Corollary 1.1  
 
Sufficiency: If O(x; k) satisfies properties 1-4, 5’’, 6’ – 8’, then it takes the form of (6) in the text.  

Sufficiency is proved in four steps.  
Step 1.If O(x;k0) not only satisfies properties 1-4, 6’ – 8’ but also P5’’, and k0 is a vector with k1 

= k2 = … = kT = k
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where b is positive and )
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(0 k and )

~
(1 k are parameters with )
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( 10 kkbk   .  

 
 Hutchens (2004) defines a measure of segregation as a member of the RIMFO class if it 
exhibits properties P1, P2, P6 and P7 above. Then from Corollary 1.2, O(x;k0) belongs to the 



  
  

 

39

RIMFO class. Moreover, given that O(x;k0)  satisfies P5’’, O(x;k0) is an additive decomposable 
RIMFO. According to the corollary to Theorem 1 in Hutchens (2004), a segregation index O(x) 
is an additive decomposable RIMFO if and only if O(x) is a positive multiple of Oc(x), 0 < c < 1, 
xD, where  
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 Let O(y;k0) be an index that is identical to O(x;k0) except that type 2 people are labeled 
type 1 and type 1 people labeled type 2. Thus, 
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Since O(x;k0) satisfies symmetry in types (P4), for any xD it follows that,
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Since this is true for any xD, the expression in brackets is zero for any xD. Then c = ½ and, 
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To show that, 
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let there be three groups (T = 3) such that,  
 
Group 

Number 
Share of type 
1 people (s1j) 

Share of type 
2 people (s2j) 
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these three groups, equation (A.8) yields,  
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Then Γ{ } is affine. As such an equivalent way to write equation (A.8) is,  
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where b is positive and )
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In a manner similar to Step 1, let there be three groups (T=3) of the form,  
 
Group 
Number 

Share of type 1 
people (s1j) 

Share of type 2 
people (s2j) 
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where 0 < α < 1 and 0 < β < 1, and the last column is from (a) of Theorem 1. Substituting the 
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Step 3. For any feasible value of kj,  
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~
is a non-negative number and that  k1 = k2 = … = kT = k
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for all feasible values of jk , j = 1, T-1. Since k~can be any non-negative number and since the 
corollary requires that the index is additive in groups (P5’’) and symmetric in groups (P6’), it 
follows that for all feasible values of the vector k,  
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Step 4. Substitute the above expression for J(s1j, s2j; kj) as well as )~(2)~()~( 10 kkbk   into
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This completes the proof of Corollary 1.1. Dropping the subscript on γ (thus, letting )()( 1  ) 
yields the expression in the text.

   
Necessity: If O(x;k) is of the form of Ob(x;k) (equation (6) in the text), then O(x;k) satisfies 
properties 1-4, 5’’,6’- 8’. 
  
 Ob(x;k) satisfies properties 1-4, 5’ – 8’ because it meets the conditions of that Theorem 1. 
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where γ(kj) is a positive non-increasing differentiable function of  kj, and λ(kj) is a non-increasing 
differentiable function of kj. By implication Γ{ } is a strictly increasing differentiable function of 
a. Condition (a) and (b) of Theorem 1 are obviously satisfied. Furthermore,   
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Moreover, Ob(x;k) is additive decomposable for groups with the same economic status. To see 
this, let all groups have the same economic status such that kj = k~, j = 1,…,T, where k~ is a non-
negative number. Then,   
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Thus, when all groups have the same economics status, Ob(x;k) is a positive multiple of the 
square root index. Theorem 2 in Hutchens (2004) establishes that the square root index is 
additive decomposable (in particular, see Lemma A.1). Since a positive multiple of an additive 
decomposable measure of segregation is also additive decomposable, Ob(x;k) is additive 
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decomposable when all groups have the same economic status. This then completes the proof of 
necessity.  
 
Proof of Corollary 1.2  

Given 00
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0
1 ... Tkkk  , from Theorem 1 if  O(x;k) is of the form of (A.1) then O(x;k) 

satisfies properties 1- 4. P5 follows trivially since (A.1) is additive and J( ) is 3-smooth and 
thereby differentiable. Similarly P6 follows from the additive form of (A.1). For P7, note from 
Theorem 1(e)    02
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function for all s1j > and s2j > 0. Let y be obtained from x by a disequalizing movement from 
group f to group g.  Then, 
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where s2f = s2g > 0,  s1f < s1g and 0 < d  x1f.   Since J is convex, and Γ is strictly increasing, we 
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which establishes P7.  
 
