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Abstract

This paper discusses the admissibility of agglomerative hierarchical clustering algorithms with respect
to space distortion and monotonicity, as defined by Yadohisa et al. and Batagelj, respectively. Several
admissibilities and their properties are given for selecting a clustering algorithm. Necessary and sufficient
conditions for an updating formula, as introduced by Lance and Williams, are provided for the proposed
admissibility criteria. A detailed explanation of the admissibility of eight popular algorithms is also
given.

Keywords and phrases: admissibility, AHCA (agglomerative hierarchical clustering algorithm), mono-
tonicity, space distortion.

1. Introduction

Agglomerative hierarchical clustering algorithms (AHCAs) were carefully studied by Lance and Williams
(1967). If cluster I and J fuse to form a new cluster I ∪ J , then Lance and Williams propose a dissimilarity
between cluster I ∪ J and another cluster K could be calculated by a recursive updating formula:

d(IJ)K = αidIK + αjdJK + βdIJ + γ |dIK − dJK | (1.1)

where parameters αi, αj , β, and γ are either some constants or functions of the number of the object belonging
to clusters I, J , and K; dIJ , dIK , and dJK are the dissimilarities between clusters I and J , I and K, and
J and K, respectively. The parameters characterize and determine the clustering algorithm. The myriad
of available AHCAs can be defined by determining the parameters. This paper addresses the problem of
choosing a clustering algorithm from available agglomerative algorithms. Many researchers have attacked
this problem using the concept of admissibility. Fisher and Van Ness (1971) first introduced the concept
of admissibility for clustering algorithms. They defined nine types of clustering algorithms admissibility
and indicated the relationships between these particular admissibilities and some popular AHCAs. Space
distortion was defined by Lance and Williams (1967) and this concept was converted into “Space-distorting
admissibility” by Chan and Van Ness (1993, 1994b, and 1996). Space distortion is a well-known phenomenon
in clustering and this is discussed by many researchers (e.g. Williams et al. (1966), Watson et al. (1966)).
Mirkin (1996) proposed an admissibility with respect to the monotonicity of the updating formula. Mirkin
(1996; p 249) discussed the characterization of monotone admissibility which gives the resulting cluster
hierarchy a proper graphical representation. This property is usually considered as a necessary condition
for an AHCA to be a good one. Mirkin also provided the relationship between monotone admissibility and
the parameters in (1.1). In the papers cited above, space distortion and monotonicity depended only on the
clustering algorithm that was used. On the other hand, we belive space distortion and monotonicity should
be defined depending on both the algorithm selected and the data to be analyzed. Yadohisa et al. (1999)
propose space distortion criteria, that they call the “distortion ratio at stage m” and the “total distortion
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ratio”, which are defined depending on both the algorithm selected and the data to be analyzed. Using these
criteria, they also proposed several new space distortion admissibilities.

In this paper, we give the necessary and sufficient conditions between Yadohisa et al.’s admissibilities
and the parameters in (1.1). In addition, we propose new admissibilities with respect to monotonicity, which
are defined by Batagelj (1981). We also provide the necessary and sufficient conditions between the these
admissibilities and the parameters in (1.1). By using these conditions, we may choose a proper clustering
algorithm, in the sense of distortion and monotonicity.

We now define the notations used throughout this paper. Cluster I at stage m (1 ≤ m < N) is denoted
as CI(m). We denote the dissimilarity between objects p and q by dpq, the dissimilarity between CI(m) and
CJ (m) by dIJ , and the number of objects to be clustered by N . The notation p ∈ CI(m) indicates that
object p belongs to CI(m); the number of objects belonging to CI(m) is denoted by nI .

When CT (m) and CK(m) are combined at stage m and CT (m) is not a singleton, it is assumed that
CT (m) was formed from CI(t) and CJ(t), which were combined at stage t (1 < t < m), and that CK(m) is
a singleton or was formed from CI′(t′) and CJ′(t′), which were combined at stage t′ (1 ≤ t′ < t). Hereafter,
we assume this relationship between the two combined clusters, without loss of generality, and we assume
dIJ < dIK ≤ dJK .

We abbreviate the single linkage algorithm as SL, the complete linkage algorithm as CL, the weighted
average algorithm (WPGMA) as WA, the median algorithm (WPGMC) as MD, the group average algorithm
(UPGMA) as GA, the centroid algorithm (UPGMC) as CE, the minimum variance algorithm (Ward’s
method) as WD, and the flexible algorithm with β = −0.25 as FX.

