

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Takeuchi, Akinobu; Yadohisa, Hiroshi; Inada, Koichi

Working Paper Space distortion and monotone admissibility in agglomerative clustering

SFB 373 Discussion Paper, No. 2001,78

Provided in Cooperation with:

Collaborative Research Center 373: Quantification and Simulation of Economic Processes, Humboldt University Berlin

Suggested Citation: Takeuchi, Akinobu; Yadohisa, Hiroshi; Inada, Koichi (2001) : Space distortion and monotone admissibility in agglomerative clustering, SFB 373 Discussion Paper, No. 2001,78, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes, Berlin,

https://nbn-resolving.de/urn:nbn:de:kobv:11-10050664

This Version is available at: https://hdl.handle.net/10419/62673

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

Space Distortion and Monotone Admissibility in Agglomerative Clustering

Akinobu Takeuchi*, Hiroshi Yadohisa**, and Koichi Inada**

* College of Social Relations, Rikkyo (St. Paul's) University, Nishi-Ikebukuro 3-34-1, Tokyo 171-8501, JAPAN, *E-mail:* akitake@rikkyo.ac.jp

** Department of Mathematics and Computer Science, Kagoshima University, Korimoto 1-21-35, Kagoshima 890-0065, JAPAN, *E-mail:* (yado, inada)@sci.kagoshima-u.ac.jp

Abstract

This paper discusses the admissibility of agglomerative hierarchical clustering algorithms with respect to space distortion and monotonicity, as defined by Yadohisa et al. and Batagelj, respectively. Several admissibilities and their properties are given for selecting a clustering algorithm. Necessary and sufficient conditions for an updating formula, as introduced by Lance and Williams, are provided for the proposed admissibility criteria. A detailed explanation of the admissibility of eight popular algorithms is also given.

Keywords and phrases: admissibility, AHCA (agglomerative hierarchical clustering algorithm), monotonicity, space distortion.

1. Introduction

Agglomerative hierarchical clustering algorithms (AHCAs) were carefully studied by Lance and Williams (1967). If cluster I and J fuse to form a new cluster $I \cup J$, then Lance and Williams propose a dissimilarity between cluster $I \cup J$ and another cluster K could be calculated by a recursive updating formula:

$$d_{(IJ)K} = \alpha_i d_{IK} + \alpha_j d_{JK} + \beta d_{IJ} + \gamma \left| d_{IK} - d_{JK} \right| \tag{1.1}$$

where parameters $\alpha_i, \alpha_j, \beta$, and γ are either some constants or functions of the number of the object belonging to clusters I, J, and K; d_{IJ} , d_{IK} , and d_{JK} are the dissimilarities between clusters I and J, I and K, and J and K, respectively. The parameters characterize and determine the clustering algorithm. The myriad of available AHCAs can be defined by determining the parameters. This paper addresses the problem of choosing a clustering algorithm from available agglomerative algorithms. Many researchers have attacked this problem using the concept of admissibility. Fisher and Van Ness (1971) first introduced the concept of admissibility for clustering algorithms. They defined nine types of clustering algorithms admissibility and indicated the relationships between these particular admissibilities and some popular AHCAs. Space distortion was defined by Lance and Williams (1967) and this concept was converted into "Space-distorting admissibility" by Chan and Van Ness (1993, 1994b, and 1996). Space distortion is a well-known phenomenon in clustering and this is discussed by many researchers (e.g. Williams et al. (1966), Watson et al. (1966)). Mirkin (1996) proposed an admissibility with respect to the monotonicity of the updating formula. Mirkin (1996; p 249) discussed the characterization of monotone admissibility which gives the resulting cluster hierarchy a proper graphical representation. This property is usually considered as a necessary condition for an AHCA to be a good one. Mirkin also provided the relationship between monotone admissibility and the parameters in (1.1). In the papers cited above, space distortion and monotonicity depended *only* on the clustering algorithm that was used. On the other hand, we belive space distortion and monotonicity should be defined depending on both the algorithm selected and the data to be analyzed. Yadohisa et al. (1999) propose space distortion criteria, that they call the "distortion ratio at stage m" and the "total distortion

ratio", which are defined depending on both the algorithm selected and the data to be analyzed. Using these criteria, they also proposed several new space distortion admissibilities.

In this paper, we give the necessary and sufficient conditions between Yadohisa et al.'s admissibilities and the parameters in (1.1). In addition, we propose new admissibilities with respect to monotonicity, which are defined by Batagelj (1981). We also provide the necessary and sufficient conditions between the these admissibilities and the parameters in (1.1). By using these conditions, we may choose a proper clustering algorithm, in the sense of distortion and monotonicity.

We now define the notations used throughout this paper. Cluster I at stage m $(1 \le m < N)$ is denoted as $C_I(m)$. We denote the dissimilarity between objects p and q by d_{pq} , the dissimilarity between $C_I(m)$ and $C_J(m)$ by d_{IJ} , and the number of objects to be clustered by N. The notation $p \in C_I(m)$ indicates that object p belongs to $C_I(m)$; the number of objects belonging to $C_I(m)$ is denoted by n_I .

When $C_T(m)$ and $C_K(m)$ are combined at stage m and $C_T(m)$ is not a singleton, it is assumed that $C_T(m)$ was formed from $C_I(t)$ and $C_J(t)$, which were combined at stage t (1 < t < m), and that $C_K(m)$ is a singleton or was formed from $C_{I'}(t')$ and $C_{J'}(t')$, which were combined at stage t' $(1 \le t' < t)$. Hereafter, we assume this relationship between the two combined clusters, without loss of generality, and we assume $d_{IJ} < d_{IK} \le d_{JK}$.

We abbreviate the single linkage algorithm as SL, the complete linkage algorithm as CL, the weighted average algorithm (WPGMA) as WA, the median algorithm (WPGMC) as MD, the group average algorithm (UPGMA) as GA, the centroid algorithm (UPGMC) as CE, the minimum variance algorithm (Ward's method) as WD, and the flexible algorithm with $\beta = -0.25$ as FX.

2. Space Distortion Ratio

Yadohisa et al. (1999) defined several new space distortion criteria, not just for the clustering algorithm but for each combination of objects. Each criterion is represented by a numerical value that allows its use in selecting a particular clustering algorithm in applications. In this section, we introduce the combined distance at stage m and the distortion measures proposed by Yadohisa et al. (1999).

Definition 2.1: The distance between $C_T(m)$ and $C_K(m)$, which combine at stage m $(1 \le m \le N - 1)$, is defined by the formula:

$$d_{TK}^{m} = \begin{cases} d_{pq} \ (p \in C_{T}(m), q \in C_{K}(m)), & (n_{T} = n_{K} = 1), \\ \alpha_{i}d_{IK} + \alpha_{j}d_{JK} + \beta d_{IJ} + \gamma |d_{IK} - d_{JK}|, & (\text{otherwise}), \end{cases}$$
(2.1)

and is referred to as the "combined distance at stage m", where $\alpha_i, \alpha_j, \beta$, and γ are either constants or functions in (1.1). We should note that clusters $C_T(m)$ and $C_K(m)$ have been uniquely determined by using (1.1) and assumptions in Section 1 before we calculate the d_{TK}^m . Hereafter a clustering algorithm for which a combined distance can be defined by (2.1) is called an AHCA.

Yadohisa et al. (1999) proposed two criteria for space distortion. The two criteria measure space distortion at each stage and in the entire clustering, respectively. Additionally, these criteria are defined depending on *both* the algorithm selected *and* the data to be analyzed.

Definition 2.2: If $C_T(m)$ and $C_K(m)$ combine at stage m $(1 \le m \le N-1)$, then the distortion ratio at stage m is defined by:

$$R_m(d_{TK}^m) = \begin{cases} \kappa, & (n_T = n_K = 1), \\ \frac{\kappa(d_{TK}^m - d_{IJ}) - \eta(d_{TK}^m - d_{MK})}{d_{MK} - d_{IJ}}, & \text{(otherwise)}, \end{cases}$$
(2.2)

where $d_{MK} = (d_{IK} + d_{JK})/2$ and will be called the "standard distance". The values κ and η ($\kappa > \eta$) are different predetermined real constants or functions of n_I , n_J , and n_K . The distortion ratio measures the difference between the combined distance and the standard distance. If the combined distance equals the standard distance, then the distortion ratio is κ . If the combined distance coincides with d_{IJ} , which is the boundary of a monotone algorithm (see Section 4), then the distortion ratio is η . Both κ and η are determined by the judgment of the data analyst. Large values of $|\kappa - \eta|$ make the ratio sensitive to differences between the combined distance and the standard distance. Yadohisa et al. (1999) recommend that $\kappa = 1$ and $\eta = 0$. Then, we can judge the monotonicity from the magnitude positivity of (2.2) and can understand the distortion by comparing (2.2) with unity.