 Two lemmas are useful in proving Theorem 2.  
 
Lemma 2.  
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Since 0)0( g , it follows that,  
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Proof of Lemma 3:  
 
To establish (a) note that,   
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To establish (b) note that     
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Theorem 2.  

For all measures of segregation O( ) satisfying properties 1 – 4, 5’ – 8’, and for all measures 
of prestige k satisfying 0... **

2
*
1  Gkkk  and GgTjkk ggjg ,1,,...,1,*  , the following 

conditions are necessary and sufficient for O(x;k) > O(y;k):  
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for all q, qq ˆ0  , and  τ =  1,..,G.   
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Proof of Theorem 2: 
 

Let },{}{);();( yx ZZkyOkxOO   where Γ{ }is a strictly increasing real valued 

function, and  .);,( Zand );,(
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This proof thus shows that conditions A.11 (A.11.1 and A.11.2) are necessary and sufficient 
condition for 0Z . 
 
Sufficiency 
 

Using Lemma 2 and Lemma 3, write ΔZg as  
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Since from Lemma 3(b), )ˆ(1 qCB gg  , equation (A.12) can be equivalently written,  

(A.13)        
q

ggggggg dqqCqkqLBqCZ
ˆ
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2*2
221 )(/);1,()ˆ(  , 

where qkqLk ggg  /);1,ˆ()( **
1   and )( *

2 gg k  .  

 With regard to α2g, from Theorem 1 )( *
gk is non-increasing in *

gk . Then 0/ *
2  gg k , and 

(since **
1 gg kk  ), α2(g-1) < α2g , g = 2,..,G. With regard to α1g, from (c) of Theorem 1,

  .0/)(;1,ˆ **2  gggg kkkqkqL   Then 0/ *
1  gg k , and (since **

1 gg kk  ), α1(g-1) < α1g , g = 2,..,G. 

Finally, from (d) and (e) of Theorem 1,   02
1

3  jj ksL and   02
1

2  jsL , and (since **
1 gg kk  ) 

    2*22*
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2 ;1,;1, qkqLqkqL gg   , g = 2,..,G.  
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 Since α1(g-1)< α1g, and since from Lemma 3, ,0)ˆ(
1

1
1




G

g
g

G

g
g BqC it follows that if 

condition (A.11.1) holds for q̂ , then P1 > 0. Since α2(g-1) < α2g and ,0
1

2 


G

g
gB  it follows that if 

condition (A.11.2) holds, then P2 > 0. Finally, since   0;1, 2*2  qkqL G and 

    2*22*
1

2 ;1,;1, qkqLqkqL gg   , it follows that if condition (A.11.1) holds for all q, 0 < q < q̂ , 
then P3 > 0. Then (A.11.1) and (A.11.2) are sufficient for ΔZ > 0.  
 
Necessity 
 
 Assume that condition (A.11) is not satisfied, and consider three cases: 
 

Case 1. There exists a positive integer h and an interval Q such that .,,0)(
1

GhQqqC
h

g
g 


 

 In this case there exists a set of numbers  ,,, CgBgAg  with εCg > 0, g=1,...,G that are non-
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Case 3. There exists a positive integer h such that  


h

g
g GhB

1
2 .,0  

 In this case there exists a set of numbers ,,, CgBgAg   with εCg > 0, g=1,..,G that are non-

increasing in g such that,  
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true because the set of numbers that are non-increasing in g includes 
;,..,1,0;,..,1,1 Ghghg BgBg   .,..,1,0;,..,1,0 GgGg AgCg    

 Let V(.,.) be a 3-smooth function with two arguments that is symmetric and homogeneous 
of degree one, and let U(q) = V(q,1), where U(q) has properties, U(0) = 0, ,0/)ˆ(  qqU and  

,,0/)( 22 QqqqU  else .0/)( 22  qqU Then in case 1, 2 and 3 there exist non-negative 
numbers,   CgqqU 22 /)(  and numbers GgAgBg ,..,1,and   such that, 
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Let L(s1j, s2j;kj) and λ(kj) be functions that not only have the properties of L( ) and λ( ) in 
Theorem 1, but also satisfy,  
 222*2 /)(/);1,( qqUqkqL Cgg    