2. Space Distortion Ratio

Yadohisa et al. (1999) defined several new space distortion criteria, not just for the clustering algorithm
but for each combination of objects. Each criterion is represented by a numerical value that allows its use
in selecting a particular clustering algorithm in applications. In this section, we introduce the combined
distance at stage m and the distortion measures proposed by Yadohisa et al. (1999).

Definition 2.1: The distance between CT (m) and CK(m), which combine at stage m (1 ≤ m ≤ N − 1), is
defined by the formula:

dm
TK =

{
dpq (p ∈ CT (m), q ∈ CK(m)), (nT = nK = 1),
αidIK + αjdJK + βdIJ + γ|dIK − dJK |, (otherwise), (2.1)

and is referred to as the “combined distance at stage m”, where αi, αj , β, and γ are either constants or
functions in (1.1). We should note that clusters CT (m) and CK(m) have been uniquely determined by using
(1.1) and assumptions in Section 1 before we calculate the dm

TK . Hereafter a clustering algorithm for which
a combined distance can be defined by (2.1) is called an AHCA.

Yadohisa et al. (1999) proposed two criteria for space distortion. The two criteria measure space distortion
at each stage and in the entire clustering, respectively. Additionally, these criteria are defined depending on
both the algorithm selected and the data to be analyzed.

Definition 2.2: If CT (m) and CK(m) combine at stage m (1 ≤ m ≤ N − 1), then the distortion ratio at
stage m is defined by:

Rm(dm
TK) =

{
κ, (nT = nK = 1),
κ(dm

T K−dIJ )−η(dm
TK−dMK)

dMK−dIJ
, (otherwise),

(2.2)

where dMK = (dIK + dJK)/2 and will be called the “standard distance”. The values κ and η (κ > η)
are different predetermined real constants or functions of nI , nJ , and nK . The distortion ratio measures
the difference between the combined distance and the standard distance. If the combined distance equals
the standard distance, then the distortion ratio is κ. If the combined distance coincides with dIJ , which
is the boundary of a monotone algorithm (see Section 4), then the distortion ratio is η. Both κ and η are
determined by the judgment of the data analyst. Large values of |κ−η| make the ratio sensitive to differences
between the combined distance and the standard distance. Yadohisa et al. (1999) recommend that κ = 1
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and η = 0. Then, we can judge the monotonicity from the magnitude positivity of (2.2) and can understand
the distortion by comparing (2.2) with unity.

Another criterion for representing the total distortion in a whole clustering can be defined as follows.

Definition 2.3: Total distortion ratio is defined as:

TRL =
1

N − L

N−L∑
m=1

Rm(dm
TK), (2.3)

where L is a number of clusters selected.
Here we note that the total distortion ratio means the overall average of the distortion ratio in the

clustering processes.

3. Space Distortion Admissibility

Yadohisa et al. (1999) proposed several new space distortions and admissibilities for clustering algorithms.
In this section, we give the relationships between these admissibilities and the parameters in (1.1).

3.1 ε-Space Distortion Admissible

Here, we give a brief summary of ε-space distortion admissible proposed by Yadohisa et al. (1999). This
approach is motivated by decision theory and has been studied by many researchers (Fisher and Van Ness,
1971; Van Ness, 1973; Chen and Van Ness, 1994a, 1994b). The admissibilities defined in this paper contain
those considered by Chen and Van Ness (1993, 1994b) as a special case.

Definition 3.1 (Yadohisa et al., 1999): For a given ε > 0 and a standard distance dMK , a clustering
algorithm is called ε-conserving admissible if the inequality:

|Rm(dm
TK) −Rm(dMK )| < ε(Rm(dJK) −Rm(dIK)) (3.1)

holds for all m, except when two clusters are singletons that combine, or when dIK = dJK .

Definition 3.2 (Yadohisa et al., 1999): For a given ε > 0 and a standard distance dMK , a clustering
algorithm is called ε-dilating admissible if the inequality:

Rm(dm
TK) −Rm(dMK ) ≥ ε(Rm(dJK) −Rm(dIK)) (3.2)

holds for all m, except when two clusters are singletons that combine, or when dIK = dJK .