Another criterion for representing the total distortion in a whole clustering can be defined as follows.

Definition 2.3: Total distortion ratio is defined as:

$$TR_L = \frac{1}{N-L} \sum_{m=1}^{N-L} R_m(d_{TK}^m), \qquad (2.3)$$

where L is a number of clusters selected.

Here we note that the total distortion ratio means the overall average of the distortion ratio in the clustering processes.

3. Space Distortion Admissibility

Yadohisa et al. (1999) proposed several new space distortions and admissibilities for clustering algorithms. In this section, we give the relationships between these admissibilities and the parameters in (1.1).

3.1 ε -Space Distortion Admissible

Here, we give a brief summary of ε -space distortion admissible proposed by Yadohisa et al. (1999). This approach is motivated by decision theory and has been studied by many researchers (Fisher and Van Ness, 1971; Van Ness, 1973; Chen and Van Ness, 1994a, 1994b). The admissibilities defined in this paper contain those considered by Chen and Van Ness (1993, 1994b) as a special case.

Definition 3.1 (Yadohisa et al., 1999): For a given $\varepsilon > 0$ and a standard distance d_{MK} , a clustering algorithm is called ε -conserving admissible if the inequality:

$$\left|R_m(d_{TK}^m) - R_m(d_{MK})\right| < \varepsilon (R_m(d_{JK}) - R_m(d_{IK})) \tag{3.1}$$

holds for all m, except when two clusters are singletons that combine, or when $d_{IK} = d_{JK}$.

Definition 3.2 (Yadohisa et al., 1999): For a given $\varepsilon > 0$ and a standard distance d_{MK} , a clustering algorithm is called ε -dilating admissible if the inequality:

$$R_m(d_{TK}^m) - R_m(d_{MK}) \ge \varepsilon (R_m(d_{JK}) - R_m(d_{IK}))$$

$$(3.2)$$

holds for all m, except when two clusters are singletons that combine, or when $d_{IK} = d_{JK}$.

Definition 3.3 (Yadohisa et al., 1999): For a given $\varepsilon > 0$ and a standard distance d_{MK} , a clustering algorithm is called ε -contracting admissible if the inequality:

$$R_m(d_{MK}) - R_m(d_{TK}^m) \ge \varepsilon (R_m(d_{JK}) - R_m(d_{IK}))$$

$$(3.3)$$

holds for all m, except when two clusters are singletons that combine, or when $d_{IK} = d_{JK}$.

If $d_{MK} = (d_{IK} + d_{JK})/2$ and $\varepsilon = 1/2$, then ε -conserving admissibility, ε -dilating admissibility, and ε -contracting admissibility conform to the space-conserving admissibility proposed by Chen and Van Ness (1993), and to the space-dilating admissibility and the space-contracting admissibility proposed by Chen and Van Ness (1994b), respectively.

As well as these, Yadohisa et al. (1999) proposed further admissibilities in a whole clustering by using the total distortion ratio; the total distortion admissibilities of the space, ε -total space conserving admissible, ε -total space dilating admissible, and ε -total space contracting admissible. For details we refer to Yadohisa et al. (1999).

3.2 The Relationship between ε -Space Distortion Admissibility and Parameters of the Updating Formula

We give three theorems with respect to the relationship between ε -space distortion admissibility and the parameters in (1.1).

Theorem 3.1: When $d_{MK} = (d_{IK} + d_{JK})/2$, an AHCA is ε -space conserving admissible for any dataset if and only if the parameters in (1.1) satisfy the following three conditions:

(i)
$$\frac{1}{2} - \varepsilon < \alpha_j + \gamma < \frac{1}{2} + \varepsilon$$
, (ii) $\alpha_i + \alpha_j = 1$, and (iii) $\alpha_i + \alpha_j + \beta = 1$. (3.4)

Theorem 3.2: When $d_{MK} = (d_{IK} + d_{JK})/2$, an AHCA is ε -space dilating admissible for any dataset if and only if the parameters in (1.1) satisfy the following three conditions:

(i)
$$\alpha_j + \gamma \ge \frac{1}{2} + \varepsilon$$
, (ii) $\alpha_i + \alpha_j \ge 1$, and (iii) $\alpha_i + \alpha_j + \beta \ge 1$. (3.5)

Theorem 3.3: When $d_{MK} = (d_{IK} + d_{JK})/2$, an AHCA is ε -space contracting admissible for any dataset if and only if the parameters in (1.1) satisfy the following three conditions:

(i)
$$\alpha_j + \gamma \leq \frac{1}{2} - \varepsilon$$
, (ii) $\alpha_i + \alpha_j \leq 1$, and (iii) $\alpha_i + \alpha_j + \beta \leq 1$. (3.6)

When the parameters in (1.1) do not depend on the number of clusters at the combined stage, we can determine whether the algorithm is ε -space distortion admissible before analyzing the data.

4. Monotone Admissibility

Here, we propose new criteria with respect to "monotonicity", first discussed by Batagelj (1981). Batagelj's definition with respect to the monotonicity of the combined distance is as follows.

Definition 4.1 (Batagelj, 1981): The AHCA is monotone if

$$d_{(IJ)K} \ge d_{IJ}$$

where $d_{(IJ)K}$ is the updating formula when $C_{I\cup J}(m)$ and $C_K(m)$ combine.

We transcribe Batagelj's definition using the distortion ratio as the following equation:

$$R_m(d_{TK}^m) \ge R_m(d_{IJ}) = \eta.$$

We can measure the degree of monotonicity of the combined distance at stage m by using the difference between $R_m(d_{TK}^m)$ and η . Similarly, we can define monotonicity in a whole clustering using the total distortion ratio. In this section, we propose some concepts of monotonicity including Batagelj's monotonicity as a special case. Using these concepts, we define new admissibilities and also give the relationship between these admissibilities and Lance and Williams's updating formula.

4.1 δ -Monotone Admissible

We define new criteria for the monotonicity of the combined distance by using the distortion ratio and the total distortion ratio. Additionally, we propose a new admissibility for the monotonicity of a clustering algorithm.

Definition 4.2: For a given $\delta \in R$ and a standard distance d_{MK} , the combined distance is δ -monotone at stage *m* if the inequality:

$$R_m(d_{IJ}) + \delta(R_m(d_{MK}) - R_m(d_{IJ})) \le R_m(d_{TK}^m)$$
(4.1)

holds, except when two clusters are singletons that combine, or when $d_{IK} = d_{JK}$.

The δ -monotonicity of the combined distance is judged in each merge stage by using the distortion ratio. Another criterion for representing δ -monotonicity in the entire clustering can be defined as follows.

Definition 4.3: For a given $\delta \in R$ and a standard distance d_{MK} , the combined distance is δ -total monotone in the entire clustering if the inequality:

$$\eta + \delta(\kappa - \eta) \le TR_L \tag{4.2}$$

holds, where L is the number of clusters selected.

From these definitions, we can define the admissibility of a clustering algorithm with respect to the monotonicity of the combined distance. Here we also note that the "total" means the "overall average" in the same manner as the total distortion ratio.

Definition 4.4: For a given $\delta \in \mathbb{R}$ and a standard distance d_{MK} if the inequality:

$$R_m(d_{IJ}) + \delta(R_m(d_{MK}) - R_m(d_{IJ})) \le R_m(d_{TK}^m)$$
(4.3)

holds for all m, except when two clusters are singletons that combine or when $d_{IK} = d_{JK}$, then the clustering algorithm is called δ -monotone admissible.

Definition 4.5: For a given $\delta \in \mathbb{R}$ and a standard distance d_{MK} if the inequality:

$$\eta + \delta(\kappa - \eta) \le TR_L \tag{4.4}$$

holds, where L is the number of clusters selected, then the clustering algorithm is called δ -total monotone admissible.

These admissibilities include as a special case the monotone admissibility proposed by Mirkin (1996). The difference between two combined distances in neighboring stages is $d_{TK}^m - d_{T'K'}^{m-1}$, for which the δ -monotone admissible clustering algorithm with large δ is relatively large when compared to those with a small δ . A large value of δ may indicate the robustness of the result of a clustering. That is, a δ -monotone admissible algorithm with a relatively large δ does not modify the result of the clustering, in spite of a small changes to the data.

Here, we describe some propositions for δ -monotone and δ -total monotone admissible.