(A.15)  AgCggg qqUkqkqL   /)ˆ()(/);1,ˆ( **  

 Bggk  )( *  

Note that since Bg is non-increasing in g (and thereby Bg  is non-increasing in gk ), 

,0/)( **  gg kk  which is consistent with the Theorem 1 properties of λ( ). Since Ag is non-

increasing in g (and thereby Ag is non-increasing in gk ), 0/)(/);1,ˆ( ****2  gggg kkkqkqL  , 

which accords with part (c) of Theorem 1, and since 0/)( 22  qqU and Cg non-negative, 

,0/);1,( 22  qkqL g  which is consistent with part (e) of Theorem 1. In addition, since Cg is non-

increasing in g, 22 /);1,( qkqL g   is non-decreasing in gk , which is consistent with part (d) of 
Theorem 1. Finally, (a) and (b) of Theorem 1 are satisfied since U(0) = 0 and U(q) = V(q,1), 
where V( ) is symmetric and homogeneous of degree one. Then substituting the expressions in 
(A.15) into (A.14), if condition (A.11) is not satisfied (as it is not in cases 1-3), there exist 
functions L( ) and λ( ) that conform to the properties of Theorem 1 such that, 
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Then using (A.12), if condition (A.11) is not satisfied, there exist functions L( ) and λ( )such that,  
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 which establishes the claim. 
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Proof of Corollary 2.1.  

 From Lemma 3(b) g
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. Then from Theorem 2, for all measures of 

segregation O( ) satisfying properties 1 – 4, 5’ – 8’, and for all measures of prestige k satisfying 
0... **

2
*
1  Gkkk  and GgTjkk ggjg ,..,1,,..,1,*  , the following condition is necessary for  

O(x;k) > O(y;k): 0)ˆ(
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1
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g
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g
gB , τ =  1,..,G, which completes the proof.  

 
  



  
  

 

49

Endnotes 
 
 
1 For example, Cutler and Glaeser (1997), Flückiger and Silber (1999), and Reardon, Yun, and Eitle (2000), 
Weeden (2004), Jenkins, Micklewright, and Schnepf (2006), Frankel and Volij (2011)  
2 See the discussion in Nakao and Treas (1994).  
3 A large literature on sequential dominance and equivalence scales followed Atkinson and Bourguignon (1987). 
For example, see Jenkins and Lambert (1993), Chambaz and Maurin (1998), Bourguignon (1989), Ok and Lambert 
(1999), and Fluerbaey, Hagnere, and Trannoy (2003).    
4 As such, the term “economic status” is defined so that a group’s economic status is not affected by changes in the 
gender, ethnic, or racial composition of the group. 
5 See Duncan and Duncan (1955) and Hutchens (1991). 
6 An x matrix with non-integer values is plausible. Part-time workers could be treated as fractional workers or as 
irrational numbers (for example, while a full-time worker is counted as ‘1,’ a part-time worker is counted as the 
square root of .3).  
7 There remains a good question of whether the arguments in this paper can be extended to a measure of inequality 
for more than two types of people (e.g., more than two ethnic groups) such that the x matrix in O(x;k) has more than 
two rows. That, however, will have to be a topic for future work. 

8 In particular, an index O(x) satisfies the seven properties if and only if 












 


T

i
ii NxNxHGxO

1
2211 )/,/()( , where  

G{ } is a continuous and strictly increasing function, and H( ) is a continuous, symmetric, and strictly convex 
function that is homogeneous of degree one with H(0,0) = 0. 
9 Property P7 differs slightly from the movement between groups property in Hutchens (2001). The earlier 
treatment assumed strict inequality. In order to be consistent with the index in Theorem 1, P7 assumes  
 O(x; k0) < O(y; k0). 
10 This could be argued more formally by asserting that a measure of segregation should be weakly separable in 
any partition of the T occupations into mutually exclusive and exhaustive subsets. By Gorman’s overlapping 
Theorem (Gorman, 1968), this implies that the measure should be additive. 
11 By implication, P7 deals with a disequalizing movement with unchanged economic status, since in P7 all groups 
have the same status (k = k0). 
12 The second inequality in P7’(b) can be derived from P7’(a). Given that O(x;k) is continuous over its domain, it 
can be shown that as  x2f = x2g = x2h  approaches zero, P7’(a) implies O(y;k) < O(z;k). 
13 It is important to be clear about what P8’ does not say. It does not say that segregation among high economic 
status occupations is worse than segregation among low economic status occupations. For example, P8’ neither says 
nor implies that measured segregation is increasing in k (e.g., increasing in kq= kr). P8’ is not a statement about the 
level of the index, but rather how the index changes in response to a disequalizing transfer.  
14 Since the augmented square root index is an additive decomposable measure of segregation, it permits a “within” 

and “between” decomposition. The within component takes the form, gwgO(xg), where 



gT

j
jgjg

g ssxO
1

2/1
21 )(1)( , 

and wg = (γ(kg)/γ( k
~ ))(N1(xg)/N1(x))1/2(N2(xg)/N2(x))1/2,  while the between component takes the form,   