Definition 3.3 (Yadohisa et al., 1999): For a given ε > 0 and a standard distance dMK , a clustering
algorithm is called ε-contracting admissible if the inequality:

Rm(dMK) −Rm(dm
TK) ≥ ε(Rm(dJK) −Rm(dIK)) (3.3)

holds for all m, except when two clusters are singletons that combine, or when dIK = dJK .
If dMK = (dIK + dJK)/2 and ε = 1/2, then ε-conserving admissibility, ε-dilating admissibility, and

ε-contracting admissibility conform to the space-conserving admissibility proposed by Chen and Van Ness
(1993), and to the space-dilating admissibility and the space-contracting admissibility proposed by Chen and
Van Ness (1994b), respectively.

As well as these, Yadohisa et al. (1999) proposed further admissibilities in a whole clustering by using
the total distortion ratio; the total distortion admissibilities of the space, ε-total space conserving admissible,
ε-total space dilating admissible, and ε-total space contracting admissible. For details we refer to Yadohisa
et al. (1999).
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3.2 The Relationship between ε-Space Distortion Admissibility and Parameters
of the Updating Formula

We give three theorems with respect to the relationship between ε-space distortion admissibility and the
parameters in (1.1).

Theorem 3.1: When dMK = (dIK + dJK)/2, an AHCA is ε-space conserving admissible for any dataset if
and only if the parameters in (1.1) satisfy the following three conditions:

(i)
1
2
− ε < αj + γ <

1
2

+ ε, (ii) αi + αj = 1, and (iii) αi + αj + β = 1. (3.4)

Theorem 3.2: When dMK = (dIK +dJK)/2, an AHCA is ε-space dilating admissible for any dataset if and
only if the parameters in (1.1) satisfy the following three conditions:

(i) αj + γ ≥ 1
2

+ ε, (ii) αi + αj ≥ 1, and (iii) αi + αj + β ≥ 1. (3.5)

Theorem 3.3: When dMK = (dIK + dJK)/2, an AHCA is ε-space contracting admissible for any dataset if
and only if the parameters in (1.1) satisfy the following three conditions:

(i) αj + γ ≤ 1
2
− ε, (ii) αi + αj ≤ 1, and (iii) αi + αj + β ≤ 1. (3.6)

When the parameters in (1.1) do not depend on the number of clusters at the combined stage, we can
determine whether the algorithm is ε-space distortion admissible before analyzing the data.

4. Monotone Admissibility

Here, we propose new criteria with respect to “monotonicity”, first discussed by Batagelj (1981). Batagelj’s
definition with respect to the monotonicity of the combined distance is as follows.

Definition 4.1 (Batagelj, 1981): The AHCA is monotone if

d(IJ)K ≥ dIJ

where d(IJ)K is the updating formula when CI∪J(m) and CK(m) combine.
We transcribe Batagelj’s definition using the distortion ratio as the following equation:

Rm(dm
TK) ≥ Rm(dIJ ) = η.

We can measure the degree of monotonicity of the combined distance at stage m by using the difference
between Rm(dm

TK) and η. Similarly, we can define monotonicity in a whole clustering using the total distortion
ratio. In this section, we propose some concepts of monotonicity including Batagelj’s monotonicity as a
special case. Using these concepts, we define new admissibilities and also give the relationship between these
admissibilities and Lance and Williams’s updating formula.

4.1 δ-Monotone Admissible

We define new criteria for the monotonicity of the combined distance by using the distortion ratio and the
total distortion ratio. Additionally, we propose a new admissibility for the monotonicity of a clustering
algorithm.

Definition 4.2: For a given δ(∈ R) and a standard distance dMK , the combined distance is δ-monotone at
stage m if the inequality:

Rm(dIJ ) + δ(Rm(dMK) −Rm(dIJ )) ≤ Rm(dm
TK) (4.1)
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holds, except when two clusters are singletons that combine, or when dIK = dJK .
The δ-monotonicity of the combined distance is judged in each merge stage by using the distortion ratio.

Another criterion for representing δ-monotonicity in the entire clustering can be defined as follows.

Definition 4.3: For a given δ(∈ R) and a standard distance dMK , the combined distance is δ-total monotone
in the entire clustering if the inequality:

η + δ(κ− η) ≤ TRL (4.2)

holds, where L is the number of clusters selected.
From these definitions, we can define the admissibility of a clustering algorithm with respect to the

monotonicity of the combined distance. Here we also note that the “total” means the “overall average” in
the same manner as the total distortion ratio.