Proposition 4.1: For a given $\delta \leq 1$, if an AHCA is δ -monotone admissible, then the algorithm is δ -total monotone admissible.

Proposition 4.2: For a given $\delta > 1$ and $\tau \leq 1$, if an AHCA is δ -monotone admissible, then the algorithm is τ -total monotone admissible.

Proposition 4.3: For a given $\delta < \delta'$, if an AHCA is δ' -monotone admissible, then the algorithm is δ -monotone admissible. Analogously, this proposition is satisfied for δ -total monotone admissible algorithm.

Proposition 4.4: δ -monotone admissible with $\delta = 0$ conforms to monotone admissible as proposed by Mirkin (1996).

Proposition 4.5: When $d_{MK} = (d_{IK} + d_{JK})/2$, FX is δ -monotone admissible if the parameter β of the algorithm satisfies $\delta \leq 1 - \beta$ and $\beta < 1$. The algorithm is δ -total monotone admissible if β satisfies $\delta \leq 1 - \beta$ and $0 \leq \beta < 1$.

4.2 The Relationship between δ -Monotone Admissibility and the Parameters of the Updating Formula

We present a theorem with respect to the relationship between δ -monotone admissibility and the parameters in (1.1).

Theorem 4.1: When $d_{MK} = (d_{IK} + d_{JK})/2$, an AHCA is δ -monotone admissible for any dataset if and only if the parameters in (1.1) satisfy the following three conditions:

(i)
$$\alpha_j + \gamma \ge \frac{1}{2}\delta$$
, (ii) $\alpha_i + \alpha_j \ge \delta$, and (iii) $\alpha_i + \alpha_j + \beta \ge 1$. (4.5)

5. Data Dependence of the Admissibility of Clustering Algorithms

The concepts of space distortion and monotonicity were defined based on the updating formula in DuBien and Warde (1979) and Batagelj (1981), respectively. These concepts did not depend the data analyzed. On the other hand, Yadohisa, et al. (1999) pointed out that these concepts should be dependent on the data, since the phenomena of space distortion and monotonicity, which were discussed in Williams, et al. (1966) and Watson, et al. (1966), strongly depended on the data, even if only a single algorithm were used. Admissibilities proposed in this paper are based on extended space distortion (ε -space distortion) and extended monotonicity (δ -monotone), which are defined as dependent on the data. In other words, these admissibilities inevitably depend on the data analyzed and can not be determined only by using an algorithm.

6. Numerical Example

In this section, we analyze an artificial dataset in two-dimensional space using the algorithms listed in Table 1. This data, forming a so-called "touching cluster", is typical of the "chain" cluster described by Williams et al. (1966). The coordinates are listed in Table 2 and plotted in Figure 1.

Algorithm*	$lpha_i$	$lpha_j$	β	γ
SL	1/2	1/2	0	-1/2
CL	1/2	1/2	0	1/2
GA	$n_I/(n_I+n_J)$	$n_J/(n_I + n_J)$	0	0
WA	1/2	1/2	0	0
CE	$n_I/(n_I+n_J)$	$n_J/(n_I + n_J)$	$-n_I n_J / (n_I + n_J)^2$	0
MD	1/2	1/2	-1/4	0
WD	$(n_I + n_K)/(n_I + n_J + n_K)$	$(n_J + n_K)/(n_I + n_J + n_K)$	$-n_K/(n_I+n_J+n_K)$	0
\mathbf{FX}	$(1-\beta)/2$	$(1-\beta)/2$	$\beta < 1$	0

Table 1: List of AHCAs

*Reference for each method can be found in Cormack (1971).

No	Coordinates	No	Coordinates	No	Coordinates
1	3.999, 10.007	7	7.499, 7.502	13	13.502, 11.003
2	5.005, 8.502	8	7.800, 10.500	14	14.002, 8.000
3	4.999, 12.000	9	8.997, 11.000	15	13.997, 12.997
4	6.003, 7.002	10	9.999, 10.000	16	16.004, 9.998
5	6.998, 9.793	11	11.997, 9.002	17	17.004, 11.998
6	7.302, 12.502	12	12.005, 12.003		

Table 2: Coordinates of 17 objects in two-dimensional space

The distortion ratio and the total distortion ratio are both calculated with $\kappa = 1$, $\eta = 0$, and $d_{MK} = (d_{IK} + d_{JK})/2$ in Table 3. The γ_m statistic at stage m developed by Goodman and Kruskal (1954) is also calculated. The notation 11 - 12 at stage 12 of CL in Table 3 means that cluster 11, which contains object 14, and cluster 12, which contains objects 13 and 15, are combined at this stage. TR_2 , TG, and C. corr. in Table 3 denote the total distortion ratio with L = 2, the average of the Goodman and Kruskal's statistic (1954), and the cophenetic correlation of Sokal and Rohlf (1962), respectively. As L is the number of clusters selected, we consider that the TR_L represents a distortion of the whole clustering. In table 3, we calculated TR_2 as an example.

By comparing the value of the distortion ratio with zero, we can ascertain whether the algorithm is monotone. For a more accurate assessment, we should use the concepts of ε -space distortion and the δ monotonicity of the combined distance at a given stage. We can use the same approach to assess the total

Figure 1: Scatter diagram of two-dimensional space

distortion ratio. Since we use the combined distance of WA as the standard distance, the ratio at all stages and the total distortion ratio by WA are equal to unity in Table 3.

The ε -space distortion admissibilities for the cases of $\varepsilon = 1/2, 1/3$, and 1/4 and the δ -monotone admissibilities for the cases of $\delta = 1, 0$ and -1 are indicated in Tables 4 and 5, respectively. Generally, from the definitions, ε -space distortion and δ -monotone admissibilities are sensitive concepts in contrast to the total admissibilities (see, Table 4 and 5). By changing the value of ε and δ we can select an algorithm which satisfies ε -(total) space distortion admissibilities and/or δ -(total) monotone admissibility according to need.

7. Concluding Remarks

Many research fields, including psychology and sociology, use AHCAs. However, we belive that the characteristics of these AHCAs with respect to space distortion and monotonicity have not yet been sufficiently investigated. In this paper, we provide the necessary and sufficient conditions of the admissibilities proposed by Yadohisa et al. (1999) for Lance and Williams's updating formula. By comparing the relationship among the parameters, we can select AHCAs adapted both to the data being analyzed and to the expected space distortion. Moreover, we extend the concept of monotonicity and provide several theorems concerning the relationship between the new concepts and the AHCAs. This is useful not only for selecting an algorithm, but also for assessing the robustness of the result of a clustering from a slight change in the data analyzed. Knowing the general properties of AHCAs is important as criteria for selecting an algorithm from AHCAs. The results given here should considerably reduce time and labor required in choosing a clustering algorithm from the profusion of algorithms. Finally, we would like to note that the admissibilities defined in this paper can be extended by changing the definitions of d_{TK}^m . For example, we may extend such admissibilities by using the updating formula of Jambu (1978) instead of Lance and Williams's formula in the definition of d_{TK}^m .

References

- [1] Batagelj, V. (1981). Note on ultrametric hierarchical clustering algorithms, *Psychometrika*, **46**, 351–353.
- [2] Cormack, R. M. (1971). A review of classification. Journal of the Royal Statistical Society, (Series A), 38, 47–62.
- [3] Chen, Z. & Van Ness, J. (1993). Space-conserving agglomerative algorithms. Technical Report #224 Mathematical Sciences, University of Texas.
- [4] Chen, Z. & Van Ness, J. (1994a). Metric admissibility and agglomerative clustering. Communication in Statistics: Simulation & Computation, 23, 833–845.
- [5] Chen, Z. & Van Ness, J. (1994b). Space-contracting, space-dilating, and positive admissible clustering algorithms. *Pattern Recognition*, 27, 853–857.