B = b - γ( k
~ )2λ( k

~ ) +  γ( k
~ )(Σg[(-b/γ(kg))(N1(xg)/N1(x))1/2(N2(xg)/N2(x))1/2 + λ(kg)( N1(xg)/N1(x) + N2(xg)/N2(x))].   

For example, one could use the augmented square root index to analyze intertemporal changes in (a) segregation 
between subsets (changes in B, (b) segregation within subsets (changes in gwgO(xg)), and (c) changes within each 
of the subsets (the O(xg), g = 1,G). Note that O(xg), is not augmented – it is a standard square root index (same kg). 
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15 To see this, consider equation (6). With s2f = s2h = 0, the final term in (6), jj
j

ss
k
b

21)(
 , equals zero for j = f,h. 

Thus, the P7’(b) movement of d people from high status group f to lower status group h changes the equation (6) 
index by  )/)(()/)(()

~
( 11 NdkNdkk hf   . With 0)

~
( k , kf > kh, and λ(kj) nonincreasing in kj, the resulting 

change in the equation (6) index is non-negative. Thus, due to the term  



T

j
jjj ssk

1
21 ))(( ,  the equation (6) index 

behaves precisely as required by P7’(b). 
 
16 See derivation of equation A.13 in the proof of Theorem 2 in the appendix.  
17 It is not easy to provide intuition for Theorem 2, but one way to think about it is to suppose that 9.1 is satisfied 

and 9.2 is violated for τ = τ*, i.e., 0
*

1
2 





g
gB . Then according to Theorem 2, there can exist an index that both 

satisfies the conditions of Theorem 1 AND yields O(x;k) < O(y;k). Consider then the index that results when 

0)(...)()(;0)(...)()( **
2*

*
1*

*
*

*
2

*
1   Gkkkkkk   ; ;,1,0)ˆ( GgqCg   and ,0/);1,( 2*2  qkqL g qq ˆ0  , g = 

1,…,G. Since   
 









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G
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gggggg

G

g
g dqqCqkqLBqCZZ

1
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221

1
)(/);1,()ˆ(   where qkqLk ggg  /);1,ˆ()( **

1  , and 

)( *
2 gg k  , in this case ΔZ < 0. Then for this violation of 9.2, there does, indeed, exist an index that satisfies the 

conditions of Theorem 1 and yields O(x;k) < O(y;k).The same approach applies to 9.1, i.e., suppose 9.1 is violated 
for τ = τ* and q = q*. Then with λ(kg) = 0, g = 1,…,G, there can exist a function L( ) that satisfies the conditions of 
Theorem 1 and yields ΔZ < 0.  
18 An alternative way to think about Theorem 2 and its corollary is to note that the corollary states a kind of first-
degree dominance condition while Theorem 2 states a kind of second-degree dominance condition. This is 
essentially the approach taken in Atkinson and Bourguignon (1987). That approach is not taken here because the 
“first-degree dominance condition” does not utilize all of the properties of the Theorem 1 index, and the condition is 
only useful in the context of examining whether the data satisfy the Theorem 2 criteria.   
19 See James Foster, Jack Greer, and ErikThorbecke (1984). 
20 There is a good discussion of this in Sen (1997), pages 168-188.  
21 Parameters are specified as αγ = 1, βγ = .888889, αλ = 0, βλ = .36, b = 1.8,  with med( jk̂ ) = .5, and k

~ = max( jk̂ ) 