Definition 4.4: For a given δ(∈ R) and a standard distance dMK if the inequality:

Rm(dIJ ) + δ(Rm(dMK) −Rm(dIJ )) ≤ Rm(dm
TK) (4.3)

holds for all m, except when two clusters are singletons that combine or when dIK = dJK , then the clustering
algorithm is called δ-monotone admissible.

Definition 4.5: For a given δ(∈ R) and a standard distance dMK if the inequality:

η + δ(κ− η) ≤ TRL (4.4)

holds, where L is the number of clusters selected, then the clustering algorithm is called δ-total monotone
admissible.

These admissibilities include as a special case the monotone admissibility proposed by Mirkin (1996). The
difference between two combined distances in neighboring stages is dm

TK − dm−1
T ′K′ , for which the δ-monotone

admissible clustering algorithm with large δ is relatively large when compared to those with a small δ. A
large value of δ may indicate the robustness of the result of a clustering. That is, a δ-monotone admissible
algorithm with a relatively large δ does not modify the result of the clustering, in spite of a small changes
to the data.

Here, we describe some propositions for δ-monotone and δ-total monotone admissible.

Proposition 4.1: For a given δ ≤ 1, if an AHCA is δ-monotone admissible, then the algorithm is δ-total
monotone admissible.

Proposition 4.2: For a given δ > 1 and τ ≤ 1, if an AHCA is δ-monotone admissible, then the algorithm
is τ -total monotone admissible.

Proposition 4.3: For a given δ < δ ′, if an AHCA is δ′-monotone admissible, then the algorithm is δ-
monotone admissible. Analogously, this proposition is satisfied for δ-total monotone admissible algorithm.

Proposition 4.4: δ-monotone admissible with δ = 0 conforms to monotone admissible as proposed by
Mirkin (1996).

Proposition 4.5: When dMK = (dIK + dJK)/2, FX is δ-monotone admissible if the parameter β of the
algorithm satisfies δ ≤ 1−β and β < 1. The algorithm is δ-total monotone admissible if β satisfies δ ≤ 1−β
and 0 ≤ β < 1.

4.2 The Relationship between δ-Monotone Admissibility and the Parameters
of the Updating Formula

We present a theorem with respect to the relationship between δ-monotone admissibility and the parameters
in (1.1).

Theorem 4.1: When dMK = (dIK + dJK)/2, an AHCA is δ-monotone admissible for any dataset if and
only if the parameters in (1.1) satisfy the following three conditions:

(i) αj + γ ≥ 1
2
δ, (ii) αi + αj ≥ δ, and (iii) αi + αj + β ≥ 1. (4.5)
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5. Data Dependence of the Admissibility of Clustering Algorithms

The concepts of space distortion and monotonicity were defined based on the updating formula in DuBien
and Warde (1979) and Batagelj (1981), respectively. These concepts did not depend the data analyzed.
On the other hand, Yadohisa, et al. (1999) pointed out that these concepts should be dependent on the
data, since the phenomena of space distortion and monotonicity, which were discussed in Williams, et al.
(1966) and Watson, et al. (1966), strongly depended on the data, even if only a single algorithm were
used. Admissibilities proposed in this paper are based on extended space distortion (ε-space distortion)
and extended monotonicity (δ-monotone), which are defined as dependent on the data. In other words,
these admissibilities inevitably depend on the data analyzed and can not be determined only by using an
algorithm.

6. Numerical Example

In this section, we analyze an artificial dataset in two-dimensional space using the algorithms listed in Table
1. This data, forming a so-called “touching cluster”, is typical of the “chain” cluster described by Williams
et al. (1966). The coordinates are listed in Table 2 and plotted in Figure 1.

Table 1: List of AHCAs
Algorithm* αi αj β γ

SL 1/2 1/2 0 −1/2
CL 1/2 1/2 0 1/2
GA nI/(nI + nJ ) nJ/(nI + nJ ) 0 0
WA 1/2 1/2 0 0
CE nI/(nI + nJ ) nJ/(nI + nJ ) −nInJ/(nI + nJ )2 0
MD 1/2 1/2 −1/4 0
WD (nI + nK)/(nI + nJ + nK) (nJ + nK)/(nI + nJ + nK) −nK/(nI + nJ + nK) 0
FX (1 − β)/2 (1 − β)/2 β < 1 0

*Reference for each method can be found in Cormack (1971).