	S	SL		(CL		V	VA		1	MD	
Stage	Combine	γ_m	R_m	Combine	γ_m	R_m	Combine	γ_m	R_m	Combine	γ_m	R_m
1	5-8	1.00	1.00	5-8	1.00	1.00	5 - 8	1.00	1.00	5 - 8	1.00	1.00
2	5-9	0.96	0.31	9 - 10	1.00	1.00	9 - 10	1.00	1.00	9 - 10	1.00	1.00
3	5 - 10	0.91	0.22	4-7	1.00	1.00	4 - 7	1.00	1.00	4 - 7	1.00	1.00
4	4-7	0.91	1.00	12 - 13	1.00	1.00	12 - 13	1.00	1.00	5 - 9	0.91	0.35
5	12 - 13	0.92	1.00	1 - 2	1.00	1.00	1 - 2	1.00	1.00	12 - 13	0.92	1.00
6	2 - 4	0.90	0.34	12 - 15	0.99	1.25	12 - 15	0.99	1.00	12 - 15	0.91 -	-0.32
7	1 - 2	0.77	0.01	16 - 17	0.97	1.00	5 - 9	0.92	1.00	1 - 2	0.92	1.00
8	12 - 15	0.78	0.75	11 - 14	0.95	1.00	16 - 17	0.92	1.00	5 - 6	0.87	0.48
9	5-6	0.76	0.44	3 - 6	0.89	1.00	11 - 14	0.92	1.00	16 - 17	0.88	1.00
10	1 - 3	0.68	0.40	5-9	0.93	1.27	3 - 6	0.93	1.00	11 - 14	0.89	1.00
11	5 - 11	0.65	0.09	1 - 4	0.80	1.48	1 - 4	0.80	1.00	1 - 4	0.80	0.50
12	16 - 17	0.65	1.00	11 - 12	0.70	1.11	3 - 5	0.73	1.00	3 - 5	0.73	0.39
13	5 - 14	0.49	0.01	3 - 5	0.72	1.87	12 - 16	0.66	1.00	1 - 3	0.59 -	-0.15
14	1 - 5	0.44	0.05	11 - 16	0.71	2.00	1 - 3	0.63	1.00	12 - 16	0.63	0.30
15	1 - 12	0.52	0.08	1 - 3	0.86	1.40	11 - 12	0.86	1.00	11 - 12	0.86 -	-0.04
TR_2	0.4	445		1.	224		1.0	000		0.	.566	
TG	0.'	771		0.	908		0.8	897		0.	.869	
C.corr.	0.	572		0.	755		0.'	757		0.	745	
				-			÷.					
	C	ЪА		(CE		V	VD		FX $(\beta$	= -0	.25)
Stage	Combine	${\rm GA} \over \gamma_m$	R_m	Combine	\sum_{γ_m}	R_m	W Combine	$VD \gamma_m$	R_m	FX (β Combine	$= -0$ γ_m	.25) R_m
Stage 1	Combine $5-8$	$\frac{\gamma_m}{1.00}$	R_m 1.00	Combine 5 – 8	$\begin{array}{c} \text{CE} \\ \gamma_m \\ 1.00 \end{array}$	R_m 1.00	V Combine 5 - 8	$\frac{\gamma_m}{1.00}$	R_m 1.00	FX $(\beta$ Combine $5-8$	$= -0$ γ_m 1.00	.25) R_m 1.00
Stage 1 2	$\begin{array}{c} \text{Combine} \\ 5-8 \\ 9-10 \end{array}$	$\frac{\gamma_m}{1.00}$ 1.00	R_m 1.00 1.00	$\begin{array}{c} \text{Combine} \\ 5-8 \\ 9-10 \end{array}$	$CE \\ \frac{\gamma_m}{1.00} \\ 1.00$	R_m 1.00 1.00		$VD \\ \frac{\gamma_m}{1.00} \\ 1.00$	R_m 1.00 1.00	$\begin{array}{c} {\rm FX} (\beta \\ {\rm Combine} \\ 5-8 \\ 9-10 \end{array}$	= -0 γ_m 1.00 1.00	.25) R_m 1.00 1.00
Stage 1 2 3	Combine 5-8 9-10 4-7	$\frac{\gamma_m}{1.00}$ 1.00 1.00	R_m 1.00 1.00 1.00	Combine 5-8 9-10 4-7	$\begin{array}{c} \text{CE} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	R_m 1.00 1.00 1.00	W Combine 5 - 8 9 - 10 4 - 7	$VD \\ \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00$	R_m 1.00 1.00 1.00	FX (β Combine 5-8 9-10 4-7	= -0 γ_m 1.00 1.00 1.00	$ \begin{array}{c} .25) \\ R_m \\ 1.00 \\ 1.00 \\ 1.00 \end{array} $
Stage 1 2 3 4		$\begin{array}{c} \gamma_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	R_m 1.00 1.00 1.00 1.00	Combine 5-8 9-10 4-7 5-9	$\begin{array}{c} \text{CE} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.91 \end{array}$	R_m 1.00 1.00 1.00 0.35		$VD \ \gamma_m \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $	R_m 1.00 1.00 1.00 1.00	FX (β) Combine 5-8 9-10 4-7 12-13	= -0 γ_m 1.00 1.00 1.00 1.00	$ \begin{array}{c} .25) \\ R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ \end{array} $
Stage 1 2 3 4 5	$\begin{array}{c} & & \\ \hline Combine \\ & 5-8 \\ 9-10 \\ & 4-7 \\ 12-13 \\ & 1-2 \end{array}$	$\begin{array}{c} \gamma_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	R_m 1.00 1.00 1.00 1.00 1.00	$\begin{array}{c} \text{Combine} \\ 5-8 \\ 9-10 \\ 4-7 \\ 5-9 \\ 12-13 \end{array}$	$\begin{array}{c} \text{CE} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.91 \\ 0.92 \end{array}$	R_m 1.00 1.00 1.00 0.35 1.00		$ \frac{\gamma_m}{1.00} \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 $	R_m 1.00 1.00 1.00 1.00 1.00	FX (β) Combine 5-8 9-10 4-7 12-13 1-2	$= -0 \\ \frac{\gamma_m}{1.00} \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00$	$ \begin{array}{c} .25) \\ R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ \end{array} $
Stage 1 2 3 4 5 6	$\begin{array}{c} & \\ \hline Combine \\ & 5-8 \\ 9-10 \\ & 4-7 \\ 12-13 \\ & 1-2 \\ 12-15 \end{array}$	$\begin{array}{c} \gamma_m \\ \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \end{array}$	R_m 1.00 1.00 1.00 1.00 1.00 1.00	$\begin{array}{c} \text{Combine} \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 5-9 \\ 12-13 \\ 12-15 \end{array}$	$\begin{array}{c} \mathbb{CE} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.91 \\ 0.92 \\ 0.91 \end{array}$	$ \begin{array}{r} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.35 \\ 1.00 \\ -0.32 \end{array} $	$\begin{tabular}{c} W \\ \hline Combine \\ $5-8$ \\ $9-10$ \\ $4-7$ \\ $12-13$ \\ $1-2$ \\ $16-17$ \end{tabular}$	$\begin{array}{c} \sqrt[]{VD} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.97 \end{array}$	R_m 1.00 1.00 1.00 1.00 1.00 1.00	FX (β Combine 5-8 9-10 4-7 12-13 1-2 12-15	$= -0 \\ \frac{\gamma_m}{1.00} \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99$	$ \begin{array}{c} .25) \\ R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.25 \end{array} $
Stage 1 2 3 4 5 6 7	$\begin{array}{c} & \\ \hline Combine \\ & 5-8 \\ 9-10 \\ & 4-7 \\ 12-13 \\ & 1-2 \\ 12-15 \\ & 5-9 \end{array}$	$\begin{array}{c} \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.92 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	$\begin{array}{c} \text{Combine} \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 5-9 \\ 12-13 \\ 12-15 \\ 1-2 \end{array}$	$\begin{array}{c} \text{CE} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.91 \\ 0.92 \\ 0.91 \\ 0.92 \end{array}$	$\begin{array}{c} R_m \\ \hline 1.00 \\ 1.00 \\ 0.35 \\ 1.00 \\ -0.32 \\ 1.00 \end{array}$	$\begin{tabular}{ c c c c c } \hline W \\ \hline Combine \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 16-17 \\ 11-14 \end{tabular}$	$\begin{array}{c} \sqrt{\text{VD}} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.97 \\ 0.92 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	$\begin{array}{c} {\rm FX} \ \ (\beta \\ {\rm Combine} \\ 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 12-15 \\ 16-17 \end{array}$	$= -0 \\ \frac{\gamma_m}{1.00} \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.97$	$\begin{array}{c} .25) \\ R_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.25 \\ 1.00 \end{array}$
Stage 1 2 3 4 5 6 7 8	$\begin{array}{c} & \\ \hline Combine \\ & 5-8 \\ 9-10 \\ & 4-7 \\ 12-13 \\ & 1-2 \\ 12-15 \\ & 5-9 \\ 16-17 \end{array}$	$\begin{array}{c} \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.92 \\ 0.92 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	$\begin{array}{c} \text{Combine} \\ 5-8 \\ 9-10 \\ 4-7 \\ 5-9 \\ 12-13 \\ 12-15 \\ 1-2 \\ 5-6 \end{array}$	$\begin{array}{c} \text{CE} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.91 \\ 0.92 \\ 0.91 \\ 0.92 \\ 0.87 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 0.35 \\ 1.00 \\ -0.32 \\ 1.00 \\ 0.48 \end{array}$	$\begin{tabular}{ c c c c c } \hline W \\ \hline Combine \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 16-17 \\ 11-14 \\ 12-15 \end{tabular}$	$\begin{array}{c} & \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.97 \\ 0.92 \\ 0.95 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.33 \end{array}$	$\begin{array}{c} {\rm FX} \ \ (\beta \\ {\rm Combine} \\ 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 12-15 \\ 16-17 \\ 11-14 \end{array}$	$\begin{array}{l} = -0 \\ \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.97 \\ 0.95 \end{array}$	$\begin{array}{c} \hline .25) \\ \hline R_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.00 \\ 1.00 \\ \end{array}$