= 1, implying λ( k
~ ) = λ(1) and γ( k

~ ) = γ(1). This parameterization of the index in (6) is derived from six equations. 
First, let the minimum value of the index be zero. The minimum occurs when all type 1 and type 2 people are in 
completely integrated occupations (s1j = s2j), all of which have the highest status level. In that case,   
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Second, let µ be the maximum value of the index, a parameter selected by the researcher. The maximum occurs 
when all type 1 and type 2 people are in completely segregated occupations (if s1j > 0, then s2j = 0), and all of those 
occupations have the lowest status level. In that case, 
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Next, when all occupations have the median status level ( )(med ˆ
jk ), let the index equal the status-free square root 

index plus 1. Since the square root index lies between 0 and 1, it follows that at the median status level, this 
augmented index lies between 1 and 2. Then when all type 1 and type 2 people are in completely integrated 
occupations and all of those occupations have the median status level,  
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and when all type 1 and type 2 people are in completely segregated occupations with all of those occupations at the 
median status level,  
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Finally, as noted in the text, the functions for γ and λ are specified as  

(5)    )()(  (6) and )()( ˆˆˆˆ
jjjj kkkk     

By assumption αγ = 1 and αλ = 0. A solution to (1) occurs at )max(
~ ˆ

jkk  , so set )max(
~ ˆ

jkk  . Given the 

researcher’s choice of µ, and the observed value of )( ˆ
jkmed  in the data, the remaining five equations can be solved 

for the three unknown parameters (βγ, βλ, b).  In particular, for µ = 2.2 and )( ˆ
jkmed  = .50, βγ = .88889, βλ = .36, and 

b = 1.8. 
22 Useful reviews of (and contributions to) this literature may be found in Mary King (1992), Fluckiger and Silber 
(1999), and the bibliography in Cotter, Hermsen, and Vanneman (2005) 
23 They recoded occupations to create a 179 occupation scheme; correspondence with these authors indicates that 
the recodes have subsequently been lost. The PUMS 389 occupation scheme yields, however, roughly similar 
results. In particular, the rankings of the dissimilarity indexes in this paper’s Tables 2 and 3 are identical to those in 
Cotter, Hermsen, and Vanneman (2005).  
24 See Hauser and Warren (1997) for a survey and critique. 
25 See Nam and Boyd (2004) for a description of how the index is constructed. See 
http://usa.ipums.org/usa/chapter4/chapter4.shtml , for a discussion of how Michigan researchers applied the index to 
the Census PUMS. The index ranges from 1 (e.g., dishwasher) to 100 (e.g., physician or surgeon).   
26 The five categories are k1= 5 (high status) if 100 > NPB index > 80; k2= 4 if   80 > NPB index > 60, …, k5= 1 
(low status ) if 20 > NPB index > 0. This translates into the values of jk̂ in the text. Of course Augmented Index A 
could also be computed using each and every value of the NPB index. When this was done, the column 6 ordinal 
results in Table 2 and 3 were unchanged. The five category scheme is used here because it accords well with the 
subsequent examination of Theorem 2, and because the goal is to apply the measures introduced here to data and 
thereby assess their utility.  
27 See Cotter, Hermsen, and Vanneman (2005), Table 8.  
28 More precisely, there are two reasons for the difference. First, the way that a demographic group is distributed 
over the hierarchy can affect a status-augmented measure without similarly affecting a status-free measure. To 
illustrate, on average Asians are in higher status occupations than Hispanics. While that fact has no effect on a 
status-free measure, it can cause differences in a status-augmented measure; even if Asians and Hispanics had the 
same status-free measure, the fact that Asians experience that status-free segregation in higher status occupations 
results in a smaller status-augmented measure for Asians. Second, the way that segregation is distributed over the 
hierarchy can affect a status-augmented measure without similarly affecting a status-free measure. For example, 
suppose Hispanics and African Americans have the same status-free measure of segregation and are equally 
represented (same percentages) at each level of the hierarchy. Suppose, however that in high status occupations the 
segregation experienced by African Americans tends to be greater than that experienced by Hispanics, while the 
opposite is true in low status occupations. Then despite the fact that the status-free measures are the same, the 
augmented square root index will be larger for African Americans.  
 Certainly a goal of future work should be to develop a decomposition that captures these two reasons for 
differences between status-free and status-augmented measures. For present purposes, however, it is sufficient to 
note that status-free and status-augmented measures paint different pictures of segregation. 
  



  
  

 

52

  
29 For the pair of race/ethnic groups being examined, q̂ is the maximum value of s1j/s2j in occupations with s2j > 0, 
j = 1,..,T. For example, for Hispanics and African Americans q̂ = 69.903786.  
30 I am indebted to Serif Aziz Simsir for checking and improving the proofs in this appendix, and to Matt Sweeney 
and Phil Armour for programming help.  
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