Table 2: Coordinates of 17 objects in two-dimensional space

No Coordinates No Coordinates No Coordinates
1 3.999, 10.007 7 7.499, 7.502 13 13.502, 11.003
2 5.005, 8.502 8 7.800, 10.500 14 14.002, 8.000
3 4.999, 12.000 9 8.997, 11.000 15 13.997, 12.997
4 6.003, 7.002 10 9.999, 10.000 16 16.004, 9.998
5 6.998, 9.793 11 11.997, 9.002 17 17.004, 11.998
6 7.302, 12.502 12 12.005, 12.003

The distortion ratio and the total distortion ratio are both calculated with κ = 1, η = 0, and dMK =
(dIK + dJK)/2 in Table 3. The γm statistic at stage m developed by Goodman and Kruskal (1954) is also
calculated. The notation 11 – 12 at stage 12 of CL in Table 3 means that cluster 11, which contains object
14, and cluster 12, which contains objects 13 and 15, are combined at this stage. TR2, TG, and C. corr. in
Table 3 denote the total distortion ratio with L = 2, the average of the Goodman and Kruskal’s statistic
(1954), and the cophenetic correlation of Sokal and Rohlf (1962), respectively. As L is the number of clusters
selected, we consider that the TRL represents a distortion of the whole clustering. In table 3, we calculated
TR2 as an example.

By comparing the value of the distortion ratio with zero, we can ascertain whether the algorithm is
monotone. For a more accurate assessment, we should use the concepts of ε-space distortion and the δ-
monotonicity of the combined distance at a given stage. We can use the same approach to assess the total
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Figure 1: Scatter diagram of two-dimensional space

distortion ratio. Since we use the combined distance of WA as the standard distance, the ratio at all stages
and the total distortion ratio by WA are equal to unity in Table 3.

The ε-space distortion admissibilities for the cases of ε = 1/2, 1/3, and 1/4 and the δ-monotone admis-
sibilities for the cases of δ = 1, 0 and −1 are indicated in Tables 4 and 5, respectively. Generally, from the
definitions, ε-space distortion and δ-monotone admissibilities are sensitive concepts in contrast to the total
admissibilities (see, Table 4 and 5). By changing the value of ε and δ we can select an algorithm which
satisfies ε-(total) space distortion admissibilities and/or δ-(total) monotone admissibility according to need.

7. Concluding Remarks

Many research fields, including psychology and sociology, use AHCAs. However, we belive that the charac-
teristics of these AHCAs with respect to space distortion and monotonicity have not yet been sufficiently
investigated. In this paper, we provide the necessary and sufficient conditions of the admissibilities proposed
by Yadohisa et al. (1999) for Lance and Williams’s updating formula. By comparing the relationship among
the parameters, we can select AHCAs adapted both to the data being analyzed and to the expected space
distortion. Moreover, we extend the concept of monotonicity and provide several theorems concerning the
relationship between the new concepts and the AHCAs. This is useful not only for selecting an algorithm,
but also for assessing the robustness of the result of a clustering from a slight change in the data analyzed.
Knowing the general properties of AHCAs is important as criteria for selecting an algorithm from AHCAs.
The results given here should considerably reduce time and labor required in choosing a clustering algorithm
from the profusion of algorithms. Finally, we would like to note that the admissibilities defined in this paper
can be extended by changing the definitions of dm

TK . For example, we may extend such admissibilities by
using the updating formula of Jambu (1978) instead of Lance and Williams’s formula in the definition of
dm

TK .
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Table 3: Distortion ratios and total distortion ratios of 8 AHCAs