Stage 1 2 3 4 5 6 7 8 9	$\begin{array}{c} & \\ \hline Combine \\ 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 12-15 \\ 5-9 \\ 16-17 \\ 11-14 \end{array}$	$\begin{array}{c} \gamma_m \\ \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.92 \\ 0.92 \\ 0.92 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	$\begin{array}{c} \text{Combine} \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 5-9 \\ 12-13 \\ 12-15 \\ 1-2 \\ 5-6 \\ 16-17 \end{array}$	$\begin{array}{c} \hline \\ \hline \gamma_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 0.91 \\ 0.92 \\ 0.91 \\ 0.92 \\ 0.87 \\ 0.88 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 0.35 \\ 1.00 \\ -0.32 \\ 1.00 \\ 0.48 \\ 1.00 \end{array}$		$\begin{array}{c} & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.33 \\ 1.00 \end{array}$	$\begin{array}{c} {\rm FX} \ (\beta \\ {\rm Combine} \\ 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 12-15 \\ 16-17 \\ 11-14 \\ 3-6 \end{array}$	$= -0$ $\frac{\gamma_m}{1.00}$ 1.00 1.00 1.00 1.00 0.99 0.97 0.95 0.89	$\begin{array}{c} \hline .25) \\ \hline R_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ \end{array}$
Stage 1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} & & \\ \hline Combine \\ & 5-8 \\ 9-10 \\ & 4-7 \\ 12-13 \\ & 1-2 \\ 12-15 \\ & 5-9 \\ 16-17 \\ 11-14 \\ & 3-6 \end{array}$	$\begin{array}{c} \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.93 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	$\begin{array}{c} \text{Combine} \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 5-9 \\ 12-13 \\ 12-15 \\ 1-2 \\ 5-6 \\ 16-17 \\ 11-14 \end{array}$	$\begin{array}{c} \hline \\ \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.91 \\ 0.92 \\ 0.91 \\ 0.92 \\ 0.87 \\ 0.88 \\ 0.89 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.35 \\ 1.00 \\ -0.32 \\ 1.00 \\ 0.48 \\ 1.00 \\ 1.00 \end{array}$		$\begin{array}{c} \sqrt{\mathrm{D}} \\ \frac{\gamma_m}{1.00} \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.97 \\ 0.92 \\ 0.95 \\ 0.89 \\ 0.93 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.33 \\ 1.00 \\ 1.50 \end{array}$	$\begin{array}{c} {\rm FX} \ \ (\beta \\ {\rm Combine} \\ 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 12-15 \\ 16-17 \\ 11-14 \\ 3-6 \\ 5-9 \end{array}$	$= -0$ $\frac{\gamma_m}{1.00}$ 1.00 1.00 1.00 1.00 0.99 0.97 0.95 0.89 0.93	$\begin{array}{c} \hline .25) \\ \hline R_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.00 \\ 1.25 \\ \end{array}$
Stage 1 2 3 4 5 6 7 8 9 10 11	$\begin{array}{c} & & & \\ \hline Combine \\ & 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 12-15 \\ 5-9 \\ 16-17 \\ 11-14 \\ 3-6 \\ 1-4 \end{array}$	$\begin{array}{c} \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.93 \\ 0.80 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	$\begin{array}{c} \text{Combine} \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 5-9 \\ 12-13 \\ 12-15 \\ 1-2 \\ 5-6 \\ 16-17 \\ 11-14 \\ 1-4 \end{array}$	$\begin{array}{c} \hline \\ \gamma_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 0.91 \\ 0.92 \\ 0.91 \\ 0.92 \\ 0.87 \\ 0.88 \\ 0.89 \\ 0.80 \\ \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.35 \\ 1.00 \\ -0.32 \\ 1.00 \\ 0.48 \\ 1.00 \\ 1.00 \\ 0.50 \end{array}$		$\begin{array}{c} \sqrt{\text{D}} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.97 \\ 0.92 \\ 0.95 \\ 0.89 \\ 0.93 \\ 0.80 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.33 \\ 1.00 \\ 1.50 \\ 1.50 \end{array}$	$\begin{array}{c} {\rm FX} \ (\beta \\ {\rm Combine} \\ 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 12-15 \\ 16-17 \\ 11-14 \\ 3-6 \\ 5-9 \\ 1-4 \end{array}$	$= -0$ $\frac{\gamma_m}{1.00}$ 1.00 1.00 1.00 1.00 0.99 0.97 0.95 0.89 0.93 0.80	$\begin{array}{c} \hline .25) \\ \hline R_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.00 \\ 1.25 \\ 1.25 \\ 1.25 \\ \end{array}$
Stage 1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{c} & \\ \hline Combine \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 12-15 \\ 5-9 \\ 16-17 \\ 11-14 \\ 3-6 \\ 1-4 \\ 3-5 \end{array}$	$\begin{array}{c} \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.93 \\ 0.80 \\ 0.73 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	$\begin{array}{c} \text{Combine} \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 5-9 \\ 12-13 \\ 12-15 \\ 1-2 \\ 5-6 \\ 16-17 \\ 11-14 \\ 1-4 \\ 1-5 \end{array}$	$\begin{array}{c} \hline CE \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.91 \\ 0.92 \\ 0.91 \\ 0.92 \\ 0.87 \\ 0.88 \\ 0.89 \\ 0.80 \\ 0.37 \\ \end{array}$	$\begin{array}{c} R_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 0.35 \\ 1.00 \\ -0.32 \\ 1.00 \\ 0.48 \\ 1.00 \\ 1.00 \\ 0.50 \\ 0.01 \end{array}$		$\begin{array}{c} & \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.97 \\ 0.92 \\ 0.95 \\ 0.89 \\ 0.93 \\ 0.80 \\ 0.73 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.33 \\ 1.00 \\ 1.50 \\ 1.50 \\ 1.33 \end{array}$	FX (β) Combine 5-8 9-10 4-7 12-13 1-2 12-15 16-17 11-14 3-6 5-9 1-4 3-5	$= -0$ $\frac{\gamma_m}{1.00}$ 1.00 1.00 1.00 1.00 0.99 0.97 0.95 0.89 0.93 0.80 0.73	$\begin{array}{c} \hline .25) \\ \hline R_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.00 \\ 1.25 \\ 1.25 \\ 1.25 \\ 1.25 \end{array}$
Stage 1 2 3 4 5 6 7 8 9 10 11 12 13	$\begin{array}{c} & \\ \hline Combine \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 12-15 \\ 5-9 \\ 16-17 \\ 11-14 \\ 3-6 \\ 1-4 \\ 3-5 \\ 11-12 \end{array}$	$\begin{array}{c} \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.93 \\ 0.80 \\ 0.73 \\ 0.72 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	$\begin{array}{c} \text{Combine} \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 5-9 \\ 12-13 \\ 12-15 \\ 1-2 \\ 5-6 \\ 16-17 \\ 11-14 \\ 1-4 \\ 1-5 \\ 1-3 \end{array}$	$\begin{array}{c} \mathbb{CE} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.91 \\ 0.92 \\ 0.91 \\ 0.92 \\ 0.87 \\ 0.88 \\ 0.89 \\ 0.80 \\ 0.37 \\ 0.59 \end{array}$	$\begin{array}{c} R_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 0.35 \\ 1.00 \\ -0.32 \\ 1.00 \\ 0.48 \\ 1.00 \\ 1.00 \\ 0.50 \\ 0.01 \\ 0.04 \end{array}$		$\begin{array}{c} & \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.97 \\ 0.92 \\ 0.95 \\ 0.89 \\ 0.93 \\ 0.80 \\ 0.73 \\ 0.72 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.33 \\ 1.00 \\ 1.50 \\ 1.50 \\ 1.33 \\ 1.36 \end{array}$	$\begin{array}{c} {\rm FX} \ (\beta \\ {\rm Combine} \\ 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 12-15 \\ 16-17 \\ 11-14 \\ 3-6 \\ 5-9 \\ 1-4 \\ 3-5 \\ 12-16 \end{array}$	$\begin{array}{l} = -0 \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.97 \\ 0.95 \\ 0.89 \\ 0.93 \\ 0.80 \\ 0.73 \\ 0.66 \end{array}$	$\begin{array}{c} \hline .25) \\ \hline R_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.00 \\ 1.25$
Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 14	$\begin{array}{c} & \\ \hline Combine \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 12-15 \\ 5-9 \\ 16-17 \\ 11-14 \\ 3-6 \\ 1-4 \\ 3-5 \\ 11-12 \\ 11-16 \end{array}$	$\begin{array}{c} \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.93 \\ 0.80 \\ 0.73 \\ 0.72 \\ 0.71 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.81 \end{array}$	$\begin{array}{c} \text{Combine} \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 5-9 \\ 12-13 \\ 12-15 \\ 1-2 \\ 5-6 \\ 16-17 \\ 11-14 \\ 1-4 \\ 1-5 \\ 1-3 \\ 11-12 \end{array}$	$\begin{array}{c} \mathbb{CE} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.91 \\ 0.92 \\ 0.91 \\ 0.92 \\ 0.87 \\ 0.88 \\ 0.80 \\ 0.37 \\ 0.59 \\ 0.74 \end{array}$	$\begin{array}{c} R_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 0.35 \\ 1.00 \\ -0.32 \\ 1.00 \\ 0.48 \\ 1.00 \\ 1.00 \\ 0.50 \\ 0.01 \\ 0.04 \\ 0.33 \end{array}$	$\begin{tabular}{ c c c c c } \hline W \\ \hline Combine \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 16-17 \\ 11-14 \\ 12-15 \\ 3-6 \\ 5-9 \\ 1-4 \\ 3-5 \\ 11-12 \\ 11-16 \end{tabular}$	$\begin{array}{c} & \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.97 \\ 0.92 \\ 0.95 \\ 0.89 \\ 0.93 \\ 0.80 \\ 0.73 \\ 0.72 \\ 0.71 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.33 \\ 1.00 \\ 1.50 \\ 1.50 \\ 1.33 \\ 1.36 \\ 1.16 \end{array}$	FX (β) Combine 5-8 9-10 4-7 12-13 1-2 12-15 16-17 11-14 3-6 5-9 1-4 3-5 12-16 11-12	$\begin{array}{l} = -0 \\ \frac{\gamma_m}{1.00} \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.97 \\ 0.95 \\ 0.89 \\ 0.93 \\ 0.80 \\ 0.73 \\ 0.66 \\ 0.71 \end{array}$	$\begin{array}{c} .25)\\ \hline R_m\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.25\\ 1.00\\ 1.00\\ 1.25$
Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{c} & \\ \hline Combine \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 12-15 \\ 5-9 \\ 16-17 \\ 11-14 \\ 3-6 \\ 1-4 \\ 3-5 \\ 11-12 \\ 11-16 \\ 1-3 \end{array}$	$\begin{array}{c} \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.93 \\ 0.80 \\ 0.73 \\ 0.71 \\ 0.86 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.81 \\ 0.91 \end{array}$	$\begin{array}{c} \text{Combine} \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 5-9 \\ 12-13 \\ 12-15 \\ 1-2 \\ 5-6 \\ 16-17 \\ 11-14 \\ 1-4 \\ 1-5 \\ 1-3 \\ 11-12 \\ 11-16 \end{array}$	$\begin{array}{c} \mathbb{CE} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.91 \\ 0.92 \\ 0.91 \\ 0.92 \\ 0.87 \\ 0.88 \\ 0.89 \\ 0.80 \\ 0.37 \\ 0.59 \\ 0.74 \\ 0.86 \end{array}$	$\begin{array}{c} R_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 0.35 \\ 1.00 \\ -0.32 \\ 1.00 \\ 0.48 \\ 1.00 \\ 1.00 \\ 0.50 \\ 0.01 \\ 0.04 \\ 0.33 \\ -0.64 \end{array}$	$\begin{tabular}{ c c c c c } \hline W \\ \hline Combine \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 16-17 \\ 11-14 \\ 12-15 \\ 3-6 \\ 5-9 \\ 1-4 \\ 3-5 \\ 11-12 \\ 11-16 \\ 1-3 \end{tabular}$	$\begin{array}{c} & \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.97 \\ 0.92 \\ 0.95 \\ 0.93 \\ 0.89 \\ 0.93 \\ 0.73 \\ 0.72 \\ 0.71 \\ 0.86 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.33 \\ 1.00 \\ 1.50 \\ 1.50 \\ 1.33 \\ 1.36 \\ 1.16 \\ 1.45 \end{array}$	FX (β Combine 5-8 9-10 4-7 12-13 1-2 12-15 16-17 11-14 3-6 5-9 1-4 3-5 12-16 11-12 1-3	$= -0$ $\frac{\gamma_m}{1.00}$ 1.00 1.00 1.00 1.00 0.99 0.97 0.95 0.89 0.93 0.80 0.73 0.66 0.71 0.86	$\begin{array}{c} .25)\\ \hline R_m\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.25\\ 1.00\\ 1.00\\ 1.00\\ 1.25$
$\begin{tabular}{c} Stage \\ \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \hline TR_2 \end{tabular}$	$\begin{array}{c} & & \\ \hline \text{Combine} \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 12-15 \\ 5-9 \\ 16-17 \\ 11-14 \\ 3-6 \\ 1-4 \\ 3-5 \\ 11-12 \\ 11-16 \\ 1-3 \\ \hline 0.9 \end{array}$	$\begin{array}{c} \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.93 \\ 0.73 \\ 0.73 \\ 0.71 \\ 0.86 \\ \hline 981 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.81 \\ 0.91 \end{array}$	$\begin{array}{c} \text{Combine} \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 5-9 \\ 12-13 \\ 12-15 \\ 1-2 \\ 5-6 \\ 16-17 \\ 11-14 \\ 1-4 \\ 1-5 \\ 1-3 \\ 11-12 \\ 11-16 \\ \hline 0. \end{array}$	$\begin{array}{c} \mathbb{CE} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.91 \\ 0.92 \\ 0.91 \\ 0.92 \\ 0.87 \\ 0.88 \\ 0.89 \\ 0.80 \\ 0.37 \\ 0.59 \\ 0.74 \\ 0.86 \\ - \\ 516 \end{array}$	$\begin{array}{c} R_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 0.35 \\ 1.00 \\ -0.32 \\ 1.00 \\ 0.48 \\ 1.00 \\ 1.00 \\ 0.50 \\ 0.01 \\ 0.04 \\ 0.33 \\ -0.64 \end{array}$		$\begin{array}{c} \sqrt{\mathrm{D}} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.97 \\ 0.92 \\ 0.95 \\ 0.89 \\ 0.93 \\ 0.80 \\ 0.73 \\ 0.72 \\ 0.71 \\ 0.86 \\ 176 \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.33 \\ 1.00 \\ 1.50 \\ 1.50 \\ 1.33 \\ 1.36 \\ 1.16 \\ 1.45 \end{array}$	FX (β) Combine 5-8 9-10 4-7 12-13 1-2 12-15 16-17 11-14 3-6 5-9 1-4 3-5 12-16 11-12 1-3	$= -0$ $\frac{\gamma_m}{1.00}$ 1.00 1.00 1.00 0.99 0.97 0.95 0.89 0.93 0.80 0.73 0.66 0.71 0.86 117	$\begin{array}{c} .25)\\ R_m\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.25\\ 1.00\\ 1.00\\ 1.00\\ 1.25\\ $
$\begin{tabular}{c} Stage \\ \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \hline TR_2 \\ \hline TG \\ \end{tabular}$	$\begin{array}{c} & & & \\ \hline Combine \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 12-13 \\ 1-2 \\ 12-15 \\ 5-9 \\ 16-17 \\ 11-14 \\ 3-6 \\ 1-4 \\ 3-5 \\ 11-12 \\ 11-16 \\ 1-3 \\ 0.9 \\ $	$\begin{array}{c} \gamma_m \\ \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.92 \\ 0.93 \\ 0.72 \\ 0.71 \\ 0.86 \\ 0.98 \\ 0.98 \\ 0.90 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.93 \\ 0.72 \\ 0.98$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.81 \\ 0.91 \end{array}$	$\begin{array}{c} \text{Combine} \\ \hline 5-8 \\ 9-10 \\ 4-7 \\ 5-9 \\ 12-13 \\ 12-15 \\ 1-2 \\ 5-6 \\ 16-17 \\ 11-14 \\ 1-4 \\ 1-5 \\ 1-3 \\ 11-12 \\ 11-16 \\ \hline 0. \\ 0. \\ \hline \end{array}$	$\begin{array}{c} \mathbb{CE} \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.91 \\ 0.92 \\ 0.91 \\ 0.92 \\ 0.87 \\ 0.88 \\ 0.89 \\ 0.80 \\ 0.37 \\ 0.59 \\ 0.74 \\ 0.86 \\ \hline 516 \\ 854 \\ \end{array}$	$\begin{array}{c} R_m \\ \hline 1.00 \\ 1.00 \\ 1.00 \\ 0.35 \\ 1.00 \\ -0.32 \\ 1.00 \\ 0.48 \\ 1.00 \\ 1.00 \\ 0.50 \\ 0.01 \\ 0.04 \\ 0.33 \\ -0.64 \end{array}$		$\begin{array}{c} & \gamma_m \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.97 \\ 0.92 \\ 0.95 \\ 0.89 \\ 0.93 \\ 0.80 \\ 0.73 \\ 0.72 \\ 0.71 \\ 0.86 \\ \hline 176 \\ 905 \\ \end{array}$	$\begin{array}{c} R_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.33 \\ 1.00 \\ 1.50 \\ 1.50 \\ 1.33 \\ 1.36 \\ 1.16 \\ 1.45 \end{array}$	FX (β) Combine 5-8 9-10 4-7 12-13 1-2 12-15 16-17 11-14 3-6 5-9 1-4 3-5 12-16 11-12 1-3	$\begin{array}{c} = -0 \\ \hline \gamma_m \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.99 \\ 0.97 \\ 0.95 \\ 0.89 \\ 0.93 \\ 0.80 \\ 0.73 \\ 0.66 \\ 0.71 \\ 0.86 \\ 117 \\ 906 \end{array}$	$\begin{array}{c} .25)\\ R_m\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.25\\ 1.00\\ 1.00\\ 1.25\\ $

Table 3: Distortion ratios and total distortion ratios of 8 AHCAs

Note: $TG = (\sum_{m=1}^{15} \gamma_m)/15$

admissible	SL	CL	WA	MD	GA	CE	WD	FX
1/2 conserving	No	No	Yes*	No	Yes^*	No	No	No
1/2 dilating	No	Yes^*	No	No	No	No	No	No
1/2 contracting	Yes^*	No	No	No	No	No	No	No
1/3 conserving	No	No	Yes*	No	Yes	No	No	No
1/3 dilating	No	Yes^*	No	No	No	No	No	No
1/3 contracting	Yes^*	No	No	No	No	No	No	No
1/4 conserving	No	No	Yes*	No	Yes	No	No	No
1/4 dilating	No	Yes^*	No	No	No	No	No	No
1/4 contracting	Yes^*	No	No	Yes	No	Yes	No	No
1/2 total conserving	No	No	Yes^*	No	Yes*	Yes	No	No
1/2 total dilating	No	Yes^*	No	No	No	No	Yes	Yes
1/2 total contracting	Yes^*	No	No	Yes	No	No	No	No
1/3 total conserving	No	No	Yes*	No	Yes	No	No	No
1/3 total dilating	No	Yes^*	No	No	No	No	Yes	Yes
1/3 total contracting	Yes^*	No	No	Yes	No	Yes	No	No
1/4 total conserving	No	No	Yes*	No	Yes	No	No	No
1/4 total dilating	No	Yes^*	No	No	No	No	Yes	Yes
1/4 total contracting	Yes*	No	No	Yes	No	Yes	No	No

Table 4: Space distortion admissibilities of 8 AHCAs: Determined after analysis

* Theoretically determined

admissible	SL	CL	WA	MD	GA	CE	WD	$\mathbf{F}\mathbf{X}$
1 monotone	No	Yes*	Yes*	No	No	No	Yes	Yes
0 monotone	Yes*	Yes^*	Yes^*	No	Yes^*	No	Yes^*	Yes^*
-1 monotone	Yes^*	Yes^*	Yes^*	Yes	Yes^*	Yes	Yes^*	Yes^*
1 total monotone	No	Yes*	Yes*	No	No	No	Yes	Yes
0 total monotone	Yes^*	Yes^*	Yes^*	No	Yes^*	Yes	Yes^*	Yes^*
-1 total monotone	Yes^*	Yes^*	Yes^*	Yes	Yes^*	Yes	Yes^*	Yes^*

Table 5: $\delta\text{-monotone}$ admissibilities of 8 AHCAs: Determined after analysis

* Theoretically determined

- [6] Chen, Z. & Van Ness, J. (1996). Space-conserving agglomerative algorithms. *Journal of Classification*, 13, 157–168.
- [7] DuBien, J. L & Warde, W. D. (1979). A mathematical comparison of the members of an infinite family of agglomerative clustering algorithms, *Canadian Journal of Statistics*, 7, 29–38.
- [8] Fisher, L. & Van Ness, J. (1971). Admissible cluster procedures. Biometrika, 58, 91–104.
- [9] Goodman, L. A. & Kruskal, W. H. (1954). Measures of association for cross-classifications, Journal of the American Statistical Association, 49, 732–764.
- [10] Jambu, M. (1978). Classification Automatique pour l'Analyse des Données, North-Holland, Amsterdam.
- [11] Lance, G. N. & Williams, W. T. (1967). A general theory of classificatory sorting strategies, 1. hierarchical systems. *The Computer Journal*, 9, 373–380.
- [12] Mirkin, B. (1996). Mathematical Classification and Clustering. London: Kluwer Academic Publishers.
- [13] Sokal, R. R. & Rohlf, F. J. (1962). The comparison of dendrograms by objective methods. Taxon, 11, 33–40.
- [14] Van Ness, J. (1973). Admissible cluster procedures II. *Biometrika*, **60**, 422–424.
- [15] Watson, L., Williams, W. T., & Lance, G. N. (1966). Angiosperm taxonomy: A comparative study of some novel numerical techniques, *Journal Linnaean Society*, 59, 491–501.
- [16] Williams, W. T., Lambert, J. M., & Lance, G. N. (1966). Multivariate methods in plant ecology, V. Journal Ecology, 54, 427–445.
- [17] Yadohisa, H., Takeuchi, A., & Inada, K. (1999). Developing criteria for measuring space distortion in combinatorial cluster analysis and methods for controlling the distortion. *Journal of Classification*, 16, 45–62.

Appendix

Proof of Theorem 3.1:

Here we provide notation to help prove the theorems. Note that $d_{IK} \neq d_{JK}$ and $d_{MK} = (d_{IK} + d_{JK})/2$ will be assumed in the theorems. From these assumptions, we denote

$$d_{IK} = d_{IJ} + \Delta$$
 and $d_{JK} = d_{IK} + \Delta'$

where Δ and Δ' are positive numbers that are determined at each combining stage. We denote

$$A = \varepsilon (d_{JK} - d_{IK}) - (d_{TK}^m - d_{MK}), \quad B = \varepsilon (d_{JK} - d_{IK}) - (d_{MK} - d_{TK}^m)$$

Lemma A: If A > 0 and B > 0 hold for all m, the clustering algorithm is ε -space conserving admissible.