SL CL WA MD
Stage Combine γm Rm Combine γm Rm Combine γm Rm Combine γm Rm

1 5 – 8 1.00 1.00 5 – 8 1.00 1.00 5 – 8 1.00 1.00 5 – 8 1.00 1.00
2 5 – 9 0.96 0.31 9 – 10 1.00 1.00 9 – 10 1.00 1.00 9 – 10 1.00 1.00
3 5 – 10 0.91 0.22 4 – 7 1.00 1.00 4 – 7 1.00 1.00 4 – 7 1.00 1.00
4 4 – 7 0.91 1.00 12 – 13 1.00 1.00 12 – 13 1.00 1.00 5 – 9 0.91 0.35
5 12 – 13 0.92 1.00 1 – 2 1.00 1.00 1 – 2 1.00 1.00 12 – 13 0.92 1.00
6 2 – 4 0.90 0.34 12 – 15 0.99 1.25 12 – 15 0.99 1.00 12 – 15 0.91−0.32
7 1 – 2 0.77 0.01 16 – 17 0.97 1.00 5 – 9 0.92 1.00 1 – 2 0.92 1.00
8 12 – 15 0.78 0.75 11 – 14 0.95 1.00 16 – 17 0.92 1.00 5 – 6 0.87 0.48
9 5 – 6 0.76 0.44 3 – 6 0.89 1.00 11 – 14 0.92 1.00 16 – 17 0.88 1.00
10 1 – 3 0.68 0.40 5 – 9 0.93 1.27 3 – 6 0.93 1.00 11 – 14 0.89 1.00
11 5 – 11 0.65 0.09 1 – 4 0.80 1.48 1 – 4 0.80 1.00 1 – 4 0.80 0.50
12 16 – 17 0.65 1.00 11 – 12 0.70 1.11 3 – 5 0.73 1.00 3 – 5 0.73 0.39
13 5 – 14 0.49 0.01 3 – 5 0.72 1.87 12 – 16 0.66 1.00 1 – 3 0.59−0.15
14 1 – 5 0.44 0.05 11 – 16 0.71 2.00 1 – 3 0.63 1.00 12 – 16 0.63 0.30
15 1 – 12 0.52 0.08 1 – 3 0.86 1.40 11 – 12 0.86 1.00 11 – 12 0.86−0.04
TR2 0.445 1.224 1.000 0.566
TG 0.771 0.908 0.897 0.869

C.corr. 0.572 0.755 0.757 0.745
GA CE WD FX (β = −0.25)

Stage Combine γm Rm Combine γm Rm Combine γm Rm Combine γm Rm

1 5 – 8 1.00 1.00 5 – 8 1.00 1.00 5 – 8 1.00 1.00 5 – 8 1.00 1.00
2 9 – 10 1.00 1.00 9 – 10 1.00 1.00 9 – 10 1.00 1.00 9 – 10 1.00 1.00
3 4 – 7 1.00 1.00 4 – 7 1.00 1.00 4 – 7 1.00 1.00 4 – 7 1.00 1.00
4 12 – 13 1.00 1.00 5 – 9 0.91 0.35 12 – 13 1.00 1.00 12 – 13 1.00 1.00
5 1 – 2 1.00 1.00 12 – 13 0.92 1.00 1 – 2 1.00 1.00 1 – 2 1.00 1.00
6 12 – 15 0.99 1.00 12 – 15 0.91−0.32 16 – 17 0.97 1.00 12 – 15 0.99 1.25
7 5 – 9 0.92 1.00 1 – 2 0.92 1.00 11 – 14 0.92 1.00 16 – 17 0.97 1.00
8 16 – 17 0.92 1.00 5 – 6 0.87 0.48 12 – 15 0.95 1.33 11 – 14 0.95 1.00
9 11 – 14 0.92 1.00 16 – 17 0.88 1.00 3 – 6 0.89 1.00 3 – 6 0.89 1.00
10 3 – 6 0.93 1.00 11 – 14 0.89 1.00 5 – 9 0.93 1.50 5 – 9 0.93 1.25
11 1 – 4 0.80 1.00 1 – 4 0.80 0.50 1 – 4 0.80 1.50 1 – 4 0.80 1.25
12 3 – 5 0.73 1.00 1 – 5 0.37 0.01 3 – 5 0.73 1.33 3 – 5 0.73 1.25
13 11 – 12 0.72 1.00 1 – 3 0.59 0.04 11 – 12 0.72 1.36 12 – 16 0.66 1.25
14 11 – 16 0.71 0.81 11 – 12 0.74 0.33 11 – 16 0.71 1.16 11 – 12 0.71 1.25
15 1 – 3 0.86 0.91 11 – 16 0.86−0.64 1 – 3 0.86 1.45 1 – 3 0.86 1.25
TR2 0.981 0.516 1.176 1.117
TG 0.906 0.854 0.905 0.906

C.corr. 0.757 0.747 0.746 0.751

Note: TG = (
P15

m=1 γm)/15
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Table 4: Space distortion admissibilities of 8 AHCAs: Determined after analysis

admissible SL CL WA MD GA CE WD FX
1/2 conserving No No Yes* No Yes* No No No
1/2 dilating No Yes* No No No No No No
1/2 contracting Yes* No No No No No No No
1/3 conserving No No Yes* No Yes No No No
1/3 dilating No Yes* No No No No No No
1/3 contracting Yes* No No No No No No No
1/4 conserving No No Yes* No Yes No No No
1/4 dilating No Yes* No No No No No No
1/4 contracting Yes* No No Yes No Yes No No
1/2 total conserving No No Yes* No Yes* Yes No No
1/2 total dilating No Yes* No No No No Yes Yes
1/2 total contracting Yes* No No Yes No No No No
1/3 total conserving No No Yes* No Yes No No No
1/3 total dilating No Yes* No No No No Yes Yes
1/3 total contracting Yes* No No Yes No Yes No No
1/4 total conserving No No Yes* No Yes No No No
1/4 total dilating No Yes* No No No No Yes Yes
1/4 total contracting Yes* No No Yes No Yes No No

* Theoretically determined

Table 5: δ-monotone admissibilities of 8 AHCAs: Determined after analysis

admissible SL CL WA MD GA CE WD FX
1 monotone No Yes* Yes* No No No Yes Yes
0 monotone Yes* Yes* Yes* No Yes* No Yes* Yes*

−1 monotone Yes* Yes* Yes* Yes Yes* Yes Yes* Yes*
1 total monotone No Yes* Yes* No No No Yes Yes
0 total monotone Yes* Yes* Yes* No Yes* Yes Yes* Yes*

−1 total monotone Yes* Yes* Yes* Yes Yes* Yes Yes* Yes*
* Theoretically determined
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Appendix

Proof of Theorem 3.1:
Here we provide notation to help prove the theorems. Note that dIK �= dJK and dMK = (dIK + dJK)/2

will be assumed in the theorems. From these assumptions, we denote

dIK = dIJ +∆ and dJK = dIK +∆′

where ∆ and ∆′ are positive numbers that are determined at each combining stage. We denote

A = ε(dJK − dIK) − (dm
TK − dMK), B = ε(dJK − dIK) − (dMK − dm

TK).

Lemma A: If A > 0 and B > 0 hold for all m, the clustering algorithm is ε-space conserving admissible.

Proof. We assume that A > 0 and B > 0 hold for all m, then,

ε(dJK − dIK) > dm
TK − dMK (A1)

and
ε(dJK − dIK) > dMK − dm

TK (A2)

are satisfied for all m. Due to the monotonicity of the distortion ratio, if dm
TK ≥ dMK , then Rm(dm

TK) ≥
Rm(dMK), and hence,

Rm(ε(dJK − dIK)) > Rm(dm
TK − dMK) (A3)

and
Rm(ε(dJK − dIK)) > Rm(dMK − dm

TK). (A4)

From the definition of the distortion ratio, we obtain

Rm(dm
TK + dm′

TK) = Rm(dm
TK) +Rm(dm′

TK) + ω, (A5)
Rm(kdm

TK) = kRm(dm
TK) + (k − 1)ω (k ∈ R), (A6)

and then
Rm(dm

TK − dm′
TK) = Rm(dm

TK) −Rm(dm′
TK) − ω, (A7)

where
ω =

κdIJ − ηdMK

dMK − dIJ
.

Now, we rewrite Rm(ε(dJK − dIK)), Rm(dm
TK − dMK), and Rm(dMK − dm

TK) by (A6) and (A7) as follows;

Rm(ε(dJK − dIK)) = ε(Rm(dJK) −Rm(dIK)) − ω, (A8)
Rm(dm

TK − dMK) = Rm(dm
TK) −Rm(dMK) − ω, (A9)

and
Rm(dm

TK − dMK) = Rm(dm
TK) −Rm(dMK) − ω.

Thus, we get
ε(Rm(dJK) −Rm(dIK)) > Rm(dm

TK) −Rm(dMK)

and
ε(Rm(dJK) −Rm(dIK)) > Rm(dMK) −Rm(dm

TK)

from (A1) and (A2), respectively. Hence, if A > 0 and B > 0 hold for all m, then the clustering algorithm
is ε-space conserving admissible. �
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First, we consider the case where the parameters of an algorithm satisfy conditions (i), (ii), and (iii).
Then we get A > 0 and B > 0 from

A = ε(dJK − dIK) − (dm
TK − dMK)

= (−ε− αi + γ +
1
2

)dIK + (ε− αj − γ +
1
2

)dJK − βdIJ

= (−αi − αj + 1 − β)dIJ + (−αi − αj + 1)∆+ (ε− αj − γ +
1
2

)∆′,

B = ε(dJK − dIK) − (dMK − dm
TK)

= (−ε+ αi − γ − 1
2

)dIK + (ε+ αj + γ − 1
2

)dJK + βdIJ

= (αi + αj − 1 + β)dIJ + (αi + αj − 1)∆+ (ε + αj + γ − 1
2

)∆′.