Proof. We assume that A > 0 and B > 0 hold for all m, then,

$$\varepsilon(d_{JK} - d_{IK}) > d_{TK}^m - d_{MK} \tag{A1}$$

and

$$\varepsilon(d_{JK} - d_{IK}) > d_{MK} - d_{TK}^m \tag{A2}$$

are satisfied for all m. Due to the monotonicity of the distortion ratio, if $d_{TK}^m \ge d_{MK}$, then $R_m(d_{TK}^m) \ge R_m(d_{MK})$, and hence,

$$R_m(\varepsilon(d_{JK} - d_{IK})) > R_m(d_{TK}^m - d_{MK})$$
(A3)

and

$$R_m(\varepsilon(d_{JK} - d_{IK})) > R_m(d_{MK} - d_{TK}^m).$$
(A4)

From the definition of the distortion ratio, we obtain

$$R_m(d_{TK}^m + d_{TK}^{m'}) = R_m(d_{TK}^m) + R_m(d_{TK}^{m'}) + \omega,$$
(A5)

$$R_m(kd_{TK}^m) = kR_m(d_{TK}^m) + (k-1)\omega \quad (k \in R),$$
(A6)

and then

$$R_m(d_{TK}^m - d_{TK}^{m'}) = R_m(d_{TK}^m) - R_m(d_{TK}^{m'}) - \omega,$$
(A7)

where

$$\omega = \frac{\kappa d_{IJ} - \eta d_{MK}}{d_{MK} - d_{IJ}}$$

Now, we rewrite $R_m(\varepsilon(d_{JK} - d_{IK}))$, $R_m(d_{TK}^m - d_{MK})$, and $R_m(d_{MK} - d_{TK}^m)$ by (A6) and (A7) as follows;

$$R_m(\varepsilon(d_{JK} - d_{IK})) = \varepsilon(R_m(d_{JK}) - R_m(d_{IK})) - \omega,$$
(A8)

$$R_m(d_{TK}^m - d_{MK}) = R_m(d_{TK}^m) - R_m(d_{MK}) - \omega,$$
(A9)

and

$$R_m(d_{TK}^m - d_{MK}) = R_m(d_{TK}^m) - R_m(d_{MK}) - \omega.$$

Thus, we get

$$\varepsilon(R_m(d_{JK}) - R_m(d_{IK})) > R_m(d_{TK}^m) - R_m(d_{MK})$$

and

$$\varepsilon(R_m(d_{JK}) - R_m(d_{IK})) > R_m(d_{MK}) - R_m(d_{TK}^m)$$

from (A1) and (A2), respectively. Hence, if A > 0 and B > 0 hold for all m, then the clustering algorithm is ε -space conserving admissible.

First, we consider the case where the parameters of an algorithm satisfy conditions (i), (ii), and (iii). Then we get A > 0 and B > 0 from

$$\begin{aligned} A &= \varepsilon (d_{JK} - d_{IK}) - (d_{TK}^m - d_{MK}) \\ &= (-\varepsilon - \alpha_i + \gamma + \frac{1}{2})d_{IK} + (\varepsilon - \alpha_j - \gamma + \frac{1}{2})d_{JK} - \beta d_{IJ} \\ &= (-\alpha_i - \alpha_j + 1 - \beta)d_{IJ} + (-\alpha_i - \alpha_j + 1)\Delta + (\varepsilon - \alpha_j - \gamma + \frac{1}{2})\Delta \theta \\ B &= \varepsilon (d_{JK} - d_{IK}) - (d_{MK} - d_{TK}^m) \\ &= (-\varepsilon + \alpha_i - \gamma - \frac{1}{2})d_{IK} + (\varepsilon + \alpha_j + \gamma - \frac{1}{2})d_{JK} + \beta d_{IJ} \\ &= (\alpha_i + \alpha_j - 1 + \beta)d_{IJ} + (\alpha_i + \alpha_j - 1)\Delta + (\varepsilon + \alpha_j + \gamma - \frac{1}{2})\Delta'. \end{aligned}$$

Therefore, from Lemma A, the algorithm is ε -space conserving admissible.

Conversely, we consider the case where an algorithm is ε -space conserving admissible. First, we assume that (i) and (ii) are satisfied, but (iii) is not. That is,

$$1/2 - \varepsilon < \alpha_j + \gamma < 1/2 + \varepsilon, \alpha_i + \alpha_j = 1, \alpha_i + \alpha_j + \beta > 1$$

or

$$1/2 - \varepsilon < \alpha_j + \gamma < 1/2 + \varepsilon, \alpha_i + \alpha_j = 1, \alpha_i + \alpha_j + \beta < 1$$

holds. For the first case, we assume $d_{TK}^m \ge d_{MK}$ and choose a Δ' small. Since the coefficients of the first and second terms of A are nonpositive and we choose a Δ' small, A < 0. This contradicts the assumption the fact that the algorithm is ε -space conserving admissible. For the second case, we also obtain a contradiction in the same manner when we assume $d_{TK}^m < d_{MK}$ and choose a Δ' small.

In the same way, we can obtain contradictions for cases when at least one of the conditions (i), (ii), and (iii) does not hold. In Table 6, we summarize all possible cases that result in a contradiction. Therefore, if an algorithm is ε -space conserving admissible then conditions (i), (ii), and (iii) hold by reduction to absurdity.

Theorem 3.2, 3.3, and 4.1 are proved similarly.

T 11 C	0	1. 1	C	•	1 • • 1 1
Table 6	Cases of	contradiction	for <i>E</i> -space	conserving	admissible
rabic 0.	Cases or	commancement	IOI C Space	COMBCI VIIIS	administration

(i) or not (i)	(ii) or not (ii)	(iii) or not (iii)	case	contradiction
$1/2 - \varepsilon < c_1 < 1/2 + \varepsilon$	$c_2 = 1$	$c_3 > 1$	$d_{TK}^m \ge d_{MK}, \Delta' \to 0$	A < 0
$1/2 - \varepsilon < c_1 < 1/2 + \varepsilon$	$c_2 = 1$	$c_3 < 1$	$d_{TK}^{m} < d_{MK}, \Delta' \rightarrow 0$	B < 0
$1/2 - \varepsilon < c_1 < 1/2 + \varepsilon$	$c_2 > 1$	$c_3 = 1$	$d_{TK}^{m} \ge d_{MK}, \Delta' \to 0$	A < 0
$1/2 - \varepsilon < c_1 < 1/2 + \varepsilon$	$c_2 < 1$	$c_3 = 1$	$d_{TK}^{m} < d_{MK}, \Delta' \rightarrow 0$	B < 0
$1/2 - \varepsilon < c_1 < 1/2 + \varepsilon$	$c_2 > 1$	$c_3 > 1$	$d_{TK}^{m'} \ge d_{MK}, \Delta' \to 0$	A < 0
$1/2 - \varepsilon < c_1 < 1/2 + \varepsilon$	$c_2 > 1$	$c_3 < 1$	$d_{TK}^m \langle d_{MK}, \Delta \to 0, \Delta' \to 0$	B < 0
$1/2 - \varepsilon < c_1 < 1/2 + \varepsilon$	$c_2 < 1$	$c_3 > 1$	$d_{TK}^{\tilde{m}'} \ge d_{MK}, \Delta \to 0, \Delta' \to 0$	A < 0
$1/2 - \varepsilon < c_1 < 1/2 + \varepsilon$	$c_2 < 1$	$c_3 < 1$	$d_{TK}^m < d_{MK}, \Delta' \rightarrow 0$	B < 0
$1/2 + \varepsilon \leq c_1 \text{ or } c_1 \leq 1/2 - \varepsilon$	$c_2 = 1$	$c_3 = 1$	$d_{TK}^m < d_{MK}$	B < 0
$1/2 + \varepsilon \leq c_1 \text{ or } c_1 \leq 1/2 - \varepsilon$	$c_2 = 1$	$c_3 > 1$	$d_{TK}^{m} \ge d_{MK}$	A < 0
$1/2 + \varepsilon \le c_1 \text{ or } c_1 \le 1/2 - \varepsilon$	$c_2 = 1$	$c_3 < 1$	$d_{TK}^m < d_{MK}$	B < 0
$1/2 + \varepsilon \le c_1 \text{ or } c_1 \le 1/2 - \varepsilon$	$c_2 > 1$	$c_3 = 1$	$d_{TK}^m \ge d_{MK}$	A < 0
$1/2 + \varepsilon \leq c_1 \text{ or } c_1 \leq 1/2 - \varepsilon$	$c_2 < 1$	$c_3 = 1$	$d_{TK}^m < d_{MK}$	B < 0
$1/2 + \varepsilon \leq c_1 \text{ or } c_1 \leq 1/2 - \varepsilon$	$c_2 > 1$	$c_3 > 1$	$d_{TK}^m \ge d_{MK}$	A < 0
$1/2 + \varepsilon \leq c_1$ or $c_1 \leq 1/2 - \varepsilon$	$c_2 > 1$	$c_3 < 1$	$d_{TK}^m < d_{MK}, \Delta \rightarrow 0$	B < 0
$1/2 + \varepsilon \leq c_1 \text{ or } c_1 \leq 1/2 - \varepsilon$	$c_2 < 1$	$c_3 > 1$	$d_{TK}^{m^{-1}} \ge d_{MK}, \Delta \rightarrow 0$	A < 0
$1/2 + \varepsilon < c_1 \text{ or } c_1 < 1/2 - \varepsilon$	$c_2 < 1$	$c_3 < 1$	$d_{TK}^m < d_{MK}$	B < 0

Note: $c_1 = \alpha_j + \gamma, c_2 = \alpha_i + \alpha_j, c_3 = \alpha_i + \alpha_j + \beta; \Delta \to 0$ stands for choosing small Δ