Therefore, from Lemma A, the algorithm is ε-space conserving admissible.
Conversely, we consider the case where an algorithm is ε-space conserving admissible. First, we assume

that (i) and (ii) are satisfied, but (iii) is not. That is,

1/2 − ε < αj + γ < 1/2 + ε, αi + αj = 1, αi + αj + β > 1

or
1/2 − ε < αj + γ < 1/2 + ε, αi + αj = 1, αi + αj + β < 1

holds. For the first case, we assume dm
TK ≥ dMK and choose a ∆′ small. Since the coefficients of the first and

second terms of A are nonpositive and we choose a ∆′ small, A < 0. This contradicts the assumption the
fact that the algorithm is ε-space conserving admissible. For the second case, we also obtain a contradiction
in the same manner when we assume dm

TK < dMK and choose a ∆′ small.
In the same way, we can obtain contradictions for cases when at least one of the conditions (i), (ii), and

(iii) does not hold. In Table 6, we summarize all possible cases that result in a contradiction. Therefore, if an
algorithm is ε-space conserving admissible then conditions (i), (ii), and (iii) hold by reduction to absurdity.
�

Theorem 3.2, 3.3, and 4.1 are proved similarly.

Table 6: Cases of contradiction for ε-space conserving admissible

(i) or not (i) (ii) or not (ii) (iii) or not (iii) case contradiction
1/2 − ε < c1 < 1/2 + ε c2 = 1 c3 > 1 dm

T K ≥ dMK, ∆′ → 0 A < 0
1/2 − ε < c1 < 1/2 + ε c2 = 1 c3 < 1 dm

T K < dMK, ∆′ → 0 B < 0
1/2 − ε < c1 < 1/2 + ε c2 > 1 c3 = 1 dm

T K ≥ dMK, ∆′ → 0 A < 0
1/2 − ε < c1 < 1/2 + ε c2 < 1 c3 = 1 dm

T K < dMK, ∆′ → 0 B < 0
1/2 − ε < c1 < 1/2 + ε c2 > 1 c3 > 1 dm

T K ≥ dMK, ∆′ → 0 A < 0
1/2 − ε < c1 < 1/2 + ε c2 > 1 c3 < 1 dm

TK < dMK, ∆ → 0, ∆′ → 0 B < 0
1/2 − ε < c1 < 1/2 + ε c2 < 1 c3 > 1 dm

TK ≥ dMK, ∆ → 0, ∆′ → 0 A < 0
1/2 − ε < c1 < 1/2 + ε c2 < 1 c3 < 1 dm

T K < dMK, ∆′ → 0 B < 0
1/2 + ε ≤ c1 or c1 ≤ 1/2 − ε c2 = 1 c3 = 1 dm

TK < dMK B < 0
1/2 + ε ≤ c1 or c1 ≤ 1/2 − ε c2 = 1 c3 > 1 dm

TK ≥ dMK A < 0
1/2 + ε ≤ c1 or c1 ≤ 1/2 − ε c2 = 1 c3 < 1 dm

TK < dMK B < 0
1/2 + ε ≤ c1 or c1 ≤ 1/2 − ε c2 > 1 c3 = 1 dm

TK ≥ dMK A < 0
1/2 + ε ≤ c1 or c1 ≤ 1/2 − ε c2 < 1 c3 = 1 dm

TK < dMK B < 0
1/2 + ε ≤ c1 or c1 ≤ 1/2 − ε c2 > 1 c3 > 1 dm

TK ≥ dMK A < 0
1/2 + ε ≤ c1 or c1 ≤ 1/2 − ε c2 > 1 c3 < 1 dm

TK < dMK, ∆ → 0 B < 0
1/2 + ε ≤ c1 or c1 ≤ 1/2 − ε c2 < 1 c3 > 1 dm

TK ≥ dMK, ∆ → 0 A < 0
1/2 + ε ≤ c1 or c1 ≤ 1/2 − ε c2 < 1 c3 < 1 dm

TK < dMK B < 0

Note: c1 = αj + γ, c2 = αi + αj , c3 = αi + αj + β; ∆ → 0 stands for choosing small ∆
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